
5 Probability and random variables.

5.1 Finite probability spaces. A finite probability space is a finite set Ω of possible
outcomes to some ‘experiment’, with probabilities (numbers) P [{ω}] assigned to each element
ω ∈ Ω, satisfying

P [{ω}] ≥ 0∑
ω∈Ω

P [{ω}] = 1

For example, to represent 3 tosses of a fair coin we could set

Ω = {HHH, HHT, HTH,HTT

THH,THT, TTH, TTT}

and assign a probability of P [{ω}] = 1/8 to each element ω of Ω.
One interpretation is that the ‘experiment’ can be repeated many times, and P [{ω}] is the

proportion of times outcome ω will occur in these repeated experiments.
An event is a subset of Ω and for any event A ⊆ Ω we write P [A] for the probability of A

which is given by summing the probabilities of each outcome in A, i.e.

P [A] =
∑
ω∈A

P [{ω}].

Events can be described either by listing all outcomes in the event, or in words. e.g. in the
above example:
{HHH, TTT} is the event that all coins land the same way.
{HHH, HTH, THH, TTH} is the event that the third coin toss lands on ‘heads’.
If A is an event we write Ac for the complement of A, i.e. the event consisting of all

elements of Ω that are not in A, or in words the event that A does not occur. eg if A =
{HHH, HTH, THH, TTH} is the event that the third coin toss lands on heads, then the com-
plement Ac is the event {HHT,HTT, THT, TTT}, i.e. the event that the third coin toss lands
on tails.

Given events A and B we say that A ∩ B occurs if both A and B occur. For example, if
A = {HHH, TTT} is the event that all coins land the same way, and
B = {HHH, HTH, THH, TTH} is the event that the third coin toss lands on ‘heads’, then
A∩B = {HHH}, i.e. the event A∩B is the event that A and B both occur, which is the same
as the event that all 3 tosses are heads.

As well as the intersection A∩B, we are sometimes interested in the union A∪B. If A and
B are events, then the event A ∪ B consists of all elements in either A or in B, or both. For
example, if A = {HHH, TTT} and B = {HHH, HTH, THH, TTH}, then

A ∪B = {HHH, HTH, THH, TTH, TTT}

is the event that either the third coin toss lands on heads or the coin tosses are all tails.
We say events A and B are disjoint or incompatible if A∩B is the empty set. In our example

of 3 coin tosses, the following events are incompatible:
B = {HHH, HTH, THH, TTH}, the event that the last coin toss is heads.
D = {HTT, TTT}, the event that the second and third coin tosses are both tails.
It follows from the definition

P [A] =
∑

ω∈A P [{ω}] and the assumption that the numbers P [{ω}], ω ∈ Ω are nonnegative and
sum to 1, that the following so-called Axioms of probability hold:
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1. P [A] ≥ 0 for all events A.

2. P [Ω] = 1

3. If A and B are incompatible then

P [A ∪B] = P [A] + P [B]

We say events A and B are independent if P [A ∩ B] = P [A]P [B]. In the above example,
with A = {HHH, TTT} and
B = {HHH, HTH, THH, TTH}, it is the case that P [A] = 1/4 and P [B] = 1/2 while P [A ∩
B] = 1/8 so A and B are indeed independent.

The interpretation of independence of A and B is that if we know event A occurs this does
not affect the probability of B occurring.

We say events A, B,C are mutually independent if any pair of them are independent and also

P [A ∩B ∩ C] = P [A]P [B]P [C].

Likewise for more than three events.

It can be shown that if A and B are independent, then Ac and B are independent. If A, B,C
are mutually independent, then Ac, B,C are mutually independent, and so on.

Example. You invest in 3 companies (denoted a, b, c respectively). Companies a, b, c have
probability 0.1, 0.2, 0.3 respectively of going bankrupt in the next 5 years (independently of
each other). What is the probability that at most 1 of them goes bankrupt in the next 5 years?

Let A, B,C be the events that Company a, Company b, Company c respectively go bankrupt.
So P [A] = 0.1, P [B] = 0.2, P [C] = 0.3, and A, B, C are assumed mutually independent. The
probability that none of them goes bankrupt is

P [Ac ∩Bc ∩ Cc] = P [Ac]P [Bc]P [Cc]
= (1− 0.1)(1− 0.2)(1− 0.3) = 0.504

The probability that only A goes bankrupt is

P [A ∩Bc ∩ Cc] = P [A]P [Bc]P [Cc]
= 0.1(1− 0.2)(1− 0.3) = 0.056

and similarly

P [Ac ∩B ∩ Cc] = P [Ac]P [B]P [Cc]
= (1− 0.1)(0.2)(1− 0.3) = 0.126

P [Ac ∩Bc ∩ C] = P [Ac]P [Bc]P [C]
= (1− 0.1)(1− 0.2)(0.3) = 0.216

so the answer is

0.504 + 0.056 + 0.126 + 0.216
= 0.902
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5.2 Bernoulli trials
The discrete probability space that will interest us the most is the Bernoulli trials model,

which generalizes the coin-tossing example to an arbitrary number of coin tosses, and allows for
the possibility that the coin is biased.

In general terms consider a sequence of n ‘trials’, each of which can end in ‘success’ or
‘failure’. Let p be a parameter with (0 < p < 1). In the Bernoulli trials model, it is assumed
that each trial has probability p of success and that different trials are mutually independent.
In the case n = 3, the sample space is similar to the earlier example:

Ω = {SSS, SSF, SFS, SFF,

FSS, FSF, FFS, FFF}

but now, given p and setting q = 1− p, the probabilities of these outcomes are

P [{SSS}] = p3

P [{SSF}] = P [{SFS}] = P [{FSS}] = p2q

P [{SFF}] = P [{FSF}] = P [{FFS}] = pq2

P [{FFF}] = q3

It can then be shown that if Ai denotes the event that the ith trial is a success, so that e.g.

A2 = {SSS, SSF, FSS, FSF}

then
P [Ai] = p, i = 1, 2, 3

and events A1, A2 and A3 are mutually independent.
Similarly, if n = 5 then a typical element of the sample space is SSFFS which has probability

p3q2. Again, if Ai is the event that the ith trial is successful, it has probability p and events
A1, A2, A3, A4, A5 are mutually independent.

In general, for n Bernoulli trials with success probability p, the elements of the probability
space are sequences of the form x = (x1, x2, . . . , xn) with each xi equal to either S or F . An
outcome x = (x1, . . . , xn) with k of the xi’s equal to S and the other n− k of them equal to F
has probability pk(1− p)n−k.

Going back to the case n = 3, let E2 denote the event that precisely two of the three trials
are successful. Thus

E2 = {SSF, SFS, FSS}

and each element of E has probability p2q (with q = 1− p). Hence

P [E2] =
∑

ω∈E2

P [{ω}] = 3p2q

so for example if n = 3, p = 3/4 then

P [E2] = 3
(

3
4

)2 (1
4

)
=

27
64

So for three tosses of coin that is biased 75 : 25 in favour of heads, the probability that precisely
2 of the tosses land heads is 27/64.
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Similarly, if E1 is the event that just one of the three trials is successful, then

P [E1] = P [{SFF, FSF, FFS}] = 3pq2

while if E0 is the event that no trial is a success and E3 is the event that all three trials are
successful, then

P [E0] = P [{FFF}] = q3

P [E3] = P [{SSS}] = p3

To take another example, consider 5 Bernoulli trials, and let E3 denote the event that precisely
3 of them are successful. We can list the outcomes in E3 as

{SSSFF, SSFSF, SSFFS, SFSSF, SFSFS,

SFFSS, FSSSF, FSSFS, FSFSS, FFSSS}

a total of 10 outcomes which each have probability p3q2. Hence for 5 trials,

P [E3] = 10p3q2

In general, for n trials the probability of having precisely k successes is

P [Ek] =

(
n

k

)
pkqn−k

where
(n
k

)
denotes number of distinct sequences of k S’s and (n − k) F’s. It turns out that

(n
k

)
is given by the formula (

n

k

)
=

n!
k!(n− k)!

where we set n! = 1× 2× · · · × n for n ≥ 1, and we set 0! = 1. For example,(
5
3

)
=

5!
3!2!

=
5× 4× 3× 2× 1
3× 2× 1× 2× 1

=
20
2

= 10.

Also, it can be shown that
(n
k

)
is the entry in the (k + 1)st entry in the (n + 1)st row of Pascal’s

triangle, where each entry is obtained by summing the two entries directly above it.

Example. Suppose each day the stock market either goes up (with probability 0.6) or down
(with probability 0.4), and different days are assumed independent. What is the probabilty that
the stock market goes up on precisely 2 days out of the next 4?

With n = 4 and p = 0.6 the answer is

P [E2] =

(
4
2

)
(0.6)2(0.4)2 = 6(0.36)(0.16)

= 0.3456
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5.3 Probability distributions
When a sample space Ω of a probability space is a set of numbers, the random outcome is

called a random quantity. For example if you roll a die the sample space is Ω = {1, 2, 3, 4, 5, 6}.
In such cases the random outcome is often denoted by a capital letter such as X, and for each
possible outcome x (i.e. each x ∈ Ω) we write P [X = x] for P [{x}]. Also we write P [X ≤ x] for
P [{y ∈ Ω : y ≤ x}. More generally for any set of numbers A we write P [X ∈ A] for P [A].

In the above example, assuming the die is fair, if X denotes the score on the die we have

P [X = 4] = 1/6,

P [X ≤ 2] = 1/3,

P [X ∈ {1, 3, 5}] = 1/2

and so on.
If the set of possible values for X is finite, we say X is a discrete random quantity. The

probability distribution of a discrete random quantity X is given by listing the set of all
possible values x for X and the associated probabilities P [X = x], often in a table, for example

x 1 2 3 4 5 6
P (X = x) 1/6 1/6 1/6 1/6 1/6 1/6

x 100 0 −20
P (X = x) 0.2 0.7 0.1

Given a sample space (not necessarily a set of numbers), we can also construct a random
quantity by specifying a rule for assigning a numerical ‘score’ to each element of a sample space
(i.e., a function from the sample space Ω to the set of (real) numbers). Such a rule is called
a random variable (often also denoted by letters such as X). The resulting random quantity
would then also be denoted by the same letter!

For example, consider 2 coin tosses (so Ω = {HH,HT, TH, TT}) and define a random
variable X which counts the number of heads (we tend to use letters such as X for random
variables, too!). That is,

X(HH) = 2, X(TT ) = 0,

X(HT ) = 1, X(TH) = 1.

Assuming a fair coin, the resulting random quantity (also denoted X) has probability distribution
given by its set of possible values {0, 1, 2} and corresponding probabilities P [X = 0] = 1/4,
P [X = 1] = 1/2, and P [X = 2] = 1/4.

To take another example, go back to the earlier example where X is the score on a‘fair die’.
We could construct a new random quantity Y by taking (for example) Y = (X − 3)2. What is
the probability distribution of Y ?

Answer: The possible values for Y are
{0, 1, 4, 9}, and

P [Y = 0] = P [Y = 9] = 1/6
P [Y = 1] = P [Y = 4] = 1/3

Note that these probabilities are nonnegative and add to 1. This should always be the case for
any random quantity.

5



For our purposes, the most important discrete probability distributions are the family of
Binomial distributions. Given a nonnegative integer n and a number p between 0 and 1, a
Binomial random quantity with parameters n and p is obtained by counting the total number
of successes in n Bernoulli trials with probability p of success.

For example consider 3 Bernoulli trials, so

Ω = {SSS, SSF, SFS, SFF,

FSS, FSF, FFS, FFF}

and consider the random variable X which counts the number of successes, so that

X(SSS) = 3, X(SSF ) = 2, X(SFF ) = 1 etc.

The corresponding random quantity is simply the ‘number of successes in 3 bernoulli trials’ with
parameter p, and has a Binomial distribution with

P [X = 0] = (1− p)3, P [X = 1] = 3p(1− p)2,

P [X = 2] = 3p2(1− p), P [X = 3] = p3.

In the particular case p = 1/4, this comes to

P [X = 0] = 27/64, P [X = 1] = 27/64,

P [X = 2] = 9/64, P [X = 3] = 1/64

Note that these probabilities add to 1, which is as it should be.
Using the formula from earlier, we obtain that if X is Binomial with parameters n and p

then

P [X = k] =

(
n

k

)
pk(1− p)n−k, (k = 0, 1, 2, . . . , n)

Example. Suppose each day the stock market either goes up (with probability 0.6) or down
(with probability 0.4), and different days are assumed independent. What is the probabilty that
the stock market goes up on at least 2 days out of the next 4?

Let X be the number of days in the next 4 days when the stock market goes up. Then X is
binomial with parameters n = 4 and p = 0.6, so

P [X ≥ 2] = P [X = 2] + P [X = 3] + P [X = 4]

We worked out earlier that P [X = 2] = 0.3456. Also

P [X = 3] =

(
4
3

)
(0.6)3(0.4)1

= 4(.216)0.4 = 0.3456

P [X = 4] =

(
4
4

)
(0.6)4(0.4)0

= 1(0.1296)× 1 = 0.1296

so the answer is
0.3456 + 0.3456 + 0.1296 = 0.8208
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