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Abstract. Consider a homogeneous, isotropic, hyperelastic body occupying the annular region
A = {x ∈ Rn : a < |x| < b} in its reference state and subject to radially symmetric displacement, or
mixed displacement/traction, boundary conditions. In Part I [18] it was shown that if the body is
composed of an incompressible material, then to each isochoric deformation of A there corresponds
a radial isochoric deformation that has less elastic energy than the given deformation, provided that
the stored-energy function is polyconvex and grows sufficiently rapidly at infinity. In this paper that
analysis is further developed and extended to the compressible case for a large class of polyconvex
constitutive relations.

The key ingredient is a new radial-symmetrisation procedure that is appropriate for problems
where the symmetrised mapping must be one-to-one in order to prevent interpenetration of matter.
For the pure displacement boundary-value problem, the radial symmetrisation of an orientation pre-
serving diffeomorphism u : A → A∗ between annuli A and A∗ is the deformation

urad(x) =
r(R)
R

x, R = |x|,
that maps each sphere SR ⊂ A, of radius R > 0, centred at the origin into another such sphere
Sr = urad(SR) ⊂ A∗ that encloses the same volume as u(SR). Since the volumes enclosed by
the surfaces u(SR) and urad(SR) are equal, the classical isoperimetric inequality then implies that
Area(urad(SR)) ≤ Area(u(SR)). The equality of the enclosed volumes together with this reduction
in surface area is then shown to give rise to a reduction in total energy for many of the constitutive
relations used in nonlinear elasticity.

These results are also extended to classes of Sobolev deformations and applied to prove that the
radially symmetric solutions to these boundary-value problems are local or global energy minimisers
in various classes of (possibly non-symmetric) deformations of the annulus.

Mathematics Subject Classifications (2000): 74B20, 49K20, 35J50, 74G65.
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1 Introduction

Let A = {x ∈ Rn : a < |x| < b} (with n = 2 or n = 3) be an annulus centred at the origin.
Consider a compressible, hyperelastic material that occupies the region A in its reference
configuration and let u ∈ C1(A;Rn) (or more generally u in an appropriate Sobolev space)
be a one-to-one mapping with strictly positive Jacobian. Then to each such deformation we
associate a corresponding energy

E(u) =
∫

A
W (∇u(x)) dx, (1.1)

where W : Mn×n
+ → [0,∞) is the stored-energy function and Mn×n

+ denotes the set of n× n

matrices with (strictly) positive determinant. We assume that the stored-energy function is
both isotropic and frame indifferent:

W (FQ) = W (QF) = W (F) for all F ∈ Mn×n
+ and Q ∈ SO(n),

where SO(n) denotes the special orthogonal group of n× n matrices.

We further assume that, when n = 2, the stored-energy function is of the form

W (F) = Φ(|F|2,detF), (1.2)

where Φ : R+ × R+ → R is convex and s 7→ Φ(s, j) is monotone increasing for all j > 0,
while, for n = 3,

W (F) = Φ(|F|3, | adjF| 32 ,detF), (1.3)

where Φ : R+ × R+ × R+ → R is convex and s 7→ Φ(s, t, j) and s 7→ Φ(t, s, j) are monotone
increasing for all t > 0 and j > 0. Thus each such energy function is homogeneous, isotropic,
and polyconvex.

Fix λ > 0 and µ > 0 with µa < λb. The main boundary-value problem we consider is
the pure displacement problem where we specify

u(x) = µx for |x| = a, u(x) = λx for |x| = b.

We also consider the mixed problem where the displacement is only specified on one surface
of the annulus while the other surface is left free of traction.

For polyconvex stored-energy functions W , the existence theory of Ball [1] and subse-
quent generalisations give hypotheses under which a minimiser of (1.1) exists for the above
boundary-value problems. In parallel to this work, there are results on the existence and
properties of minimisers in the class of radial (rotationally symmetric) deformations (see,
e.g., [4, 17]).
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Our main result is that for the displacement problem for the annulus and for stored-
energy functions of the form (1.2) and (1.3) with1 µ ≥ λ, the global energy minimiser must
be radially symmetric (see Theorems 5.12 and 8.1 and Remark 5.15). The techniques and
results obtained also have implications for mixed displacement/traction problems. The main
ideas used in this paper originate in our prior work for incompressible materials [18], which
we will henceforth refer to as Part I.

Our results are most easily described by focussing on one problem, for example, the
case n = 3 for the mixed displacement/traction problem given above in which we specify the
displacement on the outer boundary and the inner boundary is left free. For this problem let
u ∈ C1(A;R3) be a deformation of the annulus satisfying the boundary condition u(x) = λx
for |x| = b. We define the radial symmetrisation urad of u to be the radial deformation

urad(x) =
r(R)
R

x, R := |x|,
(1.4)

4
3
πr(R)3 :=

4
3
πλ3b3 −

∫

Bb\BR

(det∇u) dx,

where BR is the ball of radius R centred at the origin.

(S )
R

u

urad(S )
R

 S 
R

u

urad

Figure 1: The radial symmetrisation urad of u.

As is illustrated in Figure 1, the radial symmetrisation thus replaces the deformed
surface u(SR), where SR denotes the sphere of radius R ∈ [a, b] centred at the origin, by a

1We obtain a corresponding result in the case µ < λ in Section 6 for energy functions whose involution
(see Ball [2, pp. 210–211]) is of the form (1.2) or (1.3).
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sphere of radius r(R) which encloses the same volume.2 It is then an important consequence
of the classical isoperimetric inequality that the radial symmetrisation therefore satisfies

Area
(
u(SR)

) ≥ Area
(
urad(SR)

)
. (1.5)

Differentiating the expression (1.4)2 with respect to R and dividing by the area of the sphere
SR we obtain

−
∫

SR

(det∇u) dH2
x = −

∫

SR

(det∇urad) dH2
x = det∇urad = r′(R)

(
r(R)
R

)2

, (1.6)

so that the radial symmetrisation preserves the average value of det∇u on the spheres SR.
Using (1.4)–(1.6) we prove in Propositions 3.6 and 3.13 that if the radial symmetrisation
urad satisfies

r(R)
R

≥ r′(R) for some R ∈ (a, b), (1.7)

then

−
∫

SR

|∇u|3 dH2
x ≥ −

∫

SR

|∇urad|3 dH2
x = |∇urad|3 (1.8)

and

−
∫

SR

| adj∇u| 32 dH2
x ≥ −

∫

SR

| adj∇urad| 32 dH2
x = | adj∇urad| 32 (1.9)

for that same value of R. The proof of these inequalities bounds the left-hand sides of (1.8)
and (1.9) from below by a convex function of the area of u(SR) and the average (1.6). This
function coincides with the right-hand sides of (1.8) and (1.9) when evaluated on the radial
symmetrisation urad of u. Note also that if the stored-energy function is strongly elliptic,
then any non-homogeneous, radially symmetric solution of the equilibrium equations of the
form (1.4)1 must satisfy either r′(R) < r(R)/R for all R ∈ (a, b) or r′(R) > r(R)/R for all
R ∈ (a, b) (see, e.g., [4, 17]).

The condition (1.7) can be interpreted as follows: by the construction of the radial
symmetrisation (1.4), the ratio of the volume enclosed inside the deformed sphere u(SR) to
the volume contained within SR is given by

(
r(R)
R

)3

.

2To see this, first note that the definition (1.4) guarantees that the volumes indicated in Figure 1 are equal
and hence the total volumes enclosed within the deformed surfaces are also equal. (This uses the fact that
the two deformations are equal on the outer boundary of the annulus.)
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The condition (1.7) then guarantees that this ratio of the deformed volume to the reference
volume is decreasing. Thus it follows that (1.4), (1.8), and (1.9) will all hold for any defor-
mation u whose radial symmetrisation urad satisfies (1.7) for all R ∈ (a, b). These results
together with Jensen’s inequality and the structural assumptions (1.3) on the stored-energy
function imply

∫

SR

W (∇u) dH2
x ≥

∫

SR

W (∇urad) dH2
x for all R ∈ (a, b)

and hence, integrating with respect to R yields (see Proposition 3.14 and Corollary 3.15)

E(u) ≥ E(urad).

Therefore, the energy of u is no less than that of the minimiser amongst purely radial
deformations (which is unique by [17, Theorems 2.4 and 2.5]).

If the deformation u is such that its radial symmetrisation does not satisfy (1.7) for
all R ∈ (a, b), then we show that, for the pure displacement boundary-value problem, there
is a modified radial symmetrisation ũrad with no more total energy than u which satisfies
(1.7) for all R ∈ (a, b). Roughly speaking, this is achieved by replacing (1.4) by a homoge-
neous deformation on any sub-annulus on which condition (1.7) fails (the key idea in this
construction is contained in Section 4 and is subsequently applied in Section 5).

For the mixed displacement/zero traction boundary-value problems we are able to use
the ideas outlined above to prove that radially symmetric equilibria are strong relative min-
imisers of the energy (see Corollary 5.17).

For clarity of presentation, we first restrict attention to the case of C1 deformations in
Sections 1–6 and in Sections 7–8 we extend the results to Sobolev deformations.

2 Deformations and their Radial Symmetrisation.

2.1 Radial Deformations.

Throughout this paper we fix b > a > 0 and let A ⊂ Rn be the annulus given by

A := {x ∈ Rn : a < |x| < b}. (2.1)

We call wr : A → Rn a (smooth) radial deformation of A if there is a function ρ ∈ C1([a, b])
that satisfies ρ(a) > 0, ρ′ > 0 on [a, b], and, for every x ∈ A,

wr(x) =
ρ(R)
R

x, R := |x|.
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In this case it follows that wr ∈ C1(A;Rn) is one-to-one with derivative (see, e.g., [4])

∇wr(x) = ρ′(R)
(

x⊗ x
|x|2

)
+

ρ(R)
R

(
I− x⊗ x

|x|2
)

(2.2)

for every x ∈ A. Consequently,

adj
(∇wr(x)

)
=

(
ρ(R)
R

)n−1 (
x⊗ x
|x|2

)
+ ρ′(R)

(
ρ(R)
R

)n−2 (
I− x⊗ x

|x|2
)

, (2.3)

det
(∇wr(x)

)
= ρ′(R)

(
ρ(R)
R

)(n−1)

, (2.4)

|∇wr|2 = tr
[
(∇wr)T∇wr

]
=

[
ρ′(R)

]2 + (n− 1)
(

ρ(R)
R

)2

, (2.5)

∣∣adj
(∇wr

)∣∣2 =
(

ρ(R)
R

)2(n−1)

+ (n− 1)
[
ρ′(R)

]2
(

ρ(R)
R

)2(n−2)

. (2.6)

2.2 The Radial Symmetrisation.

Definition 2.1. Let A ⊂ Rn be the annulus given by (2.1) with inner boundary and outer
boundary given, respectively, by

∂AI = {x ∈ Rn : |x| = a} , ∂Ao = {x ∈ Rn : |x| = b} .

For the mixed problem where the inner boundary is left free we let λ > 0 and define the set
of (smooth) admissible deformations by

AO
λ =

{
u ∈ C1(A;Rn) : det∇u > 0 and u is one-to-one on A, u(x) = λx for x ∈ ∂Ao

}
.

For the mixed problem where the outer boundary is left free we let µ > 0 and define the set
of admissible deformations by

AI
µ =

{
u ∈ C1(A;Rn) : det∇u > 0 and u is one-to-one on A, u(x) = µx for x ∈ ∂AI

}
.

For the displacement problem we let λ > 0, µ > 0, µa < λb, and define the set of admissible
deformations by

Aλ
µ = AO

λ ∩ AI
µ.

For simplicity of exposition we present all of our results for u ∈ AO
λ or u ∈ Aλ

µ and note that
the proof for u ∈ AI

µ is similar. For each u ∈ AO
λ we define its radial symmetrisation by

urad(x) =
r(R)
R

x, R := |x|, ωnr(R)n := ωnλnbn −
∫

Bb\BR

(det∇u) dx, (2.7)

where ωn is the volume of the unit ball in Rn (ω2 = π and ω3 = 4π/3).
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We note urad is differentiable with derivative given by (2.2) (with ρ = r), where r′

satisfies

nωnrn−1r′ =
∫

SR

(det∇u) dHn−1
x , (2.8)

and hence by (2.4)

−
∫

SR

det∇urad dHn−1
x = r′

( r

R

)n−1
= −

∫

SR

(det∇u) dHn−1
x , (2.9)

where SR denotes the sphere of radius R centred at the origin, and Hn−1 denotes (n − 1)-
dimensional surface (Hausdorff) measure. Hence, in particular, the radial symmetrisation
(2.7) preserves the average value3 of det∇u on the spheres SR. It follows from (2.9) that

∫

Bb\BR

(
det∇urad

)
dx =

∫

Bb\BR

(det∇u) dx. (2.10)

Lemma 2.2. If u ∈ AO
λ then its radial symmetrisation, urad, is also contained in AO

λ .

Proof. The smoothness of urad is clear from (2.7) as is the fact that urad satisfies the
required boundary condition on the outer boundary Sb. Since det∇u > 0 it follows from
(2.8) that r, given by (2.7), satisfies

r′(R)[r(R)]n−1 > 0 for every R ∈ [a, b], (2.11)

and hence r′ > 0 on [a, b] since r ∈ C1([a, b]). Thus r is strictly monotone increasing, urad is
one-to-one, and det∇urad > 0 on A. Finally, the intermediate-value theorem together with
(2.11) and r(b) = λb > 0 yields r(a) > 0.

The next proposition will be central to the arguments in this paper. The result, which
is a direct consequence of the isoperimetric inequality, shows that the radial map (2.7) has
the property that, amongst all maps in AO

λ that enclose the same volume as u(SR), it
minimises the deformed area of each sphere SR, R ∈ [a, b]. The proof follows as in Part I [18,
Proposition 3.2], with the aid of (2.10) (see, also, the proof of Lemma 7.5 in this manuscript).

Proposition 2.3. Let λ > 0, u ∈ AO
λ , and suppose that urad is given by (2.7). Then, for

each R ∈ [a, b],
Area

(
u(SR)

) ≥ Area
(
urad(SR)

)
.

Moreover, the above inequality is strict at any R at which u(SR) is not a spherical shell.

3We use −R
U

φ(x) dHn−1
x to denote the average value of φ over U , i.e., the integral of φ over U divided by

Hn−1(U).
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3 Energy Reduction by Symmetrisation Alone.

We first assume n = 3 so that we are considering deformations u : A ⊂ R3 → R3. In
Section 3.3 we show that if the radial symmetrisation urad (defined by (2.7)) of a deformation
u ∈ AO

λ satisfies
r(R)
R

≥ r′(R) for some R ∈ [a, b],

then urad satisfies
−
∫

SR

W (∇u) dH2
x ≥ −

∫

SR

W (∇urad) dH2
x

for any stored-energy function of the form (1.3). This will follow once we prove the result in
the special cases W (F) = |F|3 (in Section 3.1) and W (F) = | adjF| 32 (in Section 3.2). We
refer to Remark 3.7 for the corresponding results in the case n = 2 and for stored-energy
functions of the form (1.2).

3.1 The case W (F) = |F|3.

In this section we restrict our attention to the stored-energy function W (F) = |F|3. The
first result is a simple consequence of the invariance of the Dirichlet energy under a change
in coordinates. Again, a proof of this result can be found in Part I.

Lemma 3.1. Let λ > 0, u ∈ AO
λ , and R ∈ [a, b]. At each point x ∈ SR let n, t1, t2 denote

a right-handed orthonormal basis with n = x
|x| . Then for x ∈ SR

|∇u|2 = |(∇u)n|2 + |(∇u) t1|2 + |(∇u) t2|2 .

Lemma 3.2. For each x ∈ SR, R ∈ [a, b], we have

|∇u|2 ≥ 2
∣∣(adj∇u)Tn

∣∣ +
[Ju]2

|(adj∇u)Tn|2
, (3.1)

where Ju := det∇u denotes the Jacobian of u.

Proof. By the previous lemma and the Cauchy-Schwarz inequality

|∇u|2 ≥ |(∇u)n|2 + 2 |(∇u) t1| |(∇u) t2|
(3.2)

≥ |(∇u)n|2 + 2 |(∇u) t1 × (∇u) t2| .

However,
(∇u) t1 × (∇u) t2 = (adj∇u)Tn, (3.3)
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while the Cauchy-Schwarz inequality also implies

det∇u = (∇u)n · (adj∇u)Tn ≤ |(∇u)n||(adj∇u)Tn|, (3.4)

which together with (3.2) and (3.3) proves the desired result.

Lemma 3.3. For s > 0 and t > 0 define

G(s, t) =
[
2 3
√

t2 +
s2

3
√

t4

] 3
2

. (3.5)

Then the mapping (s, t) 7→ G(s, t) is convex and, for each s0 > 0, the mapping t 7→ G(s0, t)
is monotone increasing for t ≥ s0.

Proof. We note that

Gt =
2(t2 − s2)

t3

√
2t2 + s2, G(s, t) = tφ

(s

t

)
, where φ(τ) =

(
2 + τ2

) 3
2 .

The monotonicity is now clear. A simple computation shows that φ′′ is positive, which
together with Lemma A.1 shows that G is convex.

Lemma 3.4. Let λ > 0 and u ∈ AO
λ . Then for each R ∈ [a, b] we have

−
∫

SR

|∇u|3 dH2
x ≥


2

[
−
∫

SR

(
Au

) 3
2 dH2

x

] 2
3

+

[
−∫ SR

Ju dH2
x

]2

[
−∫ SR

(
Au

) 3
2 dH2

x

] 4
3




3
2

, (3.6)

where Au := |(adj∇u)Tn|.

Proof. Define Au as above and Âu := [Au]3/2. If we then we take equation (3.1) to the
three-halves power we find that

|∇u|3 ≥
[
2[Âu]

2
3 +

[Ju]2

[Âu]
4
3

] 3
2

. (3.7)

Next, if we integrate (3.7) over SR and apply Jensen’s inequality to the convex function
(s, t) 7→ G(s, t), given in Lemma 3.3, with t = Âu = |(adj∇u)Tn|3/2 and s = Ju we arrive
at (3.6).
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Lemma 3.5. Let λ > 0, q ∈ [1,∞), and u ∈ AO
λ . Then, for each R ∈ [a, b],

−
∫

SR

∣∣∣(adj∇u)Tn
∣∣∣
q
≥

(
−
∫

SR

∣∣∣(adj∇u)Tn
∣∣∣
)q

(3.8)

≥
(
−
∫

SR

∣∣∣∣
(
adj∇urad

)T
n
∣∣∣∣
)q

(3.9)

=
[
r(R)
R

]2q

= −
∫

SR

∣∣∣∣
(
adj∇urad

)T
n
∣∣∣∣
q

. (3.10)

Proof. The first inequality is clear for q = 1 and follows from Hölder’s inequality for q > 1.
The second inequality is an immediate consequence of Proposition 2.3 since, for any v ∈ AO

λ

and R ∈ [a, b], ∫

SR

∣∣∣(adj∇v)Tn
∣∣∣ = Area(v(SR)).

The final equalities follow from (2.3) with n = 3.

Proposition 3.6. Let λ > 0 and u ∈ AO
λ . Suppose that urad satisfies

0 ≥ d

dR

[
r(R)
R

]
=

1
R

[
r′(R)− r(R)

R

]
(3.11)

for some R ∈ [a, b]. Then

−
∫

SR

|∇u|3 dH2
x ≥ −

∫

SR

|∇urad|3 dH2
x = |∇urad|3. (3.12)

Proof. Let R ∈ [a, b] be such that (3.11) is satisfied. Then in view of (2.9) and (3.11)

s0 := −
∫

SR

Ju dH2
x = r′(R)

[
r(R)
R

]2

≤
[
r(R)
R

]3

. (3.13)

Next, by Lemma 3.3 the function t 7→ G(s0, t) is monotone on [ r(R)3

R3 ,∞) for the above
choice of s0 = s0(R). Thus, if we make use of (2.8), (3.13), Lemma 3.4, and Lemma 3.5
(with q = 3

2), we find that

−
∫

SR

|∇u|3 ≥ G

(
r′(R)

[
r(R)
R

]2

, −
∫

SR

∣∣∣(adj∇u)Tn
∣∣∣
3
2

)

≥ G

(
r′(R)

[
r(R)
R

]2

,

[
r(R)
R

]3)
. (3.14)



Energy Minimising Deformations in Elasticity 11

However, by (2.5) and (3.5),

G

(
r′

[ r

R

]2
,
[ r

R

]3
)

=

[
2

[ r

R

]2
+

[r′]2
[

r
R

]4

[
r
R

]4

] 3
2

= |∇urad|3,

which together with (3.14) yields (3.12).

Remark 3.7. In the two-dimensional case, n = 2, the result corresponding to Proposition 3.6
is that, for any u ∈ AO

λ ,

−
∫

SR

|∇u|2 dH1
x ≥ −

∫

SR

|∇urad|2 dH1
x = |∇urad|2,

where urad is given by (2.7) with n = 2. This follows by analogous arguments to the case
n = 3 with the following modifications:

1. For n = 2 the estimate corresponding to Lemma 3.2 is that, for each x ∈ SR and
R ∈ [a, b],

|∇u|2 ≥ ∣∣(adj∇u)Tn
∣∣2 +

[Ju]2

|(adj∇u)Tn|2
.

2. The function G in Lemma 3.3 is replaced by the function

G̃(s, t) = t +
s2

t
,

which is convex with t 7→ G̃(s0, t) monotone increasing for t ≥ s0.

3. In Lemma 3.5 we take q = 2 and also replace the exponent 2q by 2.

Remark 3.8. For A ⊂ Rn and u : A → Rn a slight modification of the argument in this
subsection shows that, if r′(R) ≤ r(R)/R for some R ∈ [a, b], then

−
∫

SR

|∇u|p dHn−1
x ≥ −

∫

SR

|∇urad|p dHn−1
x = |∇urad|p.

for all p ≥ n. However, for p < n the function corresponding to G (see (3.5)) is not convex
and so our proof does not apply.

3.2 The case W (F) = | adjF| 32 .

In this section we restrict our attention to the stored energy function W (F) = | adjF| 32 . The
proof of our first result can be found in [18].
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Lemma 3.9. Let λ > 0, u ∈ AO
λ , and R ∈ [a, b]. At each point x ∈ SR let n, t1, t2 denote

a right-handed orthonormal basis with n = x
|x| . Then, for each x ∈ SR,

| adj∇u|2 =
∣∣(adj∇u)Tn

∣∣2 +
∣∣(adj∇u)Tt1

∣∣2 +
∣∣(adj∇u)Tt2

∣∣2 .

Lemma 3.10. For each x ∈ SR and R ∈ [a, b], we have

| adj∇u|2 ≥ ∣∣(adj∇u)Tn
∣∣2 + 2

[Ju]2

|(adj∇u)Tn| . (3.15)

Proof. In view of Lemma 3.9

| adj∇u|2 ≥ ∣∣(adj∇u)Tn
∣∣2 + 2

∣∣(adj∇u)Tt1 × (adj∇u)Tt2

∣∣ . (3.16)

However,

(adj∇u)Tt1 × (adj∇u)Tt2 =
[
adj (adj∇u)T

]T
n, (3.17)

[
adj(adj∇u)T

]T
= (det∇u)∇u, (3.18)

and the Cauchy-Schwarz inequality implies (see (3.4))

Ju ≤
∣∣(∇u)n

∣∣
∣∣∣(adj∇u)Tn

∣∣∣ . (3.19)

Equations (3.16)–(3.19) then yield (3.15).

Lemma 3.11. For s > 0 and t > 0 let

H(s, t) =
(

3
√

t4 + 2
s2

3
√

t2

) 3
4

. (3.20)

Then (s, t) 7→ H(s, t) is convex and, for each s0 > 0, the mapping t 7→ H(s0, t) is monotone
increasing for t ≥ s0.

Proof. We note that

Ht =
t2 − s2

√
t3

(
4
√

2t2 + s2
) , H(s, t) = tφ

(s

t

)
, where φ(τ) =

(
1 + 2τ2

) 3
4 .

The monotonicity is now clear. A simple computation shows that φ′′ is positive, which
together with Lemma A.1 shows that H is convex.
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Lemma 3.12. Let λ > 0 and u ∈ AO
λ . Then for each R ∈ [a, b] we have

−
∫

SR

| adj∇u| 32 dH2
x ≥




[
−
∫

SR

(
Au

) 3
2 dH2

x

] 4
3

+ 2

[
−∫ SR

Ju dH2
x

]2

[
−∫ SR

(
Au

) 3
2 dH2

x

] 2
3




3
4

, (3.21)

where Au := |(adj∇u)Tn|.

Proof. Define Au as above and Âu := [Au]3/2. If we then we take equation (3.15) to the
three-fourths power we find that

| adj∇u| 32 ≥
[
2[Âu]

4
3 +

[Ju]2

[Âu]
2
3

] 3
4

. (3.22)

Next, if we integrate (3.22) over SR and apply Jensen’s inequality to the convex function
(s, t) 7→ H(s, t), given in Lemma 3.11, with t = Âu = |(adj∇u)Tn|3/2 and s = Ju we arrive
at (3.21).

Proposition 3.13. Let λ > 0 and u ∈ AO
λ . Suppose that u satisfies

0 ≥ d

dR

[
r(R)
R

]
=

1
R

[
r′(R)− r(R)

R

]
(3.23)

for some R ∈ [a, b]. Then

−
∫

SR

| adj∇u| 32 dH2
x ≥ −

∫

SR

| adj∇urad| 32 dH2
x = | adj∇urad| 32 . (3.24)

Proof. Let R ∈ [a, b] be such that (3.23) is satisfied. Then in view of (2.9) and (3.23)

s0 := −
∫

SR

Ju dH2
x = r′(R)

[
r(R)
R

]2

≤
[
r(R)
R

]3

. (3.25)

Next, by Lemma 3.11 the function t 7→ H(s0, t) is monotone on [ r(R)3

R3 ,∞) for the above
choice of s0 = s0(R). Thus, if we make use of (2.8), (3.25), and Lemma 3.5 (with q = 3

2),
and Lemma 3.12, we conclude that

−
∫

SR

| adj∇u| 32 ≥ H

(
r′(R)

[
r(R)
R

]2

, −
∫

SR

∣∣∣(adj∇u)Tn
∣∣∣
3
2

)

≥ H

(
r′(R)

[
r(R)
R

]2

,

[
r(R)
R

]3)
. (3.26)
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However, by (2.6) and (3.20),

H

(
r′

[ r

R

]2
,
[ r

R

]3
)

=

[[ r

R

]4
+ 2

[r′]2
[

r
R

]4

[
r
R

]2

] 3
2

= | adj∇urad| 32 ,

which together with (3.26) yields (3.24).

3.3 The case of general W (F)

Combining Sections 3.1 and 3.2 we obtain the following general result on the energy-reducing
properties of the radial-symmetrisation procedure (2.7).

Proposition 3.14. Let n = 3 and let W be polyconvex of the form (1.3) (or n = 2 and W

of the form (1.2)). Let u ∈ AO
λ and suppose that its radial symmetrisation urad (given by

(2.7)) satisfies
r(R)
R

≥ r′(R) for some R ∈ [a, b]. (3.27)

Then
−
∫

SR

W (∇u) dHn−1
x ≥ −

∫

SR

W (∇urad) dHn−1
x = W (∇urad). (3.28)

Proof. Suppose that n = 3 and that W is given by (1.3). The proof of this result then
follows immediately from (3.24), (3.12), and (2.9) by Jensen’s inequality on noting that
|∇urad|3, | adj∇urad| 32 and det∇urad are all functions of R only. (A similar argument holds
in the case n = 2 for stored-energy functions of the form (1.2).)

Corollary 3.15. Suppose that u ∈ AO
λ is such that its radial symmetrisation urad satisfies

(3.27) for all R ∈ (a, b). Then
∫

A
W (∇u) dx ≥

∫

A
W (∇urad) dx.

Proof. The proof of this result follows from (3.28) on multiplying both sides by 4πR2 and
integrating with respect to R on the interval [a, b].

4 Energy Reduction by Homogeneous Replacement.

In this section we again take A ⊂ Rn, n = 2 or n = 3, and consider stored-energy functions
of the form (1.2) or (1.3). Proposition 3.14 shows that the radial symmetrisation reduces
the average energy on spheres whenever (3.27) holds. The results of this section will be
used later in Section 5 to modify the radial symmetrisation on certain sub-annuli when the
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condition (3.27) does not hold for all R ∈ (a, b). We show that if the radial symmetrisation,
urad, of u ∈ AO

λ satisfies4

1
α
urad(αn) =

1
β
urad(βn) for all n ∈ Sn−1, (4.1)

for some a ≤ α < β ≤ b, then there is a homogeneous deformation that also satisfies (4.1)
and whose energy on the sub-annulus α ≤ |x| ≤ β is no greater than the energy of u on the
given sub-annulus (see Corollary 4.2). Again, as in Section 3, by using Jensen’s inequality, it
suffices to restrict our attention to stored-energy functions of the special form W (F) = |F|n,
W (F) = | adjF| n

n−1 , and W (F) = detF.

Proposition 4.1. Let λ > 0 and u ∈ AO
λ . Suppose that urad, the radial symmetrisation of

u given by (2.7), satisfies
r(α)
α

=
r(β)
β

=: σ, (4.2)

where a ≤ α < β ≤ b. Define uσ(x) := σx. Then

−
∫

Bβ\Bα

|∇u|n dx ≥ −
∫

Bβ\Bα

|∇uσ|n dx = |∇uσ|n, (4.3)

−
∫

Bβ\Bα

| adj∇u| n
n−1 dx ≥ −

∫

Bβ\Bα

| adj∇uσ|
n

n−1 dx = | adj∇uσ|
n

n−1 , (4.4)

−
∫

Bβ\Bα

det∇u dx = −
∫

Bβ\Bα

det∇uσ dx = det∇uσ. (4.5)

Proof. Let λ > 0, u ∈ AO
λ , and urad be given by (2.7). We first note that (2.7) and (4.2)

imply

−
∫

Bβ\Bα

(det∇u) dx =
r(β)n − r(α)n

βn − αn
= σn. (4.6)

However, ∇uσ = σI and hence det∇uσ = σn, which together with (4.6) yields (4.5).

Next, by the arithmetic-geometric mean inequality, for all νi ∈ R, i = 1, 2, . . . , n,

1
n

n∑

i=1

ν2
i ≥

[
n∏

i=1

ν2
i

]1/n

with equality if and only if ν1 = ν2 = . . . = νn.

In particular, if one chooses ν2
i to be the eigenvalues of FFT for any F ∈ Mn×n one concludes

|F|n ≥ n(n/2)| detF|. (4.7)
4Here Sn−1 ⊂ Rn is the set of unit vectors, i.e., the unit sphere.



16 J. Sivaloganathan and S. J. Spector

If we substitute F = ∇u in (4.7) and integrate over the set Bβ\Bα we find, with the aid of
(4.6), that

1
n(n/2)

−
∫

Bβ\Bα

|∇u|n dx ≥ −
∫

Bβ\Bα

det∇u dx = σn. (4.8)

We note that |∇uσ|n = n(n/2)σn, which together with (4.8) implies (4.3).

To prove (4.4) we first take G ∈ Mn×n and let F = adjG in (4.7) to conclude

| adjG|n ≥ n(n/2)| detG|n−1. (4.9)

Now let G = ∇u in (4.9) and integrate over the set Bβ\Bα to conclude, with the aid of
(4.6), that

n
n

2−2n −
∫

Bβ\Bα

| adj∇u| n
n−1 dx ≥ −

∫

Bβ\Bα

det∇u dx = σn. (4.10)

We note that adj∇uσ = σ(n−1)I and hence | adj∇uσ|n = n(n/2)σn(n−1), which together with
(4.10) yields (4.4).

Corollary 4.2. Let n = 3 and let W be of the form (1.3) (or n = 2 and W of the form
(1.2)). Suppose that u ∈ AO

λ satisfies the hypotheses of Proposition 4.1. Then
∫

Bβ\Bα

W (∇u) dx ≥
∫

Bβ\Bα

W (∇uσ) dx.

Proof. We prove this result in the case n = 3 (the case n = 2 is similar). It follows from
(4.3)–(4.5) and Jensen’s inequality that

−
∫

Bβ\Bα

Φ(|∇u|3, | adj∇u| 32 ,det∇u) dx ≥ Φ(|∇uσ|3, | adj∇uσ|
3
2 , det∇uσ);

the result now follows on multiplying both sides by the volume of Bβ\Bα and noting that
∇uσ = σI is constant on Bβ\Bα.

5 Global Energy Reduction.

In Proposition 3.14 we demonstrated that for each map u ∈ AO
λ the symmetrisation proce-

dure (2.7) produces a radial deformation urad whose average energy on each sphere SR is
no greater than that of u at each value of R ∈ (a, b) for which the condition r′(R) ≤ r(R)

R

holds. In this section we combine the arguments of Sections 3 and 4 in order to construct a
modified radial symmetrisation ũrad that has less energy than u on the entire annulus even
if the condition r′(R) ≤ r(R)

R is not satisfied for all R ∈ (a, b). The key is the following result,
which we prove in the appendix.
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Lemma 5.1. Let f : [a, b] → R be absolutely continuous. Define g : [a, b] → R by

g(x) := inf
t∈[a,x]

f(t). (5.1)

Then g is absolutely continuous and monotone decreasing. Moreover, there exist a countable
sequence of pairwise-disjoint open intervals, (ak, bk) ⊂ (a, b), such that

I. g ≡ gk is constant on each interval (ak, bk), where gk ≤ f(a);

II. g = f on K := (a, b) \ ∪k(ak, bk); and

III. g′ = f ′ χK a.e. on [a, b].

Additionally, if f is Lipschitz continuous then so is g.

Remark 5.2. In the sequel we will make use of the function

g̃(x) = max{g(x), f(b)}. (5.2)

It is clear from the proof of Lemma 5.1 that g̃ has the same regularity properties as g and
that f(a) ≥ g̃(x) ≥ f(b) for all x ∈ [a, b].

5.1 Radial Deformations Revisited.

The mapping g̃ given by (5.1) and (5.2) is not, in general, C1 even when f is analytic.
If the number of intervals (ak, bk) happens to be finite then g̃ is continuous and piecewise
C1. Otherwise, g̃ is only Lipschitz continuous. However, the classical theory for absolutely
continuous functions on the real line shows that such functions are differentiable almost
everywhere. In addition absolutely continuous functions satisfy the fundamental theorem of
calculus. We will next extend our class of radial deformations to include such functions.

Definition 5.3. Let A ⊂ Rn and 1 ≤ p ≤ ∞. We call a mapping wr ∈ W 1,p(A;Rn) a radial
Sobolev deformation of A if there is an absolutely continuous, strictly monotone increasing
function ρ : [a, b] → R that satisfies ρ(a) > 0 and

wr(x) =
ρ(R)
R

x, R := |x| (5.3)

for almost every x ∈ A. Here W 1,p(A;Rn) denotes the usual Sobolev space of mappings
u ∈ Lp(A;Rn) whose distributional derivative is also contained in Lp.

Remark 5.4. Since ρ is strictly monotone wr is one-to-one.
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Remark 5.5. Suppose, for the moment, that the stored-energy function W is continu-
ous, polyconvex and satisfies standard growth conditions. Then results of Ball [1] yield
the existence of a minimiser of the elastic energy among those elements of W 1,p(A;Rn), for
appropriate p, that are locally invertible and satisfy suitable displacement boundary condi-
tions. If these boundary conditions are radial then the analysis in, e.g., [1, 4, 17] yields the
existence of a minimiser among radial Sobolev deformations. Moreover, additional smooth-
ness and convexity hypotheses on the energy then imply (see, e.g. [4]) the regularity of the
radial minimiser, i.e., the radial minimiser is in fact a smooth radial deformation. Thus,
although we have extended our notion of a deformation, we expect that there is a smooth
radial deformation that is an absolute minimiser of the energy.

We now recall a result of [4] concerning the regularity of radial deformations.

Lemma 5.6. Let p ∈ [1,∞). Suppose that wr satisfies (5.3) for a.e. x ∈ A. Then wr ∈
W 1,p(A;Rn) if and only if ρ is absolutely continuous on [a, b] with ρ′ ∈ Lp((a, b)). Moreover,
the distributional derivative of wr is given by (2.2) and (2.3)–(2.4) are satisfied for a.e. x.

Remark 5.7. If ρ′(R) > 0 for L1 a.e. R ∈ (a, b) then wr is one-to-one and satisfies
det∇wr(x) > 0 for Ln a.e. x ∈ A.

Definition 5.8. For the mixed problem where the outer boundary is left free we let λ > 0
and define the set of (absolutely continuous) admissible radial deformations by

RO
λ :=





ρ(a) > 0, ρ′ > 0 a.e.,

wr(x) =
ρ(R)
R

x ∈ W 1,1(A;Rn) :
wr(x) = λx for x ∈ ∂Ao



 .

For the displacement problem we let λ > 0, µ > 0, µa < λb, and define the set of admissible
radial deformations by

Rλ
µ :=

{
wr ∈ RO

λ : wr(x) = µx for x ∈ ∂AI

}
.

5.2 The stored-energy functions |F|3, | adjF| 32 , and detF.

For the remainder of the section we will let n = 3. In this subsection we consider the stored-
energy functions W (F) = |F|3, W (F) = | adjF| 32 , and W (F) = detF. We obtain a condition
on deformations u ∈ AO

λ that allows us to construct a radial deformation ũrad ∈ RO
λ of lower

energy.

Proposition 5.9. Let λ > 0, u ∈ AO
λ and suppose that urad is the radial symmetrisation of

u given by (2.7). Assume that urad satisfies

µ :=
r(a)
a

>
r(b)
b

= λ. (5.4)
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Then there exists pairwise-disjoint open intervals (ak, bk) ⊂ [a, b] and a radial deformation

ũrad(x) =
ρ(R)
R

x ∈ Rλ
µ,

which we refer to as the modified radial symmetrisation, such that

(i) ρ : [a, b] → [µa, λb] is bi-Lipschitz;

(ii) ρ(R) = gkR for R ∈ [ak, bk] where ũrad(x) = gkx for |x| = ak and also for |x| = bk;

(iii) For almost every R ∈ K := [a, b]\⋃
k(ak, bk)

ρ(R) = r(R), ρ′(R) = r′(R), (5.5)

and hence

0 ≥ d

dR

[
ρ(R)
R

]
=

1
R

[
ρ′(R)− ρ(R)

R

]
;

(iv) For each k

∫ bk

ak

∫

SR

|∇u|3 dH2
x dR ≥

∫ bk

ak

∫

SR

|∇ũrad|3 dH2
x dR, (5.6)

∫ bk

ak

∫

SR

| adj∇u| 32 dH2
x dR ≥

∫ bk

ak

∫

SR

| adj∇ũrad| 32 dH2
x dR, (5.7)

∫ bk

ak

∫

SR

(
det∇u

)
dH2

x dR =
∫ bk

ak

∫

SR

(
det∇ũrad

)
dH2

x dR. (5.8)

Remark 5.10. By bi-Lipschitz we mean that ρ : [a, b] → [µa, λb] is Lipschitz continuous
with inverse ρ−1 : [µa, λb] → [a, b] that is also Lipschitz continuous. Given ρ′ > 0 a.e.,
the hypothesis that the inverse is Lipschitz continuous is equivalent to the assumption that
there is an ε > 0 such that ρ′ ≥ ε a.e. on [a, b], as can be seen by applying the fundamental
theorem of calculus. The Lipschitz constant for ρ−1 is then 1/ε.

Proof of Proposition 5.9. Let λ > 0 and u ∈ AO
λ . Suppose that urad and r are given by

(2.7). Then, since u is C1 with det∇u > 0 on A, it follows from (2.8) that

r′ ≥ ε0 > 0 on [a, b] (5.9)

for some ε0 > 0. We next define f ∈ C1([a, b]) by

f(R) =
r(R)
R

.
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Then by Lemma 5.1 and the remark that follows it the function g̃ : [a, b] → R given by (5.1)
and (5.2) is Lipschitz continuous and satisfies properties I–III of Lemma 5.1. Next, define
ρ : [a, b] → R and ũrad : A → R3 by

ρ(R) = R g̃(R), ũrad(x) =
ρ(R)
R

x,

respectively. Then ρ is Lipschitz continuous and satisfies property I of Lemma 5.1 (and
R 7→ ρ(R)/R satisfies II and III). Moreover, by Lemma 5.6, ũrad ∈ W 1,1(A;R3) with (dis-
tributional) derivative given by (2.2). In addition, ρ(a) = r(a) = µa and ρ(b) = r(b) = λb.
Thus, in view of Remark 5.10, once we establish that ρ′ ≥ ε > 0 a.e. it will follow that ũrad

is bi-Lipschitz.

We now consider R ∈ K. For almost every R ∈ K we have f(R) = g(R), f ′(R) = g′(R),
and consequently r(R) = ρ(R) and r′(R) = ρ′(R). Then since g̃ is monotone decreasing

0 ≥ g̃′(R) =
d

dR

[
ρ(R)
R

]
=

1
R

(
ρ′(R)− ρ(R)

R

)
,

which establishes (iii). In addition, since r′ = ρ′ a.e. on K it follows from (5.9) that ρ′ ≥
ε0 > 0 a.e. on K.

Next let R ∈ (ak, bk). Since g̃(R) ≡ gk, a constant, on [ak, bk] and ak, bk ∈ K we find
that

gk =
r(ak)
ak

=
ρ(R)
R

=
r(bk)
bk

for all R ∈ [ak, bk], (5.10)

which establishes (ii). In addition, (5.10) implies that ρ′(R) = gk > 0 for all R ∈ [ak, bk].
Thus since the gk are bounded away from zero we have completed the proof that ρ′ ≥ ε a.e.,
which in view of Remark 5.10, establishes (i).

Finally, (5.10), Proposition 4.1, and Fubini’s theorem yield (5.6)–(5.8), which establishes
part (iv) of the proposition.

Remark 5.11. Suppose that u ∈ AO
λ and that urad is the radial symmetrisation of u given

by (2.7). The idea for the modification, ũrad, of the radial symmetrisation in Proposition 5.9
is to replace urad by a homogeneous deformation on any sub-annulus in which r(R)

R is not
monotone decreasing: see figures 2 and 3 for an illustration of this construction.

5.3 The general case: W (F) = Φ(|F|3, | adjF| 32 , detF).

We start with the pure displacement problem where we obtain the strongest result.
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Figure 2: Graph of radial symmetrisation urad.

Figure 3: Graph of modified radial symmetrisation ũrad.
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Theorem 5.12. Let 0 < µa < λb with µ ≥ λ. Suppose that u ∈ Aλ
µ and

W (F) = Φ(|F|3, | adjF| 32 ,detF), (5.11)

where Φ : R+ × R+ × R+ → R is convex and s 7→ Φ(s, t, j) and s 7→ Φ(t, s, j) are increasing
functions for all t > 0 and j > 0. Then there exists a bi-Lipschitz radial deformation
ũrad ∈ Rλ

µ that satisfies

E(u) =
∫

A
W (∇u) dx ≥

∫

A
W (∇ũrad) dx = E(ũrad).

Proof. If µ = λ then the quasiconvexity of the integrand implies that ũrad(x) ≡ λx is a
global minimiser of the energy. Otherwise, µ > λ and so we can apply Proposition 5.9 to
conclude that there exists pairwise-disjoint open intervals (ak, bk) ⊂ [a, b] and a bi-Lipschitz
radial deformation

ũrad(x) =
ρ(R)
R

x ∈ Rλ
µ

that satisfy (5.6)–(5.8), ρ(R) = gkR for R ∈ [ak, bk], where r(ak) = gkak and r(bk) = gkbk,
and for a.e. R ∈ K := [a, b]\⋃

k(ak, bk), ρ(R) = r(R), ρ′(R) = r′(R), and

0 ≥ d

dR

[
ρ(R)
R

]
=

1
R

[
ρ′(R)− ρ(R)

R

]
. (5.12)

We next compute the energy of ũrad and compare it to the energy of u. First consider
R ∈ K. Since (5.12) is satisfied for almost every R ∈ K, Proposition 3.6 and Proposition 3.13
together with (2.4) and (5.5) imply that, for such R,

−
∫

SR

|∇u|3 dH2
x ≥ −

∫

SR

|∇urad|3 dH2
x = −

∫

SR

|∇ũrad|3 dH2
x, (5.13)

−
∫

SR

| adj∇u| 32 dH2
x ≥ −

∫

SR

| adj∇urad| 32 dH2
x = −

∫

SR

| adj∇ũrad| 32 dH2
x, (5.14)

−
∫

SR

det∇u dH2
x = −

∫

SR

det∇urad dH2
x = −

∫

SR

det∇ũrad dH2
x. (5.15)

Consequently, Jensen’s inequality and the monotonicity of Φ in its first two arguments yield

−
∫

SR

Φ(|∇u|3, | adj∇u| 32 , det∇u) dH2
x

≥ Φ
(
−
∫

SR

|∇u|3 dH2
x, −

∫

SR

| adj∇u| 32 dH2
x, −

∫

SR

(det∇u) dH2
x

)

≥ Φ
(
−
∫

SR

|∇ũrad|3 dH2
x, −

∫

SR

| adj∇ũrad| 32 dH2
x, −

∫

SR

(det∇ũrad) dH2
x

)
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and hence, if we multiply by 4πR2, integrate over K ⊂ [a, b], and note that |∇ũrad|,
| adj∇ũrad|, and det∇ũrad are constant on the sphere SR, we find that

∫

K

∫

SR

Φ
(|∇u|3, | adj∇u| 32 , det∇u

)
dH2

x dR

≥
∫

K

∫

SR

Φ
(|∇ũrad|3, | adj∇ũrad| 32 , (det∇ũrad)

)
dH2

x dR. (5.16)

Next consider R ∈ (ak, bk). Define Ak to be the annulus {x ∈ R3 : ak < |x| < bk}.
Then in view of (5.6)–(5.8), Jensen’s inequality and the monotonicity of Φ in its first two
arguments yield

−
∫

Ak

Φ(|∇u|3, | adj∇u| 32 ,det∇u) dx

≥ Φ
(
−
∫

Ak

|∇u|3 dx, −
∫

Ak

| adj∇u| 32 dx, −
∫

Ak

(det∇u) dx
)

≥ Φ
(
−
∫

Ak

|∇ũrad|3 dx, −
∫

Ak

| adj∇ũrad| 32 dx, −
∫

Ak

(det∇ũrad) dx
)

and hence, if we multiply by the volume of Ak and note that, by Proposition 5.9, |∇ũrad|,
| adj∇ũrad|, and det∇ũrad are constant on the annulus Ak, we find that

∫

Ak

Φ
(|∇u|3, | adj∇u| 32 , det∇u

)
dx ≥

∫

Ak

Φ
(|∇ũrad|3, | adj∇ũrad| 32 , (det∇ũrad)

)
dx,

which, together with (5.16) and the dominated convergence theorem, implies the desired
result.

Remark 5.13. The stored-energy functions (5.11) are by no means the only classes of
stored-energy functions for which symmetrisation lowers the energy. For example, direct
computations show that symmetrisation lowers the total energy for the stored-energy func-
tion W (F) = |F|| adjF| and also for W (F) = |F|q| adjF|2 for any q ∈ (0, 4).

Remark 5.14. The energy of u will be strictly greater than the energy of ũrad if any of the
inequalities used in our derivation is strict. In particular, in equation (3.4) (and (3.19))

∣∣∣(∇u)n · (adj∇u)Tn
∣∣∣ ≤

∣∣∣(∇u)n
∣∣∣
∣∣∣(adj∇u)Tn

∣∣∣

is a strict inequality unless the vectors (∇u)n and (adj∇u)Tn are parallel; in which case it
then follows that n is an eigenvector of (∇u)T∇u.
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Remark 5.15. The corresponding result in the two-dimensional case, n = 2, is that if

W (F) = Φ(|F|2,detF),

where Φ : R+ × R+ → R is convex and s 7→ Φ(s, j) is monotone increasing, then E(u) ≥
E(ũrad) for any u ∈ Aλ

µ. The proof of this follows exactly as in Theorem 5.12 on noting the
results of Remark 3.7.

Remark 5.16. A similar result is valid when n ≥ 4. A slight modification of our proof will
show that if the energy satisfies

W (F) = Φ(|F|n, | adjF| n
n−1 ,detF),

where Φ : R+×R+×R+ → R is convex and monotone increasing in its first two arguments,
then E(u) ≥ E(ũrad) for any u ∈ Aλ

µ.

Finally, we briefly consider the mixed problem. Without the additional displacement
boundary condition on the inner boundary it is clear that there are deformations u ∈ AO

λ

whose radial symmetrisation does not satisfy µ ≥ λ (see (5.4)). Thus our techniques will
not yield a comparison of the energy of such a deformation with the energy of its radial
symmetrisation. However, if the global minimiser of the energy among radial deformations
exists and satisfies µ > λ then our results do yield such a comparison for all u ∈ AO

λ that
lie in a neighbourhood (in the C0-topology) of the radial minimiser. This establishes the
following result.

Corollary 5.17. Let λ > 0 and suppose that W (F) = Φ(|F|3, | adjF| 32 , detF) satisfies the
hypotheses of Theorem 5.12. Suppose further that there exists a radial deformation

wr(x) =
r(R)
R

x ∈ AO
λ ∩RO

λ

that minimises the elastic energy

E(zr) =
∫

A
W (∇zr(x)) dx

amongst all zr ∈ RO
λ . Define µ := r(a)/a and suppose that µ > λ. Then wr is a strong

relative minimiser of the energy, that is, there is a neighbourhood of wr in L∞(A;R3) such
that any w ∈ AO

λ that lies in this neighbourhood satisfies E(w) ≥ E(wr).

Remark 5.18. To apply the above Corollary, we refer to results in [4], [17], and [10] which
can be adapted to prove that there exists an energy minimiser wr in the class of radial
deformations RO

λ .
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Example 5.19. Suppose that p ≥ 3 and that h ∈ C2(R+; [0,∞)) is convex with h(d) →∞
as d → 0+. Then the stored-energy function

W (F) = |F|p + h(detF)

clearly satisfies the hypotheses of Theorem 5.12. In addition W is globally strongly-elliptic
and hence it follows from results in [4, 17] that, for each positive λ 6= 1, the mixed problem
has a unique radial minimiser that satisfies either

r(R)
R

> r′(R) for every R ∈ [a, b] or
r(R)
R

< r′(R) for every R ∈ [a, b].

For this particular stored-energy function, it follows from phase-plane arguments for the
radial equilibrium equation (see [17, section 2]), that the first of the above inequalities holds
in the case λ > 1 and the second in the case λ < 1.

Remark 5.20. Let N denote the outward unit normal to u(A). Then, for any P ∈ R,
Corollary 5.17 is also valid for the energy

EP (u) :=
∫

A
W (∇u(x)) dx− P

∫

u(Sa)
y ·N(y) dH2

y,

which loads the (deformed) inner boundary with a constant pressure. This follows from
the fact that our summarisations preserve volume and the integral that multiplies P is three
times the volume of the region contained within the surface u(Sa) (cf. the concluding remarks
in [18]).

6 Symmetry of Energy Minimising Deformations when λ > µ.

In this section we will show that the arguments used in the previous section with µ ≥ λ can,
for the pure displacement problem, be applied to certain classes of polyconvex stored-energy
functions when λ > µ. Initially, we again let A ⊂ Rn for some integer n ≥ 2.

We first note that results from degree theory (see, e.g., [9] or [16]) imply that the image
of A under any continuous, one-to-one map that satisfies the given boundary conditions is
the annulus

A∗ = {x ∈ Rn : µa < |x| < λb } , (6.1)

and, moreover, that such a map is open and satisfies u(A) = A∗. The following result5 then
follows from degree theory and the inverse function theorem.

5See, e.g., [6, Theorem 5.5-2] and recall that u ∈ C1(A) means u is C1 on a open set containing A.
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Proposition 6.1. Let 0 < µa < λb and u ∈ Aλ
µ. Then u is one-to-one and satisfies

u(A) = A∗. Moreover, u has an inverse v = vu := u−1 ∈ C1(A∗; A); this inverse is
one-to-one and satisfies v(A∗) = A and

v(y) = µ−1y for y ∈ ∂A∗I , v(y) = λ−1y for y ∈ ∂A∗o,

where ∂A∗I and ∂A∗o are the inner and outer boundaries of A∗, respectively.

We now follow Ball [2, pp. 210–211] and change variables to the deformed configuration
to prove the main result of this section.

Theorem 6.2. Let λ > µ and suppose that Ŵ (F) := (detF) W (F−1) satisfies the hypotheses
of Theorem 5.12. Then for each u ∈ Aλ

µ there exists a bi-Lipschitz radial deformation
z̃rad ∈ Rλ

µ such that E(u) ≥ E(z̃rad).

Proof. Let u ∈ Aλ
µ with inverse v so that (u ◦ v)(y) = y. Then, by the chain rule

[∇xu(v(y))][∇yv(y)] = I and hence, for each y ∈ A∗,

∇xu(v(y)) =
[
∇yv(y)

]−1
. (6.2)

The change of variables formula for multiple integrals together with (6.2), Proposition 6.1,
and the definition of Ŵ then imply

∫

A
W (∇xu(x)) dx =

∫

A∗
W

(∇xu(v(y))
)(

det∇yv(y)
)
dy

=
∫

A∗
Ŵ (∇yv(y)) dy, (6.3)

where A∗ = u(A) is given by (6.1).

Now apply Theorem 5.12 with A, W , and u replaced by A∗, Ŵ , and v, respectively,
noting that λ−1 < µ−1 and that v(y) = λ−1y on ∂A∗o and v(y) = µ−1y on ∂A∗I . Thus, there
exists a bi-Lipschitz radial map ṽrad : A∗ → A that satisfies

∫

A∗
Ŵ (∇v(y)) dy ≥

∫

A∗
Ŵ (∇ṽrad(y)) dy. (6.4)

We next note that since ṽrad is radial and bi-Lipschitz so is its inverse z̃rad : A → A∗.
It follows that z̃rad ∈ Rλ

µ. Moreover, the change of variables formula, (6.3), as well as the
identity (6.2) (for a.e. y ∈ A∗) are also valid for Lipschitz functions.6 The desired result now
follows from (6.4) together with (6.2) and (6.3) with u and its inverse v replaced by z̃rad

and its inverse ṽrad, respectively.
6See, e.g., [8, Theorem 3.2.5] and [7, Chapter 3].
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The next proposition can be helpful in identifying stored-energy functions for which the
last theorem applies.

Proposition 6.3. Suppose that Ψ : R+ × R+ × R+ → R is continuous. Then for any
p, q, s, t ∈ R, the mapping u and its inverse v satisfy

∫

A
Ψ

( |∇xu|s
(det∇xu)p ,

| adj∇xu|t
(det∇xu)q , det∇xu

)
dx

=
∫

A∗
Ψ

(
| adj∇yv|s

(det∇yv)s−p ,
|∇yv|t

(det∇yv)t−q , [det∇yv]−1

)
(det∇yv) dy.

Proof. Let u ∈ Aλ
µ with inverse v. Then the change of variables formula yields

∫

A
Ψ

( |∇xu|s
(det∇xu)p ,

| adj∇xu|t
(det∇xu)q , det∇xu

)
dx

=
∫

A∗
Ψ

( |∇xu(v(y))|s
(det∇xu(v(y)))p ,

| adj∇xu(v(y))|t
(det∇xu(v(y)))q , det∇xu(v(y))

)
(det∇yv(y)) dy. (6.5)

Next, (6.2) yields ∇xu = [∇yv]−1 and hence

det∇xu(v(y)) = [det∇yv(y)]−1 .

Consequently, since adjF = (detF)F−1 and adj(adjF) = (detF)F (cf. (3.18))

∇xu(v(y)) = adj
[∇yv(y)

]
[det∇yv(y)]−1

adj [∇xu(v(y))] = ∇yv(y) [det∇yv(y)]−1 .

The last three equations and (6.5) then yield the desired result.

Example 6.4. Let µ < λ and

W (F) = Ψ

(
|F|3/2

(detF)1/2
,
| adjF|3
(detF)2

,detF

)
,

where Ψ : R+×R+×R+ → R is monotone increasing in its first two arguments and convex.
Then, for any u ∈ Aλ

µ, there is a radial deformation z̃rad ∈ Rλ
µ that satisfies E(u) ≥ E(z̃rad).

Proof. This follows from Theorem 6.2 on noting that

Ŵ (F) = (detF) W (F−1) = (detF) G

(
| adjF| 32
detF

,
|F|3
detF

,
1

detF

)

which is easily shown to be jointly convex in the variables7 (| adjF| 32 , |F|3,detF).
7Note that (q, s, t) 7→ G(q, s, t) convex implies (q, s, t) 7→ t G

`
q
t
, s

t
, 1

t

´
is also convex.
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Remark 6.5. As noted for the incompressible case in Part I [18], the results in previous
sections rely on the idea that the image of each sphere centred at the origin in the reference
configuration, SR ⊂ A, prefers to retain its spherical shape in order to minimise the elastic
energy. The results in the current section instead use the property that the preimage of
any sphere centred at the origin, in the deformed configuration, Sr ⊂ A∗, prefers to be the
image of some sphere centred at the origin. This idea cannot be applied unless the deformed
configuration is the union of such spheres, which necessitates that the image of the annulus
A be another annulus. Hence the technique in this section is only applicable to the pure
displacement problem.

7 Sobolev Deformations.

We now generalise the results of the previous sections to allow for deformations given by the
existence theory of Ball [1] (and subsequent generalisation in [5, 14, 19, 20]). For this entire
section we again take A ⊂ Rn with n = 2 or n = 3.

Definition 7.1. Suppose that p > n and 0 < µa < λb. For the pure displacement problem
we define the set of admissible Sobolev deformations by

Sp =
{

u(x) = µx for x ∈ ∂AI ,u ∈ W 1,p(A;Rn) ∩ C0(A;Rn) : det∇u > 0 a.e.,
u(x) = λx for x ∈ ∂Ao

}
,

where W 1,p(A;Rn) denotes the usual Sobolev space of vector-valued functions u ∈ Lp(A;Rn),
whose distributional derivative also lies in Lp.

The next result, which gives invertibility properties of deformations, is due to Ball [3].

Proposition 7.2. Let p > n and 0 < µa < λb. Suppose that u ∈ Sp. Then

(a) There exists a Lebesgue null set N ⊂ A such that u is one-to-one on A\N ; and

(b) u(A) = A∗.

Suppose further that | adj∇u|q(det∇u)1−q ∈ L1(A) for some q > n, then

(c) u is one-to-one on A;

(d) u(A) = A∗;

(e) u has an inverse v ∈ W 1,q(A∗) ∩ C0(A∗) that satisfies ∇yv(y) = [∇xu(v(y))]−1 for
a.e. y ∈ A∗, where ∇w denotes the matrix of weak derivatives of a mapping w; and

(f) det∇v(y) > 0 for a.e. y ∈ A∗.

Before proceeding further we note certain other key properties of such mappings.
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Proposition 7.3. Let p > n and suppose that u ∈ W 1,p(A;Rn) ∩ C0(A;Rn) is one-to-one
a.e. and satisfies det∇u > 0 a.e. on A. Then for L1 a.e. R ∈ (a, b),

(a) u|SR
∈ W 1,p(SR) ∩ C0(SR);

(b) u(SR) is Hn−1 measurable with Hn−1 (u(SR)) ≤ ∫
SR
|(adj∇u)Tn| dHn−1

x ;

(c) ∂∗ (imT (u, SR)) is Hn−1 measurable with Hn−1 (∂∗(imT(u, SR))) = Hn−1 (u(SR));

(d) nnωn [Ln (imT(u, SR))]n−1 ≤ [Hn−1 (∂∗(imT(u, SR)))
]n;

(e) For any v ∈ C1(Rn)
∫

Rn

degree(u, SR,y) div v(y) dy =
∫

SR

v(u(x)) · (adj∇u(x))Tn(x) dHn−1
x ; and

(f) Each y ∈ Rn\u(SR) satisfies degree(u, SR,y) = 1 or degree(u, SR,y) = 0.

Here
imT(u, SR) := {y ∈ Rn\u(SR) : degree(u, SR,y) 6= 0} (7.1)

is the topological image of SR under u, Hn−1 denotes (n−1)-dimensional Hausdorff measure,
∂∗Ω denotes the reduced boundary8 of Ω, Ln denotes n-dimensional Lebesgue measure, ωn is
the volume of the unit ball in Rn (ω2 = π and ω3 = 4π/3) and degree denotes the Brouwer
degree.9

Remark 7.4. Proposition 7.3(a) is well-known, see, e.g., [7, 9, 21]. Part (b) is due to Marcus
and Mizel [11] (see also [8, 9]). Part (c) can be found in, e.g., the proof of Lemma 3.5 (steps
1–3) in [12]. Part (d) is a version of the classical isoperimetric inequality. It can be found
in, for example, [7, p. 190] or [21, Theorem 5.4.3]; the given (dimensionally dependent)
constant nnωn can be found in Federer [8, pp. 275, 278]. Part (e) can be found in, e.g., [13,
Proposition 2.1].

Proof of (f). Let p > n and u ∈ Sp. Define an extension of u by

ue(x) =

{
u(x), if x ∈ A,

µx, if x ∈ Ba = Bb\A.

Clearly, ue ∈ W 1,p(Bb) ∩ C0(Bb) and det∇ue > 0 a.e. in Bb.

Next, in view of Proposition 7.2, ue is one-to-one a.e. on Bb. Consequently, ue satisfies
condition (INV) of Müller and Spector [12] and hence we can apply Lemma 3.5 in [12] to
conclude that the degree only assumes the values zero and one. Finally, for R ∈ (a, b)
the functions u and ue are equal, which establishes (f) as the degree only depends on the
boundary values.

8See, e.g., Chapter 5 in either [7] or [21].
9See, e.g., [9] or [16].
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7.1 Symmetrisation of Sobolev Deformations.

We first prove the analogue of Proposition 2.3 for Sobolev deformations u ∈ Sp. For each
such u we define its radial symmetrisation

urad(x) =
r(R)
R

x, ωnr(R)n := ωnλnbn −
∫

Bb\BR

(det∇u) dx. (7.2)

Lemma 7.5. Let λ > 0, p > n, and u ∈ Sp. Then for almost every R ∈ (a, b)

Hn−1(u(SR)) ≥ Hn−1(urad(SR)),

where urad is given by (7.2).

Proof. Fix R ∈ [a, b]. Let u ∈ C2(A;Rn) satisfy u(x) = λx for x ∈ Sb. Then the well-known
divergence identity

det∇u =
∂

∂xα

(
1
n

ui(adj∇u)α
i

)
= div

(
1
n

(adj∇u)u
)

,

when integrated over Bb\BR, yields
∫

Bb\BR

(det∇u) dx = ωnλnbn −
∫

SR

1
n
u · (adj∇u)Tn dHn−1

x , (7.3)

where n is the outward unit normal to Bb\BR. However, the boundary is smooth and so
C2(A;Rn) is dense in W 1,p(A;Rn). Now let u ∈ W 1,p(A;Rn) satisfy u(x) = λx and consider
a sequence of C2 mappings un → u strongly in W 1,p(A;Rn). Then, p > n yields un → u
uniformly on A, by the Sobolev imbedding theorem, and det∇un → det∇u strongly in
L1(A). Next, by Proposition 7.3(a) together with Fubini’s theorem, for L1 a.e. R ∈ (a, b),
there is a subsequence (not relabelled) that satisfies un → u strongly in W 1,p(SR;Rn) and
consequently adj∇un → adj∇u strongly in L1(SR;Mn×n). We therefore conclude that, for
a.e. R ∈ (a, b), (7.3) is satisfied by all u ∈ W 1,p(A;Rn) that obey u(x) = λx on Sb and, in
particular, for all u ∈ Sp.

We next note that, since urad(SR) is the sphere of radius r(R) given by (7.2),

nnωn

[
Ln

(
Br(R)

)]n−1
=

[
Hn (u(SR))

]n
. (7.4)

The desired result will follow from (7.4) and the isoperimetric inequality, Proposition 7.3(c,d),
if we can establish that the open set imT(u, SR) has the same volume as Br(R), i.e., in view
of (7.2) and (7.3),

ωnr(R)n = ωnλnbn −
∫

Bb\BR

(det∇u) dx

(7.5)

=
1
n

∫

SR

u · (adj∇u)Tn dHn−1
x .
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However, by (7.1) and Proposition 7.3(e,f), with v(x) = x/3,

Ln (imT(u, SR)) =
1
n

∫

SR

u · (adj∇u)Tn dHn−1
x ,

which together with (7.5) completes the proof.

Remark 7.6. As is clear from the proof, the last result is independent of the regularity (or
lack of regularity) of urad.

7.2 Regularity of Radial Symmetrisations.

In addition to the radial symmetrisation urad, in Proposition 5.9 we introduced a modified
radial symmetrisation ũrad for smooth deformations u. We now correspondingly define this
modified radial symmetrisation for each u ∈ Sp, p > n, by

ũrad(x) = g(R)x, g(R) = max
{

λ, inf
τ∈[a,R]

r(τ)
τ

}
. (7.6)

In this section we investigate regularity properties of the symmetrisations urad and ũrad of
Sobolev maps.

First note that if u ∈ Sp, p > n, then det∇u ∈ Lp/n(A) with det∇u > 0 a.e. Now
define corresponding maps ψ,ψ∗ : [a, b] → R by

ψ(R) :=
∫

Bb\BR

(det∇u) dx, ψ∗(R) :=
∫

SR

(det∇u) dHn−1
x . (7.7)

Then ψ is strictly decreasing, absolutely continuous on [a, b], and satisfies ψ(b) = 0 and
ψ(a) = λnbn − µnan > 0. Fubini’s theorem then implies that ψ∗ is also well-defined, finite
almost everywhere, and satisfies

ψ(t) =
∫ b

t
ψ∗(R) dR.

Thus, ψ′(R) = −ψ∗(R) for a.e. R ∈ (a, b), where the prime here denotes the classical
derivative. Moreover, since det∇u > 0 a.e. in A it follows that, for L1 almost every R ∈
(a, b),

(det∇u)
∣∣∣
SR

> 0 Hn−1 a.e. on SR.

Consequently, (7.7)2 yields ψ′(R) = −ψ∗(R) < 0 for almost every R ∈ (a, b) and hence,
using Hölder’s inequality, ψ′ ∈ L1((a, b)).

We now apply Lemma 5.6 together with the above observations to conclude the following
result.
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Proposition 7.7. Let u ∈ Sp with p > n and define urad : A → Rn by (7.2). Then
r is absolutely continuous on [a, b] with (classical) derivative r′ ∈ L1((a, b)) that satisfies
r′ > 0 a.e. Moreover, urad ∈ W 1,1(A;Rn), with distributional derivative given by (2.2), is
one-to-one and satisfies det∇urad > 0 a.e.

The next result concerns the regularity of the modified radial symmetrisation ũrad de-
fined by (7.6).

Corollary 7.8. Let u ∈ Sp with p > n and suppose that urad ∈ W 1,1(A;Rn) is the radial
symmetrisation of u given by (7.2). Assume that µ > λ. Then the radial deformation
ũrad given by (7.6) satisfies ũrad ∈ W 1,1(A;Rn) with distributional derivative given by (2.2).
Moreover, ũrad is one-to-one with det∇ũrad > 0 a.e.

Proof. Let ũrad be the radial deformation defined by (7.6). By the previous proposition, r

is absolutely continuous on [a, b] with a > 0 and hence so is f(τ) := r(τ)/τ . Then, in view of
Lemma 5.1, g is absolutely continuous and monotone decreasing on [a, b]. Moreover, there
are pairwise-disjoint open intervals (ak, bk) ⊂ (a, b) such that g ≡ gk on (ak, bk); g = f on
K := (a, b) \ ∪k(ak, bk); and g′ = f ′ χK a.e. In particular we note for future reference that,
since g is monotone decreasing with g(a) = µ and g(b) = λ,

λ ≤ gk ≤ µ for all k ∈ Z+. (7.8)

Next, since g is absolutely continuous on [a, b], so is ρ(R) := Rg(R). In particular, ρ is
differentiable a.e. with (classical) derivative ρ′ = Rg′ + g; thus, for a.e. R ∈ (a, b),

ρ′(R) =

{
gk for R ∈ (ak, bk),

r′(R) for R ∈ K.
(7.9)

Now r′ > 0 a.e. and hence (7.8) and (7.9) imply

0 < ρ′(R) ≤ max{r′(R), µ} for a.e. R ∈ (a, b).

We can now apply the previous proposition to conclude that ρ′ ∈ L1((a, b)). Finally,
Lemma 5.6 yields ũrad ∈ W 1,1(A;Rn) with distributional derivative given by (2.2) and,
since ρ is continuous with ρ′ > 0 a.e., ũrad is one-to-one with det∇ũrad > 0 a.e.

8 Energy Reduction for Sobolev Deformations.

In this section we again take n = 3 and extend the results in §3–§6 to Sobolev deformations.
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8.1 The energy W (F) = Φ(|F|3, | adjF| 32 , detF), revisited: µ ≥ λ.

The next theorem extends the results in §5.3 to Sobolev deformations u ∈ Sp.

Theorem 8.1. Let 0 < µa < λb and µ ≥ λ. Define

E(u) =
∫

A
W (∇u(x)) dx,

where W satisfies
W (F) = Φ(|F|3, | adjF| 32 , detF)

with Φ : [0,∞) × [0,∞) × R+ → R convex and s 7→ Φ(s, t, j) and s 7→ Φ(t, s, j) increasing
functions for all t ≥ 0 and j > 0. Then for each u ∈ Sp, p > 3, there is a radial map ũrad

that satisfies
E(u) ≥ E(ũrad).

Assume further that W (F) → ∞ as detF → 0+ and that there are constants α > 1,
c > 0, and k such that, for all s ≥ 0, t ≥ 0, and j > 0,

Φ(s, t, j) ≥ csα − k. (8.1)

Then there exists a radial deformation wrad ∈ Sp, p = 3α, that is an absolute minimizer of
the energy among those mappings contained in Sp.

Remark 8.2. If one additionally assumes that Φ is strictly convex, then a slight modifica-
tion of results in Part I [18, Appendix] imply the radial minimiser wrad ∈ Sp is the unique
absolute minimiser of the energy. The main observations needed for this result are that if
E(u) = E(wrad) then:

(i) |∇u|, | adj∇u|, and det∇u must be radial (i.e., functions of R only);

(ii) The vectors (∇u)n and (adj∇u)Tn must be parallel (see Remark 5.14); and

(iii) The isoperimetric inequality (see Lemma 7.5) is strict unless the image of each sphere
is again a sphere.

With these observations one can prove that the deformed spheres u(SR) must be centred at
the origin and that u must be radial.

Proof of Theorem 8.1. If µ = λ then the polyconvexity (and hence quasiconvexity) of
the integrand implies that u(x) ≡ λx is an absolute minimiser of the energy. Thus we will
assume that µ > λ. Let u ∈ Sp, p > 3. If E(u) is infinite then the result is clear. Thus we
will further assume that u has finite energy.
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Now, u ∈ Sp implies u ∈ W 1,p(A;R3) and hence | adj∇u| ∈ Lp/2(A) and det∇u ∈
Lp/3(A). Thus, by Fubini’s theorem, each of the integrals

∫

SR

|∇u|3 dH2
x,

∫

SR

| adj∇u| 32 dH2
x,

∫

SR

(det∇u) dH2
x, (8.2)

∫

SR

Φ(|∇u|3, | adj∇u| 32 , det∇u) dH2
x

must be finite for L1 almost every R ∈ (a, b). For such R, it then follows from (8.2)1
that, in particular, |(∇u(x))n(x)| is finite for H2 a.e. x ∈ SR. In addition, u ∈ Sp implies
det∇u > 0 L3 a.e. and hence, for L1 a.e. R ∈ (a, b),

det∇u(x) > 0 for H2 a.e. x ∈ SR.

Consequently, in view of (3.4), for L1 a.e. R ∈ (a, b),

|(adj∇u(x))Tn(x)| > 0 for H2 a.e. x ∈ SR.

Therefore, for such R, previous arguments (see Lemma 3.2, Lemma 3.10, and their proofs)
yield, for H2 a.e. x ∈ SR,

G

(
det∇u,

∣∣∣(adj∇u)Tn
∣∣∣
3
2

)
≤ |∇u|3, H

(
det∇u,

∣∣∣(adj∇u)Tn
∣∣∣
3
2

)
≤ | adj∇u| 32 ,

where G and H are defined by (3.5) and (3.20), respectively.

We next make use of Jensen’s inequality and the fact that each of the integrals in (8.2)
is finite for a.e. R to conclude that

G

(
−
∫

SR

det∇u, −
∫

SR

∣∣∣(adj∇u)Tn
∣∣∣
3
2

)
≤ −

∫

SR

|∇u|3,

H

(
−
∫

SR

det∇u, −
∫

SR

∣∣∣(adj∇u)Tn
∣∣∣
3
2

)
≤ −

∫

SR

| adj∇u| 32

for L1 almost every R ∈ (a, b).

In view of Proposition 7.7 and Corollary 7.8, define the symmetrisations urad and ũrad

by (7.2) and (7.6), respectively. Note that, by Lemma 5.1 and the proof of Corollary 7.8,

ρ(R) = gkR, ρ′(R) = gk for R ∈ (ak, bk),

ρ(R) = r(R), ρ′(R) = r′(R) for a.e. R ∈ K, (8.3)

(a, b) = K ∪
⋃

k

(ak, bk), λ ≤ gk ≤ µ,
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where (ak, bk) are pairwise disjoint and K ∩ (ak, bk) = ∅ for all k.

Now, the proof of Lemma 3.5 (with Proposition 2.3 replaced by Lemma 7.5) implies
that (3.8)–(3.10) are satisfied for a.e. R ∈ (a, b). Therefore, since r′(R) ≤ r(R)/R for a.e.
R ∈ K, the computations used to prove Proposition 3.6 and Proposition 3.13 together with
(2.5) and (8.3) now yield (5.13)–(5.15) for a.e. R ∈ K. The remainder of the proof is exactly
analogous to the proof of Theorem 5.12 and allows us to conclude that the modified radial
symmetrisation ũrad (defined by (7.6)) satisfies E(u) ≥ E(ũrad).

Finally, the existence of a radial energy minimiser wrad ∈ Sp follows by applying the
symmetrisation procedure to an absolute minimiser um ∈ Sp of E, whose existence is guar-
anteed by the results of Ball [1] under the further hypotheses we have made. See also [6, pp.
371–377].

8.2 The energy W (F) = Φ(|F| 32 , | adjF|3, detF), revisited: λ > µ.

The next theorem extends the results in §6 to Sobolev deformations.

Theorem 8.3. Let λ > µ and suppose that Ŵ (F) := (detF) W (F−1) satisfies the hypotheses
of Theorem 8.1. Suppose further that Ŵ satisfies the (strengthened) growth condition

Ŵ (F) ≥ c

(
|F|β +

| adjF|γ
(detF)γ−1

)
− k for all F ∈ Mn×n

+ ,

for some constants c > 0, β > 3, γ > 3, and k. Then for each u ∈ Sγ there exists a radial
deformation z̃rad ∈ Sγ such that E(u) ≥ E(z̃rad), where

E(w) =
∫

A
W (∇w(x)) dx.

Suppose further that W (F) →∞ as detF → 0+, then there exists an absolute minimiser of
E on Sγ that is radial.

Proof. First note that the above growth condition on Ŵ implies the growth condition

W (F) ≥ c

( | adjF|β
(detF)β−1

+ |F|γ
)
− k detF

(8.4)

≥ c
| adjF|β

(detF)β−1
+ c̄|F|γ − k̄

on the original energy W , where c̄ > 0 since γ > 3 (cf. (4.7)). It now follows from (8.4)
and Proposition 7.2 that for any u ∈ Sγ with finite energy E(u), the corresponding inverse
v = u−1 lies in W 1,β(A∗) and satisfies det∇v > 0 a.e. Next, apply Theorem 8.1 to Ŵ and
v to obtain the existence of a (modified) symmetrised map ṽrad with no greater energy than
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v. A final application of Proposition 7.2 shows that the inverse of ṽrad, which we denote
z̃rad, satisfies E(u) ≥ E(z̃rad) as claimed.

Finally, the existence of a radial minimiser will follow if we apply the above argument
to an absolute minimiser of E. It is clear from the assumptions we have made that W

satisfies all of the required hypothesis of [1] (with the modifications of [6, pp. 371–377]) in
order to deduce the existence of an absolute minimiser. (Note that polyconvexity of W is
a consequence of the polyconvexity of Ŵ as is proved in [2, pp. 210–211]. See, also [3, pp.
325–327].)

Example 8.4. Let λ > µ and

W (F) = Ψ

(
|F|3/2

(detF)1/2
,
| adjF|3
(detF)2

,detF

)
,

where Ψ : [0,∞) × [0,∞) × R+ → R is monotone increasing in its first two arguments and
convex. Suppose further that Ψ satisfies the growth condition:

Ψ(s, t, j) ≥ c

[
(s2)p + tp̄ +

(
1
j

)q̄

+ jq

]
− k, (8.5)

where c, p, q, p̄, and q̄ are strictly positive and satisfy 1/p+1/q < 1 and 1/p̄+1/q̄ < 1. Then,
for any u ∈ Sp, there exists a radial deformation z̃rad ∈ Sp that satisfies E(u) ≥ E(z̃rad).

Proof. This will follow from Theorem 8.3 once we verify that the hypotheses of the theorem
are satisfied. First note that the growth assumptions (8.5), together with Young’s inequality,
guarantee that W satisfies a growth condition of the form

W (F) ≥ c∗
(
|F|p̂ +

| adjF|q̂
(detF)q̂−1

)
− k∗, (8.6)

for some constants p̂ > 3, q̂ > 3, c∗ > 0, and k∗. Next, the stored-energy function

Ŵ (F) = (detF) W (F−1) = (detF) G

(
| adjF|3/2

detF
,
|F|3
detF

,
1

detF

)

is jointly convex in the variables (| adjF|3/2, |F|3,detF) (see Example 6.4 and Footnote 7)
and, by (8.6), satisfies the growth estimate

Ŵ (F) = (detF)W (F−1) ≥ c∗
( | adjF|p̂

(detF)p̂−1
+ |F|q̂

)
− k∗ detF

≥ c∗
| adjF|p̂

(detF)p̂−1
+ c̄∗|F|q̂ − k̄∗,

where c̄∗ > 0. Thus we may apply Theorem 8.3 to this class of stored-energy functions to
obtain the claimed result.
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A Appendix

Lemma A.1. Let φ ∈ C2(R+;R) be convex. Then

Q(s, t) = tφ
(s

t

)

is convex on R+ × R+.

Proof. The partial derivatives of Q are

Qs = φ′, Qt = φ− s

t
φ′,

Qss =
1
t
φ′′, Qst = − s

t2
φ′′, Qtt =

s2

t3
φ′′.

Since φ is convex both Qss and Qtt are non-negative. The convexity of Q then follows from
the identity QssQtt = Q2

st, which is clear.

Lemma 5.1. Let f : [a, b] → R be (absolutely) continuous. Define g : [a, b] → R by

g(x) := inf
t∈[a,x]

f(t). (A.1)

Then g is (absolutely) continuous and monotone decreasing. Moreover, there exist a count-
able sequence of pairwise-disjoint open intervals, (ak, bk) ⊂ (a, b) such that g ≡ gk is constant
on each interval (ak, bk), where gk ≤ f(a), and g = f on K := (a, b) \ ∪k(ak, bk). Addition-
ally, if f and g are absolutely continuous then

g′ = f ′ χK a.e. on [a, b] (A.2)

and if f is Lipschitz continuous then so is g.

Proof. It is clear from (A.1) that g is monotone decreasing with g(z) ≤ f(a) for all z ∈ [a, b].
Assume now that f is continuous and note that by definition of g

f(z) ≥ g(z) for all z ∈ [a, b]. (A.3)

Next, fix x ∈ (a, b] and let xn ∈ [a, b] be a strictly monotone increasing sequence of points
that converges to x. Then for any n

g(x) = inf
t∈[a,x]

f(t) = min{ inf
t∈[a,xn]

f(t), inf
t∈[xn,x]

f(t)}

= min{g(xn), inf
t∈[xn,x]

f(t)}.
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If there exists an n such that g(x) = g(xn) then the monotonicity of g implies that it is
constant on [xn, x]. Thus g will be continuous from the left at x. Otherwise, since f is
continuous,

g(x) = inf
t∈[xn,x]

f(t) → f(x) as xn ↗ x,

and hence g(x) = f(x). However, in view of (A.3) and the monotonicity of g

f(xn) ≥ g(xn) ≥ g(x) = f(x)

and so the continuity of f yields the continuity of g from the left. The proof from the right
at any x ∈ [a, b) is similar.

To construct the required open intervals define

U := {x ∈ (a, b) : ∃εx > 0 such that g(x + s) = g(x) for all s ∈ (−εx, εx)}.

Then since g is continuous, it follows that U is an open subset of (a, b). A standard result on
the topology of the real line then yields a countable sequence of pairwise-disjoint intervals
(ak, bk) that satisfy

U =
⋃

k

(ak, bk).

Moreover, since g is constant in a neighbourhood of each point in U it is clear that g ≡ gk, a
constant, on each open interval (ak, bk). In addition, since g ≤ f(a) on [a, b] it follows that
gk ≤ f(a).

To see that g = f on K := (a, b)\U let x ∈ K and suppose once again that xn ∈ [a, x] is
a strictly monotone increasing sequence of points that converges to x. Then by the previous
argument either g is constant on some interval [xn, x] or f(x) = g(x), as required. A similar
argument with a strictly monotone decreasing sequence of points xk ↘ x shows that either
g is constant on some interval [x, xk] or f(x) = g(x), as required. Finally, if g were constant
on [xn, xk] with xn < x < xk then x ∈ U , which is not possible.

Now assume in addition that f is absolutely continuous. We note that g is monotone
and hence has bounded variation. Since g is also continuous a sufficient (and necessary)
condition for g to be absolutely continuous is that it satisfies Lusin’s N -condition.10 This
property is clear for g since

g(A) = g(A ∩ U) ∪ g(A ∩K) = g(A ∩ U) ∪ f(A ∩K).

Thus if A has measure zero then f(A∩K) has measure zero by the absolutely continuity of
f and g(A ∩ U) has measure zero since it consists of (at most) a countable number of real
numbers gk.

10That is, g maps Lebesgue null sets into such sets. See, e.g., [15, Chapter IX].
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To prove (A.2) we first note that g(x) ≡ gk for x ∈ (ak, bk) and hence g′ ≡ 0 on U ,
which establishes (A.2) for x ∈ U . Next, the absolute continuity of f and g yield their
differentiability almost everywhere. Now let x ∈ K be a point at which both f and g are
differentiable and note that f(x) = g(x). If x is a limit point of K then there is a sequence
xi → x with xi ∈ K and xi 6= x. Thus f(xi) = g(xi) and hence

f ′(x) = lim
i→∞

f(xi)− f(x)
xi − x

= lim
i→∞

g(xi)− g(x)
xi − x

= g′(x),

since both functions are differentiable at x. This completes the proof of (A.2) since the
isolated points of a bounded set are countable.

Finally, if f is Lipschitz continuous with Lipschitz constant M then |f ′| ≤ M and hence,
in view of (A.2), |g′| ≤ M and so g is Lipschitz continuous with Lipschitz constant M . This
completes the proof of the lemma.
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