MA40042 Measure Theory and Integration (2024/25): Exercises (* means suggested to hand in)

On this sheet, λ_1 denotes the Lebesgue measure on $(\mathbb{R}, \mathcal{B})$.

- 21. * Show that λ_1 has the scaling property: for any real number $c \neq 0$ and any Borel set $B \in \mathcal{B}$, we have $\lambda_1(cB) = |c|\lambda_1(B)$. Here cB is defined to be the set $\{cx : x \in B\}$.
- 22. * Suppose μ is a translation invariant measure on $(\mathbb{R}, \mathcal{B})$. Set $\gamma := \mu((0, 1])$ and assume $0 < \gamma < \infty$.
 - (a) Show that $\mu((0, 1/n]) = \gamma/n$ for all $n \in \mathbb{N}$.
 - (b) Show that $\mu((0,q]) = \gamma q$ for all rational q > 0.
 - (c) Let \mathcal{I}' be the class of half-open intervals in \mathbb{R} with rational endpoints, i.e. the class of intervals of the form (q, r] with $q \in \mathbb{Q}$, $r \in \mathbb{Q}$ and $q \leq r$. Show that $\mu(I) = \gamma \lambda_1(I)$ for all $I \in \mathcal{I}'$.
 - (d) Show that $\sigma(\mathcal{I}') = \mathcal{B}$. You may use without proof the fact that \mathbb{Q} is dense in \mathbb{R} , that is, every non-empty open interval in \mathbb{R} contains at least one rational number.
 - (e) Use the Uniqueness lemma to show that $\mu(B) = \gamma \lambda_1(B)$ for all $B \in \mathcal{B}$.
- 23. * Suppose X is a non-empty set and S is a semi-algebra in X. As in Chapter 6 of the notes, let \mathcal{U} be the class of sets of the form $\bigcup_{i=1}^{k} A_i$ with $k \in \mathbb{N}$ and A_1, \ldots, A_k pairwise disjoint sets in \mathcal{S} .
 - (a) Show by induction on k that if $A \in \mathcal{U}$ then $A^c \in \mathcal{U}$, i.e. \mathcal{U} is closed under complementation.
 - (b) Show also that \mathcal{U} is closed under pairwise intersections and deduce that \mathcal{U} is an algebra.
 - (c) Deduce that \mathcal{U} is the algebra generated by \mathcal{S} . (Generated algebras are defined analogously to generated σ -algebras. Write $\mathcal{A}(\mathcal{S})$ for the algebra generated by \mathcal{S} .)
- 24. Suppose X is a non-empty set, S is a semi-algebra in X and π is a pre-measure on (X, S).
 - (a) Show that if $A, A_1, \ldots, A_k \in \mathcal{S}$ with A_1, \ldots, A_k pairwise disjoint and $\bigcup_{i=1}^k A_i \subset A$, then $\sum_{i=1}^{k} \pi(A_i) \le \pi(A).$
 - (b) Show that π is countably additive, i.e. $\pi(\bigcup_{n=1}^{\infty}A_n) = \sum_{n=1}^{\infty}\pi(A_n)$ whenever $A_1, A_2, \ldots \in S$ are pairwise disjoint with $\bigcup_{n=1}^{\infty} A_n \in \mathcal{S}$.

Hint: The result from Question 23 might be useful.

25. Let $F: (-\infty, \infty) \to \mathbb{R}$ be a non-decreasing, right continuous function (right continuity is defined in question 10).

Let \mathcal{I} denote the set of bounded half-open intervals in \mathbb{R} (as in lectures). For $I \in \mathcal{I}$, put

$$\lambda_F(I) = F(b) - F(a)$$
, where $I = (a, b]$, and $\lambda_F(\emptyset) = 0$.

(a) Check that $\lambda_F(I) \geq 0$ for all $I \in \mathcal{I}$.

(b) Show that the set function λ_F is finitely sub-additive on \mathcal{I} , the class of bounded half-open intervals in \mathbb{R} . That is, show that if $A, A_1, A_2, \ldots, A_n \in \mathcal{I}$ with $A \subset \bigcup_{i=1}^n A_i$ then $\lambda_F(A) \leq A_i$ $\sum_{i=1}^n \lambda_F(A_i).$

(c) Show that λ_F is finitely additive on \mathcal{I} . That is, show that if $A_1, A_2, \ldots, A_n \in \mathcal{I}$ are pairwise disjoint with $A := \bigcup_{i=1}^{n} A_i \in \mathcal{I}$, then $\lambda_F(A) = \sum_{i=1}^{n} \lambda_F(A_i)$.

(d) Show that λ_F is countably sub-additive on \mathcal{I} . That is, show that if $A, A_1, A_2, \ldots \in \mathcal{I}$ with $A \subset \bigcup_{i=1}^{\infty} A_i$ then $\lambda_F(A) \leq \sum_{i=1}^{\infty} \lambda_F(A_i)$.

[Hint: For (b) and (c), adapt the proof of Lemma 4.1. For (d), adapt the proof of Theorem 4.2.]