MA40042 Measure Theory and Integration (2024/25): Exercises (* means suggested to hand in) 6

31. * (a) Let (X, \mathcal{M}) be a measurable space, and let $f_n : X \to \mathbb{R}$ be measurable functions. Show that the set of points

$$\{x \in X : \lim_{n \to \infty} f_n(x) \text{ exists in } \mathbb{R}\}\$$

is in \mathcal{M} .

if $A_1, \ldots, A_n \in \mathcal{M}$.

(b) Taking $(\Omega, \mathcal{F}, \mathbb{P})$ to be a probability space, and random variables (i.e., measurable functions) $Y_1, Y_2, \ldots : \Omega \to \mathbb{R}$ show that for any constant $\mu \in \mathbb{R}$ the set:

$$\left\{\omega \in \Omega : \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} Y_i(\omega) = \mu\right\}$$

is in \mathcal{F} . Deduce that expressions like $\mathbb{P}[\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} Y_i = \mu]$ are meaningful.

- 32. Let (X, M) be a measurable space.
 (a) Show that if E ∈ M, then its indicator function 1_E defined by 1_E(x) = 1 for x ∈ E and 1_E(x) = 0 for x ∉ E, is a measurable function.
 (b) Let f : X → ℝ be function with finite range f(X) = {α₁,..., α_n} (with α₁,..., α_n distinct), so that f = ∑_{i=1}ⁿ α_i1_{A_i}, where A_i = {x ∈ X : f(x) = α_i}. Show that f is measurable if and only
- 33. * Suppose (X, \mathcal{M}, μ) is a σ -finite measure space and $f : X \to [0, \infty]$ is measurable.
 - (a) Prove that if $a \in (0, \infty)$ then $\mu(f^{-1}[a, \infty]) \leq a^{-1} \int f d\mu$. [When μ is a probability measure, this is called *Markov's inequality*]
 - (b) Prove that if $\int f d\mu = 0$, then $\mu(f^{-1}((0,\infty])) = 0$.
- 34. * Let (X, \mathcal{M}) be a measurable space. Suppose $f : X \to [0, \infty)$ and $g : X \to [0, \infty)$ are measurable functions. Define the set $A \subset X \times \mathbb{R} \times \mathbb{R}$ by $A := \{(x, s, t) : f(x) > s, g(x) > t\}$. Let \mathcal{B} denote the Borel σ -algebra in \mathbb{R} . Show that $A \in \mathcal{M} \otimes \mathcal{B} \otimes \mathcal{B}$, where $\mathcal{M} \otimes \mathcal{B} \otimes \mathcal{B}$ is the σ -algebra generated by the collection of all sets in $X \times \mathbb{R} \times \mathbb{R}$ of the form $B \times C \times D$ with $B \in \mathcal{M}, C \in \mathcal{B}$ and $D \in \mathcal{B}$.

[Hint: You can use a similar approach to the proof of Theorem 10.13]

35. * (a) Let (X, \mathcal{M}) and (Y, \mathcal{N}) be measurable spaces. Show that that for all $A \subset X \times Y$ with $A \in \mathcal{M} \otimes \mathcal{N}$, and all $y \in Y$, the horizontal cross-section $A_{[y]}$ of A defined by

$$A_{[y]} := \{ x \in X : (x, y) \in A \}$$

satisfies $A_{[y]} \in \mathcal{M}$. [Hint: First show the class of $A \subset X \times Y$ with $A_{[y]} \in \mathcal{M}$ is a σ -algebra]

(b) Suppose $f: X \to [0, \infty]$ is such that $hyp(f) \in \mathcal{M} \otimes \mathcal{B}$. Show that f is a measurable function.

- 36. Let $W \in \mathcal{B}$ (the Borel sets in \mathbb{R}) with $W \neq \emptyset$. Recall from Definition 10.3 that $\mathcal{B}_W := \{B \subset W : B \in \mathcal{B}\},\$
 - (a) Show that $\mathcal{B}_W = \{A \cap W : A \in \mathcal{B}\}.$
 - (b) Show that \mathcal{B}_W is the σ -algebra (in W) generated by the collection of all sets of the form $(-\infty, a] \cap W$ with $a \in \mathbb{R}$.