MA40042 Measure Theory and Integration (2024/25): Exercises (* means suggested to hand in) 7

- 37. * Suppose $g : \mathbb{R} \to \mathbb{R}$ is integrable (with respect to Lebesgue measure), and let $t \in \mathbb{R}$.
 - (a) Show that $\int_{-\infty}^{\infty} g(x-t)dx = \int_{-\infty}^{\infty} g(x)dx$.

(b) Deduce that (with g as in (a)) for any $a, b \in \mathbb{R}$ with a < b, $\int_{a+t}^{b+t} g(x-t)dx = \int_a^b g(x)dx$.

[*Hint:* For part (a), start with the case where g is nonnegative and simple. Another way to write the result in (a) is $\int h d\lambda_1 = \int g d\lambda_1$, where we set h(x) = g(x - t)]

38. * Let μ be counting measure on $(\mathbb{N}, \mathcal{P}(\mathbb{N}))$.

(a) Let k ∈ N. Show that if f : N → [0,∞) with f(n) = 0 for all n > k, then ∫_N fdµ = ∑_{n=1}^k f(n). [*Hint: f must be simple.*]
(b) Show that if g : N → [0,∞) then ∫_N gdµ = ∑_{n=1}[∞] g(n). [*Hint: use the Monotone Convergence theorem.*]
(c) Suppose h : N → ℝ with ∑_{n=1}[∞] |h(n)| < ∞. Show that ∫_N hdµ = ∑_{n=1}[∞] h(n).

39. * Let (X, \mathcal{M}, μ) be a σ -finite measure space. Suppose F_1, \ldots, F_n are subsets of X with $F_i \in \mathcal{M}$ and $\mu(F_i) < \infty$ for each $i \in [n]$, where we set $[n] := \{1, \ldots, n\}$. For $S \in \mathcal{P}([n])$, i.e. $S \subset [n]$, let |S| denote the number of elemeents of S. Use the linearity of integration, and the fact that $\mu(A) = \int_X \mathbf{1}_A$ for any $A \in \mathcal{M}$, to prove the *inclusion-exclusion formula*

$$\mu(\bigcup_{i=1}^{n} F_i) = \sum_{J \in \mathcal{P}([n]) \setminus \{\varnothing\}} (-1)^{|J|+1} \mu(\bigcap_{j \in J} F_j),$$

[Hint: for any sets $G_1, \ldots, G_k \in \mathcal{M}$ we have $\mathbf{1}_{\bigcap_{i=1}^k G_i} = \prod_{i=1}^k \mathbf{1}_{G_i}$.]

- 40. Let (X, \mathcal{M}, μ) be a σ -finite measure space. Suppose $f, g, h \in L^1(\mu)$.
 - (a) For $F \in L^1(\mu)$ set $||F||_1 := \int |F| d\mu$. Show that $||f + g||_1 \le ||f||_1 + ||g||_1$.
 - (b) Show that $f h \in L^1(\mu)$ and $h g \in L^1(\mu)$ and $||f g||_1 \le ||f h||_1 + ||h g||_1$.
- 41. * A function $f : \mathbb{R} \to \mathbb{R}$ is said is said to have **bounded support** if there exists $n \in \mathbb{N}$ such that f(x) = 0 whenever |x| > n.

Suppose $f : \mathbb{R} \to \mathbb{R}$ is integrable (with respect to Lebesgue measure). Let $\varepsilon > 0$. Show that there exists integrable $g : \mathbb{R} \to \mathbb{R}$ such that $\int_{-\infty}^{\infty} |f(x) - g(x)| dx < \varepsilon$, and g has bounded support

42. A function $g : \mathbb{R} \to \mathbb{R}$ is called a **step function** if we can write $g = \sum_{i=1}^{k} c_i \mathbf{1}_{I_i}$ for some $k \in \mathbb{N}$, $(c_1, \ldots, c_k) \in \mathbb{R}^k$ and I_1, \ldots, I_k intervals in \mathbb{R} .

Suppose $f : \mathbb{R} \to [0, \infty)$ is simple and has bounded support (i.e., there exists $n \in \mathbb{N}$ with f(x) = 0whenever |x| > n). Let $\varepsilon > 0$. Show that there exists a step function $g : \mathbb{R} \to \mathbb{R}$ such that $\int_{-\infty}^{\infty} |g - f| dx < \varepsilon$. *Hint: Recall Questions 17 and 23.*

43. Suppose $f : \mathbb{R} \to \mathbb{R}$ is in L^1 . Let $\varepsilon > 0$. Using Question 42, show there exists a continuous function $g : \mathbb{R} \to \mathbb{R}$ such that $||f - g||_1 < \varepsilon$, i.e. $\int_{-\infty}^{\infty} |f(x) - g(x)| dx < \varepsilon$.