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Abstract. We say that L ( x ,  U ,  Vu) is a null Lagrangian if and only if the corresponding 
integral functional g(u) = Jn L(x ,  U ,  Vu) dx has the property that g(u + 4) = 8(u )  
t/$ E cF(a),for any choice of U E C'(f2). 

In the homogeneous case, corresponding to L(x, U, Vu) = @(Vu), it is known that a 
necessary and sufficient condition for L to be a null Lagrangian is that @(Vu) is an affine 
combination of subdeterminants of Vu of all orders. In this paper we show that all 
inhomogeneous null Lagrangians may be constructed from these homogeneous ones by 
introducing appropriate potentials. 

In this paper we consider null Lagrangians L(x, U, Vu) ,  where x E S2 c R", 
U : h + R" and Vu = (3u w / 3 x L ) .  These are integrands for which the corresponding 
integral 

q u )  = / L(x, u(x) ,  Vu(x))  dx (1) . a  
has the property that %(U + q h )  = %'(U) V qh E Cr(S2) for any choice of u E C1(fi). It 
then follows by an approximation argument that %(uJ = %(U,) whenever 

ul, u 2 ~ C 1 ( & = 2 )  and u 1 = u 2  on dS2. (2) 
In the case when L(x, U, V u )  = @(Vu) then an explicit representation for L can be 
given, namely that @(Vu) is an affine combination of subdeterminants of V u  of all 
orders (see e.g., Ball et a1 1981, Edelen 1962, Ericksen 1962, Landers 1942, Rund 
1966). 

In this paper we show how all null Lagrangians L(x, U, V u )  may be explicitly 
constructed from those that depend solely on Vu. This result has an obvious 
generalisation to the case when L(x, U, Vu, V2u, . a . , Vku) ,  k > 1 (i.e. when L 
depends on derivatives of u up to kth order), to show that all null Lagrangians of 
this form may be explicitly constructed from those that depend solely on Vku, but for 
ease of presentation we only consider the case k = 1. (The recent paper of Edelen 
and Lagoudas (1986) gives a representation for L,  obtained by computer algebra 
through the use of differential forms, for the case k = 1, m = II = 3. )  

Our result is based on the following observation. 
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Suppose that S:  52 x Rn+= R" is an arbitrary C1 function and that @(Vu) is a null 
Lagrangian, then 

L(x, U, Vu) Zf @(VS(x, U)) = @( (%+ ""T)) 
duP dx (3) 

is also a null Lagrangian. (This follows from (2) since S(x, ul (x) )  = 
S(x, U&)) V x  E dQ whenever ul(x)  = U&) V x  E dQ, i.e. the functions 
S(x, u(x) )  agree on dQ whenever the functions U(.) do.). The question then arises 
as to whether all null Lagrangians are expressible in this form. The answer to this is 
no, as shown by example 2, but our result is that all null Lagrangians are expressible 
as the finite sum of terms of the form (3). (Consisting of at most N terms where N is 
given by (13) .) 

One of the interests in null Lagrangians is their use in the field theory of the 
calculus of variations. Basically the problem in this theory is to show that some 
given map uo minimises a given integral functional Z(u) on some set of admissible 
maps d. As noted in Sivaloganathan (1988), a necessary and sufficient condition for 
this is that there exists a functional 9 : d += R satisfying 

(i) Z ( u ) > 9 ( u )  V U E & ,  
(ii) $(U) 3 9(uo)  V'u E d and 
(iii) 9(uo)  = Z(uo). 

(The proof that uo minimises I(u) if there exists such a functional 9 is trivial and the 
converse follows on choosing 9 = I). 

In the field theory, conditions (ii) and (iii) are satisfied by choosing 9 to be the 
integral of a null Lagrangian so that 

%(U) = q u o )  = Z(u0) v U E d. 
To our knowledge there are two classical field theories for multiple integral 
problems due to Carathkodory (1929) and Weyl (1935) (Weyl's theory being a 
generalisation of the one-dimensional field theory of Hilbert and Weierstrass). In 
our notation, Weyl's theory corresponds to choosing a null Lagrangian of the form 
(3) with @(Vu) = Tr(Vu) and CarathCodory's corresponds to choosing @(Vu) = 
det(Vu). (The problem is then to find an appropriate function S.) More recently, 
Armensen (1975) has constructed a field theory, again using a null Lagrangian of 
the form (3), in which he takes @(Vu) as the sum of all r x r minors of Vu for some 
fixed r. As shown by theorem 7, the null Lagrangians used in these field theories are 
far from being the most general ones and this indicates that there are a large number 
that may still be exploited. For further details of field theories for multiple integral 
problems we refer to Morrey (1966), Rund (1966) and the references therein. 

Applications of null Lagrangians to nonlinear elasticity are contained in the 
works by Ball (1977), Ball et a1 (1981), Davini and Parry (1988), Edelen and 
Lagoudos (1986), Ericksen (1962) and Sivaloganathan (1986, 1988). 

We next outline our strategy of the proof. 
We first introduce the notion of a null Lagrangian and in proposition 2 we give a 

necessary condition for a function L(x, U, Vu) to be a null Lagrangian in terms of an 
expansion using homogeneous null Lagrangians (i.e. null Lagrangians that depend 
only on Vu). 

We next introduce the related notion of a null divergence which is a 
vector-valued function P(x, U, Vu) with the property that its total divergence, 
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Divp(x, U, Vu) ,  is zero. In theorem 3 we give a characterisation of the homoge- 
neous null divergences (which is the analogue, for null divergences, of theorem 1). 

In theorem 7 we establish the link between null Lagrangians and null 
divergences, namely that L(x, U ,  Vu)  is a null Lagrangian if and only if it is 
expressible as DivP(x, U, Vu) for a suitable P(x, U, Vu). Proposition 4 then shows 
that, for fixed xo, uo, P(xo, U,,, Vu) is a null divergence and gives a necessary form 
for P in terms of an expansion using homogeneous null divergences. A basic 
problem is to show that the coefficients in this expansion may be chosen to be 
smooth. This is dealt with in lemmas 5 and 6 by recasting the problem using 
differential forms in a way that allows us to obtain the required smoothness of P by 
use of the PoincarC lemma. 

This characterisation of null Lagrangians given by theorem 7 when combined 
with proposition 4 yields our main result in theorem 8. 

We will assume throughout this paper that S-2 c c R", m 5 1, is open and that 
L:V  X R" x R""+R is C1, where n 3 1 and V c R" is open with d c V. The 
symbol F will be used to denote a typical element of R"". 

Definition 1. We say that L(x, U, F )  is a null Lagrangian if and only if 

We introduce the following notation for Jacobian determinants 

The next theorem is taken from Olver (1983) and is a classification of all null 
Lagrangians that depend only on Vu; these are known as the homogeneous null 
Lagrangians. 

Theorem 1. L ( F )  is a null Lagrangian if and only if 

L(Vu) = CO + CEJE V u  E Cl(S-2) 
a, K 

(7) 

for some constants CO, CE E [w, where the sum is taken over all a, K and all 
r s min(m, n). 

The next proposition gives a representation of inhomogeneous null Lagrangians. 
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Proposition 2. Suppose that L(x, U, F )  is a null Lagrangian, then L considered as a 
function of Vu is a homogeneous null Lagrangian, i.e. L(xo, uo, F )  is a homo- 
geneous null Lagrangian for fixed xo E Q, uo E R". Moreover 

L(x, U, V u )  = C,(x, U) + 2 C,"(x, u)J$ v u  E C'(Q) (8) 
e, K 

for some C' functions CO(., .), C,"(., .), where J," are given by (5 )  and the sum is 
taken over all a, K and all r S min(m, n).  

The proof of this proposition follows from Olver (1983). 
Closely related to the concept of a null Lagrangian is that of a null divergence. 

Definition 2. A null divergence is an m-tuple of functions denoted by 
P(x, U, Vu, . . . , VKu) satisfying DivP(x, U, . . . , V K u )  = 0 in the sense of distribu- 
tions for all U which are K times continuously differentiable and lie in the domain of 
definition P. 

We introduce the following notation for null divergences based on that of Olver 
(1983). 

Given a as in (6) and M E  Wr+', where M = (ml ,  m2, . . . , mr+') has integer 
entries that satisfy 1 s ml < m2. . . < mT+' 6 m, we define N g  E W" by 

where Mt E R' 

It is easily verified that N g  is a null divergence. This is equivalent to the statement 
that the Euler Lagrange equations for the integral of any subdeterminant of V u  
are identically satisfied (since any subdeterminant of Vu is a null Lagrangian by 
theorem 1). 

The next theorem, which is taken from Olver (1983), is the analogue of theorem 
1 for null divergences that depend purely on Vu, i.e. homogeneous null divergences. 

Theorem 3. P(F)  is a null divergence if and only if 

P(Vu) =Po + 2 PgNg V U E C'(S-2) 
a, M 

for some Po E R", P g  E W ,  where the sum is taken over all a, M and all 
r < min(m, n + 1). 

Proposition 4. Suppose that P(., ., .>:a x R" x W m n + [ W m  is C' and has the 
property that D ivP  is a function of x, U and Vu only (for any C' function U), then P 
considered only as a function of V u  is a null divergence, i.e. P(xo,  uo, V u )  is a null 
divergence for fixed xo E Q, uo E R". Moreover 

P(x, U, V u )  = P,(x, U) + PR(x, U p 5  v U E C'(Q) 
a, M 
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for some C' functions Po(., .), P&(., .), where the N& are given by (9) and the sum 
is taken over all a, M and all r < min(m, n + 1). 

The proof of this proposition follows from Olver (1983 proposition 4.2). 
The next section, culminating in theorem 7 ,  establishes the link between 

inhomogeneous null Lagrangians and null divergences. 
The next two lemmas are mainly concerned, in the process of proving theorem 7 ,  

with showing that the coefficients of the vector function P of the theorem (given in 
the expression (11)) may be chosen to be smooth. 

By proposition 2 any null Lagrangian L(x, U, F )  is expressible as 

L(x, U, Vu)  = C,(x, U) + c C,"(x, U)J," v U E C'(Q2). 
OI, K 

Given a multi-index K = (K', . . . , K ~ ) ,  set K '  = (K;, . . . , K & - ~ )  to be the complemen- 
tary multi-index, consisting of all the integers from 1 to m which do not appear in K. 

Define the sign of K, written sgn K, to be the sign of the permutation that rearranges 
(K, K')  = ( K ~ ,  . . . , K,, K;, . . . , K & - ~ )  in increasing order, i.e. (1,2,  . . . , m )  for 
example, if m = 5 and K = (1, 2, 4) then K '  = (3, 5 )  and sgn K = -1. Finally define 
the differential m-form: 

0 = co(X, U) dx' A .  . . A dx" 
+ (sgn K)C,"(X, U) dun, A . . . A due. A dx"' A . , . A 

This is a differential form on the whole space R" X R", i.e. we are not viewing the U 
as functions of the x (see example 1). The motivation for defining the differential 
form w is contained in the next lemma. 

a, K 

Lemma 5. L(x, U, F )  is a null Lagrangian if and only if dw = 0 (i.e. w is a closed 
form on R" x Rn). 

The proof of this lemma consists of a straightforward verification that the 

Similarly, by proposition 4 any m-tuple of functions P(x,  U, F )  whose divergence 
conditions on the coefficient functions C," are the same in both instances. 

depends on only first-order derivatives must be of the form 

P(x,  U, Vu)  = P,(x, U) + P,"(x, u)N," v U E C'(Q). 
a, K 

Define the differential (m - 1) form: 

5; = (-l)i-'Poi(x, U) dx' A . . . A h i - 1  A &i+l / / . . . A h m  
i 

+ (sgn K)PF(x, U) dual A . . . A duar A dx"' A . . . A d ~ " ; - ~ - '  
OI, K 

v U E C'(Q) 
where the Poi are the components of the m-tuple Po (all other P," are scalars). The 
connection between w and t is given by the next lemma. 

Lemma 6. Let L(x,  U, F ) ,  P(x ,  U, F )  be given as above. Then 

Div P ( x ,  U, V u )  = L(x,  U, V u )  V U E C1(Q) if and only if w = d t .  
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The proof of this lemma follows from proposition 4 and is a straightforward 
calculation. 

Example 1. Let m = n = 2, x = ( x ,  y), U = (U, U). Then 
L =A(u,u, - u,v,) + Bu, + CU, + Dv, + Ev, + F 

is a null Lagrangian, A,  B, C, D,  E, F being functions of x ,  y, U, U if and only if the 
first-order partial differential equations 

B, = D , + A ,  E, = C, + A ,  
F, = B, + Cy F, = D, + E, 

are satisfied. These are the same as the conditions that the differential 2-form 
o = A d u  Adv + B d u  A dy - Cdu  A CLU + D dv A dy - E dv A &  + F & A dy 
be closed, i.e. d o  = 0. 

Similarly, L = D,P + D,Q if and only if 
P = Ru, + Sv, + T Q=-Ru,-Sv,+U 

R ,  S, T, U, again being functions of x ,  y, U, U, satisfying 

A = R ,  -S, B = Tu - R, 
D = T , - S ,  E = U, + S, F = T , + U ,  

C = U, + R, 

which are just the conditions that w be the differential of the 1-form 

c = R  du + S dv - U & + T dy 

i.e. o = dc. 

Theorem 7. Suppose that S2 c R" is star shaped. Then L(x, U, F )  is a null 
Lagrangian if and only if there exists an m-tuple of C1 functions P: a X R" x Rmn+ 
R" such that 

L(x, U, VU) = Div P(x, U, Vu) V U E C'(S2). 

Proof. It follows from lemmas 5 and 6 that the relation of the coefficients of P and 
L is exactly the same as the coefficients of w to those of c. We can thus invoke the 
PoincarC lemma on (star-shaped) subdomains of the Euclidean space R" x R". The 
standard homotopy formula (see e.g. Olver 1986, p 65) immediately shows that if 
the coefficients of o are Ck then those of can also be taken as Ck since they are 
obtained by integration in the radial direction. 

Theorem 8. Suppose that S2 c R" is star shaped. Then L(x, U, F) is a null 
lagrangian iff there exist N C' vector functions 

and N corresponding homogeneous null Lagrangians 

(i) ( i )  
L(x, U, VU) = 2 @(VS(x, U)) v U E CyQ) 

i=l 
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where 

(13) 
nm(m - 1) n(n - 1) m(m - l)(m - 2) 

N = l +  + + . . . .  
2! 2! 3! 

Proof. It follows from the observations made in the introduction that given 

the L defined by (12) is then a null Lagrangian. 

theorem 7 
Conversely, if L(x, U, F )  is a null Lagrangian then by proposition 4 and 

for some functions Po(x, U), P$(x, U), where N$ is given by (9) and the sum is 
taken over all LY, M and all r < min(m, n + 1). 

The theorem follows on observing that, apart from the first term, (14) is the sum 
of terms of the form 

where a E R', M t Rrfl and r < min(m, n + 1) 
This is expressible in the form 

@(VS(X, U)) (16) 

@(Vu) = J$  

& = ( 1 , 2 , 3 , . .  * , r + l )  

with @(F)  a homogeneous null Lagrangian and S : &=2 X R" + R" by choosing 

where E E Rr+' is given by 

and M = (ml, m2, . . . , m,,,) and on setting 

P$,(X, U) i f i = l  
(S(X, = ua1-1 if i = 2 , 3 , .  . . , r +  1 

{o i f i = r + 2 ,  . . . ,  n. 

Thus each term in (14), other than the first, is expressible in the form (16). The first 
term in (14) may be expressed in this form by choosing @(F)  = Tr F and setting 
S(x, U) = Po(x, U). The theorem now follows on counting the number of vector 
terms in the sum 

Po(& U) + c P%,(x, u)NG. 
a , M  

Remark. If Q is not star shaped then the representation (12) is locally valid on star 
shaped subdomains of Q. 

It is clear from the proof of theorem 8 that the number of arbitrary scalar 
potentials in the sum (12) is given by (m - 1) + N where N is given by (13). 
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The following simple example shows that we will in general require more than 
one term in the sum (12). 

Example 2. Let n = 1, m = 2, x = (x ,  y ) ,  U = U. Then by theorem 7, L(x, U, F )  
given by 

is a null Lagrangian. By proposition 2 the most general homogeneous null 
Lagrangian @ ( F )  is given by 

where A, B, C E  R.  

x R + R be C1. In order to express L(x, U, V u )  as @(VS(x, U)), where 

@ ( V U )  = A d u / d x  + Bau/dy + C tl U E C'(Q) 

Now let S: 

v U E C'(S2) 

it is necessary to solve the following system of equations for S and the constants 
A, B, and C :  

(i) AdSldx + B d S l d y  + C = dPol/ax + dFo2/dy 
(ii) AdSldu = dPol/du 
(iii) BdSldu = dPo,/du. 

Clearly by choosing dPo1lau and i?Po21du to be linearly independent functions we 
can ensure that the system (i)-(iii) has no solution. 

Our next example shows that, in general, the expression (12) will be non-unique 
in a non-trivial way. 

Example 3. Let m = n = 2. Let A = (ay), B = (by)  be 2 x 2 matrices. We will make 
use of the following identity for 2 x 2 determinants 

Now let 

be two arbitrary vector valued functions and let 

(1) (2) 
A = VS(x, U) B = VS(x, U) 
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then 

det(V( (1) S + (2) S)) = det(Vf(x, U)) 
i = l  

where 

Example 4. 

L(x, U, F )  is given by 
(i) Let m = n = 2, x = (x ,  y ) ,  U = ( U ,  U). Then the most general null Lagrangian 

v U E C'(S2) 

where Po(x, U )  = (Pol(x, U), PO2(x, U)), P'(x, U), P2(x, U) are abitrary functions. 

Lagrangian L(x, U, F )  is given by 
(ii) Let m = n = 3, x = (x ,  y ,  z ) ,  U = (u l ,  u2, U').  Then the most general null 

q p ? ,  Ui) + d(P;7, Ui) q P ' ,  u1, 2) + + 
q y ,  z )  Y )  q x ,  Y ,  z> 

q P ' ,  242, 243) q P 3 ,  U1, 2.43) 

% Y ,  z >  Y ,  z >  
+ + 
v U E C1(Q) 

where Po@, U) = (Pol(x, U), PO2(x, U), Po3(~, U)), Pi(., U), Pi(x,  U) i, j = 1, 2, 3 are 
arbitrary functions. 
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