MA40042 Measure Theory and Integration (2024/25): Exercises (* means suggested to hand in) 10

- 55. * Let $p \in [1,\infty)$ and let $f \in L^p(\mathbb{R})$. Let $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ be real-valued sequences such that $\sum_{n=1}^{\infty} |a_n| < \infty$. Show that the sequence of functions $f_n(x) := \sum_{k=1}^n a_k f(x-b_k)$ converges in $L^p(\mathbb{R})$.
- 56. * Suppose $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ are sequences of nonnegative numbers, such that $A := \sum_{n=1}^{\infty} a_n^{4/3} < \infty$ and $B := \sum_{n=1}^{\infty} b_n^4 < \infty$. Show that $\sum_{n=1}^{\infty} a_n b_n \leq A^{3/4} B^{1/4}$.
- 57. Suppose that (X, \mathcal{M}, μ) is a σ -finite measure space, and $1 \leq p < q < \infty$.
 - (a) Show that if μ is a probability measure and $f \in L^q(\mu)$, then $||f||_p \leq ||f||_q$. [Hint: note that $f = f \cdot 1$, and apply Hölder's inequality]
 - (b) Show that if $\mu(X) < \infty$ then $L^q(\mu) \subset L^p(\mu)$.
 - (c) Give an example to show that if $\mu(X) = \infty$, then we might not have $L^q(\mu) \subset L^p(\mu)$.
- 58. Let (X, \mathcal{M}, μ) be a σ -finite measure space. Let $p \in (1, \infty)$. Suppose $f \in \mathbb{R}(X)$ and (for all $n \in \mathbb{N}$) $f_n \in \mathbb{R}(X)$, with $\sum_{n=1}^{\infty} ||f_n||_p < \infty$. For all $n \in \mathbb{N}$ and $x \in X$, set

$$g_n(x) = \sum_{k=1}^n |f_k(x)|$$
 and $g_\infty(x) = \sum_{k=1}^\infty |f_k(x)|.$

- (i) Show that $||g_n||_p \to ||g_\infty||_p$ as $n \to \infty$, and deduce that $||g_\infty||_p < \infty$.
- (ii) Show that the function $h(x) := \sum_{n=1}^{\infty} f_n(x)$ is well-defined and finite μ -a.e., that is, the sum converges for μ -a.e. $x \in X$.
- 59. * Let $W \in \mathcal{B}$, and for $f, g \in L^2(W)$, write $\langle f, g \rangle = \int_W f(x)g(x)dx$. Show that if also $h \in L^2(W)$ and $a, b \in \mathbb{R}$ then $\langle f, ag + bh \rangle = a \langle f, g \rangle + b \langle f, h \rangle$.
- 60. * For $n \in \mathbb{N}$, let $f_n(x) = \sin(nx)$.
 - (a) Show that for $n, m \in \mathbb{N}$ with $n \neq m$ we have $\int_0^{2\pi} f_n(x) f_m(x) dx = 0$, while $\int_0^{2\pi} (f_n(x))^2 dx = \pi$. [*Hint: recall that* $\cos(a+b) = \cos a \cos b - \sin a \sin b$].
 - (b) Now set $g_n(x) = \sum_{k=1}^n k^{-1} f_k(x)$. Show that in $L^2([0, 2\pi])$ we have $||g_n||_2^2 = \pi \sum_{k=1}^n k^{-2}$.
 - (c) Show there exists a function $g \in L^2[0, 2\pi]$ such that $g_n \to g$ in $L^2([0, 2\pi])$ as $n \to \infty$.