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Abstract

We study radial solutions of the equations of isotropic elasticity in two dimen-
sions (for a disc) and three dimensions (for a sphere). We describe a numerical
scheme for computing the critical boundary displacement for cavitation based on
the solution of a sequence of initial value problems for punctured domains. We give
examples for specific materials and compare our numerical computations with some
previous analytical results. A key observation in the formulation of the method is
that the strong–ellipticity condition implies that the specification of the normal
component of the Cauchy stress on an inner pre–existing but small cavity, leads to
a relation for the radial strain as a function of the circumferential strain. To es-
tablish the convergence of the numerical scheme we prove a monotonicity property
for the inner deformed radius for punctured balls.
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1 Introduction

The phenomenon of void formation in bodies under tension has been observed in labo-
ratory experiments by [8] and others. (See also [7] for a review on cavitation in rubber.)
Ball [2] showed, in the context of nonlinear elasticity, that void formation or “cavitation”
can decrease the (potential) energy of a body in tension when the tension is sufficiently
large.

Consider a ball of nonlinearly elastic material occupying the region B (the unit ball
in Rn, n = 2 or 3) in its reference state. Radially symmetric deformations of B are
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deformations u : B → Rn of the form

u(x) = r(R)
x

|x| , R = |x|, r : [0, 1] → [0,∞) (1)

satisfying the boundary condition

u(x) = λx for x ∈ ∂B, (2)

or equivalently,
r(1) = λ, (3)

where λ > 0 is given. The energy associated with each deformation is given by

E(u) =

∫

B

W (∇u(x) dx,

where W : Mn×n
+ → R is the stored energy function of the material and Mn×n

+ denotes
the set of real n × n matrices with positive determinant. If W is frame indifferent and
isotropic then it is well known that there is a symmetric function Φ such that

W (F) = Φ(v1, ..., vn), (4)

where v1, ..., vn are the singular values of the matrix F. A simple class of stored energy
functions to which the analysis in [2] and the results in this paper can be applied is given
by

Φ(v1, ..., vn) = κ

n∑
i=1

vα
i + h(v1v2...vn) for F ∈ Mn×n

+ , (5)

where κ > 0, α ∈ [1, n) and h : (0,∞) → (0,∞) is a convex compressibility term which

satisfies h(δ) → ∞ and h(δ)
δ
→ ∞ as δ → 0,∞ respectively. However, we stress that

many of the results and methods of this paper can be applied (or extended) to much
more general stored energy functions.

Ball [2] showed that there exists a critical value λcrit such that for λ ≤ λcrit the
radial minimizer is the homogeneous deformation u ≡ λx, whilst for λ > λcrit the radial
minimizer is singular. For each λ > λcrit, this singular minimizer is the unique minimizer
in the class of radial deformations and corresponds to a deformation of the form (1)
satisfying r(0) > 0. This deformation therefore produces a spherical hole of radius
c = r(0) at the centre of the initially perfect ball (the phenomenon of cavitation). 1 This
symmetric problem has been well studied, there is extensive literature, and we now have

1The intuitive reason as to why cavitation occurs for such stored energy functions lies in the competi-
tion between the two terms that comprise the stored energy function (5) when evaluated on deformations
satisfying (2). The first term in the energy κ

∑n
i=1 vp

i corresponds to a convex function of F = ∇u.
Therefore, by Jensen’s Inequality, the integral of this term over B would be globally minimized by the
homogeneous deformation u ≡ λx. However, the second (compressibility) term h(v1...vn) corresponds
to the function h(det∇u). The integral over B of this term alone can be minimised by a deformation
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a fairly complete understanding of the radial problem (see [13] for a nice survey of results
on radial cavitation in nonlinear elasticity). Additional results on radial cavitation can
be found, for example, in [1], [35], [25], [26],[15], [6], [12], [14], [27], [17], [29], [24], [21],
[34]. General results on the existence and properties of cavitating equilibria in nonlinear
elasticity with no assumption of radial symmetry are contained in [16], [30], [31], [32].
(See [33] for an overview of some of these approaches.)

If c = g(λ) ≥ 0 is the radius of the cavity produced by the radial energy minimizer
satisfying the boundary condition (3), then a typical bifurcation diagram of cavity radius
versus λ is shown in figure 1.

Figure 1: Bifurcation diagram: the graph of g(λ).

As cavitation can point to the initiation of fracture or rupture in a body, the compu-
tation or characterization of the critical boundary displacement λcrit at which cavitation
occurs (together with the corresponding bifurcation diagram) is important from the point
of view of design. To underpin the numerical method developed in this paper we first
obtain new results on the asymptotic behavior of the function g(λ) (these results are
used to obtain the convergence rate of the numerical scheme). In particular, we prove

for which det∇u is close to d0 where the pointwise minimum of h(d) is achieved at d0. For example

u(x) = (d0|x|n + (λn − 1))
1
n

x
|x|

satisfies det∇u ≡ d0 and produces a hole at the centre of the deformed ball for λ > 1. Now, using
the growth assumptions, it follows that for large values of λ it is energetically preferable to lower the
contribution from the second term by introducing a discontinuity.
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that the function g is monotone increasing, concave and satisfies

g(λ) =

(
λ− λcrit

A

)1/n

+ o((λ− λcrit)
1/n), as λ ↘ λcrit, (6)

g′(λ) =
1

nA

(
λ− λcrit

A

)−(n−1)/n

+ o((λ− λcrit)
−(n−1)/n), as λ ↘ λcrit, (7)

where A > 0 is a constant. (Hence, in particular, the curve representing g(λ) in figure 1
intersects the λ axis with an infinite slope.)

This problem of characterizing λcrit has been studied extensively in the past, see, for
example, the works of [10], [5], [36], [11], and [23]. However, the emphasis in most of
these papers is in deriving exact, closed form solutions for the cavitation solution for
specific materials from which the critical boundary displacement can then be obtained
(an exception is the work of [36] which gives interesting bounds on λcrit for stored energy
functions with a special structure). In [19] a numerical scheme for the two–dimensional
problems is given that uses discrete Fourier transforms in the circumferential direction
and finite differences in the radial direction, and that can be used in the radial case
to approximate the critical boundary displacement of cavitation. However, due to the
sharp boundary layer in the radial strain near the inner cavity, this method requires very
refined meshes close to the inner cavity to achieve reasonable precision.2 In this paper
we describe a numerical scheme for computing the critical boundary displacement and
bifurcation diagram for cavitation that applies to a very general class of compressible
materials satisfying the strong ellipticity condition. The method is based on the solution
of a sequence of initial value problems, thus allowing for the use of commercially available
software that can solve these types of problems very efficiently. We give examples for
specific materials and compare our numerical computations with some previous analytical
results.

The basis of our numerical method to calculate λcrit and the corresponding bifurcation
diagram is to approximate by considering radial deformations of punctured balls Bε =
{x | ε < |x| < 1} of the form

u(x) = rε(R)
x

|x| , R = |x|, r : [ε, 1] → [0,∞) (8)

satisfying the boundary condition

u(x) = λx for x ∈ ∂B ⇔ rε(1) = λ. (9)

On the inner boundary of Bε we impose the natural boundary condition that the normal
stress on this surface is zero. If we plot the deformed radius of the inner cavity of Bε,
we then obtain the diagram given in figure 2 for small ε (see [12], [25]). Analytic results
in [25] show that the curve corresponding to the punctured ball equilibrium solution rε

uniformly converges to that for the solid ball as ε → 0.

2See also [3], [4], and [18] for alternative numerical approaches for computing singular minimizers.
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Figure 2: Deformed cavity radius vs boundary displacement for a punctured ball

The idea is to fix the deformed radius c of the inner cavity of Bε which corresponds
to fixing the boundary condition rε(ε) = c (a constant) and then use the zero traction
condition to obtain r′ε(ε) as a function of c and ε. This enables us to determine rε(c, R)
by solving an initial value problem for the radial equilibrium equation (26) and avoids
the numerical boundary layer difficulties in trying to solve by shooting from the outer
boundary (as in the analytic theory of [35]). Once we obtain rε(c, 1), we then take the
limit as ε → 0 (see figure 2). Repeating this procedure for a range of values of c yields
the bifurcation curve for the solid ball shown in figure 2. We refer to this method as the
inverse method.

After the formulation of the problem and basic constitutive assumptions in Section
2, we briefly review in Section 3 some of the basic results on the existence of radial
cavitated solutions. In Proposition 3.2 we obtain new sharp asymptotic estimates on
radial cavitated solutions that are required to establish the convergence rate of the pro-
posed numerical scheme, and on the curve of cavity size vs displacement near the critical
boundary displacement of cavitation (Proposition 3.3). In Section 4 we consider the
mixed displacement-zero traction problem for punctured balls as an approximation of
the original problem. After reviewing some basic results for this problem, we extend
in Proposition 4.3 a monotonicity property for the inner deformed radius for punctured
balls. This result together with Proposition 4.9 forms the basis for the numerical scheme,
which we call the inverse method, described in Section 5. A key observation in the for-
mulation of the inverse method is that the specification of the normal component of the
Cauchy stress on the inner pre–existing cavity, leads to a relation for the radial strain as
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a function of the circumferential strain on the inner cavity (cf. (63), (66)).
Finally, in Section 6 we give some examples where we apply the inverse method

to compute the critical boundary displacement for cavitation. We give examples for
Ogden–type materials and compare our numerical computations with previous analytical
results, in particular those in [6], [12], [37], [11], and [27]. We present as well some
computed figures of the cavity size vs boundary displacement curves, and we illustrate
the boundary layer behavior in the derivative of the radial solution and the determinant
of the corresponding deformation gradient. A reader interested only on the numerical
aspects of the paper may want to concentrate on Section 2 for notation and problem
formulation, Theorems 3.1 and 4.1 for the existence results on cavitated solutions and
radial equilibria on punctured domains, and Sections 5 and 6 for the numerical method
itself and examples.

2 Formulation of the problem

We consider a body which in its reference configuration occupies the region

B = {x ∈ Rn : |x| < 1}, (10)

where n = 2, 3 and |·| denotes the Euclidean norm. Let u : B → Rn denote a deformation
of the body and let its deformation gradient be

∇u(x) =
du

dx
(x). (11)

For smooth deformations, the requirement that u(x) is locally invertible and preserves
orientation takes the form

det∇u(x) > 0, x ∈ B. (12)

Let W : Mn×n
+ → R be the stored energy function of the material of the body where

Mn×n
+ = {F ∈ Mn×n : detF > 0} and Mn×n denotes the space of real n by n matrices.

Since we are interested in modelling large deformations, we assume that the stored energy
function W satisfies that W → ∞ as either detF → 0+ or |F| → ∞. The total energy
stored in the body due to the deformation u is given by

E(u) =

∫

B
W (∇u(x)) dx. (13)

We consider the problem of determining the equilibrium configuration of the body
that satisfies (12) and minimizes (13) among all functions belonging to an appropriate
Sobolev space and satisfying the boundary condition:

u(x) = λx, x ∈ ∂B, (14)

where λ > 0 is given.
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If the material is homogeneous and W is isotropic and frame indifferent then it follows
that

W (F) = Φ(v1, . . . , vn), F ∈ Mn×n
+ , (15)

for some function Φ : Rn
+ → R symmetric in its arguments, where v1, . . . , vn are the

eigenvalues of (FtF)1/2 known as the principal stretches.
For ease of exposition, we consider the special class of Ogden materials3 for which:

Φ(v1, . . . , vn) = κ

n∑
i=1

vα
i + h(v1v2 · · · vn), (16)

where4 κ > 0, 1 ≤ α < n and the function h is convex and satisfies

h(d) →∞, d → 0+, or d →∞. (17)

However, we stress that many of the results and methods of this paper can be applied to
much more general stored energy functions by combining the analytical results on radial
cavitation of [2], [35], [25], [26], [14], [15].

Note that (16) satisfies

Φ(v1, . . . , vn) = Φ(vσ(1), . . . , vσ(n)), (18)

where σ is any permutation of {1, . . . , n}. This condition is equivalent to the material of
the body been isotropic. Also, one can easily check that (16) satisfies the inequality:

Φ,i(v1, . . . , vn)− Φ,j(v1, . . . , vn)

vi − vj

+ Φ,ij(v1, . . . , vn) ≥ 0, (19)

for all i 6= j, vi 6= vj.
We restrict now to the special case in which the deformation u(·) is radially symmetric,

i.e.,

u(x) = r(R)
x

R
, x ∈ B, (20)

for some scalar function r(·), where R = |x|. In this case one can easily check that

v1 = r′(R) , v2 = · · · = vn =
r(R)

R
. (21)

Thus (13) reduces to

E(u) = ωnI(r) = ωn

∫ 1

0

Rn−1Φ

(
r′(R),

r(R)

R
, . . . ,

r(R)

R

)
dR, (22)

3This stored energy function is a special case of a class proposed by Ogden [20] and is used to model
rubber. The Ogden materials include as special cases the Mooney–Rivlin and neo–Hookean materials.

4The case α > n is not considered in this paper because any deformation for which the energy (13)
is finite would be continuous by the Sobolev Embedding Theorem and thus cavitation is not possible
in such a setting. In the case α = n, it can also be shown that minimizers with finite energy must be
continuous.
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where ωn = 2π or 4π if n = 2 or 3 respectively (in general ωn is area of the unit sphere
in Rn).

In accord with (12) we have the inequalities

r′(R),
r(R)

R
> 0, 0 < R < 1, (23)

and (14) reduces to:
r(1) = λ. (24)

3 Existence and properties of cavitating solutions

In this section we review some results concerning the existence and uniqueness of solutions
for the problem of minimizing (22) subject to (23) and (24). We also discuss some
properties of these equilibrium solutions, in particular those relating to the zero traction
boundary condition when a hole opens at the centre of the deformed ball (cf. (29)). We
also study the asymptotic behavior of extended cavitating solutions (in Proposition 3.2)
and present properties of the bifurcation diagram of cavity size versus displacement (see
Proposition 3.3).

Let

Aλ =
{
r ∈ W 1,1(0, 1) : r(1) = λ, r′(R) > 0 a.e. for R ∈ (0, 1), r(0) ≥ 0

}
. (25)

The next result is shown in Ball [2] and Sivaloganathan [25] for a more general class of
stored energy functions than (16).

Theorem 3.1. The functional (22) attains its infimum over the set Aλ. If r is a mini-
mizer of I over Aλ, then it is unique and satisfies:

i) r′(R) > 0 for 0 < R ≤ 1,

ii) r ∈ C2((0, 1]) and satisfies the radial equilibrium equation:

d

dR

[
Rn−1Φ,1(r(R))

]
= (n− 1)Rn−2Φ,2(r(R)), 0 < R < 1, (26)

subject to (24) and r(0) ≥ 0, where:

Φ,i(r(R)) = Φ,i

(
r′(R),

r(R)

R
, . . . ,

r(R)

R

)
i = 1, ..., n. (27)

Moreover, there exists a λcrit > 1 such that if λ ≤ λcrit then

uh(x) = λx, x ∈ B̄, (28)
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is the unique global minimizer of I over Aλ and, if λ > λcrit, then the global minimizer
satisfies r(0) > 0 and the natural boundary condition

lim
R→0+

T (r(R)) = 0, (29)

where

T (r(R)) =

(
R

r(R)

)n−1

Φ,1(r(R)). (30)

The condition (29) states that if a hole opens at the centre (i.e., if r(0) > 0), then
the component of the Cauchy stress normal to the surface of the hole must be zero. This
phenomena of void formation is called cavitation and λcrit is called the critical boundary
displacement for cavitation.

Using r ∈ C2((0, 1]), one can expand (26) to obtain

r′′(R) =
n− 1

R

(
r(R)

R
− r′(R)

)[
Φ,2(r(R))− Φ,1(r(R))

r(R)/R− r′(R)
+ Φ,12(r(R))

]
. (31)

From the results in [2], [25] (see, e.g., Proposition 1.6 in [25]) it follows that r(R)/R−r′(R)
is either constant over [0, 1] or never vanishes. Thus, since r(0) > 0 for a cavitating
solution, it follows that this difference is always positive. Hence we can conclude from
(31) and the inequality (19) that

r′′(R) ≥ 0, R ∈ (0, 1]. (32)

Thus it follows in particular that r′(R) is bounded.
For the stored energy function (16), condition (29) reduces to:

lim
R→0+

[
α(r′(R))α−1

(
R

r(R)

)n−1

+ h′
(

r′(R)

(
r(R)

R

)n−1
)]

= 0.

Thus, since r′(·) is bounded, if r(0) > 0 we obtain

lim
R→0+

r′(R)

(
r(R)

R

)n−1

= d0, h′(d0) = 0. (33)

If r(R) is a cavitating solution of (26), (29), then it can be extended to (0,∞) as a
solution. (See e.g., Proposition 2.1, [28].) Moreover, we have the following refinement of
Proposition 2.3 in [28]:

Proposition 3.2. Let r ∈ C2(0,∞) be a cavitating solution of (26), (29). Then

r(R)

R
= λcrit +

A

Rn
+ o(R−n), as R →∞, (34a)

r′(R) = λcrit − (n− 1)
A

Rn
+ o(R−n), as R →∞, (34b)

where λcrit is as in Theorem 3.1 and A is a positive constant.
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Proof : The proof of this result is similar to that of Proposition 2.3, [28], but keeping an
additional term in the required Taylor expansions. The change of variables

es = R, v(s) =
r(R)

R
, (35)

transforms equation (26) to the autonomous equation:

d

ds
Φ,1(v̇(s) + v(s), v(s), v(s)) = (n− 1) (Φ,2(v̇(s) + v(s), v(s), v(s))

− Φ,1(v̇(s) + v(s), v(s), v(s))) , (36)

where v̇(s) = dv(s)/ds. For any solution v(s) we have that

dv̇

dv
= G(v, v̇), (37)

where

G(v, v̇) = (n− 1)[Φ,11(v̇ + v, v, . . . , v)]−1

[ ∫ 1

0

(Φ,21(tv̇ + v, v, . . . , v)

−Φ,11(tv̇ + v, v, . . . , v)) dt− Φ,12(v̇ + v, v, . . . , v)

]
− 1.

The cavitating solution r(R) of (26), (29) is transformed via the change of variables (35)
into a solution v̇ = f(v) of (37) satisfying f(λcrit) = 0. We expand f in a Taylor series
about λcrit up to terms of order three:

f(v) = −n(v − λcrit) +
1

2
f ′′(λcrit)(v − λcrit)

2 + O((v − λcrit)
3),

where upon differentiating G(v, f(v)) with respect to v and setting v = λcrit, we obtain

f ′′(λcrit) = − n(n− 1)

2Φ,11(λcrit, λcrit, . . . , λcrit)
[Φ,111(λcrit, λcrit, . . . , λcrit)− Φ,112(λcrit, λcrit, . . . , λcrit)] .

It follows now that

v̇(s) = −n(v(s)− λcrit) +
1

2
f ′′(λcrit)(v(s)− λcrit)

2 + O((v(s)− λcrit)
3),

or with u(s) = v(s)− λcrit, that

u̇(s) = −nu(s) +
1

2
f ′′(λcrit)u

2(s) + O(u3(s)). (38)

We recall that by Proposition 2.1 in [28], u(s) → 0+ as s →∞. The change of variables
y(s) = 1/u(s) transforms the equation above into:

ẏ(s) = ny(s)− 1

2
f ′′(λcrit) + E(1/y(s)),
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where the error term E satisfies E(δ)
δ

is uniformly bounded for δ 6= 0 sufficiently small.
Integrating the linear part of this equation and putting the resulting expression in terms
of u(s), we obtain

1

u(s)
=

[
1

u(s0)
− 1

2n
f ′′(λcrit) +

∫ s

s0

e−n(t−s0)E(u(t)) dt

]
en(s−s0) +

1

2n
f ′′(λcrit),

for any s0. Since u(s) → 0 as s → ∞, the integral in this expression is bounded as
s →∞, and it follows that

1

u(s)
= Cens + o(ens), s →∞, (39)

where

C =

[
1

u(s0)
− 1

2n
f ′′(λcrit) +

∫ ∞

s0

e−n(t−s0)E(u(t)) dt

]
e−ns0 .

Upon differentiating with respect to s0, one can easily check that C is independent of
s0. Moreover, since u(s) → 0+ as s →∞, the bracketed term in the expression for C is
positive for s0 sufficiently large. Hence by (39)

1

ensu(s)
= C + o(1), s →∞,

and it thus follows that

v(s)− λcrit = u(s) = Ae−ns + o(e−ns), s →∞,

where A = 1/C. Using the change of variables (35) we now obtain

r(R)

R
= λcrit +

A

Rn
+ o(R−n), R →∞.

Since
r′(es) = v̇(s) + v(s),

it follows from (38) that

r′(es)− λcrit = −(n− 1)u(s) +
1

2
f ′′(λcrit)u

2(s) + O(u3(s)),

= −(n− 1)Ae−ns + o(e−ns), s →∞,

i.e.,

r′(R) = λcrit − 2
A

Rn
+ o(R−n), R →∞,

as required.
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We now explore some consequences of this proposition. The inequality (32) is now
valid over (0,∞). Since for any γ > 0, the function γr(R/γ) is also a cavitating solution,
we may assume that r(0) = 1. Thus any other cavitating solution r̂(R) with r̂(0) = c,
can be written as:

r̂(R) = cr

(
R

c

)
, R ≥ 0.

In particular, setting R = 1, we obtain

λ(c) ≡ r̂(1) = cr

(
1

c

)
, c > 0. (40)

This function gives the boundary condition at R = 1 as a function of the cavity size.
This function is the one that the numerical scheme we describe in Section 5 computes.
Note that from the asymptotic expansion (34a) it follows that

λ(c) = λcrit + Acn + o(cn), c ↘ 0, (41)

and thus λ(c) is defined and continuous over [0,∞).
From (40) we obtain

λ′(c) = r

(
1

c

)
− 1

c
r′

(
1

c

)
=

1

c




r

(
1

c

)

1/c
− r′

(
1

c

)

 .

This expression together with (34b) shows that

λ′(c) = nAcn−1 + o(cn−1), as c ↘ 0, (42)

and since r(R)/R− r′(R) > 0 for all R, that

λ′(c) > 0, c > 0, λ′(0) = 0.

Moreover

λ′′(c) =
1

c3
r′′

(
1

c

)
≥ 0,

by the inequality (32) over (0,∞), and thus it follows that λ(c) is convex.
Since λ′(c) > 0, c > 0, it follows that λ(c) is invertible. If we let c = g(λ), λ ≥ λcrit

be its inverse, then by the properties of λ(c) stated above, we have the following:

Proposition 3.3. Let c = g(λ), λ ≥ λcrit, be the inverse function of λ(c). Then g(λ) is
strictly increasing, concave, and

g(λ) =

(
λ− λcrit

A

)1/n

+ o((λ− λcrit)
1/n), as λ ↘ λcrit, (43a)

g′(λ) =
1

nA

(
λ− λcrit

A

)−(n−1)/n

+ o((λ− λcrit)
−(n−1)/n), as λ ↘ λcrit. (43b)
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Proof : That g is strictly increasing and concave follows upon differentiation of the ex-
pression g(λ(c)) = c twice with respect to c and using that λ′(c) > 0 and λ′′(c) ≥ 0 for
c > 0.

From (41) we have that

λ− λcrit

A
= cn(1 + o(1)), c ↘ 0,

where o(1) is a quantity that goes to zero as c ↘ 0 or equivalently as λ ↘ λcrit. Equation
(43a) follows now from this expression upon setting c = g(λ), the identities:

1

1 + x
= 1 + O(x), n

√
1 + x = 1 + O(x), x → 0, (44)

and that O(o(1)) = o(1).
Similarly from (42) we obtain:

1

g′(λ(c))
= λ′(c) = nAcn−1(1 + o(1)), c ↘ 0.

Using the first of the identities (44) and upon setting c = g(λ), it follows that

g′(λ) =
1

nAgn−1(λ)
(1 + o(1)), λ ↘ λcrit. (45)

Equation (43a) can be written as:

g(λ) =

(
λ− λcrit

A

)1/n

(1 + o(1)), as λ ↘ λcrit.

Equation (43b) follows now from this expression, equation (45), the first of the identities
(44), and that (1 + o(1))n−1 = 1 + o(1).

Thus the function g(λ) intersects the λ axis with an infinite slope proportional to

(λ− λcrit)
−(n−1)/n as λ ↘ λcrit. (See Figure 1.) For a particular example of the function

g(λ) satisfying (43) but corresponding to a stored energy similar to (16) with α = 1,
n = 3, and including a term quadratic in the principal stretches, we refer to [11], equation
(29), page 285.

Example 3.4. Consider the stored energy function studied in [22] (with µ set equal to
1 for simplicity), i.e.

Φ(v1, v2, v3) =
(
v2

1 + v2
2 + v2

3

)
+ h(v1v2v3) , (46)

where
h(d) =

(
ad2 − 2(a + 1)dF + b

)
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for d ≥ 1 and a, b ≥ 0 are constants5. From expressions (1.7), (1.8) in [22] it follows that
the unique radial cavitation solution r(R) with r(1) = λ, r(0) = c, satisfies

P (λ)R−3 =

∫ r(R)
R

λcrit

[1 + aθ4]
1
2 dθ, (47)

where

P (λ) :=

∫ λ

λcrit

[1 + aθ4]
1
2 dθ. (48)

Differentiating (47) with respect to R, then multiplying by R4 and evaluating the resulting
expression at R = 0 yields

P (λ) =
1

3
r(0)3

√
a =

1

3
c3
√

a

Hence by (48)

c = g(λ) =

(
3√
a

∫ λ

λcrit

[1 + aθ4]
1
2 dθ

) 1
3

. (49)

It can be verified from (49) and the arguments used in the proof of Proposition 3.3 that
(43a) and (43b) hold in this example.

4 Solutions with a pre–existing hole

The numerical scheme for computing the critical boundary displacement for cavitation
that we describe in Section (5), is based on the solution of a sequence of initial value
problems for punctured domains. Thus we consider the situation in which the reference
configuration is replaced by the punctured ball:

Bε = {x ∈ Rn : ε < |x| < 1}, (50)

where 0 < ε < 1. The corresponding radial deformations are given by:

uε(x) = rε(R)
x

R
, x ∈ Bε. (51)

The variational problem now is to minimize:

Iε(rε) =

∫ 1

ε

Rn−1Φ

(
r′ε(R),

rε(R)

R
, . . . ,

rε(R)

R

)
dR, (52)

subject to:

r′ε(R),
rε(R)

R
> 0, ε < R < 1, (53)

5The definition of h(d) can be extended to d ∈ (0, 1) in any way provided that the resulting h is
smooth, convex and satisfies (17).
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and the boundary condition:
rε(1) = λ. (54)

Let

Aε
λ =

{
r ∈ W 1,1(ε, 1) : r(1) = λ, r′(R) > 0 a.e. for R ∈ (ε, 1), r(ε) ≥ 0

}
. (55)

The following result is proved in [25], again for a more general class of stored energy
functions than (16).

Theorem 4.1. The functional Iε has a unique global minimizer over the set Aε
λ. More-

over, there exists a δ(ε) > 0 such that if rε is a global minimizer with λ ∈ (1− δ(ε),∞),
then rε ∈ C2([ε, 1]) is a solution of (26) over (ε, 1), and satisfies:

i) r′ε(R) > 0 for R ∈ [ε, 1],

ii) rε(ε) > 0,

iii) T (rε(ε)) = 0.

The idea that the minimizers of Iε over Aε
λ converge to those of I over Aλ (c.f. (22))

was first noticed by Ball [2]. The proof of the following result is given in [25].

Proposition 4.2. Let rε be the unique global minimizer of Iε over Aε
λ and let λcrit be as

in Theorem 3.1. Then

i) for λ ≤ λcrit, we have that

lim
ε→0

sup
R∈[ε,1]

|rε(R)− λR| = 0,

ii) if λ > λcrit, then we have that

lim
ε→0

sup
R∈[ε,1]

|rε(R)− rc(R)| = 0,

where rc is the cavitating minimizer of I over Aλ.

For the remainder of this paper we will use the following notation for minimizers.

Notation.
We denote by rε(R, λ) the global minimizer predicted by Theorem 4.1 and by r(R, λ) the
corresponding minimizer in Theorem 3.1.

The next proposition will be very important for the numerical scheme that we describe
in Section 5. It pertains to certain monotonicity properties for the inner deformed radius
for punctured balls. The first part of the proposition is the content of Proposition 4.10
in [25], but part (ii) is a new result.
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Proposition 4.3. The function rε(R, λ) has the following monotonicity properties:

i) rε(ε, λ1) ≤ rε(ε, λ2) for λ1 ≤ λ2,

ii) rε1(ε1, λ) < rε2(ε2, λ) for ε1 < ε2.

Before we give a proof of this result we need to discuss a transformation of our problem
into an autonomous equation thus allowing us to use phase plane techniques to study
the functions rε. Let us recall that the change of variables (35) transforms (26) into the
equivalent autonomous equation (36) where v̇(s) = dv(s)/ds. Since

Φ,1(v, v, . . . , v) = Φ,2(v, v, . . . , v), v > 0,

it follows that v = constant is always a solution of (36). Thus the v–axis represents a line
of critical points of (36) in the phase plane (v, v̇) and these are the only critical points.
Thus non–constant solutions must satisfy:

i) v̇(s) > 0 for all s in the domain of existence or

ii) v̇(s) < 0 for all s in the domain of existence.

Since r′(R) = v̇(s) + v(s), it follows from Proposition 1.1 and Corollary 1.2 in [25] that
we need to consider only the cases v̇(s) ≤ 0.

Proof :[ of Proposition 4.3] The first part of the proposition is the content of Propo-
sition 4.10 in [25]. For part (ii), first note that by uniqueness of solutions of the initial
value problem for 26, if r′ε1

(1, λ) = r′ε2
(1, λ), then rε1(R, λ) = rε2(R, λ) for all R ∈ [ε2, 1].

The result would follow now from Property (i) in Theorem (4.1). Assume now that
r′ε1

(1, λ) 6= r′ε2
(1, λ). Using formula (2.33) in [25] and phase plane considerations, we

have that for ε1 < ε2 we must have r′ε1
(1, λ) > r′ε2

(1, λ). Hence

rε1(R, λ) < rε2(R, λ), γ < R < 1, (56)

for some γ ∈ [ε2, 1). If rε1(R̄, λ) = rε2(R̄, λ) for some R̄ ∈ [γ, 1), then again formula (2.33)
in [25] and phase plane considerations lead us to conclude that r′ε1

(R̄, λ) > r′ε2
(R̄, λ). But

this would contradict (56). Hence γ = ε2 in (56) which implies in particular that

rε1(ε2, λ) < rε2(ε2, λ).

Since rε1(R, λ) is increasing over [ε1, 1], we have that

rε1(ε1, λ) < rε1(ε2, λ) < rε2(ε2, λ).

We now study some consequences of these monotonicity properties. In particular the
next two lemmas establish the existence of punctured and cavitated solutions with a
prescribed cavity size. In Proposition 4.6 we show that the punctured solution is always
smaller than the cavitated solution for the same inner cavity size on the interval [ε, 1].
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Lemma 4.4. For any c ≥ ε > 0, there exists a unique λ such that rε(ε, λ) = c.

Proof : Using the Implicit Function Theorem one can show that for the stored energy
function (16), the equation Φ,1(r, v, . . . , v) = 0 has a unique solution r = φ(v), for a
smooth φ : (0,∞) → (0,∞). By phase plane considerations for (36), it follows that there
exists a unique curve (v(s), v̇(s)) in the phase plane, passing through (c/ε, φ(c/ε)− c/ε)
and converging to the point (λ∗, 0) as s → ∞. The time map function to the left of
equation (2.33) in [25] is a monotone decreasing function of λ ∈ (λ∗, c/ε] from +∞ down
to zero. Thus equation (2.33) in [25] has a unique solution λ that yields a total time of
log(1/ε). For this λ by construction, rε(ε, λ) = c.

Lemma 4.5. For any c > 0 there exists a unique λ > λcrit such that r(0, λ) = c.

Proof : This follows from Theorem 1.11, part (iv), in [25].

Proposition 4.6. For any c ≥ ε > 0,

rε(R, λ) ≤ r(R, λ̄), R ∈ [ε, 1],

where rε(ε, λ) = c and r(0, λ̄) = c.

Proof : That r(R, λ̄) and rε(R, λ) exist follows from Lemmas 4.4 and 4.5. Moreover, since
both r(R, λ̄) and rε(R, λ) are equal to c at R = 0 and R = ε respectively, and both are
strictly increasing, it follows that

r(ε, λ̄) > rε(ε, λ).

Suppose for a contradiction that the graphs of r(R, λ̄) and rε(R, λ) intersect at R0 ∈ (ε, 1].
Let

v2 ≡ r(R0, λ̄)

R0

=
rε(R0, λ)

R0

.

Consider now the graphs of r(R, λ̄) and rε(R, λ) against R. Define v1 = c/ε and consider
the line through the origin of slope v1. This line intersects r(R, λ̄) at R1 ∈ (ε, 1] and
rε(R, λ) at R = ε. Hence

r(R1, λ̄)

R1

=
rε(ε, λ)

ε
= v1.

Then looking at the time map in the phase plane for each of the corresponding solution
curves we obtain a contradiction, since the cavitating solution curve should pass from
v = v1 to v = v2 in a longer time than that for the rε curve, but the interval [ε,R0] is
longer than the interval [R1, R0].

The next two results are concerned with limiting processes. In particular, in Lemma
4.7 we establish the convergence of the inner cavity radius for punctured solutions to
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the corresponding inner cavity radius for the problem in the full domain, with λ fixed
and the inner hole ε → 0. Then in Proposition 4.8 we show that for a fixed cavity size
c > 0 but with the inner hole ε → 0, the corresponding boundary displacements for the
punctured solutions converge to the boundary displacement for the problem in the full
domain.

Lemma 4.7. Let (εk) be a monotone decreasing sequence converging to zero. Then for
any λ > 0, the sequence (rεk

(εk, λ)) is a monotone decreasing sequence with

lim
k→∞

rεk
(εk, λ) =

{
r(0, λ) , λ > λcrit,

0 , λ ≤ λcrit.

Proof : This follows from Propositions 4.2 and 4.3, and the continuity of r(·, λ).

Proposition 4.8. Let (εk) be a monotone decreasing sequence converging to zero and let
c > 0. Let rεk

(R, λk) be such that rεk
(εk, λk) = c for all k. Then the sequence (λk) is

monotone increasing with λk → λ̄, where r(R, λ̄) is such that r(0, λ̄) = c.

Proof : The existence of rεk
(R, λk) for εk sufficiently small follows from Lemma 4.4 and

that of r(R, λ̄) follows from Lemma 4.5. To argue by contradiction, suppose that for
some k,

λk+1 ≤ λk, εk+1 < εk.

Then we have that

c = rεk+1
(εk+1, λk+1) ≤ rεk+1

(εk+1, λk), (Proposition 4.3, part (i)),

< rεk
(εk, λk), (Proposition 4.3, part (ii)),

= c,

which is a contradiction. Hence λk < λk+1 for all k.
To prove the convergence of (λk), first note that

rεk
(εk, λk) = c = r(0, λ̄) < rεk

(εk, λ̄),

where for the last inequality we used Lemma 4.7. Since rεk
(εk, ·) is increasing by Propo-

sition 4.3, part (i), it must follow that λk ≤ λ̄. Hence λk ↗ λ∗ ≤ λ̄. If λ∗ < λ̄, then

r(0, λ∗) < r(0, λ̄) = c.

(We used here that as a consequence of Corollary 1.2 and Theorem 1.11 in [25], the
function r(0, ·) is a continuous monotone function of λ that is strictly increasing for
λ > λcrit.) However, since λk < λ∗,

c = rεk
(εk, λk) < rεk

(εk, λ
∗) → r(0, λ∗) < c,
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which is a contradiction. Hence λ∗ = λ̄.

The next result which is the main one of this section, establishes the convergence (and
its rate) of the boundary displacements for punctured solutions to the critical boundary
displacement for cavitation of the problem in the full domain, for any given sequence of
inner cavity sizes approaching zero.

Proposition 4.9. Let (cm) be a monotone decreasing sequence converging to zero. Then
there exists a monotone sequence (εm) converging to zero, and a sequence (λm) such that

lim
m→∞

λm = λcrit,

where rεm(εm, λm) = cm. Moreover for some constants K,M > 0,

|λm − λcrit| ≤ Kcn
m, m > M. (57)

Proof : Since r(0, ·) is continuous and r(0, λcrit) = 0, for each η > 0 there exists a δ > 0
with δ < η such that

r(0, λ) < η λcrit ≤ λ < λcrit + δ. (58)

Let M > 0 be such that cm < η for all m > M . Applying Proposition 4.8 to the sequence
(1/k) and cm, we get that for each m there exists a monotone increasing sequence (λ

(m)
k )

such that
lim
k→∞

λ
(m)
k = λ̄m, (59)

where r1/k(1/k, λ
(m)
k ) = cm and r(0, λ̄m) = cm. By the monotonicity of r(0, ·) and using

(58), since cm < η for m > M , it follows that

λcrit < λ̄m < λcrit + δ < λcrit + η, m > M.

Moreover, by the convergence in (59) and the above inequality, it follows that there exists
k(m) such that

λcrit < λ
(m)
k(m) ≤ λ̄m < λcrit + η, r1/k(m)(1/k(m), λ

(m)
k(m)) = cm, m > M.

By the monotonicity of (λ
(m)
k ) in (59), we can always choose k(m) such that k(m) >

k(m− 1). With

λm = λ
(m)
k(m), εm =

1

k(m)
,

we have that (εm) is monotone and converging to zero, and that

λcrit < λm ≤ λ̄m < λcrit + η, rεm(εm, λm) = cm, m > M, (60)

from which it follows in particular that λm → λcrit. Moreover since

r(R, λ̄m) = cmr∗

(
R

cm

)
,
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where r∗(R) is the cavitating solution with r∗(0) = 1, it follows that

λ̄m = cmr∗

(
1

cm

)
. (61)

Thus by the inequality in (60) we get that

λcrit < λm ≤ cmr∗

(
1

cm

)
, m > M.

By the asymptotic expression (34a) in Proposition 3.2, we have

cmr∗

(
1

cm

)
= λcrit + Acn

m + o(cn
m), m →∞. (62)

This together with the inequality above shows that |λm − λcrit| = O(cn
m) from which (57)

follows.

5 The numerical scheme

In this section we describe a very simple numerical scheme for approximating the critical
boundary displacement for cavitation λcrit. The fundamental idea leading or motivating
the construction of the scheme is a consequence of the following observation. Using
condition (ii) in Theorem 4.1 and definition (30), it follows that (iii) of Theorem 4.1 is
equivalent to:

Φ,1(rε(ε)) = 0. (63)

For the stored energy function (16), assume that in addition to (17) the function h(·)
satisfies:

h′′(d) > 0, h′(d) →
{ ∞ , d →∞,
−∞ , d → 0+.

(64)

The function (16) now satisfies:

Φ,1(v1, . . . , vn) →
{ −∞ , v1 → 0+,

∞ , v1 →∞,
v2, . . . , vn, fixed, (65a)

Φ,11(v1, . . . , vn) > 0. (65b)

It follows upon recalling the notation (27), properties (65), and the Implicit Function
Theorem that there exists a smooth function φ : (0,∞) → (0,∞) such that (63) is
equivalent to

r′ε(ε) = φ

(
rε(ε)

ε

)
. (66)

20



Thus instead of prescribing λ, we could prescribe the inner cavity rε(ε) = c. Using
equation (66), we solve now the initial value problem:

d

dR

[
Rn−1Φ,1(rε(R))

]
= (n− 1)Rn−2Φ,2(rε(R)), ε < R < 1, (67a)

rε(ε) = c , r′ε(ε) = φ
(c

ε

)
. (67b)

It follows from Lemma 4.4 that for some λ(c) this problem has a unique solution rε(R, λ(c))
defined over the whole of the interval [ε, 1] and with rε(1, λ(c)) = λ(c).

We define the sets:

Ωε = {(λ, rε(ε, λ)) : λ ≥ 1} ,

Ω0 = {(λ, r(0, λ)) : λ ≥ 1} .

Note that these definitions can be written equivalently as:

Ωε = {(λ(c), c) : c ≥ ε, rε(ε, λ(c)) = c} ,

Ω0 = {(λ(c), c) : c > 0, r(0, λ(c)) = c} .

The set Ωε can now be approximated by solving the IVP (67) for a given set of values
of c. This procedure works very efficiently and fast as compared to solving the nonlinear
boundary value problem (26), (i)–(iii) of Theorem (4.1) over (ε, 1). We should point out
that for ε small, the numerical solution of the IVP (67) is not an easy task because of
the singular behavior of the circumferential strain rε(R)/R. In addition the determinant
function:

dε(R) =

(
rε(R)

R

)n−1

r′ε(R), (68)

as well as the derivative r′ε(R), both have very sharp boundary layers close to R = ε
as well. In our numerical experiments we used the MATLAB platform which includes
very accurate IVP solvers that can effectively handle these sharp boundary layers, thus
allowing us to get very accurate sketches of the sets Ωε.

Using Propositions 4.8 and 4.9 it follows that for a set of values of c and ε progressively
becoming very small, we can approximate as well the set Ω0 and the critical boundary
displacement λcrit. We call this procedure to compute Ωε, Ω0, and λcrit the inverse
method. We can describe the general procedure for computing λcrit as follows:

Procedure 5.1. Let (εk, ck) be a sequence converging to (0, 0).

1) For k = 0, 1, 2, . . .,

a) Compute an approximate solution νk of the equation:

Φ,1(νk, ck/εk, . . . , ck/εk) = 0.
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b) Compute an approximate solution rk(R) of the initial value problem:

d

dR

[
Rn−1Φ,1(rk(R))

]
= (n− 1)Rn−2Φ,2(rk(R)), εk < R < 1,

rk(εk) = ck , r′k(εk) = νk.

c) Set λk = rk(1).

2) Repeat steps (a)–(c), until the sequence {λk} satisfies a certain stopping criteria.

A variation of this procedure in which the value of c is kept fixed while the epsilon
progressively becomes smaller, is used to generate points arbitrarily close to the set Ω0,
or with ε fixed and the c becoming progressively smaller, we can approximate Ωε.

The convergence result in Proposition 4.9 is for an arbitrary monotone decreasing
sequence (ck), but yields the existence of a corresponding monotone sequence (εk). The
rate of convergence of the (λk) is O(cn

k) where n is the dimension (Prop. (4.9), inequality
(57)). This is independent of the sequence (ck). If the (ck) converges at a certain specific
rate to zero, this rate will be reflected in the convergence of the (λk) but to the n–th
power. In practice, the way the (εk) are selected will affect this rate of convergence. To
see this, let ηk = λk − λ̄k, where r(0, λ̄k) = ck. It follows now from equations (61) and
(62) in the proof of Proposition 4.9, that

λk − λcrit = ηk + Acn
k + o(cn

k), m →∞.

Thus the actual rate of convergence will depend on how well λ̄k is approximated which in
turn depends both on εk and the accuracy of the IVP solver. In the examples in Section
(6), the sequence (ck) is taken as ck = 10−k, with εk fixed at 10−k−4 or 10−2k.

6 Numerical examples

In this section we give four examples to which we apply the method described in Section
5 for computing λcrit. Two of the examples correspond to stored energy functions that
generalise the stored energy function (16) and we also include one which does not satisfy
the standard existence theory for radial minimisers. The effectiveness of the proposed
method in these examples illustrates its robustness as a numerical scheme.

We implemented6 the Procedure 5.1 using MATLAB: for the root finding step we used
a linear fractional method (see e.g. [9]) and the ode15s routine for the solution of the
IVP’s. In Example (6.1) we show plots of the computed Ωε sets, with the corresponding
Ω0 set, and of the previously mentioned boundary layers in the determinant (68) and
r′ε(R).

6Some of the MATLAB codes used for the simulations are available at
http://math.uprh.edu/∼urmaa/invmet.
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Example 6.1. In this example we consider the case of (16) in which

h(d) = Cdγ + Dd−δ, (69)

where C, D ≥ 0, δ > 0, and γ > 1. The function (16) with the function h(·) above,
satisfies both (17) and (65). We choose D as

D =
α + γC

δ
,

which guarantees that the reference configuration is stress–free.
For the case C = 1, α = γ = δ = 1.5, κ = 1 and n = 3, we show in Table 1 a

sequence of values of (λk) where rεk
(εk, λk) = ck as computed by the method described

in the previous section. The computed value of the critical boundary displacement is
λcrit = 1.148169909. In Figure 3 we show several of the computed Ωε sets, with the
corresponding Ω0 set.

ck εk λk

0.02 2e-006 1.148171813
0.01 1e-006 1.148170147
0.001 1e-007 1.148169909
0.0001 1e-008 1.148169909
1e-005 1e-009 1.148169909

Table 1: Iterations (λk) generated by the inverse method and approximating λcrit for
example (16), (69) with C = 1, α = γ = δ = 1.5 and n = 3.

In addition, we show in Figures (4), (5), and (6) plots for the functions dε(R) (cf. (68)),
r′ε(R), and rε(R) respectively for the values of c = 0.5, 0.2, 0.1, 0.01. The corresponding
values of ε are taken to be c × 10−4. We can appreciate in these pictures the sharp
boundary layers close to R = ε in the functions dε(R) and r′ε(R) for ε small.

Example 6.2. We consider the special case of (70) and (71) in which α = β = 1 and
c3 = 0. We write in this case Φ instead of Φk in (70), and h(d) instead of h(k, d) in
(71b). This stored energy function was considered in [11] where an exact solution of the
boundary value problem (26), (29) with r(0) > 0 is obtained. In particular it is shown
that

λcrit = k
1/3
1 , h′(k1) = 0.

For (71b) (with c3 = 0) we have that

k1 =

(
ηc5

δc4

) 1
δ+η

.
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Furthermore, if δ = η + 2, then the equation Φ1(v, τ, τ) = 0 can be solved for v in closed
form.

For the special case δ = 3, η = 1, c1 = 1.0, c2 = 1.0, c4 = 1.0, and c5 = 6 (chosen so
that the undeformed configuration is a natural state) we have that λcrit = 1.059463094.
We show in Table 2 the results of the inverse method showing convergence to the exact
critical boundary displacement in this case as well.

ck εk λk

0.1 0.01 1.055404103
0.01 0.0001 1.05904303
0.001 1e-006 1.059421316
0.0001 1e-008 1.059459165
1e-005 1e-010 1.05946255

Table 2: Iterations (λk) generated by the inverse method and approximating λcrit for the
example in [11].

Example 6.3. In this example we study the behavior of the proposed numerical scheme
in a sequence of compressible problems approaching the incompressible limit. In partic-
ular we used the stored energy function in [27] given by:

Φk(v1, v2, v3) = Φinc(v1, v2, v3) + h(k, v1v2v3), (70)

where

Φinc(v1, v2, v3) = c1

(
3∑

i=1

vα
i − 3

)
+ c2

(∑
i<j

(vivj)
β − 3

)
, (71a)

h(k, d) =
c3

k
|d− 1|γ + c4d

δ + c5d
−η, (71b)

where 1 < α < 3, 1 ≤ β < 3/2, γ > 1, δ ≥ 1, η > 0, c1, c3, c5 > 0, and c2, c4 ≥ 0 are
constants. The condition αc1 + 2βc2 + δc4 − ηc5 = 0 guarantees that the undeformed
configuration is a natural state for all k.

If λk
crit denotes the critical boundary displacement corresponding to the stored energy

function Φk, then in [27] it is shown that
{
λk

crit

}
converges as k → 0 to the critical

boundary displacement for the incompressible case, i.e., λk
crit → 1. In the particular

example that follows we show that the inverse method captures as well this incompressible
limit. In particular for the case:

α = 1.5, β = 1.0, γ = 2.0, δ = 1.5, η = 1.5,

c1 = 1.0, c2 = 1.0, c3 = 1.0, c4 = 1.0, c5 = 10/3,

we show in Table 3 the sequence of critical boundary displacements for the compressible
problems approaching the incompressible limit of one.
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k λk
crit k λk

crit

0.1 1.044740301 1e-005 1.000007904
0.01 1.006776275 1e-006 1.000001358
0.001 1.000722242 1e-007 1.000000703
0.0001 1.000073314 1e-008 1.000000638

Table 3: Iterations (λk
crit) generated by the inverse method for the stored energy function

(70) in the incompressible limit.

Example 6.4. The following stored energy function is studied in [6], [12], and [37]:

Φ(v1, v2, v3) = v−2
1 + v−2

2 + v−2
3 + 2v1v2v3. (72)

Note that this function does not satisfy condition (17) and has α = −2. We show in
Table 4 a sequence of values of (λk) where rεk

(εk, λk) = ck as computed by the Procedure
5.1 described in the previous section. The computed value of the critical boundary
displacement is λcrit = 1.30874, which agrees with the value reported in [12] and [37] to
the number of digits shown.

ck εk λk

0.01 1e-006 1.308741033
0.001 1e-007 1.308740619
0.0001 1e-008 1.308740618
1e-005 1e-009 1.308740618

Table 4: Iterations (λk) generated by the inverse method and approximating λcrit for
example (72).

7 Concluding Remarks

The inverse method leads nicely to a very efficient method for computing the critical
boundary displacement for cavitation for planar and spherical bodies among radial de-
formations. The basic idea behind this method is that one can solve the equation (63)
for the radial strain in terms of the circumferential one (cf. (66)). This idea carries over
to the non–radial case provided the stored energy function W is strongly elliptic, i.e. that

a⊗ b :
d2W (F)

dF2
[a⊗ b] > 0,

for all a,b ∈ R3\ {0} and all F with detF > 0.
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Our original interest when looking at the problem of computing the critical boundary
displacement for cavitation was actually in the computation of the boundary of the quasi–
convexity region for non–symmetric 2d and 3d cavitation. By the above observation, in
principle the inverse method could be applied in this scenario as well. That is:

• Using strong ellipticity, one can get all the information of the deformation gradient
along the normal direction from that along tangential directions and boundary data
on any given surface (the pre–existing hole).

• One can then setup a Cauchy problem to be solved, mimicking in this way the
inverse method.

• A general three-dimensional convergence result for nonsymmetric situations, in the
spirit of Proposition 4.2, is available (see [34]).

There are two major obstacles to this line of reasoning:

• As opposed to the radial case in which one knows before hand that the deformed
surface is spherical and thus can be characterized by a scalar (the radius), in the
non–symmetric problem the deformed cavity shape is an arbitrary surface.

• Cauchy problems for elliptic partial differential equations are in general ill–posed.

At present it is unclear as to how one might overcome these issues but this is the subject
of ongoing study.
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Figure 3: The sets Ωε with ε = 0.2, 0.1, 0.05 and Ω0 for the stored energy function (16),
(69) with C = 1, α = γ = δ = 1.5 and n = 3.
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Figure 4: Plots for the function dε(R), for the values of c = 0.5, 0.2, 0.1, 0.01 with corre-
sponding values of ε = c× 10−4.
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Figure 5: Plots for the function r′ε(R), for the values of c = 0.5, 0.2, 0.1, 0.01 with corre-
sponding values of ε = c× 10−4.
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Figure 6: Plots for the function rε(R), for the values of c = 0.5, 0.2, 0.1, 0.01 with corre-
sponding values of ε = c× 10−4.
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