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INFINITE ENERGY CAVITATING SOLUTIONS: A VARIATIONAL
APPROACH\ast 

PABLO V. NEGR\'ON-MARRERO\dagger AND JEYABAL SIVALOGANATHAN\ddagger 

Abstract. We study the phenomenon of cavitation for the displacement boundary value problem
of radial, isotropic compressible elasticity for a class of stored energy functions of the form W (F ) +
h(detF ), where W grows like \| F\| n and n is the space dimension. In this case it follows (from
a result of Vodop'yanov, Gol'dshtein, and Reshetnyak) that discontinuous deformations must have
infinite energy. After characterizing the rate at which this energy blows up, we introduce a modified
energy functional which differs from the original by a null Lagrangian and for which cavitating
energy minimizers with finite energy exist. In particular, the Euler--Lagrange equations for the
modified energy functional are identical to those for the original problem except for the boundary
condition at the inner cavity. This new boundary condition states that a certain modified radial
Cauchy stress function has to vanish at the inner cavity. This condition corresponds to the radial
Cauchy stress for the original functional diverging to  - \infty at the cavity surface. Many previously
known variational results for finite energy cavitating solutions now follow for the modified functional,
such as the existence of radial energy minimizers, satisfaction of the Euler--Lagrange equations for
such minimizers, and the existence of a critical boundary displacement for cavitation. We also
discuss a numerical scheme for computing these singular cavitating solutions using regular solutions
for punctured balls. We show the convergence of this numerical scheme and give some numerical
examples including one for the incompressible limit case. Our approach is motivated in part by the
use of the ``renormalized energy"" for Ginzburg--Landau vortices.

Key words. nonlinear elasticity, cavitation, infinite energy solutions

AMS subject classifications. 74B20, 93B40, 65K10

DOI. 10.1137/21M1427711

1. Introduction. Cavitation (i.e., the formation of holes) is a commonly ob-
served phenomenon in the fracture of polymers and metals (see [5]). In his seminal
paper [1], Ball formulated a variational problem, in the setting of nonlinear elasticity,
for which the energy minimizing radial deformations of (an initially solid) ball formed
a cavity at the center of the deformed ball when the imposed boundary loads or dis-
placements were sufficiently large. Following this paper, there have been numerous
studies of aspects of the problem of radial cavitation: some on analytical properties
(see, e.g., [23], [18], [13]) and others relating to specific stored energies (a helpful
overview is contained in [11]). Subsequent studies, e.g., of [14], [19], [12], [8], have
addressed general analytic questions of existence of cavitating energy minimizers in
the nonsymmetric case. In all of these works, the Dirichlet part of the stored energy
function grows like \| \nabla u\| p with n  - 1 < p < n, where u is a deformation and n is
the space dimension. The case p = n  - 1 for noncavitating deformations and for a
three-dimensional compressible neo-Hookean material ([17]) has been studied in [10]
for axisymmetric deformations.

In this paper we study radial solutions of the equations of elasticity for a spheri-
cally symmetric, isotropic, hyperelastic, compressible body, for the critical exponent
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p = n. It follows in this case that cavitating solutions for the corresponding Euler--
Lagrange equations have infinite energy. Using a variational approach, we show that
for a general class of stored energy functions, the radial equilibrium equations do
have cavitating solutions with infinite Cauchy stress at the origin and satisfying the
outer displacement boundary condition. Moreover these solutions are characterized
as finite energy minimizers of a modified energy functional (cf. (34)) with the same
equilibrium equations as the original functional. Our approach has connections with
the work of Henao and Serfaty [9] and Ca\~nulef-Aguilar and Henao [3] for incompress-
ible materials and with the use of the ``renormalized"" energy in the Ginzburg--Landau
vortices problem [2].

The case n = 2 of this problem, which corresponds to a two-dimensional com-
pressible neo-Hookean material, was studied by Ball [1, pages 606--607] where he
proved, for a particular stored energy function having logarithmic growth for small
determinants, the existence of cavitating solutions of the equilibrium equations hav-
ing infinite Cauchy stress at the origin. His approach is based on an application of
Schauder's fixed point theorem, and although he did not solve the full boundary value
problem (there was no attempt to match the outer boundary condition), the cavity
size appears as a parameter in his argument which in principle could be adjusted to
match the outer boundary condition. The class of stored energy functions studied in
this paper (cf. (20)) includes compressible neo-Hookean stored energies widely used in
applications. The results of this paper, in the case n = 2, thus allow for a variational
treatment of cavitation of a disc in two dimensions, which has not been previously
possible for such neo-Hookean stored energy functions. The approach should also
extend to treat axisymmetric cavitation of a cylinder in three dimensions (the work
in [10] on axisymmetric deformations may be relevant here).

Consider a body which in its reference configuration occupies the region

(1) \scrB = \{ x \in \BbbR n : \| x\| < 1\} ,

where n = 2, 3 and \| \cdot \| denotes the Euclidean norm. Let u : \scrB \rightarrow \BbbR n denote a
deformation of the body, and let its deformation gradient be

(2) \nabla u(x) =
\partial u

\partial x
(x).

For smooth deformations, the requirement that u(x) is locally invertible and preserves
orientation takes the form

(3) det\nabla u(x) > 0, x \in \scrB .

Let W : Mn\times n
+ \rightarrow \BbbR be the stored energy function of the material of the body, where

Mn\times n
+ = \{ F \in Mn\times n : detF > 0\} and Mn\times n denotes the space of real n \times n

matrices. We assume that the stored energy function W satisfies W \rightarrow \infty as either
detF \rightarrow 0+ or \| F\| \rightarrow \infty . The total energy stored in the body due to the deformation
u is given by

(4) E(u) =

\int 
\scrB 
W (\nabla u(x)) dx.

We consider the problem of determining a configuration of the body that satisfies (3)
almost everywhere and minimizes (4) among all functions satisfying the boundary
condition:

(5) u(x) = \lambda x, x \in \partial \scrB ,
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where \lambda > 0 is given. Formally, a sufficiently smooth minimizer satisfies the equilib-
rium equations

(6) Div

\biggl[ 
\partial W

\partial F
(\nabla u(x))

\biggr] 
= 0.

Note that if the stored energy W satisfies a growth condition of the form

(7) c1 \| F\| n + c2 \leq W (F) \forall F with detF > 0,

then (cf. [25]) any discontinuous deformation u of \scrB with det\nabla u > 0 a.e. must have
infinite energy.

For later reference we mention that if u is a smooth solution of (6), then (see [7])

(8) div

\Biggl[ 
W (\nabla u)x+

\biggl[ 
\partial W

\partial F
(\nabla u)

\biggr] T
(u - (\nabla u)x)

\Biggr] 
= nW (\nabla u).

If u is smooth except at the origin, where it opens up a cavity, and \scrB \varepsilon is a ball of
radius \varepsilon > 0 around the origin, then integrating this equation over the punctured ball
\scrB \setminus \scrB \varepsilon , we get that

n

\int 
\scrB \setminus \scrB \varepsilon 

W (\nabla u(x)) dx =

\int 
\partial \scrB 

\Biggl[ 
W (\nabla u)x+

\biggl[ 
\partial W

\partial F
(\nabla u)

\biggr] T
(u - (\nabla u)x)

\Biggr] 
\cdot N ds(x)

 - 
\int 
\partial \scrB \varepsilon 

\Biggl[ 
W (\nabla u)x+

\biggl[ 
\partial W

\partial F
(\nabla u)

\biggr] T
(u - (\nabla u)x)

\Biggr] 
\cdot N ds(x),(9)

where N is the outer normal to each boundary. Thus the blow-up in the energy as \varepsilon 
becomes small comes from the integral over the boundary \partial \scrB \varepsilon . Note that this integral
is the sum of two terms:

(10)

\int 
\partial \scrB \varepsilon 

\Biggl[ 
W (\nabla u)I - 

\biggl[ 
\partial W

\partial F
(\nabla u)

\biggr] T
(\nabla u)

\Biggr] 
x\cdot N ds(x),

\int 
\partial \scrB \varepsilon 

\biggl[ 
\partial W

\partial F
(\nabla u)

\biggr] T
u\cdot N ds(x),

the second one representing, as \varepsilon \rightarrow 0, the work done in opening the cavity. The tensor
in brackets in the first boundary integral above is the Eshelby energy-momentum
tensor (cf. [4], [6]). It is interesting to note that if the stored energy function grows
like \| \nabla u\| p, then for p < n both terms in (10) tend to zero as \varepsilon \rightarrow 0 (cf. [20]), while
both tend to infinity if p > n. In the case p = n and in the radial case, we will show
that the first term has a finite limit while the second one is unbounded as \varepsilon \rightarrow 0.

If the material is homogeneous and W is isotropic and frame indifferent, then it
follows that

(11) W (F) = \Phi (v1, . . . , vn), F \in Mn\times n
+ ,

for some function \Phi : \BbbR n
+ \rightarrow \BbbR , symmetric in its arguments, where v1, . . . , vn are the

eigenvalues of (FtF)1/2 known as the principal stretches.
We now restrict attention to the special case in which the deformation u(\cdot ) is

radially symmetric, so that

(12) u(x) = r(R)
x

R
, x \in \scrB ,
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for some scalar function r(\cdot ), where R = \| x\| . In this case one can easily check that

(13) v1 = r\prime (R), v2 = \cdot \cdot \cdot = vn =
r(R)

R
.

Thus (4) reduces to

(14) E(u) = \omega nI(r) = \omega n

\int 1

0

Rn - 1\Phi 

\biggl( 
r\prime (R),

r(R)

R
, . . . ,

r(R)

R

\biggr) 
dR,

where \omega n = 2\pi or \omega n = 4\pi if n = 2 or 3, respectively. (In general \omega n is the area of
the unit sphere in \BbbR n.)

In accord with (3), we have the inequalities

(15) r\prime (R),
r(R)

R
> 0, 0 < R < 1,

and (5) reduces to

(16) r(1) = \lambda .

Our problem now is to minimize the functional I(\cdot ) over the set

(17) \scrA \lambda =
\bigl\{ 
r \in W 1,1(0, 1) : r(1) = \lambda , r\prime (R) > 0 for a.e. R \in (0, 1), r(0) \geq 0

\bigr\} 
.

Formally, the Euler--Lagrange equation for I(\cdot ) is given by

(18)
d

dR

\bigl[ 
Rn - 1\Phi ,1(r(R))

\bigr] 
= (n - 1)Rn - 2\Phi ,2(r(R)), 0 < R < 1,

subject to (16) and r(0) \geq 0, where

(19) \Phi ,i(r(R)) = \Phi ,i

\biggl( 
r\prime (R),

r(R)

R
, . . . ,

r(R)

R

\biggr) 
, i = 1, . . . , n.

If c = r(0) > 0, then the deformed ball contains a spherical cavity of radius c.
In the case n = 2, Ball [1, pages 606--607] gives an example of a stored energy func-
tion satisfying (7) and proves existence of corresponding radial cavitating equilibrium
solutions of (18) which (necessarily) have infinite energy. His approach is based on
an application of Schauder's fixed point theorem, and although he does not solve the
full boundary value problem (there was no attempt to match the outer boundary
condition), the cavity size appears as a parameter in his argument which, in principle,
could be adjusted to match the outer boundary condition. In this paper we give a
characterization of cavitating equilibria with infinite energy as minimizers of a modi-
fied energy functional, which is related to the growth of the radial component of the
Cauchy stress of an equilibrium solution near a point of cavitation.

To highlight some of the general structure of the underlying problem, we will
state certain of our results for stored energy functions of the form1

(20) \Phi (v1, . . . , vn) =
\kappa 

n

n\sum 
i=1

vni + h(v1v2 \cdot \cdot \cdot vn),

1Our results can be readily extended to more general stored energies, e.g., of the form
\kappa 
n

\sum n
i=1 v

n
i + \psi (v1, . . . , vn) + h(v1v2 \cdot \cdot \cdot vn), under suitable assumptions on \psi .
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where \kappa > 0 and h : (0,\infty ) \rightarrow [0,\infty ) is a C1 function that satisfies

h\prime \prime (d) > 0 \forall d > 0,(21a)

lim
d\rightarrow 0+

h(d) = \infty , lim
d\rightarrow \infty 

h(d)

d
= \infty ,(21b)

lim
d\rightarrow 0+

h\prime (d) =  - \infty , lim
d\rightarrow \infty 

h\prime (d) = \infty .(21c)

In this case, the energy functional I(r) in (14) takes the form

(22) I(r) =

\int 1

0

Rn - 1

\biggl[ 
\kappa 

n

\biggl( 
(r\prime (R))n + (n - 1)

\biggl( 
r(R)

R

\biggr) n\biggr) 
+ h(\delta (R))

\biggr] 
dR,

where

\delta (R) = r\prime (R)

\biggl( 
r(R)

R

\biggr) n - 1

.

It is clear that (discontinuous) radial deformations with r(0) > 0 must have infinite
energy as a result of the term involving rn in the integrand. In section 2, in the spirit of
the ``renormalized energy approach"" for Ginzburg--Landau vortices (see, e.g., [2]), we
characterize the order of the singularity in the energy and in the radial component of
Cauchy stress for a cavitating solution as logarithmic in all dimensions. To motivate
the form of the regularization, we use the specialization of (8) to the radial case
satisfied by smooth solutions of the radial equilibrium equation (18):

(23) Rn - 1\Phi (r(R)) =
d

dR

\biggl[ 
Rn

n
(\Phi (r(R)) - r\prime \Phi ,1(r(R))) +

rn

n
T (r(R))

\biggr] 
with the notation in (19) and where

(24) T (r(R)) =

\biggl[ 
R

r(R)

\biggr] n - 1

\Phi ,1(r(R))

is the radial component of the Cauchy stress. Integrating the above identity from
R = \varepsilon to R = 1 for a cavitating solution and using the form of the stored energy
function (20), we show that all boundary terms have a finite limit as \epsilon \rightarrow 0 apart
from the term

(25)  - lim
\epsilon \rightarrow 0

r(\epsilon )n

n
T (r(\epsilon )),

which corresponds to the second term in (10). Thus, the infinite energy of a radial
solution of the equilibrium equation with r(0) > 0 corresponds to a singularity in the
radial Cauchy stress. Thus, the term (25) can be formally interpreted as the (infinite)
work required to open the cavity. (If r(0) = 0, then this term is zero.) Thus, for a
cavitating solution,

lim
\varepsilon \rightarrow 0

\biggl[ \int 1

\varepsilon 

Rn - 1\Phi 

\biggl( 
r\prime (R),

r(R)

R
, . . . ,

r(R)

R

\biggr) 
dR+

r(\epsilon )n

n
T (r(\epsilon ))

\biggr] 
is finite. Using the characterization of the asymptotic behavior of the Cauchy stress
given in Proposition 2.2, we introduce a modified energy functional, given by

\^I(r) =

\int 1

0

Rn - 1\Phi 

\biggl( 
r\prime (R),

r(R)

R
, . . . ,

r(R)

R

\biggr) 
dR

 - \kappa (n - 1)

n
lim
R\rightarrow 0

rn(R) ln

\biggl( 
r(R)

R

\biggr) 
,(26)
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where the last term accounts for the singular behavior in (25). This functional can
also be expressed as

\^I(r) =

\int 1

0

Rn - 1

\biggl[ 
\kappa 

n
(r\prime )

n
+ h (\delta (R)) + \kappa (n - 1)\delta (R)

\biggl( 
1

n
+ ln

\Bigl( r

R

\Bigr) \biggr) \biggr] 
dR

 - \kappa (n - 1)

n
\lambda n ln\lambda .

It is easy to now show that there are r \in \scrA \lambda , with r(0) > 0 for which \^I(r) is
finite. Moreover, the Euler--Lagrange equation for this modified functional coincides
with that for the original functional (22) since, by construction, they differ by a null
Lagrangian term (see Theorem 3.3). Moreover, for many deformations with r(0) = 0,
in particular for the homogeneous deformation r(R) \equiv \lambda R, the two energies coincide.
However, we will show that for \lambda sufficiently large, energy minimizers for the modified
functional must satisfy r(0) > 0.

Many known results for finite energy cavitating solutions (see, e.g., [1], [23], [18])
now follow by similar methods for the modified functional (26). In particular, in
section 3 we show that minimizers of the modified functional exist and that they
satisfy the corresponding Euler--Lagrange equations for such minimizers. Moreover,
in Proposition 3.6 we show the existence of a critical boundary displacement \lambda c for
cavitation for the modified functional, for which the minimizers of this functional with
\lambda < \lambda c must be homogeneous.

In section 4 we discuss a numerical scheme for computing the cavitating solutions
of the modified functional via solutions on punctured balls. In the usual cavitation
problem, the convergence of the solutions on these punctured balls to a solution
on the full ball follows from the corresponding properties of solutions of the Euler--
Lagrange equations and by a phase plane analysis (cf. [18]). Since the Euler--Lagrange
equations for our modified functional are equal (except for the boundary condition
at the inner cavity) to those of the original functional, the proof of convergence of
the punctured ball solutions in the case of the modified functional is essentially the
same as that for a functional in which we have \kappa 

p

\sum n
i=1 v

p
i +h(v1v2 \cdot \cdot \cdot vn) with p < n,

instead of (20). In this section we also discuss some aspects of the convergence of
the corresponding strains of the punctured ball solutions depending on the size of the
boundary displacement. Finally we close with some numerical examples in section 5
which includes one for the incompressible limit case.

2. The modified energy functional. We call any solution of (18) for which
r(0) > 0 a cavitating solution. In this section we introduce a modified functional \^I(\cdot )
defined over \scrA \lambda , having the same Euler--Lagrange equation as I(\cdot ), for which cavitat-
ing solutions have finite modified energy and for which the corresponding modified
radial Cauchy stress function is increasing on cavitating solutions. To achieve this, we
first assume the existence of a cavitating solution and obtain corresponding estimates
that help us to better understand the rate at which the energy of a cavitating solution
and the corresponding radial Cauchy stress blow-up at the origin. We then use these
estimates to construct a modified variational problem, using which we are able to
prove a posteriori that such solutions exist.

Some of the results in this section are stated for general stored energy functions
satisfying the following conditions:

(H1): \Phi ,11(q, v, . . . , v) > 0 \forall q, v > 0;
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(H2):
\Phi ,1(q, v, . . . , v) - \Phi ,2(q, v, . . . , v)

q  - v
+\Phi ,12(q, v, . . . , v) \geq 0 \forall q, v > 0, q \not = v;

(H3): R(q, v) \equiv q\Phi ,1(q, v, . . . , v) - v\Phi ,2(q, v, . . . , v)

q  - v
> 0 \forall q \not = v;

(H4):
\partial R(q, v)

\partial q
\geq 0 for 0 < q \leq v.

It is easy to check that the stored energy functions (20) satisfy these conditions.
We shall make use of the following well-known properties of solutions of (18) (cf.

[1], [23]).

Proposition 2.1. Let r \in C2((0, 1]) \cap C([0, 1]) be a solution of (18) on [0, 1]

satisfying r(0) > 0 and such that \delta (R) := r\prime (R)( r(R)
R )n - 1 is bounded on [0, 1]. Then

1. r\prime (R) < r(R)
R on (0, 1],

2. r\prime (R) \rightarrow 0 and r(R)
R \rightarrow \infty as R \rightarrow 0,

3. if \Phi satisfies (H1) and (H2), then any cavitation solution of (18) satisfies
r\prime \prime (R) \geq 0.

Asymptotic behavior of the radial Cauchy stress. The Cauchy stress (24)
corresponding to a solution of the radial equilibrium equation (18) satisfies

(27)
d

dR
T (r(R)) =

(n - 1)Rn - 1

rn(R)

\biggl( 
r(R)

R
\Phi ,2(r(R)) - r\prime \Phi ,1(r(R))

\biggr) 
.

For later use, we invert the relation T =
\Phi 1(v1,v,...,v)

vn - 1 to obtain v1 = g(v, T ) and then
rewrite (27) in terms of the independent variable v = r

R as

(28)
dT (v)

dv
=  - (n - 1)

vn

\biggl( 
v\Phi ,2(g(v, T ), v, . . . , v) - g(v, T )\Phi ,1(g(v, T ), v, . . . , v)

v  - g(v, T )

\biggr) 
.

It follows from (27), (28), and (H3) that T (r(\cdot )) is monotonic as a function of R or v
along radial solutions.

For the specific class of stored energy functions (20), equation (27) becomes

d

dR
T (r(R)) =

(n - 1)\kappa 

R
 - (n - 1)Rn - 1\kappa 

rn
(r\prime )n.

The second term on the right-hand side is integrable on [0, 1] for a cavitating solution
r, and so

T (r(R)) = (n - 1)\kappa ln(R) +O(1) as R \rightarrow 0.

In addition, for the stored energy function (20), equation (28) reduces to

dT (v)

dv
=  - (n - 1)

vn
\kappa 

\biggl( 
vn  - g(v, T )n

v  - g(v, T )

\biggr) 
=  - \kappa (n - 1)

v

\biggl( 
1 +

g

v
+ \cdot \cdot \cdot + gn - 1

vn - 1

\biggr) 
.

Now integrating on [\lambda , v] yields

T (v) + \kappa (n - 1) ln v = T (\lambda ) + \kappa (n - 1) ln\lambda 

 - \kappa (n - 1)

\int v

\lambda 

\biggl( 
g

w2
+ \cdot \cdot \cdot + gn - 1

wn

\biggr) 
dw,
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showing that the growth in T (v) is logarithmic in the variable v as v \rightarrow \infty . We
summarize these results in the following proposition.

Proposition 2.2. Let r \in C2((0, 1]) \cap C([0, 1]) be a solution of (18) on [0, 1]
satisfying r(0) > 0. Then, for the stored energy function (20), the radial component
of Cauchy stress given by (24) satisfies that

lim
R\rightarrow 0+

(T (r(R)) - (n - 1)\kappa ln(R))

is finite, and as a function of the circumferential strain v = r
R ,

lim
v\rightarrow \infty 

(T (v) + \kappa (n - 1) ln v)

is finite. In particular, limR\rightarrow 0+ T (r(R)) = limv\rightarrow \infty T (v) =  - \infty .

Asymptotic behavior of the determinant.

Lemma 2.3. [24, Theorem 3.1]. Assume that (H1)--(H4) hold. Then the determi-
nant function \delta (see (22)) corresponding to a cavitation solution, as a function of the
circumferential strain v = r

R , satisfies

(29)
1

vn - 1
\Phi ,11

d\delta 

dv
= (n - 1)v - 1 (q(v) - v)

\partial R

\partial q
(q(v), v),

where q(v) = \delta (v)/vn - 1. Hence, \delta (v) is a monotone decreasing function of v.

Combining Proposition 2.2 and Lemma 2.3 we obtain the following.

Corollary 2.4. For the stored energy function (20), the determinant function
corresponding to a cavitation solution, as a function of the circumferential strain v,
satisfies\biggl( 

1 +
1

(n - 1)\kappa 

vn(n - 1)

\delta n - 2
h\prime \prime (\delta )

\biggr) 
d\delta 

dv
=

vn(n - 2)

\delta n - 2

\left[   - vn - 1  - vn - 1
n - 2\sum 
j=1

v - j

\biggl( 
\delta 

vn - 1

\biggr) j

+ (n - 1)
\delta n - 1

v(n - 1)2

\right]  .(30)

Moreover, provided h\prime (d) \rightarrow  - \infty as d \rightarrow 0+, it follows that \delta (v) \rightarrow 0+ as v \rightarrow \infty .

We close this section now by establishing conditions under which the term in the
energy functional (22), containing the function h(\cdot ), is finite for a cavitating solution.

Proposition 2.5. Let the function h(\cdot ) in (20) satisfy the inequalities

(31)
K1

d\gamma +2
\leq h\prime \prime (d) \leq K2

d\gamma +2
, d \leq d0,

and

(32)
K1

d\gamma 
\leq h(d) \leq K2

d\gamma 
, d \leq d0,

for some \gamma > 0 and d0 > 0. Then the integral
\int 1

0
Rn - 1h(\delta (R)) dR is finite for a

determinant function \delta (\cdot ) corresponding to a cavitating solution.
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Proof. Since by Corollary 2.4, \delta (v) \rightarrow 0 as v \rightarrow \infty , we have that for some v0 > 0,

\delta (v)

vn - 1
<

v

2
, v \geq v0,

where \delta (v0) \leq d0. Using this, we get that

 - vn - 1  - vn - 1
n - 2\sum 
j=1

v - j

\biggl( 
\delta 

vn - 1

\biggr) j

+ (n - 1)
\delta n - 1

v(n - 1)2
\geq  - vn - 1  - vn - 1

n - 2\sum 
j=1

v - j
\Bigl( v
2

\Bigr) j
= vn - 1( - 2 + 22 - n).

Similarly we can get that

 - vn - 1  - vn - 1
n - 2\sum 
j=1

v - j

\biggl( 
\delta 

vn - 1

\biggr) j

+ (n - 1)
\delta n - 1

v(n - 1)2
\leq vn - 1( - 1 + (n - 1)21 - n).

It follows now from (31) that

\kappa (n - 1)

2K2vn
\delta \gamma +2 \leq vn(n - 2)

\delta n - 2

\biggl( 
1 +

1

(n - 1)\kappa 

vn(n - 1)

\delta n - 2
h\prime \prime (\delta )

\biggr)  - 1

\leq \kappa (n - 1)

K1vn
\delta \gamma +2.

It follows now from (30) and the previous estimates that

(n - 1)
\kappa 

vK1
( - 2 + 22 - n)\delta \gamma +2 \leq d\delta 

dv
\leq (n - 1)

\kappa 

2vK2
( - 1 + (n - 1)21 - n)\delta \gamma +2, v \geq v0.

We have now that

(33) C1 ln(v) + C2 \leq 1

\delta \gamma +1
\leq C3 ln(v) + C4, v \geq v0,

for some constants Ci, i = 1, 2, 3, 4, with C1 and C3 positive. The result now follows
from this estimate and the hypothesis (32).

Asymptotic behavior of the energy functional. We next study the rate
at which the stored energy of a cavitating equilibrium diverges to infinity for stored
energy functions of the form (20). We do this using the divergence identity (23).

Proposition 2.6. Suppose that \Phi is of the form (20), and define the modified
energy functional by

(34) \^I(r) := lim
\epsilon \rightarrow 0+

\biggl[ \int 1

\epsilon 

Rn - 1\Phi (r(R)) dR - \kappa (n - 1)

n
r(\varepsilon )n ln

\biggl( 
r(\varepsilon )

\varepsilon 

\biggr) \biggr] 
.

Assume that the function h(\cdot ) in (20) satisfies

(35) | d h\prime (cd)| \leq K[h(d) + 1], | c - 1| \leq \gamma 0,

for some positive constants K, \gamma 0. Let r \in C2((0, 1]) \cap C([0, 1]) be a solution of (18)
on [0, 1]. Then

1. if r(0) > 0 and \delta (R) := r\prime (R)( r(R)
R )n - 1 is bounded on [0, 1], the modified

energy \^I(r) is finite and given by

1

n
[\Phi (r(1)) - r\prime (1)\Phi ,1(r(1)) + \lambda nT (\lambda )] - \kappa (n - 1)

n2
r(0)n

 - lim
\varepsilon \rightarrow 0+

\biggl[ 
T (r(\varepsilon )) + \kappa (n - 1) ln

\biggl( 
r(\varepsilon )

\varepsilon 

\biggr) \biggr] 
rn(\varepsilon )

n
;(36)
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2. if r(0) = 0, then \^I(r) = I(r) (possibly infinite) (so that \^I agrees with the
unmodified energy functional on noncavitating equilibria).

Proof. By the fundamental theorem of calculus, it follows that\int 1

\epsilon 

Rn - 1\Phi (r(R)) dR - \kappa (n - 1)

n
r(\varepsilon )n ln

\biggl( 
r(\varepsilon )

\varepsilon 

\biggr) 
=

\int 1

\varepsilon 

\biggl[ 
Rn - 1\Phi (r(R)) +

\kappa (n - 1)

n

d

dR

\Bigl( 
ln
\Bigl( r

R

\Bigr) 
rn
\Bigr) \biggr] 

dR - \kappa (n - 1)

n
\lambda n ln\lambda .

On noting that

d

dR

\Bigl( 
ln
\Bigl( r

R

\Bigr) 
rn
\Bigr) 
= nrn - 1r\prime ln

\Bigl( r

R

\Bigr) 
+

d

dR

\biggl( 
rn

n

\biggr) 
 - Rn - 1

\Bigl( r

R

\Bigr) n
,

it follows from (20) and the above that \^I is also expressible as

\^I(r) = lim
\varepsilon \rightarrow 0+

\int 1

\varepsilon 

Rn - 1

\biggl[ 
\kappa 

n
(r\prime )

n
+ h (\delta (R)) + \kappa (n - 1)\delta (R)

\biggl( 
1

n
+ ln

\Bigl( r

R

\Bigr) \biggr) \biggr] 
dR

 - \kappa (n - 1)

n
\lambda n ln\lambda .

By Proposition 2.5 and (38) below, the integrand in this expression is integrable on
(0, 1) for a cavitating solution. Thus the limit as \varepsilon \rightarrow 0+ is finite and equal to

\^I(r) =

\int 1

0

Rn - 1

\biggl[ 
\kappa 

n
(r\prime )

n
+ h (\delta (R)) + \kappa (n - 1)\delta (R)

\biggl( 
1

n
+ ln

\Bigl( r

R

\Bigr) \biggr) \biggr] 
dR

 - \kappa (n - 1)

n
\lambda n ln\lambda .(37)

As r is a solution of (18), it follows from (23) that\int 1

\varepsilon 

Rn - 1\Phi (r(R)) dR =
1

n
[\Phi (r(1)) - r\prime (1)\Phi ,1(r(1)) + \lambda nT (r(1))]

 - 1

n
[\varepsilon n (\Phi (r(\varepsilon )) - r\prime (\varepsilon )\Phi ,1(r(\varepsilon ))) + r(\varepsilon )nT (r(\varepsilon ))] .

Since Rn - 1h(\delta (R)) is integrable in (0, 1) and r\prime is bounded, it follows that

lim
\varepsilon \rightarrow 0+

\varepsilon n\Phi (r(\varepsilon )) = lim
\varepsilon \rightarrow 0+

\kappa (n - 1)

n
r(\varepsilon )n.

Similarly, this time using (35), we obtain

lim
\varepsilon \rightarrow 0+

\varepsilon nr\prime (\varepsilon )\Phi ,1(r(\varepsilon )) = 0.

The result (36) follows from these limits, definition (34), and Proposition 2.2.

For the second part, let L = limR\rightarrow 0+
r(R)
R , and assume that r(R)

R is not constant.
If L \in [0,\infty ), it is easy to show that

lim
\varepsilon \rightarrow 0+

r(\varepsilon )n ln

\biggl( 
r(\varepsilon )

\varepsilon 

\biggr) 
= 0.
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Thus in this case \^I(r) = I(r). Assume now that L = \infty . By Rolle's theorem and the
continuity of r\prime in (0, 1], it follows that L = limj\rightarrow \infty r\prime (Rj) for some sequence Rj \rightarrow 0+.

Since r\prime (R) < r(R)
R in (0, 1], we have by [1, Proposition 6.2] that T (r(R)) is strictly

increasing. But limj\rightarrow \infty 
r(Rj)
Rj

= limj\rightarrow \infty r\prime (Rj) = \infty implies that T (r(Rj)) \rightarrow \infty as

j \rightarrow \infty which contradicts that T (r(R)) is strictly increasing. Thus L < \infty which
completes the proof of the second part.

Henceforth we shall employ the representation (37) as that of our modified func-
tional. For later reference we observe that

(38)

\int 1

0

Rn - 1\delta (R) ln
\Bigl( r

R

\Bigr) 
dR =

\int \lambda 

r(0)

un - 1 ln(u) du - 
\int 1

0

Rn - 1\delta (R) ln(R) dR,

which implies that (37) is bounded below.

3. Existence of minimizers and the Euler--Lagrange equations for the
modified functional. In this section we show some of the details of the analysis
that establishes the existence of minimizers for the modified functional (37) over (17)
and their characterization via the Euler--Lagrange equations. The analysis is very
similar to that in [1, section 7], and thus we just highlight the details concerning
the extra or new terms in (37). In this respect, we mention that the stored energy
function corresponding to the modified functional (37) is given by (39) and does not
correspond to an isotropic material. Thus, the results in [1] do not necessarily apply
immediately.

Theorem 3.1. Assume that the function h(\cdot ) is a nonnegative convex function
satisfying (21). Then the functional (37) has a minimizer over the set (17).

Proof. Since the homogeneous deformation rh(R) = \lambda R belongs to (17) and
\^I(rh) < \infty , this together with \^I bounded below shows that

inf
r\in \scrA \lambda 

\^I(r) \in \BbbR .

Let (rk) be an infimizing sequence. As in [1], we use the change of variables \rho = Rn

and set uk(\rho ) = rnk (\rho 
1/n). It follows now that

\.uk(\rho ) =
duk

d\rho 
(\rho ) = \delta k(\rho 

1/n), \delta k(R) = r\prime k(R)

\biggl( 
rk(R)

R

\biggr) n - 1

.

From the boundedness of (\^I(rk)) we get that the sequence\biggl( \int 1

0

h( \.uk(\rho )) d\rho 

\biggr) 
is bounded. It follows now from (21b) and the De La Vall\'ee-Poussin criterion that
for some subsequence (not relabeled) ( \.uk), we have \.uk \rightharpoonup w in L1(0, 1) for some
w \in L1(0, 1) with w > 0 a.e. Letting

u(\rho ) = \lambda n  - 
\int 1

\rho 

w(s) ds

and r(R) = u(Rn)1/n, we get now that rk \rightharpoonup r in W 1,1(\varepsilon , 1) and that \delta k \rightharpoonup \delta =
r\prime (r/R)n - 1 in L1(\varepsilon , 1) for any \varepsilon \in (0, 1). Using (38) we get that\int 1

\varepsilon 

Rn - 1\delta k(R) ln
\Bigl( rk
R

\Bigr) 
dR =

\int \lambda 

rk(\varepsilon )

un - 1 ln(u) du - 
\int 1

\varepsilon 

Rn - 1\delta k(R) ln(R) dR.
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Now using that rk(\varepsilon ) \rightarrow r(\varepsilon ), \delta k \rightharpoonup \delta in L1(\varepsilon , 1) and that Rn - 1 ln(R) is bounded on
(\varepsilon , 1), we have that

lim
k\rightarrow \infty 

\int 1

\varepsilon 

Rn - 1\delta k(R) ln
\Bigl( rk
R

\Bigr) 
dR =

\int \lambda 

r(\varepsilon )

un - 1 ln(u) du - 
\int 1

\varepsilon 

Rn - 1\delta (R) ln(R) dR,

=

\int 1

\varepsilon 

Rn - 1\delta (R) ln
\Bigl( r

R

\Bigr) 
dR.

This together with the convergence of (rk) and (\delta k) already established and a weak
lower semicontinuity argument shows that

\^I\varepsilon (r) \leq lim inf
k

\^I\varepsilon (rk) \leq lim inf
k

\^I(rk) = inf
r\in \scrA \lambda 

\^I(r),

where \^I\varepsilon is as in (37) but integrating over (\varepsilon , 1). By the monotone convergence
theorem and the arbitrariness of \varepsilon it follows that

\^I(r) \leq lim inf
k

\^I(rk) = inf
r\in \scrA \lambda 

\^I(r).

Since \lambda = rk(1) \rightarrow r(1), we get that r \in \scrA \lambda and is therefore a minimizer of \^I.

If we define

(39) \^\Phi (v1, . . . , vn) =
\kappa 

n
vn1 + h(v1 \cdot \cdot \cdot vn) + \kappa v1 \cdot \cdot \cdot vn

\biggl( 
n - 1

n
+ ln(v2 \cdot \cdot \cdot vn)

\biggr) 
,

then (cf. (37))

\^I(r) =

\int 1

0

Rn - 1 \^\Phi 

\biggl( 
r\prime (R),

r(R)

R
, . . . ,

r(R)

R

\biggr) 
dR - \kappa (n - 1)

n
\lambda n ln\lambda .

Note that \^\Phi does not correspond to an isotropic material as it is not symmetric
in its arguments. However, we still have that \^\Phi ,k(q, t, . . . , t) = \^\Phi ,j(q, t, . . . , t) for

2 \leq k, j \leq n and that \^\Phi satisfies (H1)--(H4).

With \^\Phi ,i(r(R)) = \^\Phi ,i(r
\prime (R), r(R)

R , . . . , r(R)
R ), i = 1, 2, we have that

\^\Phi ,1(r(R)) = \kappa r\prime (R)n - 1

+

\biggl[ 
r(R)

R

\biggr] n - 1 \biggl[ 
h\prime (\delta (R)) + (n - 1)\kappa 

\biggl( 
1

n
+ ln

\biggl[ 
r(R)

R

\biggr] \biggr) \biggr] 
,(40a)

\^\Phi ,2(r(R)) = r\prime (R)

\biggl[ 
r(R)

R

\biggr] n - 2 \biggl[ 
h\prime (\delta (R)) + \kappa + \kappa (n - 1)

\biggl( 
1

n
+ ln

\biggl[ 
r(R)

R

\biggr] \biggr) \biggr] 
,(40b)

and we define

\^T (r(R)) =

\biggl[ 
r(R)

R

\biggr] 1 - n

\^\Phi 1(r(R)),

= \kappa Rn - 1

\biggl[ 
r\prime (R)

r(R)

\biggr] n - 1

+ h\prime (\delta (R)) + (n - 1)\kappa 

\biggl( 
1

n
+ ln

\biggl[ 
r(R)

R

\biggr] \biggr) 
.(41)

We call \^T (r(\cdot )) the modified radial Cauchy stress. The techniques in [1] can now be
adapted to show the following result.
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Theorem 3.2. Let r be any minimizer of \^I over (17). Assume that the function
h(\cdot ) satisfies (35). Then r \in C1(0, 1], r\prime (R) > 0 for all R \in (0, 1], Rn - 1 \^\Phi 1(r(R)) is
C1(0, 1], and

(42)
d

dR

\Bigl[ 
Rn - 1 \^\Phi 1(r(R))

\Bigr] 
= (n - 1)Rn - 2 \^\Phi 2(r(R)).

Moreover, if r(0) > 0, then

(43) lim
R\rightarrow 0+

\^T (r(R)) = 0.

The next two results are rather straightforward to verify, but they will be quite
important for the rest of our development, especially for the phase plane analysis of
(42).

Theorem 3.3. Let r be any minimizer of \^I over (17), and assume that (35)
holds. Then r is a solution of (18), where \Phi is as in (20).

Proof. We know r \in C1(0, 1]. Thus we can expand the following term in (42):

d

dR

\Biggl[ 
Rn - 1

\biggl[ 
r(R)

R

\biggr] n - 1

ln

\biggl[ 
r(R)

R

\biggr] \Biggr] 
= r(R)n - 2r\prime (R)

\biggl[ 
1 + (n - 1) ln

\biggl[ 
r(R)

R

\biggr] \biggr] 

 - Rn - 2

\biggl[ 
r(R)

R

\biggr] n - 1

.

Substituting this into (42) and collecting terms, we get that (18) holds for r.

Proposition 3.4. Let r \in C2(0, 1] be a solution of (42). Then \^T (r(\cdot )) \in C1(0, 1]
and

(44)
d

dR
\^T (r(R)) = (n - 1)\kappa 

r\prime 

r

\biggl( 
1 - (r\prime )n - 1

(r/R)n - 1

\biggr) 
.

In particular, for a cavitating solution r, the function \^T (r(\cdot )) is monotone increasing
in (0, 1]. Moreover, if r(0) = 0, then r(R) = \lambda R for R \in [0, 1].

Proof. It follows from (24) and (41) that

\^T (r(R)) = T (r(R)) + (n - 1)\kappa 

\biggl( 
1

n
+ ln(r/R)

\biggr) 
.

Moreover, from [1, equation 6.8] we have that for (20),

d

dR
T (r(R)) = (n - 1)\kappa 

Rn - 1

rn

\Bigl( \Bigl( r

R

\Bigr) n
 - (r\prime )n

\Bigr) 
.

Hence

d

dR
\^T (r(R)) =

d

dR
T (r(R)) + (n - 1)\kappa 

d

dR
ln(r/R)

= (n - 1)\kappa 

\biggl[ 
Rn - 1

rn

\Bigl( \Bigl( r

R

\Bigr) n
 - (r\prime )n

\Bigr) 
+

1

r

\Bigl( 
r\prime  - r

R

\Bigr) \biggr] 
= (n - 1)\kappa 

r\prime 

r

\biggl( 
1 - (r\prime )n - 1

(r/R)n - 1

\biggr) 
,

from which (44) follows.
The statement for the case in which r(0) = 0 follows from r being a solution of

(18), assumption (H2), and arguing as in [1, Theorem 6.6].
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Corresponding to the function (39) we define

(45) \^T (\nu , v) = v1 - n \^\Phi ,1(\nu , v, . . . , v) = \kappa 
\Bigl( \nu 
v

\Bigr) n - 1

+h\prime (\nu vn - 1)+(n - 1)\kappa 

\biggl( 
1

n
+ ln(v)

\biggr) 
.

For fixed v > 0, we have that \^T (\nu , v) \searrow  - \infty as \nu \searrow 0 and \^T (\nu , v) \nearrow \infty as \nu \nearrow \infty .
These together with \^T\nu (\nu , v) > 0 imply that the equation \^T (\nu , v) = C has a unique
solution \^\nu (C, v) > 0 for any C \in \BbbR . Let

g(v) = \^T (v, v) = \kappa + h\prime (vn) + (n - 1)\kappa 

\biggl( 
1

n
+ ln(v)

\biggr) 
.

We note that g(v) \searrow  - \infty as v \searrow 0, g(v) \nearrow \infty as v \nearrow \infty , and g\prime (v) > 0. Thus, the
equation g(v) = C has a unique solution \=v(C) for any C \in \BbbR .

We now show that for ``small"" \lambda the minimizers of (37) are homogeneous, i.e.,
equal to \lambda R, and for \lambda sufficiently large they must be cavitating, i.e., with r(0) > 0.
The proof of the following proposition is an adaptation of the one in [1] to the stored
energy function (39).

Proposition 3.5. Let r be any minimizer of \^I over (17), and assume that (21)
and (35) hold. Then

1. for \lambda < \=\lambda we must have that r(R) = \lambda R, where \=\lambda is the solution of \^T (\=\lambda , \=\lambda ) =
0;

2. for \lambda sufficiently large we must have that r(0) > 0.

Proof. That \=\lambda exists and is unique follows from our previous comments. Let
\lambda < \=\lambda and r be the corresponding minimizer of (37) over \scrA \lambda . Assume that r(0) > 0.
Then since r(1) = \lambda and r(R)/R \rightarrow \infty as R \searrow 0, we have that r(R0)/R0 = \=\lambda for
some R0 \in (0, 1). Since \^T\nu > 0 and r\prime (R0) < r(R0)/R0 = \=\lambda , we have that

0 = \^T (\=\lambda , \=\lambda ) > \^T (r\prime (R0), \=\lambda ) = \^T (r(R0)).

But from (44) we have that \^T (r(\cdot )) is increasing, and since limR\rightarrow 0
\^T (r(R)) = 0 we

must have \^T (r(R)) \geq 0 for R \in (0, 1], which contradicts the above inequality. Hence,
r(0) = 0, and from the last part of Proposition 3.4 we get that r(R) = \lambda R.

For the second part of the proof, we define \^r(R) = n
\surd 
dRn + 1 - d, where d \in 

(0, 1). It is easy to check that \^r\prime (\^r/R)n - 1 = d. If we let u(R) = \lambda \^r(R), then u \in \scrA \lambda .
It follows now that

\^I(u) - \^I(\lambda R)

\lambda n
=

\int 1

0

Rn - 1
\Bigl[ \kappa 
n
((\^r\prime )n  - 1) + (n - 1)\kappa (d - 1) ln(\lambda )

+
n - 1

n
\kappa (d - 1) + (n - 1)\kappa d ln(\^r/R) + (h(d\lambda n) - h(\lambda n))/\lambda n

\Bigr] 
dR.

Since h(\cdot ) is convex, we get that h(\lambda n) \geq h(d\lambda n) + (1 - d)\lambda nh\prime (d\lambda n) which implies

h(d\lambda n) - h(\lambda n)

\lambda n
\leq (d - 1)h\prime (d\lambda n).

Thus

\^I(u) - \^I(\lambda R)

\lambda n
\leq 
\int 1

0

Rn - 1
\Bigl[ \kappa 
n
((\^r\prime )n  - 1) + (n - 1)\kappa (d - 1) ln(\lambda )

+
n - 1

n
\kappa (d - 1) + (n - 1)\kappa d ln(\^r/R) + (d - 1)h\prime (d\lambda n)

\Bigr] 
dR.

Since d \in (0, 1), the right-hand side of this inequality is negative for \lambda large enough.
Thus \^I(u) < \^I(\lambda R) for \lambda large enough, and the minimizer r must have r(0) > 0.
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If we let \omega = R/r(R), then

d\omega 

dR
=

1 - \omega r\prime 

r
.

We now express the modified Cauchy stress \^T (r(R)) as a function of \omega . In reference to
(45) we have that the equation \^T (r\prime , \omega  - 1) = T has a unique solution r\prime = \^\nu (T, \omega  - 1).
Moreover, the function \^\nu , as a function of (T, \omega ), can be extended to a bounded
function for (T, \omega ) \in [0, T0]\times [0, \omega 0] for some T0 > 0 and \omega 0 > 0. Also

\partial \^\nu 

\partial T
=

\omega n - 1

(n - 1)\kappa \^\nu n - 1\omega 2(n - 1) + h\prime \prime (\^\nu \omega  - (n - 1))
,

which can also be extended to a bounded function in [0, T0]\times [0, \omega 0]. Using Proposition
3.4 we now get that \^T (\omega ) is a solution of the initial value problem

(46)

\left\{       
d \^T

d\omega 
(\omega ) = (n - 1)\kappa 

\sum n - 2
k=0 \omega 

k\^\nu ( \^T (\omega ), \omega  - 1)k+1,

\^T (0) = 0.

By the boundedness properties quoted above, the solution of this initial value problem
exists and is unique. Using this, the existence of a critical boundary displacement \lambda c

can be established, and the uniqueness of solutions for \lambda > \lambda c follows from a rescaling
argument. The details of the previous argument leading to the initial value problem
(46), as well as the proof of the following proposition, are as in [1].

Proposition 3.6. Let rc be a cavitating solution of (42) satisfying (43), and
assume that \^\Phi ,1(1, 1, . . . , 1) = 0. Then rc can be extended as a solution of (42) to
(0,\infty ) with

r\prime c(R) <
rc(R)

R
, R \in (0,\infty ).

Moreover, the function rc so extended is unique (does not depend on r(1)), and there
exists \lambda c > 1 such that

\lambda c = lim
R\rightarrow \infty 

r\prime c(R) = lim
R\rightarrow \infty 

rc(R)

R
.

If r\lambda is a solution of (42) satisfying (43) and r(1) = \lambda with \lambda > \lambda c, then r\lambda (R) =
rc(\alpha R)/\alpha , where \alpha is the unique solution of rc(\alpha )/\alpha = \lambda .

It follows now that

lim
R\rightarrow \infty 

\^T (rc(R)) = \lambda 1 - n
c

\^\Phi ,1(\lambda c, \lambda c, . . . , \lambda c).

Combining this with Proposition 3.4 we get that

(47) \lambda 1 - n
c

\^\Phi ,1(\lambda c, \lambda c, . . . , \lambda c) = (n - 1)\kappa 

\int \infty 

0

r\prime c(R)

rc(R)

\biggl( 
1 - (r\prime c(R))n - 1

(rc(R)/R)n - 1

\biggr) 
dR.

4. Approximation by punctured balls. We now consider the problem over
the punctured ball:

\scrB \varepsilon = \{ x \in \BbbR n : \varepsilon < | x| < 1\} 
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with \varepsilon \in (0, 1). Thus we look at the problem of minimizing

(48) \^I\varepsilon (r) =

\int 1

\varepsilon 

Rn - 1 \^\Phi 

\biggl( 
r\prime (R),

r(R)

R
, . . . ,

r(R)

R

\biggr) 
dR - \kappa (n - 1)

n
\lambda n ln\lambda 

over the set

(49) \scrA \varepsilon 
\lambda =

\bigl\{ 
r \in W 1,1(\varepsilon , 1) : r(1) = \lambda , r\prime (R) > 0 a.e. for R \in (\varepsilon , 1), r(\varepsilon ) \geq 0

\bigr\} 
.

To state our next result we shall need the following lemma.

Lemma 4.1. Let \=\lambda = 1 be the unique solution of \^\Phi ,1(\=\lambda , \=\lambda , . . . , \=\lambda ) = 0. Then

\^\Phi (v1, v2, . . . , vn) > \^\Phi (1, 1, . . . , 1)

whenever vi \not = 1 for some i.

Proof. From (39) we have that

\^\Phi (v1, v2, . . . , vn) = g(v1, v2 \cdot \cdot \cdot vn),

where

g(x, y) =
\kappa 

n
xn + h(xy) + \kappa xy((n - 1)/n+ ln(y)), x > 0, y > 0.

The critical points of g are given by the solutions of the system\biggl\{ 
\kappa xn - 1 + yh\prime (xy) + \kappa y((n - 1)/n+ ln(y)) = 0,

xh\prime (xy) + \kappa x(1 + (n - 1)/n+ ln(y)) = 0.

This system has a unique solution given by the equations

y = xn - 1, h\prime (xy) =  - \kappa (1 + (n - 1)/n+ ln(y)).

That the condition \=\lambda = 1 is the only solution of \^\Phi ,1(\=\lambda , \=\lambda , . . . , \=\lambda ) = 0 implies that the
only solution of these equations is x = y = 1. Moreover since gxx(x, y) > 0 and

gxx(1, 1)gyy(1, 1) - gxy(1, 1)
2 > 0,

we have that (1, 1) is a strict local minimum for g. Since g(x, y) \rightarrow \infty as any of its
arguments tend to zero or infinity, this minimum is global. Thus whenever vi \not = 1 for
some i, we have

\^\Phi (v1, v2, . . . , vn) = g(v1, v2 \cdot \cdot \cdot vn) > g(1, 1) = \^\Phi (1, 1, . . . , 1).

With slight modifications of the proofs of Theorems 3.1 and 3.2, we obtain the
following result for minimizers of (48) over (49). (See also [18].)

Theorem 4.2. Let \=\lambda = 1 be the unique solution of \^\Phi ,1(\=\lambda , \=\lambda , . . . , \=\lambda ) = 0. Then

the functional \^I\varepsilon has a unique global minimizer over the set \scrA \varepsilon 
\lambda . Moreover, there

exists a \delta (\varepsilon ) > 0 such that if r\varepsilon is a global minimizer with \lambda \in (1  - \delta (\varepsilon ),\infty ), then
r\varepsilon \in C2([\varepsilon , 1]) is a solution of (42) over (\varepsilon , 1) and satisfies

1. r\prime \varepsilon (R) > 0 for R \in [\varepsilon , 1],
2. r\varepsilon (\varepsilon ) > 0,
3. \^T (r\varepsilon (\varepsilon )) = 0.
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We also have (see [18]) the following.

Proposition 4.3. Let r\varepsilon be the unique global minimizer of \^I\varepsilon over \scrA \varepsilon 
\lambda , and let

\lambda c be as in Proposition 3.6. Then
1. for \lambda \leq \lambda c, we have that

lim
\varepsilon \rightarrow 0

sup
R\in [\varepsilon ,1]

| r\varepsilon (R) - \lambda R| = 0;

2. if \lambda > \lambda c, then we have that

lim
\varepsilon \rightarrow 0

sup
R\in [\varepsilon ,1]

| r\varepsilon (R) - r\lambda (R)| = 0,

where r\lambda is the cavitating minimizer of \^I over A\lambda .

We recall (cf. [18]) that the change of variables

(50) es = R, v(s) =
r(R)

R

transforms (42) into the autonomous equation

d

ds
\^\Phi ,1( \.v(s) + v(s), v(s), . . . , v(s)) = (n - 1)

\Bigl( 
\^\Phi ,2( \.v(s) + v(s), v(s), . . . , v(s))

 - \^\Phi ,1( \.v(s) + v(s), v(s), . . . , v(s))
\Bigr) 
,(51)

where \.v(s) = dv(s)/ds. Now, a phase plane analysis of this equation in the (v, \.v)
plane, based on the time map [18, equation 2.19], the monotonicity of the Cauchy
stress \^T (r(\cdot )) along solutions (cf. Proposition 3.4), and the continuous dependence
on initial data for solutions of (51), shows that the following results concerning the
convergence of the strains corresponding to the solutions r\varepsilon in Proposition 4.3 hold
(here v\varepsilon is the solution of (51) corresponding to r\varepsilon ):

1. For \lambda > \lambda c, the strains ( \.v\varepsilon + v\varepsilon , v\varepsilon ) converge as \varepsilon \rightarrow 0 to the strains ( \.v\lambda +
v\lambda , v\lambda ) corresponding to the cavitating solution r\lambda .

2. For \=\lambda < \lambda < \lambda c, the strains ( \.v\varepsilon + v\varepsilon , v\varepsilon ) converge as \varepsilon \rightarrow 0 to the strains
corresponding to the non homogeneous solution (v, \.v) emanating from (\lambda , \lambda )
and with \.v < 0. The convergence is such that ( \.v\varepsilon , v\varepsilon ) spends most of the
time (in the sense of [18, equation 2.19]) closer to (\lambda , \lambda ) than to the rest of
the curve corresponding to the boundary condition \^T (r\varepsilon (\varepsilon )) = 0. Thus the
strains (r\prime \varepsilon , r\varepsilon /R) develop a sharp boundary layer close to R = \varepsilon , while away
from this point they each tend to \lambda .

3. For \lambda < \=\lambda , we have the same conclusions as in itom 2 above but with \.v > 0,
i.e., with r\prime \varepsilon > r\varepsilon /s.

5. Numerical results. In this section we present some numerical results that
highlight the convergence results in section 4 over punctured balls. We employ two
numerical schemes: a descent method based on a gradient flow iteration (cf. [16]) for
the minimization of a discrete version of (48) and a shooting method (from R = 1
to R = \varepsilon ) to solve the boundary value problem for (42) over (\varepsilon , 1) with boundary
conditions \^T (r\varepsilon (\varepsilon )) = 0 and r\varepsilon (1) = \lambda . The gradient flow iteration works as a
predictor for the shooting method which in turn plays the role of a corrector. The use
of adaptive ODE solvers in the shooting method allows for a more precise computation
of the equilibrium states, especially near R = \varepsilon where the strains corresponding to
the punctured ball solutions tend to develop sharp boundary layers.
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Fig. 1. Computed minimizers r\varepsilon and modified Cauchy stress functions \^T (r\varepsilon (\cdot )) for \^I\varepsilon when
\lambda = 1.05 and \varepsilon = 0.3, 0.2, 10 - 4.

Example 5.1. For the stored energy function (39) (or (20)), we take

h(d) = C d\gamma +Dd - \delta ,

where C,D \geq 0 and \gamma , \delta > 0. The reference configuration is stress free, that is,
\^\Phi ,1(1, . . . , 1) = \^\Phi ,2(1, . . . , 1) = 0, provided that

D =
(1 + n - 1

n )\kappa + C\gamma 

\delta 
.

For the computations we used the following values for the different parameters:

n = 3, \kappa = 1, C = 1, \gamma = 2, \delta = 2.

For these values, the critical boundary displacement is \lambda c \approx 1.0258 (cf. [15]). For \varepsilon =
0.3, 0.2, 10 - 4 and \lambda = 1.05 (case \lambda > \lambda c) we show in Figure 1 the computed solutions
r\varepsilon and the modified Cauchy stress functions \^T (r\varepsilon (\cdot )), the former converging very
nicely to a cavitating solution, while the latter converge to a well-defined increasing
function vanishing at R = 0. The cavity size for the computed solution with \varepsilon = 10 - 4

is approximately 0.44184 with modified energy of 1.2774. The affine deformation in
this case has energy of 1.2888.

For \lambda = 1.01 which corresponds to the case \=\lambda < \lambda < \lambda c, as \=\lambda = 1, we show
in Figure 2 the computed r\varepsilon and \^T (r\varepsilon (\cdot )). The convergence is now to the affine
deformation rh(R) = 1.01R with energy of 1.2733. The corresponding Cauchy stress
functions show sharp boundary layers at R = \varepsilon while converging pointwise to a
positive constant function.

The other calculation we show is for \lambda = 0.95 (case \lambda < \=\lambda = 1) with the same
values of \varepsilon . The results are presented in Figure 3 where we can clearly see the
convergence of the r\varepsilon to the affine deformation rh(R) = 0.95R with energy of 1.3625
(Figure (a)). The functions r\varepsilon in this figure are concave, corresponding to the case
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Fig. 2. Computed minimizers r\varepsilon and modified Cauchy stress functions \^T (r\varepsilon (\cdot )) for \^I\varepsilon when
\lambda = 1.01 and \varepsilon = 0.2, 0.1, 0.05, 10 - 4.
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Fig. 3. Computed minimizers r\varepsilon and modified Cauchy stress functions \^T (r\varepsilon (\cdot )) for \^I\varepsilon when
\lambda = 0.95 and \varepsilon = 0.2, 0.1, 0.05, 10 - 4.

where \.v > 0 in (51). On the other hand, in Figure (b) we see the corresponding
Cauchy stress functions converging pointwise, with a sharp boundary layer at R = \varepsilon ,
to a negative constant function.

Example 5.2. In this example we study the so-called incompressible limit by con-
sidering a sequence of compressible problems formally approaching an incompressible
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Fig. 4. Minimizers of modified compressible problems approaching the incompressible deforma-
tion in the incompressible limit (C \rightarrow \infty ) for C = 20, 40.

one. In particular, we consider functions h(\cdot ) in (39) given by

h(d) = C

\biggl( 
d - 1 - 1

C

\biggr) 2

+Dd - \delta ,

where C,D \geq 0 and \delta > 0. As C \rightarrow \infty we formally approach the incompressible
modified stored energy function given by

\^\Phi inc(v1, . . . , vn) =
\kappa 

n
vn1 +D + \kappa 

\biggl( 
n - 1

n
+ ln(v2 \cdot \cdot \cdot vn)

\biggr) 
,

where v1v2 \cdot \cdot \cdot vn = 1. For the computations we used the following:

n = 3, \kappa = 3, D = 1.5, \delta = 2

with \lambda = 1.05. In Figure 4 we show in solid the solution of the incompressible problem
which is given by rinc(R) = 3

\surd 
R3 + \lambda 3  - 1, together with the computed minimizers of

the modified compressible problems (48) with \varepsilon = 0.005 and C = 20, 40 (dashed and
dotted, respectively), which are clearly seen getting close to rinc. We also computed
solutions of the modified compressible problems for additional values of C, together
with their modified energies. The results are shown in Table 1. The energy of rinc,
computed using \^\Phi inc above, is given approximately by 1.53013. Thus, we see as
well a nice convergence of the energies of the modified compressible problems in the
incompressible limit.

6. Concluding remarks. It is not difficult to check that the results of this
paper can be generalized to stored energy functions of the form

(52) W (F) =
\kappa 

n
\| F\| n + h(detF) =

\kappa 

n
(v21 + \cdot \cdot \cdot + v2n)

n
2 + h(v1 \cdot \cdot \cdot vn).
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Table 1
Energies for the modified compressible problems in the incompressible limit case.

C \^I\varepsilon (r\varepsilon ) C \^I\varepsilon (r\varepsilon )

20 1.52298 160 1.52864
40 1.52532 320 1.52936
80 1.52735 640 1.52974

In fact, an analysis for this stored energy function, similar to the one leading to
Proposition 2.2, shows that T (v) is now asymptotic to  - \kappa (n - 1)n/2 ln(v) as v \rightarrow \infty .
Thus, we are led to consider a modified functional of the form

\^I(r) =

\int 1

0

Rn - 1

\Biggl[ 
\kappa 

n

\Biggl( \biggl[ 
r\prime (R)2 + (n - 1)

\Bigl( r

R

\Bigr) 2\biggr] n
2

 - (n - 1)
n
2

\Bigl( r

R

\Bigr) n\Biggr) 

+h (\delta (R)) + \kappa (n - 1)
n
2 \delta (R)

\biggl( 
1

n
+ ln

\Bigl( r

R

\Bigr) \biggr) \Biggr] 
dR - \kappa (n - 1)

n
2

n
\lambda n ln\lambda .

As this functional can be characterized in terms of the original one plus suitable
null Lagrangians, its Euler--Lagrange equation coincides with that of the original
functional. The rest of the analysis in this paper should now follow through.

The radial incompressible case can be treated similarly to the compressible case
studied in this paper. However, the incompressible case is more straightforward since a
radial incompressible deformation of the form (12) which also satisfies (5) is necessarily
given by

r(R) = (Rn + (\lambda n  - 1))
1
n

for \lambda > 1. On using this form, [1, Proposition 5.1] shows that

 - 
\int b

\lambda 

1

vn  - 1

d

dv
\Phi (v1 - n, v, . . . , v) dv + n

\int b

\lambda 

vn - 1

(vn  - 1)2
\Phi (v1 - n, v, . . . , v) dv

=
1

\lambda n  - 1
\Phi (\lambda 1 - n, \lambda , . . . , \lambda )

for2 any b > \lambda . As b \rightarrow \infty (corresponding to the puncture closing up), the first term
on the left of this equation is, up to a constant, the radial Cauchy stress (on the de-
formed puncture surface), while the second term is n times the energy of the deformed
punctured ball. Taking the form of \Phi in this incompressible case as (\kappa /n)

\sum n
i=1 v

n
i

plus some constant, it is easy to obtain from the expression above that the growth in
the radial Cauchy stress is once again asymptotically proportional to ln(b) as b \rightarrow \infty .

In generalizing the techniques in this paper from radially symmetric deformations
to nonradial ones, one approach (cf. [22]) is to restrict attention to deformations for
which the distributional determinant Det(\nabla u) of the deformation satisfies

Det(\nabla u) = (det\nabla u)\scrL n + V\bfu \delta \bfzero ,

where \delta \bfzero is the Dirac measure supported at the origin and V\bfu is the volume of the
cavity formed by the deformation u at the origin. From [21, Proposition 3.6] we get
that in the case n = 3,

(53)

\int 
\scrB \varepsilon 

\| \nabla u\| 3 dx \geq 
\int 
\scrB \varepsilon 

\bigm\| \bigm\| \bigm\| \nabla urad
\bigm\| \bigm\| \bigm\| 3 dx \geq  - 2

3
2 \omega 3 \~r

3(\varepsilon ) ln(\varepsilon ),

2The case b finite corresponds to integrating over a punctured ball in the reference configuration

of internal radius (\lambda 
n - 1

bn - 1
)

1
n .
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where \omega 3 = 4\pi . Here urad is the radial symmetrization of u and is given by (12)
where r is replaced by \~r which in turn is given by

4\pi 

3
\~r3(R) =

4\pi 

3
\lambda 3  - 

\int 
\scrB R

det(\nabla u) dx.

(The inequality (53) holds provided \~r\prime (R) \leq \~r(R)/R for all R \in [\varepsilon , 1]. If this condition
is not satisfied, then the symmetrization \~r has to be modified as in [22] in order for (53)
to hold.) Thus, it should follow from (53) that the total energy due to the deformation
u blows up at least like  - ln(\varepsilon ) as \varepsilon \rightarrow 0+ if V\bfu > 0. Thus, in generalizing our results
to the nonradial case with the stored energy function (52), we are led to consider a
modified energy functional given by

\^E(u) = lim
\varepsilon \rightarrow 0

\biggl[ \int 
\scrB \varepsilon 

W (\nabla u) dx+ 2
3
2\kappa V\bfu ln(\varepsilon )

\biggr] 
.

It may now follow from the approach in [21] that, for each \varepsilon > 0, the minimizer of the
functional in brackets above (over \scrB \varepsilon ) must be radial. Under suitable hypotheses, it
may then follow that the minimizer of \^E is radial, and so the results of the current
paper would then be applicable. We shall pursue these ideas elsewhere.
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