III. 1. Defn.

\((X, \mathcal{F}, \lambda)\) s-finite

If \(\mathcal{F}\) is pppl \((\lambda)\) on \(X\):

- \(\mathcal{F}(A) \sim \mathcal{P}_0(\lambda(A))\) \(\forall A \in \mathcal{F}\)
- \(\mathcal{F}(A_1) \ldots \mathcal{F}(A_n)\) indep if \(A_i \cap A_j = \emptyset\) if
Theorem III-1 (3.3)
(Superposition)
Suppose \(\lambda_1, \lambda_2, \ldots \) are \(\mathcal{S} \)-finite measures on \((X, \mathcal{X})\) and \(\nu_1, \nu_2, \nu_3, \ldots \) are independent PPPs on \(X\) with mean measures \(\lambda_1, \lambda_2, \ldots \) respectively.
Set \(\eta = \sum_{i=1}^{\infty} \xi_i \), i.e.,

\[\eta(A) = \sum_{i=1}^{\infty} \xi_i(A), \quad A \in \mathcal{A} \]

Then \(\eta \) is a PPP with mean measure \(\sum_{i=1}^{\infty} \lambda_i \) (which is \(s \)-finite)
Proof: Set \(\xi_n = \sum_{i=1}^{\infty} \xi_i \). Let \(A \in \mathcal{F} \). Then \(\xi_n(A) \sim P_0\left(\sum_{i=1}^{\infty} \lambda_i(A) \right) \) by Prop. I.1 (4 induction).

So for \(k \in \mathbb{N}_0 \),

\[
P[\gamma(A) = k] = \lim_{n \to \infty} P[\xi_n(A) = k]
\]

\[
= \lim_{n \to \infty} P_0\left(\sum_{i=1}^{\infty} \lambda_i(A) > k \right)
\]

\[
= P_0\left(\lambda(A) > k \right), \text{ since } e^{-x} x^k / k! \text{ is cts. in } x.
\]
Also, if A_1, A_2, \ldots, A_m are pairwise disjoint, then

\[\mathcal{P}_1(A_1), \mathcal{P}_2(A_1), \ldots, \]
\[\mathcal{P}_1(A_2), \mathcal{P}_2(A_2), \ldots, \]
\[\mathcal{P}_1(A_m), \mathcal{P}_2(A_m), \ldots, \]

are mutually independent, so

\[\mathcal{P}(A_1), \mathcal{P}(A_2), \ldots, \mathcal{P}(A_m) \]

\[\mathcal{P}_1(C A_1), \mathcal{P}_2(C A_1), \ldots, \mathcal{P}_1(C A_m), \mathcal{P}_2(C A_m) \]

are independent.
III.2 Existence of p.p.p.s

Proposition (3.5) Suppose

\((X, \mathcal{F}, \lambda)\) is a meas. space with

\(\lambda(X) < \infty\). There exists a

proper Poisson pt. process on

\(X\) with intensity measure

\(\lambda\).
Proof: On a suitable \((\Omega, \mathcal{F}, \mathbb{P})\) we can arrange to have \(X\) such that

1. A random variable \(K \sim \text{Po}(\lambda)\)
2. A sequence \((\xi_1, \xi_2, \ldots)\) independent random elements of \(X\) with common distribution

\[
Q(\cdot) = \frac{\chi(\cdot)}{\lambda(C(X))} \quad \text{(indep. of } K)\]
Set $\gamma = \sum_{i=1}^{s} \delta_{i}^{\phi} A_{i}$ (mixed binomial rep. of a PPP).

γ is a proper Poisson process by def. for $A_1, A_2, \ldots A_n \subset X$. partitioning X setting $p_i = \Omega(A_i)$, $y_i = \gamma(A_i)$, $k \sim Po(\lambda(X))$ and for $k \in \mathbb{N}_0$, $L(y_1, \ldots, y_n | k = k) \sim \text{Mult.}(k; p_1, \ldots, p_n)$ by the extension of Prop. I.2.

$Y_i \sim Po(\lambda(X) \times p_i) = Po(\lambda(A_i))$, and Y_1, \ldots, Y_n are indep.

So γ is a PPP (λ).
Theorem (3.6) Let $(X, \mathcal{X}, \lambda)$ be an s-finite. Then there exists a proper PPP on X with mean measure λ.

Proof WLOG $\lambda(X) = \infty$. Choose measures $\lambda_1, \lambda_2, \ldots$ on (X, \mathcal{X}) with $\lambda_i(X) < \infty$ and $\lambda = \sum_{i=1}^{\infty} \lambda_i$.
On a suitable prob. space, assume we have indep. RVs K_1, K_2, \ldots and S_{ij} (i, j \in \mathbb{N}) with $K_i \sim \mathcal{N}(\lambda_i(X))$ (\mathbb{N}_0-valued) and S_{ij} X-valued with distribution

$$Q_i = \frac{\lambda_i(X)}{\lambda_i(X)}.$$
For $i \in \mathbb{N}$, set $\mathcal{H}_i = \bigcap_{j=1}^{k_i} \mathcal{S}_{i j}$.

By the lemma, \mathcal{H}_i is a PPP with mean measure λ_i. Also $\mathcal{H}_1, \mathcal{H}_2, \ldots$ are independent. By Thm. III.1 (Superposition), setting $\mathcal{H} = \bigcup_{i=1}^{\infty} \mathcal{H}_i$, \mathcal{H} is a PPP with mean measure $\sum_{i=1}^{\infty} \lambda_i = \lambda$. Also,
\[\gamma = \sum_{i=1}^{\infty} \sum_{j=1}^{k_i} s_{ij} \]

Can rewrite as

\[\gamma = \sum_{k=1}^{\infty} s_{\Psi_k} \text{, e.g.} \]

\[k_1 = 2 \]
\[k_2 = 1 \]
\[k_3 = 4 \]
\[k_4 = 3 \]

\[(\psi_1, \psi_2, \psi_3 \ldots) = (s_{11}, s_{12}, s_{21}, s_{31}, s_{13}, s_{32}, \ldots) \]

so \(\gamma \) is proper. \[\Box \]
Motivation

Let $\gamma \leq \delta \sum_i x_i$ for all $i \in T$, mean measure $\lambda = \text{Lebesgue}$

Let $Z = \sum_i I_i$

$I_i = \{ \exists l(k(x_i)) = 0 \}$

"x_i maximal"
Find \(E(Z), \ E[Z^2] \)

\[
Z = \sum_{dx \in T} \frac{1}{\mu(dx)} \cdot 1 \times \mathbb{I}_{\eta(K(z))=0} \mathbb{I}_{\eta(K(y))=0}
\]

\[
E(Z) = \int_{T} e^{-\lambda(K(x) \cup K(y))} \ d\lambda
\]

\[
Z^2 - Z = \sum_{i \neq j} I_i I_j
\]

\[
E \sum_{i \neq j} I_i I_j = \int_{T} \int_{T} e^{-\lambda(K(x) \cup K(y))} \ d\lambda \ d\gamma
\]
IV. The univariate Mecke eqn

(4.1) Theorem (4.1). Suppose

\((X, \mathcal{F}, \lambda)\) is an s-finite measure space and \(\gamma\) is a pt. process on \(X\) with

\[
\mathbb{E}\int_X f(x, \gamma) \lambda(dx) = \int_X \mathbb{E} f(x, \gamma + \delta_x) \lambda(dx)
\]

\(\forall f \in \mathcal{R}_+(X \times N).\) Then \(\gamma\) is a PPE on \(X\) with mean measure \(\lambda.\)

(\(\diamond\) is the \(\text{univariate Mecke egn}\) \(\) (we'll prove a converse later)
Proof: Let $A_0, \ldots, A_m \in \mathbb{X}$ be disjoint with $\lambda(A_i) < \infty$. Let $k_1, \ldots, k_m \in \mathbb{N}$. Let

$$\left[f(x, n) \right]_{A_1} \left[A_2 \right]_{A_2} \left[A_3 \right]_{A_3}$$
\[f(x, y) = \mathbb{1}\{x \in A_m, \gamma(A_1) = k_1, \ldots, \gamma(A_m) = k_m\} \]

Then

\[\mathbb{E} \left[\sum \mathbb{1}\{\gamma(A_i) = k_i\} \prod_{i=1}^{m-1} \mathbb{1}\{\gamma(A_i) = k_i\} \right] \]

\[= k_m \mathbb{P}[\gamma(A_1) = k_1, \ldots, \gamma(A_m) = k_m] \]

and for \(x \in X \)

\[\mathbb{E} f(x, \delta_x + y) = \mathbb{1}_{A_m} \mathbb{P}[\gamma(A_1) = k_1, \gamma(A_2) = k_2, \ldots, \gamma(A_m) = k_{m-1}] \]

So by (x)
\[k_m P \left[\gamma(A_1) = k_1, \ldots, \gamma(A_m) = k_m \right] = \lambda(A_m) P \left[\bigcap_{i=1}^{m-1} \{ \gamma(A_i) = k_i \} \land \{ \gamma(A_m) = k_m \} \right] \]

Set \(\Pi(k) = P(\gamma(A_m) = k) \left[\bigcap_{i=1}^{m-1} \{ \gamma(A_i) = k_i \} \right] \)

\[\Pi(k) = \frac{\lambda(A_m)}{k_m} \Pi(k-1) \]

(\(k = k_m \))

\[\Pi(n) = \Pi(0) \frac{\Pi(1)}{\Pi(0)} \ldots \frac{\Pi(n)}{\Pi(n-1)} = \frac{\Pi(0) \lambda(A_m)}{n!} \]

So \(\Pi(n) \) is \(Po(\lambda(A_m); n) \) does not depend on \(k_1, \ldots, k_{m-1} \)

\(\gamma(A_m) \) is \(Po(\lambda(A_m)) \) independent of \(\gamma(A_1), \ldots, \gamma(A_{m-1}) \)

\(\gamma(A_i) = k_i \)
By induction on m, $\gamma(A_1), \ldots, \gamma(A_m)$ are indep.

If $\lambda(A) = \infty$ then still

$$k \mathbb{P}[\gamma(A) = k] = \lambda(A) \mathbb{P}[\gamma(A) = k - 1]$$

So $\mathbb{P}[\gamma(A) = k - 1] = 0 \quad \forall k \in \mathbb{N}$

So $\mathbb{P}[\gamma(A) = \infty] = 1$

So γ is a PPP with mean measure λ. \qed