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Abstract

Consider a three-dimensional, homogeneous, compressible, hyperelastic body that occu-
pies a cylindrical domain in its reference configuration. We identify a variety of hypotheses
on the structure of the stored-energy function under which there exists an axisymmetric,
homogeneous deformation that globally minimizes the energy. For certain classes of energy
functions the uniqueness of this minimizer is also established. The primary boundary con-
dition considered is the extension of the cylinder via the prescription of its deformed axial
length, but the sliding contact of the curved surface is also briefly considered. In particular,
the results contained in this paper give conditions on the stored-energy function under which
material instabilities, such as necking or the formation of shear bands, do not occur.

Mathematics Subject Classifications (2010): 74B20, 35J50, 49J40, 74G65.

Key words: Elastic, uniaxial tension, sliding-contact, homogeneous absolute mini-
mizer.
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1 Introduction

Let Ω ⊂ R2 be a bounded, connected, open set with centroid at the origin and consider a

homogeneous, isotropic, hyperelastic material that occupies the cylindrical region

C := {(x, y, z) : (x, y) ∈ Ω, 0 < z < L}

in a fixed homogeneous reference configuration.

The problem we first consider is that of uniaxial extension. Specifically, we fix λ ≥ 1 and

restrict our attention to those deformations u ∈ C1(C;R3), with det∇u > 0 in C, that satisfy

the boundary conditions:

u3(x, y, 0) = 0, u3(x, y, L) = λL for all (x, y) ∈ Ω, (1.1)

where

u(x, y, z) =

u1(x, y, z)
u2(x, y, z)
u3(x, y, z)

. (1.2)

With each such deformation we associate a corresponding (total) elastic energy

E(u) =

∫
C
W (∇u) dV, (1.3)

where W : M3×3
+ → [0,∞) is the stored-energy density, M3×3

+ denotes the set of 3 × 3 matrices

with (strictly) positive determinant, and dV = dx dy dz. If W is both isotropic and frame-

indifferent, then standard representation theorems (see, e.g., [9, 14, 15, 25]) imply that there is

a function Υ : R+ × R+ × R+ → R that satisfies

W (F) = Υ (|F|, | adjF|, detF) for all F ∈ M3×3
+ , (1.4)

where |F| denotes the square-root of the sum of the squares of the elements of F, detF denotes

the determinant of F, and adjF denotes the adjugate matrix of F, i.e.,

(adjF)F = (detF)I for all F ∈ M3×3
+ ,

where I is the identity matrix.

Note that if a deformation u satisfies (1.1) and minimizes (1.3)–(1.4), then so does g ◦
u, where g is any rotation about an axis perpendicular to the xy-plane together with any

translation parallel to the xy-plane. In order to eliminate this trivial nonuniqueness we impose

the additional constraints ∫
C
u1 dV =

∫
C
u2 dV = 0,∫

C

∂u1
∂y

dV =

∫
C

∂u2
∂x

dV.

(1.5)
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We start our analysis, in section 2, by showing that the boundary conditions (1.1) imply

that any deformation that minimizes the fiber energy∫
C
|uz|p dV,

must map lines parallel to the z-axis into such lines. We then extend a result of Mizel [22]

concerning the strict Baker-Ericksen inequalities (which are a consequence of the strict rank-one

convexity of W ) and their implications on the equality of the principal stretches perpendicular

to the z-axis of any minimizer of W .

In section 3 we consider stored-energy functions of the form

W (F) = Ψ
(
|F|q, (detF)p/3

)
,

where p ∈ [1, 3], q ≥ p, and Ψ : R+ × R+ → R is increasing in its first argument and convex.

(Note that such stored energies are not necessarily polyconvex in the sense of Ball [3, 4], though

it is straightforward to construct examples which are polyconvex.) For these functions we give

conditions in Theorem 3.6 under which there is a unique, axisymmetric, homogeneous energy

minimizer that satisfies (1.5) and the boundary condition (1.1). Moreover, if λ > 1, then this

minimizer deforms the body into a state of uniaxial tension, as expected. Examples (setting

q = 2, p = 3/2) of energy functions to which this result applies are compressible neo-Hookean

materials of the form

W (F) = µ
2 |F|

2 + h
(√

detF
)
,

where µ > 0 and h ∈ C1((0,∞);R) is convex.

Our method of proof is to construct, for each deformation that satisfies (1.1) with λ ≥ 1,

a corresponding axisymmetric homogeneous map that has no greater energy. Specifically, we

use the following symmetrization procedure: to each deformation u that satisfies the boundary

condition (1.1) we associate the homogeneous deformation

uν
λ(x, y, z) :=

νxνy
λz

, (1.6)

where ν = µ > 0 is chosen so that(
µ2λ

)p/3
= −
∫
C

[
det∇uν

λ

]p/3
dV = −

∫
C

[
det∇u

]p/3
dV.

We then prove that:

(i) If µ ≤ λ, then E(u) ≥ E(uµ
λ);

(ii) If µ ≥ λ, then E(u) ≥ E(uλ
λ).

Our proof of this result uses Jensen’s inequality and the observation that the boundary

condition (1.1) imposes a constraint on admissible deformations: material fibers originally par-

allel to the axis of symmetry of the cylinder in the reference configuration must have a deformed
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length of at least λL. Hence, it suffices to minimize E in the class of axisymmetric homogeneous

deformations {uν
λ | ν > 0} to find a global energy minimizer subject to the boundary condition

(1.1). A slight strengthening of the hypotheses on the energy function then yields the existence

and uniqueness of this homogeneous energy minimizer.

In particular, the results contained in this paper give conditions on the stored-energy func-

tion under which there is no bifurcation from the underlying homogeneous solution and no

material instabilities such as necking or the formation of shear bands.

If we further assume that the stored-energy function W is polyconvex in the sense of

Ball [3, 4] and thatW grows sufficiently fast at zero and infinity, then standard results [3, 4, 9, 23]

yield the existence of an absolute minimizer of (1.3) in the set of Sobolev deformations

Sλ = {u ∈W 1,1(C;R3) : det∇u > 0 a.e.,u satisfies (1.1) and (1.5)}.

The results in this paper are also valid for u ∈ Sλ and show that this absolute minimizer is

the homogeneous axisymmetric deformation1 uν
λ given by (1.6) for an appropriate value of ν.

Moreover, this minimizer is globally one-to-one.

In section 3.4 we note ideas in [32, Section 5] can be used to extend the results in this paper

to materials which are transversally isotropic (relative to the symmetry axis of the cylinder).

We also note that the results in the appendix of this paper can be used to prove the same

homogeneity of an energy minimizing deformation for stored-energy functions that depend on

the invariant | adjF|2/(detF), i.e., energies of the form:

W (F) = Ψ

(
|F|q,

[
| adjF|2

detF

]t
, (detF)p/3

)
,

where p ∈ [1, 3], q ≥ p, t ≥ p and Ψ : R+ × R+ × R+ → R is increasing in each of its first two

arguments and convex.

In section 4 we extend our approach to treat the case in which the boundary condition (1.1)

is replaced by a sliding contact (sometimes referred to as greased sides) boundary condition on

the curved sides of a circular cylinder C = Ω × (−L,L) of radius R > 0. Mathematically, we

require that there is a µ ≥ 1 such that the deformation (1.2) satisfies

[u1(x, y, z)]2 + [u2(x, y, z)]2 = µ2R2 for x2 + y2 = R2 and z ∈ [−L,L].

(The flat surfaces of the cylinder, z = −L and z = L, are left free.)

In this case, the boundary condition imposes a constraint on the admissible deformations

that each cross section Ω×{z}, z ∈ [−L,L], of the cylinder in the reference configuration must

map to a surface that spans the deformed boundary and hence must deform into a surface

whose area is at least π(µR)2. We use this observation, together with an adaptation of the

1If we denote the gradient of this homogeneous minimizer by F0 ∈ M3×3
+ , then it follows that the stored-energy

function is quasiconvex at the boundary at (F0,n), in the sense of Ball and Marsden [7], for any choice of unit
vector n which is normal to some part of the lateral boundary ∂Ω× [0, L] of the cylinder C.
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symmetrization procedure outlined earlier, to prove that there is an axisymmetric homogeneous

deformation that globally minimizes the energy. This result applies to stored-energy functions

of the form

W (F) = Ψ
(
|F|2, | adjF|, (detF)2/3

)
,

where Ψ : R+ × R+ × R+ → R is convex, with Ψ,i≥ 0, i = 1, 2.

In the Appendix we extend our methods and the results in section 3 on the existence of

an axisymmetric, homogeneous, global energy minimizer to stored-energy functions which are

expressed in terms of elementary functions of the principal stretches. Some examples of the

energy functions to which these extended results apply are given below. In all of the following

examples N is a positive integer and h ∈ C1((0,∞); [0,∞)) is a strictly convex function that

satisfies h(t) → +∞ as t→ 0+.

Compressible Ogden: Our theory includes

W (F) =

N∑
i=1

µi
mi

(
αmi + βmi + γmi

)
+ h
(

(αβγ)p/3
)

when mi ≥ 1, µi > 0, and p ∈ [1, pmax] ∩ [1, 3] with pmax := min{mi : 1 ≤ i ≤ N}. Here, and in

the examples that follow, α, β, and γ denote the principal stretches of F.

Compressible Mooney-Rivlin: Let a > 0 and b > 0. Then our theory includes

W (F) = a|F|2 + b

[
βγ

α
+
γα

β
+
αβ

γ

]
+ h
(

(αβγ)1/3
)
.

In [17], Hill proposes the class of stored-energy functions2

W (F) =

N∑
i=1

µi
mi

[
αmi + βmi + γmi +

1 − 2ν

ν
(αβγ)−νmi/(1−2ν)

]
,

where 1 ≤ m1 < m2 < . . . < mN , µi > 0, and ν ∈ (0, .5) denotes Poisson’s ratio. For m1 > 1

and λ ≥ 1 our results imply that the absolute minimizer of the energy is given by

uκ
λ(x, y, z) =

κxκy
λz

, κ = κ(λ) := λ−ν.

Note that if mN > 3 then Ball’s [3, 4, 9] existence theory applies to this constitutive relation.

(See Murphy [24] and Horgan and Murphy [19] for interesting generalizations of this model.)

The standard technique used to establish the stability of an equilibrated deformation u is

to prove that it is a strict local minimizer, in the C1-topology, of the energy by showing that the

second variation of the energy at u is strictly positive. Our technique can alternatively be used

2Hill also allows mi < 1, but such values are not covered by our results. See, also, Stor̊akers [34].
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to show that an equilibrated deformation uν
λ (see (1.6)), with λ ≥ 1, is a local minimizer of E.

If, for example, W (F) = Ψ(|F|q, (detF)p/3) where, in a neighborhood of the constant matrix

Fν
λ := ∇uν

λ, Ψ is increasing in its first argument and convex, then uν
λ is a local minimizer of E.

For the uniaxial tension problem considered in this paper, the approach of proving the

positivity of the second variation was first used by Weso lowski [39, 40] for an incompressible

material. The technique was subsequently used by many other authors for 2-dimensional and

3-dimensional, compressible and incompressible, elastic and elastic-plastic rods. (See, e.g., Hill

and Hutchinson [18], Spector [33], Del Piero and Rizzoni [10], and Fosdick, Foti, Fraddosio, and

Piccioni [12].)

Finally, we note that in [31, 32] the authors used techniques related to those in the current

paper to show that, under appropriate constitutive hypotheses, the energy minimizer for a

2 or 3-dimensional incompressible elastic rod, which is subject to uniaxial extension, is an

axisymmetric homogeneous deformation.

2 Deformations; The Energy.

Definition 2.1. For λ > 0 we define the set of admissible deformations by

Aλ :=
{
u ∈ C1(C;R3) : det∇u > 0 on C, u satisfies (1.1) and (1.5)

}
.

We identify the subset of Aλ consisting of deformations that are a composition of plane strain

in the xy-plane and a homogeneous stretch in the z-direction, i.e., deformations w ∈ Aλ of the

form

w(x, y, z) =

w1(x, y)
w2(x, y)
λz

. (2.1)

We denote by

PSλ := {w ∈ Aλ : w satisfies (2.1)}

the set of all such plane-strain deformations.

The unique curve of shortest length connecting two points is a straight line. We will make

use of a slight variant of this well-known result. We include the proof from [32, Lemma 2.2] for

the convenience of the reader.

Lemma 2.2. Let λ > 0, 1 ≤ p <∞, u ∈ Aλ, and w ∈ PSλ. Then

−
∫
C
|uz|p dV ≥ −

∫
C
|wz|p dV = λp, (2.2)

where −
∫
C ϑ dV denotes the average value of ϑ over C, i.e.,

−
∫
C
ϑ dV :=

1

vol(C)

∫
C
ϑ dV,
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where vol(C) denotes the volume of C and the notation vz denotes the derivative ∂v
∂z . Moreover,

if p > 1 and the inequality in (2.2) is an equality, then u ∈ PSλ.

Proof. Let p ≥ 1, λ > 0, and v ∈ Aλ. Then

−
∫
C
|vz|p dV ≥ −

∫
C
|v3,z|p dV (2.3)

with equality if and only if v1,z = v2,z ≡ 0. Next, for p > 1, Hölder’s inequality together with

the boundary conditions (1.1) yield

−
∫
C
|v3,z|p dV ≥

∣∣∣∣−∫
C
v3,z dV

∣∣∣∣p =

∣∣∣∣−∫
Ω

v3(x, y, L) − v3(x, y, 0)

L
dxdy

∣∣∣∣p = λp (2.4)

with equality if and only if v3,z is a constant. Moreover, (2.4) is clearly also valid for p = 1.

Finally, we note that necessary and sufficient conditions for v ∈ PSλ are that, for every

(x, y, z) ∈ C, v1,z = v2,z = 0 and, assuming p > 1, v3,z ≡ λ. In particular, both (2.3) and

(2.4) are equalities for v ∈ PSλ. Therefore, both the desired inequality as well as the statement

concerning equality follow from (2.3) and (2.4).

2.1 The Energy

We assume that the material in its reference configuration is homogeneous and hyperelastic;

thus there exists a stored-energy density W : M3×3
+ → [0,∞). We further assume that the

material is isotropic. This assumption together with invariance under a change in observer

yields (see, e.g., [16, 25, 27, 37]) the existence of a symmetric function Φ : (0,∞)3 → [0,∞)

that satisfies

W (F) := Φ(ν1, ν2, ν3), where ν1, ν2, ν3 are the eigenvalues of U :=
√
FTF (2.5)

and are known as the principal stretches. We suppose that W (and hence Φ, see [6, 28, 29]) are

C1 (on their respective domains). The Piola-Kirchhoff stress tensor S is then the derivative of

W :

S(F) :=
dW

dF
, S : M3×3

+ → M3×3. (2.6)

A standard assumption found in the elasticity literature (see, e.g., [3, 4, 9, 27]) is that

the function W is strictly rank-one-convex: for every t ∈ (0, 1) and every F,G ∈ M3×3
+ with

F−G = a⊗ b ̸= 0 for some a,b ∈ R3,

W (tF + (1 − t)G) < tW (F) + (1 − t)W (G).
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Here (a ⊗ b)ij = aibj . One consequence (see [5, pp. 563–564]) of strict rank-one convexity3

is that at every triple of principal stretches (ν1, ν2, ν3) ∈ (0,∞)3, the energy must satisfy the

strict Baker-Ericksen [2] inequalities: (see also [37])

νi
∂Φ
∂νi

(ν1, ν2, ν3) − νj
∂Φ
∂νj

(ν1, ν2, ν3)

νi − νj
> 0 (2.7)

for all i = 1, 2, 3 and j = 1, 2, 3 with i ̸= j and νi ̸= νj .

We show in the next lemma that the Baker-Ericksen inequalities imply strong symmetry

properties of certain (constrained and unconstrained) pointwise minima of the stored-energy

function (cf. Mizel [22, Theorem A]).

Lemma 2.3 (Consequences of the Baker-Ericksen inequalities). Suppose that the stored-energy

function Φ satisfies the strict Baker-Ericksen inequalities.

(i) If (ν̄1, ν̄2, ν̄3) minimizes (ν1, ν2, ν3) 7→ Φ(ν1, ν2, ν3) on (0,∞)3, then ν̄1 = ν̄2 = ν̄3.

(ii) Fix d > 0. Suppose that (ν̄1, ν̄2, ν̄3) minimizes (ν1, ν2, ν3) 7→ Φ(ν1, ν2, ν3) on (0,∞)3

subject to the constraint ν1ν2ν3 = d3. Then ν̄1 = ν̄2 = ν̄3 = d.

(iii) Let λ > 0 be fixed. Suppose that (ν̄1, ν̄2) minimizes (ν1, ν2) 7→ Φ(ν1, ν2, λ) on (0,∞)2.

Then ν̄1 = ν̄2.

(iv) Fix λ > 0 and d > 0. Suppose that (ν̄1, ν̄2) minimizes (ν1, ν2) 7→ Φ(ν1, ν2, λ) on (0,∞)2

subject to the constraint ν1ν2 = d2. Then ν̄1 = ν̄2 = d. Moreover, (d, d) is a strict

minimizer for this constrained problem.

Proof. Parts (i) and (iii) follow directly from (2.7) since the corresponding first-order partial

derivatives of Φ must vanish at a minimum. We next prove (ii) (the proof of (iv) is similar).

Consider the function f(ν1, ν2) = Φ
(
ν1, ν2,

d3

ν1ν2

)
. Then

0 =
∂f

∂ν1
(ν̄1, ν̄2) =

1

ν̄1

[
ν̄1Φ,1

(
ν̄1, ν̄2,

d3

ν̄1ν̄2

)
− d3

ν̄1ν̄2
Φ,3

(
ν̄1, ν̄2,

d3

ν̄1ν̄2

)]
.

Therefore, by (2.7), it follows that ν̄1 = d3

ν̄1ν̄2
and (using the analogous expression for ∂f

∂ν2
(ν̄1, ν̄2))

ν̄2 = d3

ν̄1ν̄2
; thus ν̄1 = ν̄2. If we interchange the roles of ν1 and ν3 in the above argument, we

similarly conclude that ν̄3 = ν̄2; therefore, all ν̄i are equal with product equal to d3 and so the

claim of the lemma follows.

Remark 2.4. It is interesting to note that if Φ(v1, v2, v3) satisfies the Baker-Ericksen inequal-

ities, then so does the modified stored-energy function Φ̃(v1, v2, v3) = Φ(v1, v2, v3) + h(v1v2v3)

for any choice of the function h (see also the related result Lemma 3.5).

3Strict rank-one convexity is itself a consequence of the global strong ellipticity of the linearized equations,
i.e., a⊗ b : C(F)[a⊗ b] > 0 for every F ∈ M3×3

+ , a ∈ R3, and b ∈ R3 with a ̸= 0 ̸= b. Here C(F) := d2W/dF2.
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We will show in this paper that, for λ ≥ 1 and for a large class of stored-energy functions

W , to each deformation u ∈ Aλ there corresponds a deformation in PSλ that has no greater

total elastic energy E. Since all deformations in PSλ have one principal stretch that is constant

and equal to λ on C, we are motivated to consider the following result.

Proposition 2.5. Let W ∈ C1(M3×3
+ ; [0,∞)) satisfy (2.5). Suppose that (see [1, 3, 4])

lim
|F|→∞

W (F) = +∞, lim
detF→0+

W (F) = +∞. (2.8)

Then, for any λ > 0, there exists a matrix Fλ ∈ M3×3
+ that minimizes W among those F ∈ M3×3

+

that have at least one principal stretch equal to λ. Moreover, if W is strictly rank-one convex

or if W satisfies the strict Baker-Ericksen inequalities, then the two other principal stretches of

Fλ must be equal.

Proof. The assumptions (2.8) imply that the continuous function W blows up as its argument

approaches the boundary of its domain M3×3
+ . The existence of a minimizer to the constrained

problem is then clear. Suppose now that W satisfies the strict Baker-Ericksen inequalities

and that the principal stretches of a minimizing matrix Fλ are (α, β, λ). It then follows from

Lemma 2.3(iii) that α = β.

Remark 2.6. We note that the existence of a minimizer for problems (ii) and (iv) in Lemma

2.3 follows if the first condition in (2.8) holds. (The existence of a minimizer for problems (i)

and (iii) of the lemma follows if (2.8) holds in its entirety.)

3 The Homogeneity of Energy-Minimizing Deformations.

In this section we illustrate our results by considering certain energies for which the proofs are

particularly simple. These energies are also natural from the point of view of elasticity since

they only depend on two of the principal invariants. Fix u ∈ Aλ. Our aim is to prove that, for

a large class of stored-energy functions W , the energy functional (1.3) satisfies

E(u) ≥ E(uν
λ)

for an appropriately chosen ν > 0, where

uν
λ(x, y, z) :=

νxνy
λz

 , ∇uν
λ(x, y, z) ≡

ν 0 0
0 ν 0
0 0 λ

 . (3.1)
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3.1 The energy Λ(F) = |F|q with q ≥ 1.

Proposition 3.1. Fix p ∈ [1, 3], λ > 0, and u ∈ Aλ. Define µ = µ(λ, p,u) > 0 to be the unique

positive real number that satisfies(
µ2λ

)p/3
= −
∫
C

(det∇u)p/3 dV. (3.2)

If µ ≤ λ then, for any q ≥ p,

−
∫
C
|∇u|q dV ≥ −

∫
C
|∇uµ

λ|
q dV. (3.3)

Moreover, if p > 1, then (3.3) is a strict inequality unless u ∈ PSλ.

Proof. Fix λ > 0, p ∈ [1, 3], u ∈ Aλ, and q ≥ p. Define µ by (3.2) and assume that µ ≤ λ.

First, note that (3.1)2 yields

|∇uµ
λ(x, y, z)|q ≡

(
λ2 + 2µ2

)q/2
. (3.4)

Next, by the arithmetic-geometric mean inequality,

|∇u|2 = |uz|2 + |ux|2 + |uy|2

≥ |uz|2 + 2|ux||uy|

≥ |uz|2 + 2|ux × uy|.

(3.5)

However, the Cauchy-Schwarz inequality implies that the Jacobian Ju satisfies

Ju := det∇u = uz · (ux × uy) ≤ |uz||ux × uy|, (3.6)

which, when combined with (3.5), yields

|∇u|p ≥
[
|uz|2 + 2

Ju
|uz|

]p/2
= |uz|p

1 + 2

(
[Ju]p/3

|uz|p

)3/pp/2. (3.7)

Define θ(s) := (1 + 2s3/p)p/2, G(s, t) := sθ(t/s), and H(s, t) := G(s, t)q/p so that (3.7) is

equivalent to

|∇u|q ≥ H
(
|uz|p, [Ju]p/3

)
. (3.8)

Note that

θ′′(s) := 3s(3−2p)/p(1 + 2s3/p)(p−4)/2
[
3
p − 1 + s3/p

]
> 0

for s > 0 and p ∈ [1, 3]; thus θ is strictly convex. Therefore, by Lemma A.3, G : R+×R+ → R+

is strictly convex and, consequently, so is H = Gq/p. Moreover,

∂G

∂s
= θ(τ) − τθ′(τ) =

(
1 − τ3/p

)(
1 + 2τ3/p

)(p−2)/2
> 0 for τ := t/s < 1.
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Therefore, for any t > 0 the mapping s 7→ G(s, t) is strictly increasing on [t,∞) and, conse-

quently, s 7→ H(s, t) is also strictly increasing on [t,∞).

We now integrate (3.8) over the cylinder C and apply Jensen’s inequality to the convex

function H to conclude, with the aid of (3.2), that

−
∫
C
|∇u|q dV ≥ H

(
−
∫
C
|uz|p dV,−

∫
C

[Ju]p/3 dV

)
= H

(
−
∫
C
|uz|p dV,

(
µ2λ

)p/3)
.

(3.9)

Next, the assumption µ ≤ λ implies that
(
µ2λ

)p/3 ≤ λp, which together with Lemma 2.2

and the monotonicity of s 7→ H(s, (µ2λ)p/3) on [(µ2λ)p/3,∞) yields

H

(
−
∫
C
|uz|p dV,

(
µ2λ

)p/3) ≥ H
(
λp,
(
µ2λ

)p/3)
=
[
G
(
λp,
(
µ2λ

)p/3)]q/p
= λq

[
θ

((
µ2λ

)p/3
λp

)]q/p

=
(
λ2 + 2µ2

)q/2
.

(3.10)

The desired inequality, (3.3), now follows from (3.9), (3.10), and (3.4).

Finally, suppose that (3.3) is an equality and that p > 1. Then, in particular, the inequality

in (3.10) must be an equality. Since the mapping s 7→ H(s, t) is strictly increasing we conclude

that

−
∫
C
|uz|p dV = λp.

Lemma 2.2 then yields u ∈ PSλ.

3.2 The energy W (F) = Ψ(|F|q, (detF)p/3) with q ≥ p and p ∈ [1, 3].

The key to including the dependence of the energy upon the Jacobian is the following simple

result.

Lemma 3.2. Let q ≥ p > 0. Suppose that the stored energy W ∈ C1(M3×3
+ ; [0,∞)) satisfies

W (F) = Ψ
(
|F|q, (detF)p/3

)
,

where Ψ : R+ × R+ → [0,∞) is (strictly) convex. Then

t 7→W (
p
√
t I) is (strictly) convex on R+.
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Moreover, if in addition the reference configuration is stress free, then

λ 7→W (λI) is (strictly) increasing on [1,∞).

Proof. To obtain convexity define

ξ(t) := W (
p
√
t I) = Ψ(3q/2tq/p, t)

and note that, since q/p ≥ 1, the assumed (strict) convexity of Ψ yields (see Proposition A.1)

the (strict) convexity of ξ. Next, if we take the derivative of ξ we find that

ξ̇(t) =
p√t
pt S(

p
√
t I) : I,

where the S is the Piola-Kirchhoff stress tensor (2.6) and A :B := trace(ABT). Thus, if the

reference configuration is stress free, ξ̇(1) = 0. The (strict) convexity of ξ then implies that ξ,

and hence the mapping λ 7→W (λI), is (strictly) increasing on [1,∞).

Remark 3.3. It is interesting to note that: (1) If p ≥ 1 then the mapping λ 7→W (λI) = ξ(λp)

is also (strictly) convex on R+; (2) If the reference configuration is stress free, then the mapping

λ 7→W (λI) is (strictly) decreasing on (0, 1].

3.2.1 Energy Reduction by Symmetrization

We will next show that the result in the last subsection can be used to obtain energy reduction

for a class of stored-energy functions that includes compressible neo-Hookean materials.

Theorem 3.4. Fix p ∈ [1, 3] and q ≥ p. Assume that the reference configuration is stress free.

Suppose that the stored energy W ∈ C1(M3×3
+ ; [0,∞)) satisfies

W (F) = Ψ
(
|F|q, (detF)p/3

)
, (3.11)

where Ψ : R+ ×R+ → R is increasing in its first argument and convex. Let λ ≥ 1 and u ∈ Aλ.

Define µ = µ(λ, p,u) > 0 to be the unique positive real number that satisfies (3.2). Then

Ē(u) := −
∫
C
W (∇u) dV ≥ −

∫
C
W (∇uν

λ) dV = Ē(uν
λ), (3.12)

where uν
λ is given by (3.1) with ν := µ if µ ≤ λ and ν := λ if µ ≥ λ. Moreover, if µ ≤ λ,

p > 1, and Ψ is strictly increasing in its first argument, then (3.12) is a strict inequality unless

u ∈ PSλ.

Proof. Fix p ∈ [1, 3], q ≥ p, λ ≥ 1, u ∈ Aλ, and define µ by (3.2). If we now let F = ∇u in

(3.11), integrate over the cylinder C, and apply Jensen’s inequality to the convex function Ψ we
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conclude, with the aid of (3.2), that

−
∫
C
W (∇u) dV = −

∫
C
Ψ
(
|∇u|q, [Ju]p/3

)
dV

≥ Ψ

(
−
∫
C
|∇u|q dV,−

∫
C

[Ju]p/3 dV

)
= Ψ

(
−
∫
C
|∇u|q dV,

(
µ2λ

)p/3)
.

(3.13)

Now suppose that µ ≤ λ. Then we can make use of Proposition 3.1, the monotonicity of

Ψ , (3.1), and (3.11), to obtain

Ψ

(
−
∫
C
|∇u|q dV,

(
µ2λ

)p/3) ≥ Ψ

(
−
∫
C
|∇uµ

λ|
q dV,

(
µ2λ

)p/3)
= −
∫
C
W
(
∇uµ

λ

)
dV,

(3.14)

which when combined with (3.13) yields the desired inequality, (3.12) with ν = µ. Moreover, if

s 7→ Ψ(s, t) is strictly increasing then the inequality in (3.14) is a strict inequality unless

−
∫
C
|∇u|q dV = −

∫
C
|∇uµ

λ|
q dV.

Proposition 3.1 now yields u ∈ PSλ when p > 1.

Finally, suppose that µ ≥ λ so that ν = λ. Then if we make use of Hadamard’s inequality:4

|F|3 ≥ 33/2(detF), we find, with the aid of Hölder’s inequality and (3.2), that

3−q/2−
∫
C
|∇u|q dV ≥ −

∫
C

[Ju]q/3dV

≥
[
−
∫
C

[Ju]p/3dV

]q/p
=
[(
µ2λ

)p/3]q/p
=
(
µ2λ

)q/3
.

(3.15)

Thus, (3.15) and the monotonicity of Ψ now yield

Ψ

(
−
∫
C
|∇u|q dV,

(
µ2λ

)p/3) ≥ Ψ
(

3q/2
(
µ2λ

)q/3
,
(
µ2λ

)p/3)
= W (ηI), where η := (µ2λ)1/3 ≥ λ ≥ 1

(3.16)

and we have made use of (3.11). However, Lemma 3.2 then implies that W (ηI) ≥W (λI), which

together with (3.13) and (3.16) yields the desired result, (3.12) with ν = λ.

4See, e.g., [20, p. 220] or [30, p. 408].
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3.2.2 Existence and Uniqueness of a Homogeneous Minimizer

We will now show that the result in the last subsection can be used to obtain the existence

and uniqueness of a homogeneous energy minimizer. We first note that the energy under

consideration satisfies the Baker-Ericksen inequalities.

Lemma 3.5. Let q > 0 and p ∈ R. Suppose that the stored energy W ∈ C1(M3×3
+ ; [0,∞))

satisfies

W (F) = Ψ
(
|F|q, (detF)p/3

)
, (3.17)

where Ψ ∈ C1((0,∞)2; [0,∞)) with Ψ,1> 0. Then W satisfies the strict Baker-Ericksen in-

equalities.

Proof. Given F ∈ M3×3
+ let α, β, and γ denote the eigenvalues of U :=

√
FTF. Then, in view

of (2.5) and (3.17),

Φ(α, β, γ) = W (F) = Ψ
(
(α2 + β2 + γ2)q/2, (αβγ)p/3

)
. (3.18)

We then differentiate the last equation with respect to α and, separately, with respect to β to

conclude that the strict Baker-Ericksen inequalities reduce to (cf. (2.7))

αΦ,1(α, β, γ) − βΦ,2(α, β, γ)

α− β
= q(α+ β)|F|q−2Ψ,1(|F|q, (detF)p/3) > 0

when α ̸= β, which establishes the desired result.

Theorem 3.6. LetW , Ψ , p, and q, satisfy the hypotheses of Theorem 3.4. Suppose, in addition,

that Ψ ∈ C1((0,∞)2;R) with Ψ,1> 0, and

lim
|F|→∞

W (F) = +∞, lim
detF→0+

W (F) = +∞. (3.19)

Then, for each λ ≥ 1, there exists a κ = κ(λ) > 0, with κ(λ) ≤ λ, such that the deformation

uκ
λ(x, y, z) :=

κxκy
λz

 (3.20)

is an absolute minimizer of the energy among deformations in Aλ. Moreover, if in addition

p > 1 and Ψ is strictly convex, then uκ
λ is the unique energy minimizer in Aλ.

Remark 3.7. At first glance the parameter q appears to be redundant since the dependence on

powers greater than q = 1 can instead be obtained with a slight modification to the function Ψ .

However, q = 1 forces p = 1, in which case we haven’t obtained the uniqueness of the minimizer.

Corollary 3.8. Suppose that all of the hypotheses of Theorem 3.6 are satisfied and that λ > 1.

Then Φ,3 (κ, κ, λ) > 0, where uκ
λ, given by (3.20), is the absolute minimizer of the energy. Thus

for λ > 1 the absolute minimizer of E is a state of uniaxial tension.
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Proof of Theorem 3.6. Existence. Fix λ ≥ 1. We first note that, by Lemma 3.5, W satisfies

the strict Baker-Ericksen inequalities. Therefore, (3.19) and Proposition 2.5 yield a κ > 0 such

that

Φ(s, t, λ) ≥ Φ(κ, κ, λ) = Ē(uκ
λ) for every s > 0 and t > 0, (3.21)

where we have made use of (3.12) and (3.20). We claim that the homogeneous deformation

given by (3.20) with this value of κ is an absolute minimizer of E among deformations in Aλ.

Let u ∈ Aλ. Then by Theorem 3.4 there is ν > 0 such that the homogeneous deformation

uν
λ given by (3.1) satisfies (see (3.12))

Ē(u) ≥ Ē(uν
λ) = Φ(ν, ν, λ). (3.22)

The desired minimality of uκ
λ now follows from (3.22) and (3.21) with s = t := ν.

Uniqueness. Fix λ ≥ 1 and assume now that p > 1 and Ψ is strictly convex. We first claim

that (3.21) is a strict inequality unless s = t = κ. To see this, let s∗ > 0, t∗ > 0, and define

α :=
√
s∗t∗. Then, by Lemma 2.3(iv) and (3.21) (applied with s = t = α),

Φ(s∗, t∗, λ) ≥ Φ(α, α, λ) ≥ Φ(κ, κ, λ),

and the first inequality is strict unless s∗ = t∗ = α. Hence it remains to verify that

Φ(α, α, λ) > Φ(κ, κ, λ) for all α > 0 with α ̸= κ, (3.23)

where κ is given in (3.21).

To this end, define α̂ : (0,∞) → (0,∞) by α̂(t) := t3/(2p)/
√
λ; thus α̂ is a bijection of R+

that satisfies t = (α̂2λ)p/3. In view of (3.18),

Φ(α̂(t), α̂(t), λ) = Ψ
(
σ(t), t

)
, σ(t) :=

[
2λ−1t3/p + λ2

]q/2
. (3.24)

Note that

σ̈(t) = 3q
λ2p2

t−2+3/p
[
2λ−1t3/p + λ2

]−2+q/2(
λ3[3 − p] + [q + 2(q − p)]t3/p

)
> 0,

since p ∈ [1, 3] with p ≤ q; thus σ is strictly convex. Since Ψ is also strictly convex with Ψ,1> 0,

Proposition A.1 together with (3.24) imply that

t 7→ Φ(α̂(t), α̂(t), λ) is strictly convex on (0,∞). (3.25)

Consequently, since α̂ is a bijection of R+, it follows that (3.23) is satisfied.

We now suppose that λ > 1. (We will consider the case λ = 1 at the end of the proof.)

We claim that κ < λ. To see this, assume for the sake of contradiction that κ ≥ λ. Then apply

Theorem 3.4 with u = uκ
λ (and hence, by (3.2), µ = κ) to conclude, with the aid of (2.5), (3.12),

and (3.21), that

Φ(κ, κ, λ) = Ē(uκ
λ) ≥ Ē(uλ

λ) = Φ(λ, λ, λ) ≥ Φ(κ, κ, λ)
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since ν = λ when µ = κ ≥ λ. Thus, by (3.23), it now follows that λ = κ and so

∂Φ(α, α, λ)

∂α

∣∣∣∣
α=λ

= 2Φ,1 (λ, λ, λ) = 0. (3.26)

Here we have made use of the symmetry5 of Φ.

Consider

φ(t) := W (tI) = Φ(t, t, t), φ′(t) = 3Φ, 1(t, t, t).

Then since the reference configuration is stress free and λ > 1, Lemma 3.2 yields φ(λ) > φ(1).

Next, Remark 3.3 and the symmetry of Φ imply that φ is a strictly convex function on [1,∞).

Thus, in view of (3.26),

φ(1) > φ(λ) + φ′(λ)(t− λ) = φ(λ),

which is a contradiction. This completes the proof that if λ > 1, then κ < λ.

Now suppose that u ∈ Aλ satisfies E(u) = E(uκ
λ). We will show that u = uκ

λ to establish

uniqueness. By Theorem 3.4 there is ν > 0 such that the homogeneous deformation uν
λ given

by (3.1) satisfies (3.22). Thus, by the above existence argument

Ē(u) = Ē(uν
λ) = Ē(uκ

λ). (3.27)

Clearly ν = µ < λ since if ν = λ > 1, then the second equality in (3.27) yields the same

contradiction obtained above. We next note that (3.27) and Theorem 3.4 yield u ∈ PSλ, i.e.,

u(x, y, z) =

u1(x, y)
u2(x, y)
λz

 .
Moreover, by (3.23) the principal stretches of u must be identically equal to (κ, κ, λ). Thus, for

each (x, y, z) ∈ C, ∇u(x, y, z) has polar decomposition

∇u(x, y, z) = Q(x, y)U, where U = κ[I− ez ⊗ ez] + λez ⊗ ez

is a constant matrix and, for each (x, y) ∈ Ω, Q(x, y) is a rotation about the z-axis. We note

that Q is a gradient: Q = ∇(u ◦ [uκ
λ]−1) and hence, since C is connected and open, a standard

result (see, e.g., [9, pp. 44-45] or [15, p. 49]) implies that the only such rotations are constant

maps. This together with (1.5)2 shows that Q ≡ I. Thus, ∇u = ∇uκ
λ and hence, since C is

connected and open, u = uκ
λ + a. Finally, (1.1) and (1.5)1 yield a = 0 and so uκ

λ is the unique

absolute minimizer of the energy, as claimed.

We now briefly consider the case λ = 1. The function α̂ used previously is then given by

α̂(t) := t3/(2p). In view of (3.25),

ρ(t) := Φ(α̂(t), α̂(t), 1) is strictly convex on (0,∞)

5Φ(a, b, c) = Φ(b, a, c) = Φ(c, b, a) and hence Φ,1 (a, b, c) = Φ,2 (b, a, c) = Φ,3 (c, b, a).
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and hence ρ′ is strictly monotone increasing. Since the reference configuration is stress free

ρ′(1) = 2Φ,1 (1, 1, 1)α̂′(1) = 0

and hence the unique minimum of ρ occurs at 1. Thus, by (3.23) and the fact that α̂ is a

bijection of R+, it follows that κ = 1.

Finally, suppose that u ∈ Aλ satisfies E(u) = E(i). Then a previous argument (with

λ = κ = 1) shows that, for each (x, y, z) ∈ C, ∇u(x, y, z) has polar decomposition ∇u(x, y, z) =

Q(x, y), where for each (x, y) ∈ Ω, Q(x, y) is a rotation about the z-axis. It then follows as

before that Q ≡ I, ∇u ≡ I, and u ≡ i, which establishes the uniqueness of the minimizing

deformation u ≡ i when λ = 1. That completes the proof.

Proof of Corollary 3.8. Fix λ > 1 and let uκ
λ be the absolute minimizer of the energy given by

(3.20) in Theorem 3.6. Then, Φ,1 (κ, κ, λ) = 0 and, since Φ satisfies the strict Baker-Ericksen

inequalities (see (2.7) and Lemma 3.5), we obtain

0 <
λΦ,3 (κ, κ, λ) − κΦ,1 (κ, κ, λ)

λ− κ
=
λΦ,3 (κ, κ, λ)

λ− κ
.

However, in the proof of the last theorem we showed that if λ > 1, then κ < λ. Hence

Φ,3 (κ, κ, λ) > 0 as claimed.

3.3 Sobolev Deformations and Local Results

In this subsection we generalize our results to allow for deformations given by the existence

theory of Ball [3, 4] (and subsequent generalization in [8, 23, 35, 36]). We first briefly consider

the possibility that some of our constitutive hypotheses are only satisfied in a neighborhood of

an axisymmetric homogeneous deformation.

Proposition 3.9. Let W (F) = Φ(ν1, ν2, ν3) satisfy the strict Baker-Ericksen inequalities as

well as the hypotheses of Proposition 2.5. Fix λ > 1 and suppose that κ = κ(λ) ∈ (0, λ) is

a minimizer of t 7→ Φ(t, t, λ) given by Proposition 2.5. Assume, in addition, that for some

p ∈ [1, 3] and q ≥ p,

W (F) = Ψ
(
|F|q, (detF)p/3

)
, (3.28)

where Ψ : R+×R+ → R is, in a neighborhood of ((2κ2 +λ2)q/2, (κ2λ)p/3), increasing in its first

argument and convex. Then there is a neighborhood of uκ
λ (given by (3.20)) in the C1-topology,

where uκ
λ is a minimizer of E.

Sketch of the proof. We first note that µ = µ(λ,u) given by (3.2) is a continuous function of

u ∈ Aλ. Thus, our hypothesis κ < λ yields ν = µ in Theorem 3.4 (rather than ν = λ) when

u is sufficiently close to uκ
λ; in particular, the case µ > λ in the proof of Theorem 3.4, which

uses the global convexity of Ψ as well as the stress-free reference configuration, is not needed.

Therefore, when u is close to uκ
λ it will follow that the auxiliary function uν

λ will be close to

uκ
λ and so the existence portion of the proof of Theorem 3.6 will yield the desired result.



18 J. Sivaloganathan and S. J. Spector

In order to consider mappings that are only weakly differentiable we will extend the stored-

energy density W ∈ C1(M3×3
+ ; [0,∞)) to all matrices F ∈ M3×3 by taking W (F) = +∞ when-

ever detF ≤ 0. Thus, the assumption

lim
detF→0+

W (F) = +∞

yields W ∈ C(M3×3; [0,∞]) with W (F) = +∞ if and only if detF ≤ 0.

Definition 3.10. We define the set of admissible Sobolev deformations by

Sλ = {u ∈W 1,1(C;R3) : u satisfies (1.1), (1.5), and det∇u > 0 a.e.},

where W 1,1(C;R3) denotes the usual Sobolev space of vector-valued functions u ∈ L1(C;R3),

whose distributional derivative ∇u also lies in L1. We note that equation (1.1) is satisfied in

the sense of trace.

Theorem 3.11 (Theorem 3.6 for Sobolev deformations). Fix p ∈ [1, 3] and q ≥ p. Assume

that the reference configuration is stress free. Suppose that the stored-energy density W ∈
C(M3×3; [0,∞]) ∩ C1(M3×3

+ ; [0,∞)) satisfies W (F) = +∞ whenever detF ≤ 0,

lim
|F|→∞

W (F) = +∞, lim
detF→0+

W (F) = +∞, (3.29)

W (F) = Ψ
(
|F|q, (detF)p/3

)
, if detF > 0, (3.30)

where Ψ ∈ C1((0,∞)2;R) is convex and satisfies Ψ,1> 0. Then, for each λ ≥ 1, there exists

a κ = κ(λ) ∈ (0, λ] such that the (globally injective) deformation uκ
λ, given by (3.20), is an

absolute minimizer of the energy among deformations in Sλ. Moreover, if in addition p > 1

and Ψ is strictly convex, then uκ
λ is the unique energy minimizer in Sλ.

Proof. Assume the hypotheses of the Theorem. Fix λ ≥ 1. Let κ = κ(λ) ∈ (0, λ] be given by

Theorem 3.6. Suppose that u ∈ Sλ. We will show that E(u) ≥ E(uκ
λ) and that, if p > 1 and Ψ

is strictly convex, E(u) = E(uκ
λ) if and only if u = uκ

λ a.e.

We now denote by ux, uy, and uz the distributional partial derivatives of u and we fix a

representative of each of these L1(vector-valued) functions. We define

Ĉ := {(x, y, z) ∈ C : |uz(x, y, z)| > 0 and det∇u(x, y, z) > 0}.

We note that, for L3 almost every point (x, y, z) ∈ C, det∇u = uz · (ux × uy) and so for

a.e. (x, y, z) ∈ C,

det∇u(x, y, z) > 0 implies that |uz(x, y, z)| > 0.

Since det∇u > 0 a.e. it follows that L3(Ĉ) = L3(C) and hence∫
C
f dV =

∫
Ĉ
f dV for any nonnegative, measurable function f : C → [0,∞]. (3.31)
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We will show that the conclusions of Lemma 2.2, Proposition 3.1, Theorem 3.4, and Theo-

rem 3.6 remain true when the admissible deformations Aλ are enlarged to include the Sobolev

deformations Sλ, which will establish the desired result.

Lemma 2.2. We first observe that inequalities (2.3) and (2.4) are both valid when v ∈ Sλ

with equality in (2.3) if and only if v1,z = v2,z = 0 a.e. and equality in (2.4) if and only if

v3,z = ϖ a.e. for some ϖ ∈ R. Thus, inequality (2.2) is satisfied when u ∈ Sλ. Now suppose

that p > 1 and (2.2) is an equality for some u ∈ Sλ. Then both (2.3) and (2.4) must be

equalities and so u1,z = u2,z = 0 a.e. and u3,z = λ a.e. Consequently, u must be a plain strain

Sobolev deformation, i.e.,

u ∈ P̂Sλ := {w ∈ Sλ : w satisfies (2.1) a.e.} . (3.32)

Thus, Lemma 2.2 is valid for u ∈ Sλ provided the set PSλ is replaced by the set P̂Sλ. Finally,

we note that (3.31) then allows us to replace each of the integrals in (2.2) by an integral of the

same quantity over the set Ĉ.

Proposition 3.1. We first consider each of the pointwise inequalities established for u ∈ Aλ and

(x, y, z) ∈ C in the proof of Proposition 3.1, i.e., (3.5)–(3.8). It is clear that each is also valid

for u ∈ Sλ provided we restrict (x, y, z) to the set Ĉ. Moreover, the function H used there is

nonnegative and continuous and hence all of the integrations in this proof are integrations of

nonnegative measurable functions. The proof of Proposition 3.1 therefore implies that if µ ≤ λ

and q ≥ p, (3.3) with C replaced by Ĉ is satisfied when u ∈ Sλ. The previous observation,

(3.31), then allows us to replace Ĉ by C.

Now suppose that p > 1 and that (3.3) is an equality. Then in particular the inequality

in (3.10), with C replaced by Ĉ, must be an equality. Since the mapping s 7→ H(s, t) is strictly

increasing we conclude that

−
∫
Ĉ
|uz|p dV = λp.

The above extension of Lemma 2.2 then yields u ∈ P̂Sλ.

Theorem 3.4. The arguments used in the original proof are all valid for u ∈ Sλ provided we

replace C by Ĉ in each integral. Inequality (3.12) is then a consequence of observation (3.31)

since W ≥ 0 is continuous and ∇u is measurable. The strictness of inequality (3.12) when

p > 1 and u ̸∈ P̂Sλ then follows as in the above modified proof of Proposition 3.1.

Theorem 3.6. The above modifications to Theorem 3.4 together with the proof of existence

in Theorem 3.6 shows that uκ
λ minimizes E among deformations in Sλ. We now suppose that

p > 1 and Ψ is strictly convex. We consider uniqueness when λ > 1; the proof when λ = 1 is

similar.

Suppose that u ∈ Sλ satisfies E(u) = E(uκ
λ). Then the arguments used in the proof of

Theorem 3.6 now lead us to conclude that u ∈ P̂Sλ with principal stretches (κ, κ, λ) almost

everywhere. Therefore, v := u ◦ [uκ
λ]−1 ∈ W 1,1 has principal stretches that are all equal to 1

almost everywhere, i.e.,

(∇v)T(∇v) = I a.e. (3.33)
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We claim that (3.33) implies that v ∈ C∞ and hence that the remainder of the argument is

now the same as in the smooth case.

In order to deduce the required smoothness of v we first take the trace of (3.33) to get

|∇v|2 = 3 a.e. Thus, ∇v is bounded almost everywhere. In particular, v ∈W 1,2 and so, as first

noticed by6 Friesecke, James, and Müller [13, p. 1469], (3.33) is equivalent to ∇v = (adj∇v)T

and hence the identity Div(adj∇v)T = 0 implies that v ∈W 1,2 is a weak solution of Laplace’s

equation; the standard regularity theory (see, e.g., [11, p. 339]) then yields v ∈ C∞.

3.4 Generalizations.

The proofs in this paper of the existence and uniqueness of axisymmetric, homogeneous global

energy minimizers are can be extended to cover additional stored-energy functions.

Transversely isotropic materials. All of our proofs are for isotropic materials but can

be extended to the case of materials which are transversally isotropic (relative to the symmetry

axis of the cylinder) by using the results of [32, Section 5].

Other Invariants. Our proofs are for energy functions that only depend on the invariants

|F| and detF but can be extended to energies

W (F) = Ψ

(
|F|q,

[
| adjF|2

detF

]t
, (detF)p/3

)
.

See Appendix B and, in particular, Remark B.2.5 for such extensions.

4 Sliding-contact boundary conditions.

We now replace the boundary condition (1.1) by a greased or sliding-contact boundary condition

on the curved surface of a circular cylinder C = Ω × (−L,L) of radius R > 0: Fix µ ≥ 1 and

suppose that

[u1(x, y, z)]2 + [u2(x, y, z)]2 = µ2R2 for (x, y) ∈ ∂Ω and z ∈ [−L,L], (4.1)

where7

Ω :=
{

(x, y) : x2 + y2 < R2
}
.

In order to eliminate rigid deformations of the body we also assume that (1.5)2 is satisfied and

that ∫
C
u3 dV = 0.

6The fact that (3.33) implies ∇v is constant for v ∈ W 1,3 was first proven by Reshetnyak [26].
7The flat surfaces of the cylinder, z = −L and z = L, are left free.
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A corresponding homogeneous solution to this problem is given by the deformation

uµ
λ(x, y, z) =

µxµy
λz

 , (4.2)

where λ := δ is the unique positive real number that satisfies8

Φ,3 (µ, µ, δ) = 0 (4.3)

and W (F) = Φ(ν1, ν2, ν3) denotes the stored-energy density. (Note that (4.3) implies that (4.2)

satisfies the natural boundary condition that the normal stress is zero on the flat surfaces of

the cylinder.)

In contrast to the earlier boundary condition (1.1), the sliding-contact condition (4.1)

imposes the geometric constraint that each cross section Ω×{z}, z ∈ [−L,L], of the cylinder in

the reference configuration must map to a surface that spans the deformed boundary and hence

must deform into a surface whose area is at least πµ2R2. Thus it follows that each deformation

u that satisfies the boundary condition (4.1) also satisfies

−
∫
Ω×{z}

|ux × uy| dA ≥ µ2 = −
∫
Ω×{z}

|(uµ
λ)x × (uµ

λ)y| dA, (4.4)

for every z ∈ [−L,L], where dA = dxdy.

The earlier arguments in this paper for the case of uniaxial extension can now be adapted

to prove the following theorem.

Theorem 4.1 (Energy reduction by symmetrization). Assume that the reference configuration

is stress free. Suppose that the stored energy W ∈ C1(M3×3
+ ; [0,∞)) is of the form

W (F) = Ψ
(
|F|2, | adjF|, (detF)2/3

)
, (4.5)

where Ψ : R+×R+×R+ → R is convex with Ψ,i≥ 0, i = 1, 2. Fix µ ≥ 1. For each deformation

u that satisfies the boundary condition (4.1), we define the homogeneous deformation

uµ

λ̄
(x, y, z) :=

µxµy
λ̄z

 , (4.6)

where λ̄ is defined by

(µ2λ̄)2/3 = −
∫
C
(det∇u)2/3dV. (4.7)

(i) If λ̄ ≤ µ then the energy functional (1.3) satisfies E(u) ≥ E(uµ

λ̄
);

(ii) If λ̄ > µ then the energy functional (1.3) satisfies E(u) ≥ E(uµ
µ).

8The existence of such a δ follows from the continuity of W together with the growth conditions (2.8). The
uniqueness follows either from the strict rank-one convexity of W or, more simply, from the strict tension-
extension inequality Φ,33 > 0.
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Proof. Our proof follows the proof of Theorem 3.4.

Case (i): λ̄ < µ. We first consider the stored-energy function W̃ (F) = |F|2. Here we replace

the earlier calculation (3.5)–(3.7) by

|∇u|2 = |uz|2 + |ux|2 + |uy|2

≥ |uz|2 + 2|ux||uy|

≥ [Ju]2

|ux × uy|2
+ 2|ux × uy|

= |ux × uy|

( [Ju]2/3

|ux × uy|

)3
+ 2


=: H̃

(
|ux × uy|, [Ju]2/3

)
,

(4.8)

where a 7→ H̃(a, d) is monotone increasing for a ≥ d and, by Lemma A.3, H̃ is a convex function.

Thus, if we integrate (4.8) over the cylinder and make use of Jensen’s inequality we find that

−
∫
C
|∇u|2dV ≥ H̃

(
−
∫
C
|ux × uy| dV, −

∫
C
(det∇u)2/3dV

)
and hence, in view of (4.4), (4.6), and (4.7),

−
∫
C
|∇u|2dV ≥ H̃

(
µ2, (µ2λ̄)2/3

)
= H̃

(
−
∫
C
|(uµ

λ̄
)x × (uµ

λ̄
)y|dV, −

∫
C
(det∇uµ

λ̄
)2/3dV

)
= −
∫
C
|∇uµ

λ̄
|2 dV.

(4.9)

We next consider the case Ŵ (F) = | adjF| (cf. (B.12) and (4.8)).

| adj∇u|2 = |(adj∇u)Tex|2 + |(adj∇u)Tey|2 + |(adj∇u)Tez|2

≥ |(adj∇u)Tez|2 + 2Ju|(∇u)ez|

≥ |(adj∇u)Tez|2 +
2 [Ju]2

|(adj∇u)Tez|

= |(adj∇u)Tez|2
[

1 + 2
[Ju]2

|(adj∇u)Tez|3

]

= |(adj∇u)Tez|2
1 + 2

(
[Ju]2/3

|(adj∇u)Tez|

)3
 .

Thus

| adj∇u| ≥ Ĥ
(
|(adj∇u)Tez|, [Ju]2/3

)
,
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where

Ĥ(a, d) = a

[
1 + 2

(
d

a

)3]1/2
=: aθ̂

(
d

a

)
satisfies Ĥ(·, ·) is convex (by Lemma A.3) and monotone increasing in its first argument for

a ≥ d.

If we integrate over the cylinder and make use of Jensen’s inequality we now find that

−
∫
C
| adj∇u| dV ≥ Ĥ

(
−
∫
C
|(adj∇u)Tez| dV, −

∫
C
(det∇u)2/3dV

)
= Ĥ

(
−
∫
C
|(adj∇u)Tez| dV, (µ2λ̄)2/3

)
≥ Ĥ

(
µ2, (µ2λ̄)2/3

)
= Ĥ

(
−
∫
C
|(adj∇uµ

λ̄
)Tez| dV, −

∫
C

(
det∇uµ

λ̄

)2/3
dV

)
= −
∫
C
| adj∇uµ

λ̄
| dV,

(4.10)

where we have made use of (4.4), (4.6), (4.7) and the fact that |ux × uy| = |(adj∇u)Tez|.

If we now combine (4.6), (4.9), and (4.10) and make use of Jensen’s inequality, we obtain

the general claim of the theorem for stored-energy functions of the form (4.5):

−
∫
C
W
(
∇u
)
dV ≥ Ψ

(
−
∫
C
|∇u|2dV,−

∫
C
| adj∇u| dV,−

∫
C
(det∇u)2/3dV

)
≥ Ψ

(
−
∫
C
|∇uµ

λ̄
|2dV,−

∫
C
| adj∇uµ

λ̄
| dV,−

∫
C
(det∇uµ

λ̄
)2/3dV

)
= −
∫
C
W
(
∇uµ

λ̄

)
dV.

Case (ii): λ̄ > µ. In this case, the result that E(u) ≥ E(uµ
µ) follows from a straightforward

adaptation of the proof of the second part of Theorem 3.4. (See also the last part of the proof

of Theorem C.2.)

Remark 4.2. The existence of an axisymmetric, homogeneous, global energy minimizer follows

on a slight strengthening of the above hypotheses on the stored-energy function. (The details

are again analogous to those in the proof of Theorem 3.6 using Theorem 3.4.)

Remark 4.3. We note that, analogously to section 3, the results of Theorem 4.1 should extend

to stored-energy functions of the form

W (F) = Ψ
(
|F|2q, | adjF|r, (detF)2p/3

)
,

where p ∈ [1, 3/2], q ≥ p, and r ≥ p.
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5 Concluding Remarks.

As noted earlier, the boundary condition of uniaxial extension (1.1), imposes a constraint on

admissible deformations that material fibers parallel to the axis of symmetry of the cylinder in

the reference configuration must have a deformed length of at least λL. In contrast, the sliding

contact boundary condition (4.1) imposes a constraint on admissible deformations that each

cross section of the cylinder, z = c, in the reference configuration must map to a surface whose

area is at least πµ2R2. It is interesting to note the difference in the corresponding structure of

the allowed stored-energy functions in our proofs of the homogeneity of an energy minimizer

in the case of these two boundary conditions. In particular, the stored-energy functions (3.17)

do not contain an argument of the form | adjF| (in contrast to (4.5)). The technical reason for

this is that the arguments of section 3.1, when applied to Λ(F) = | adjF|q, q ≥ 1, do not yield

a jointly convex functional of |uz|p and [Ju]p/3.

However, an intuitive reason for the failure of the proof appears to be that the term | adjF|
relates to deformed areas of surfaces within the body. A related problem is that of minimizing,

for a given enclosed volume, the surface area of a droplet bridging two parallel planes. Here

it is known that the minimum is attained for a cylinder when the distance between the planes

is small but not when the distance between the planes is sufficiently large. This instability

appears related to the Rayleigh instability observed in capillary jets (see Vogel [38]).

As noted earlier, the results in this paper are independent of the geometry of the reference

configuration (in particular, the aspect ratio when the reference state is a circular cylinder),

hence we would not expect our results/methods to extend to the case of compression (i.e., λ < 1

in (1.1)) as a consequence of instabilities such as buckling.

In summary, in the problems considered in this paper, there appears to be a subtle interplay

between the geometric constraints imposed on admissible deformations by boundary conditions

and the structure of the stored-energy functions for which no instability occurs in the corre-

sponding homogeneous solution. This connection seems worthy of further investigation.

A Appendix

We here gather a couple of the technical results used in this manuscript.

Proposition A.1. Fix N ∈ N. Let Ψ : (0,∞)N+1 → R be (strictly) convex with

ti 7→ Ψ
(
t1, t2, . . . , ti, . . . , tN , tN+1

)
increasing for i = 1, 2, . . . , N . Suppose that v : (0,∞) → (0,∞)N with vi convex for i =

1, 2, . . . , N . Then

ψ(t) := Ψ
(
v(t), t

)
is (strictly) convex.
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Proof. Let s, t ∈ (0,∞) and λ ∈ (0, 1). Then the convexity of each component of v implies that

vi(λt+ (1 − λ)s) ≤ λvi(t) + (1 − λ)vi(s) for i = 1, 2, . . . , N. (A.1)

Next, (A.1) and the monotonicity of Ψ in its first N -arguments yields

ψ (λt+ (1 − λ)s) = Ψ
(
v(λt+ (1 − λ)s), λt+ (1 − λ)s

)
≤ Ψ

(
λv(t) + (1 − λ)v(s), λt+ (1 − λ)s

)
.

(A.2)

Finally, the strict convexity of Ψ gives us

Ψ
(
λv(t) + (1 − λ)v(s), λt+ (1 − λ)s

)
< λΨ

(
v(t), t

)
+ (1 − λ)Ψ

(
v(s), s

)
= λψ (t) + (1 − λ)ψ (s) ,

which together with (A.2) yields the strict convexity of ψ.

Remark A.2. If N = 2 and Ψ is independent of its second argument then Proposition A.1

reduces to the classical result that the composition of 2 convex functions is convex whenever

the outer function is also increasing.

A proof of the following well-known result on convex functions can be found in, for example,

[21, Lemma 2.1] or [30, Lemma A.1].

Lemma A.3. Let ϑ : R+ → R be (strictly) convex. Then

Q(s, t) = tϑ
(s
t

)
is (strictly) convex on R+ × R+.

B The Principal Stretches; Other Invariants.

In this section we show that slight variants of our method will allow for a variety of constitutive

relations that depend on the principal stretches. The key to these results is the following

classical lemma9, a proof of which can be found in the appendix of [32].

Lemma B.1. Let P ∈ M3×3 be symmetric and strictly positive definite with eigenvalues λ1,

λ2, and λ3. Suppose that ω : (0,∞) → R is convex. Then

ω(λ1) + ω(λ2) + ω(λ3) ≥ ω(f1 ·Pf1) + ω(f2 ·Pf2) + ω(f3 ·Pf3)

for any orthonormal basis {f1, f2, f3} of R3.

We also made use of a slight generalization of the arithmetic-geometric mean inequality.

Again see, e.g., the appendix of [32] for a proof.

9See S. Kaniel, J. Math. Mech. 19 (1970), 681–707 for a proof of Lemma B.1 in the case ω(t) = tp.



26 J. Sivaloganathan and S. J. Spector

Lemma B.2. Let ω : (0,∞) → R be monotone increasing and convex. Then, for every a ∈ Rn

with ai > 0, i = 1, 2, . . . , n,
n∑

i=1

ω
(
(ai)

n
)
≥ nω

(
n∏

i=1

ai

)
.

Moreover, this inequality is strict if either ω is strictly monotone or strictly convex unless all

of the ai are equal.

Let q ≥ 1 and r ≥ 1. Suppose that ϕ, ψ : (0,∞) → R are monotone increasing with ψ

convex and s 7→ ϕ(
√
sq ) convex. In this section we will consider the energy functions

Λ(F) := ϕ
(
αq
)

+ ϕ
(
βq
)

+ ϕ
(
γq
)

with pmax := q ≤ 2, (B.1)

Λ(F) := ψ
([

αβ
γ

]q)
+ ψ

([
βγ
α

]q)
+ ψ

([
γα
β

]q)
with pmax := q, (B.2)

Λ(F) :=
(
α2r + β2r + γ2r

)q/(2r)
with pmax := min{q, 3r}, (B.3)

Λ(F) :=
[(

αβ
γ

)r
+
(
βγ
α

)r
+
(
γα
β

)r ]q/r
with pmax := min{q, 3r}. (B.4)

where α, β, and γ are the eigenvalues of U =
√
FTF and F ∈ M3×3

+ .

The main result of this section is the following. The proof is contained in the subsections

that follow.

Proposition B.3. Suppose that Λ is given by (B.1), (B.2), (B.3), or (B.4). Let λ > 0, u ∈ Aλ,

and p ∈ [1, pmax]. Define µ = µ(λ, p,u) > 0 to be the unique positive real number that satisfies

(3.2). Then

−
∫
C
Λ
(
∇u
)
dV ≥ Λ

([
µ2λ

]1/3
I
)
. (B.5)

Moreover, if µ ≤ λ then

−
∫
C
Λ
(
∇u
)
dV ≥ −

∫
C
Λ
(
∇uµ

λ

)
dV, (B.6)

where uµ
λ is given by (3.1) with ν := µ. If, in addition, ϕ is strictly increasing and p > 1, then

(B.6) will be a strict inequality unless u ∈ PSλ.

Remark B.4. 1. Since ω(s) := ϕ(
√
sq) in (B.1) is convex and increasing with q ∈ [1, 2], so

is ϕ(t) = ω(t2/q) (see Remark A.2).

2. For ϕ ∈ C2((0,∞);R), the hypothesis s 7→ ϕ(
√
sq) is convex is equivalent to

tϕ′′(t) ≥
(
1 − q

2

)
ϕ′(t) for all t > 0.

3. Suppose that the energy is given by (B.1) with q > 2. Then one can rewrite (B.1) as

Λ(F) = ϕ̂
(
α2
)

+ ϕ̂
(
β2
)

+ ϕ̂
(
γ2
)
, ϕ̂(t) := ϕ

(
tq/2
)
,

where ω(s) := ϕ̂(s2/q) = ϕ(s) is increasing and convex. Thus the restriction q ≤ 2 is not

essential.
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4. If r = 1 the energy (B.3) is the same as the energy in section 3.1.

5. If r = 1 the energy (B.4) can also be written:

Λ(F) =

[
| adjF|2

detF

]q
.

In order to establish the existence of a homogeneous minimizer we will also need the

following result.

Proposition B.5. Suppose that Λ is given by (B.1), (B.2), (B.3), or (B.4). Let p ∈ [1, pmax].

Then σ(t) := Λ( p
√
tI) is increasing and convex.

Proof. If Λ is given by (B.1), then σ(t) := 3ϕ(tq/p), which is monotone increasing and convex

since q ≥ p > 0 and ϕ is increasing and convex (see Remark A.2). If Λ is given by (B.2),

then σ(t) := 3ψ(tq/p), which is increasing and convex since q ≥ p > 0 and ψ is increasing and

convex. If Λ is given by (B.3), then σ(t) := 3q/(2r)tq/p, which is increasing and convex since

q ≥ p > 0. Finally, if Λ is given by (B.4), then σ(t) := 3q/rtq/p, which is increasing and convex

since q ≥ p > 0.

B.1 The energy Λ(F) = ϕ(αq) + ϕ(βq) + ϕ(γq) for q ∈ [1, 2].

In this subsection we prove Proposition B.3 when Λ is given by (B.1).

Proof of Proposition B.3: Case 1. Let Λ be given by (B.1) with q ∈ [1, 2], where ϕ ∈ C1(R+;R)

is increasing and s 7→ ϕ(
√
sq) is convex. Fix λ > 0, u ∈ Aλ, and p ∈ [1, q]. Let µ be given

by (3.2). Define F = F(x, y, z) := ∇u(x, y, z), Ju := det∇u(x, y, z), and U :=
√
FTF with

eigenvalues α, β, and γ. Then, since q ≥ p > 0, Hölder’s inequality and (3.2) yield

−
∫
C
[Ju]q/3dV ≥

[
−
∫
C
[Ju]p/3dV

]q/p
=
[(
µ2λ

)p/3]q/p
=
[
µ2λ

]q/3
. (B.7)

Next, since ϕ is increasing and convex, Lemma B.2, Jensen’s inequality, (B.1), (B.7), and

the identity Ju = αβγ imply that

−
∫
C
Λ(∇u) dV = −

∫
C

[
ϕ
(
αq
)

+ ϕ
(
βq
)

+ ϕ
(
γq
)]

dV

≥ −
∫
C

3ϕ
(
[Ju]q/3

)
dV

≥ 3ϕ

(
−
∫
C
[Ju]q/3dV

)
≥ 3ϕ

( [
µ2λ

]q/3 )
= Λ

( [
µ2λ

]1/3
I
)
,
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which establishes (B.5).

Now assume that µ ≤ λ. Define ω : R+ → R by ω(s) := ϕ(
√
sq) so that ω is convex. If we

then apply Lemma B.1 with P = FTF (with eigenvalues α2, β2, and γ2) we conclude that, for

any (x, y, z) ∈ C,

ω(α2) + ω(β2) + ω(γ2) ≥ ω(ez ·Pez) + ω(ex ·Pex) + ω(ey ·Pey)

= ω
(
|Fez|2

)
+ ω

(
|Fex|2

)
+ ω

(
|Fey|2

)
or, equivalently,

Λ(∇u) = ϕ
(
αq
)

+ ϕ
(
βq
)

+ ϕ
(
γq
)
≥ ϕ (|uz|q) + ϕ (|ux|q) + ϕ (|uy|q) . (B.8)

Next, (B.8) together with (3.6), Lemma B.2, and the monotonicity of ϕ yield

Λ(∇u) ≥ ϕ(|uz|q) + 2ϕ

(√
|ux|q|uy|q

)
≥ ϕ(|uz|q) + 2ϕ

(√
|ux × uy|q

)

≥ ϕ(|uz|q) + 2ϕ

(√
[Ju]q

|uz|q

)
.

(B.9)

Define

H(s, t) := ϕ(sq/p) + 2ϕ

(
t3q/(2p)

sq/(2p)

)
= ϕ(sq/p) + 2ϕ

[s( t
s

)3/2]q/p .

Then, in view of (B.9),

Λ(∇u) ≥ H
(
|uz|p, [Ju]p/3

)
.

Since ϕ is convex (see Remark B.4.1) and increasing it follows that H : R+×R+ → R is convex

(see Lemma A.3 and Remark A.2). Moreover, since ϕ′ is positive and increasing, it follows that

if t < s, then

p
q s

[1−q/p ]∂H

∂s
= ϕ′

(
sq/p

)
−
[
t

s

]3q/(2p)
ϕ′

(
t3q/(2p)

sq/(2p)

)

≥ ϕ′
(
sq/p

)
− ϕ′

[s( t
s

)3/2]q/p
≥ ϕ′

(
sq/p

)
− ϕ′

(
sq/p

)
≥ 0;

thus, for any t > 0, the mapping s 7→ H(s, t) is increasing on [t,∞). The remainder of the

proof of (B.6), when µ ≤ λ, is then similar to the proof of (3.3) in Proposition 3.1.
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B.2 The energy Λ(F) = ψ(αqβq/γq) + ψ(βqγq/αq) + ψ(γqαq/βq) with q ≥ 1.

In this subsection we prove Proposition B.3 when Λ is given by (B.2).

Proof of Proposition B.3: Case 2. Let Λ be given by (B.2) with q ≥ 1, where ψ ∈ C1(R+;R)

is increasing and convex. Fix λ > 0, u ∈ Aλ, and p ∈ [1, q]. Let µ be given by (3.2). Define

F = F(x, y, z) := ∇u(x, y, z), Ju := det∇u(x, y, z), and U :=
√
FTF, with eigenvalues α, β,

and γ.

We first note that, since ψ is increasing and convex, Lemma B.2, Jensen’s inequality, (B.7),

and (B.2) imply that

−
∫
C
Λ(∇u) dV = −

∫
C

[
ψ

([
αβ

γ

]q)
+ ψ

([
βγ

α

]q)
+ ψ

([
γα

β

]q)]
dV

≥ −
∫
C

3ψ
(

[Ju]q/3
)

dV

≥ 3ψ

(
−
∫
C
[Ju]q/3dV

)
≥ 3ψ

([
µ2λ

]q/3)
= Λ

([
µ2λ

]1/3
I
)
,

which establishes (B.5).

Now suppose that µ ≤ λ. Note that P := (adjF)(adjF)T/(detF) is symmetric and strictly

positive definite with eigenvalues αβ/γ, βγ/α, and γα/β. Then, in view of (B.2), Lemma B.1

(with ω(t) = ψ(tq)) yields, for any (x, y, z) ∈ C,

Λ(∇u) = ψ

([
αβ

γ

]q)
+ ψ

([
βγ

α

]q)
+ ψ

([
γα

β

]q)
≥ ψ
(
[ez ·Pez]

q
)

+ ψ
(
[ex ·Pex]q

)
+ ψ
(
[ey ·Pey]q

)
= ψ

(
|(adjF)Tez|2q

[Ju]q

)
+ ψ

(
|(adjF)Tex|2q

[Ju]q

)
+ ψ

(
|(adjF)Tey|2q

[Ju]q

)
,

(B.10)

where Ju := det∇u = αβγ. As in the proof in section B.1, Lemma B.2 now implies that

ψ

(
|(adjF)Tex|2q

[Ju]q

)
+ ψ

(
|(adjF)Tey|2q

[Ju]q

)
≥ 2ψ

(
|(adjF)Tex × (adjF)Tey|q

[Ju]q

)
(B.11)

However,

(adjF)Tex × (adjF)Tey = (detF)F(ex × ey) = [Ju]Fez,

Ju = [(adjF)F]Tez · ez = (adjF)Tez · Fez ≤ |(adjF)Tez||Fez|,
(B.12)

and Fez = uz.
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If we now combine (B.10), (B.11), and (B.12) we find, with the aid of the monotonicity of

ψ, that

Λ(∇u) ≥ ψ

(
[Ju]q

|uz|2q

)
+ 2ψ

(
|uz|q

)
. (B.13)

Define

H(s, t) := ψ

(
t3q/p

s2q/p

)
+ 2ψ

(
sq/p

)
= ψ

[s( t
s

)3]q/p+ 2ψ
(
sq/p

)
.

Then, in view of (B.13),

Λ(∇u) ≥ H
(
|uz|p, [Ju]p/3

)
.

Since ψ is convex and increasing and q ≥ p > 0, it follows that H : R+×R+ → R is convex (see

Lemma A.3 and Remark A.2). Moreover, since ψ′ is positive and increasing, it follows that if

t < s, then

p
2qs

[1−p/q ]∂H

∂s
= ψ′

(
sq/p

)
−
[
t

s

]3q/p
ψ′

(
t3q/p

s2q/p

)

≥ ψ′
(
sq/p

)
− ψ′

[s( t
s

)3]q/p
≥ ψ′

(
sq/p

)
− ψ′

(
sq/p

)
≥ 0;

thus, for any t > 0, the mapping s 7→ H(s, t) is increasing on [t,∞). The remainder of the

proof of (B.6) is then similar to the proof of (3.3) in Proposition 3.1.

B.3 The energy Λ(F) = (α2r + β2r + γ2r)
q/(2r)

with q ≥ 1 and r ≥ 1.

In this subsection we prove Proposition B.3 when Λ is given by (B.3).

Proof of Proposition B.3: Case 3. Let Λ be given by (B.3) with r ≥ 1 and q ≥ 1. Fix λ > 0,

u ∈ Aλ, and p ≥ 1 with p ≤ q and p ≤ 3r. Let µ be given by (3.2). Define F = F(x, y, z) :=

∇u(x, y, z), Ju := det∇u(x, y, z), and U :=
√
FTF, with eigenvalues α, β, and γ. Then

Lemma B.2, (B.7), and (B.3) yield

−
∫
C
Λ(∇u) dV = −

∫
C

(
α2r + β2r + γ2r

)q/(2r)
dV

≥ −
∫
C

(
3[αβγ]2r/3

)q/(2r)
dV

= 3q/(2r)−
∫
C
[Ju]q/3dV

≥ 3q/(2r)
[
µ2λ

]q/3
= Λ

([
µ2λ

]1/3
I
)
,



Compressible Elastic Cylinders in Tension 31

which establishes (B.5).

Now suppose that µ ≤ λ. If we then apply Lemma B.1 with ω(t) = tr and P = FTF (with

eigenvalues α2, β2, and γ2) we conclude that, for any (x, y, z) ∈ C,

α2r + β2r + γ2r ≥ (ez ·Pez)
r + (ex ·Pex)r + (ey ·Pey)r

= |Fez|2r + |Fex|2r + |Fey|2r

or, equivalently, [
Λ(∇u)

]2r/q
= α2r + β2r + γ2r ≥ |uz|2r + |ux|2r + |uy|2r. (B.14)

Next, (B.14) together with (3.6), the arithmetic-geometric mean inequality, and the mono-

tonicity of t 7→ tr yield [
Λ(∇u)

]2r/q ≥ |uz|2r + 2
(
|ux||uy|

)r
≥ |uz|2r + 2|ux × uy|r

≥ |uz|2r + 2

(
Ju
|uz|

)r
= |uz|2r

(
1 + 2

|Ju|r

|uz|3r

)
and hence [

Λ(∇u)
]p/q ≥ |uz|p

1 + 2

[
|Ju|p/3

|uz|p

]3r/pp/(2r) . (B.15)

Define

θ(s) :=
(

1 + 2s3r/p
)p/(2r)

, G(s, t) := sθ

(
t

s

)
, H(s, t) := G(s, t)q/p

and note that (B.15) implies

Λ(∇u) ≥ H
(
|uz|p, |Ju|p/3

)
.

Now

θ′′(s) = 3
ps

[−2+3r/p ]
(

1 + 2s3r/p
)[−2+p/(2r)][

ps3r/p + (3r − p)
]
> 0,

for s > 0 and 3r ≥ p. Consequently, (see, e.g., [30, Lemma A.1]) G and hence H = Gq/p is

strictly convex. Moreover,

∂G

∂s
= θ(τ) − τθ′(r) =

(
1 − τ3r/p

)(
1 + 2τ3r/p

)[−1+p/(2r)]
> 0

for τ := t/s < 1; thus for any t > 0 the mappings s 7→ G(s, t) and s 7→ H(s, t) are strictly

increasing on [t,∞). The remainder of the proof of (B.6) is then similar to the proof of (3.3)

in Proposition 3.1.
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B.4 The energy Λ(F) = [(αβ/γ)r + (βγ/α)r + (γα/β)r]q/r with q ≥ 1 and r ≥ 1.

In this subsection we prove Proposition B.3 when Λ is given by (B.4).

Proof of Proposition B.3: Case 4. Let Λ be given by (B.4) with r ≥ 1 and q ≥ 1. Fix λ > 0,

u ∈ Aλ, and p ≥ 1 with p ≤ q and p ≤ 3r. Let µ be given by (3.2). Define F = F(x, y, z) :=

∇u(x, y, z), Ju := det∇u(x, y, z), and U :=
√
FTF, with eigenvalues α, β, and γ. Then

Lemma B.2, (B.7), and (B.4) yield

−
∫
C
Λ(∇u) dV = −

∫
C

[(
αβ

γ

)r
+

(
βγ

α

)r
+

(
γα

β

)r ]q/r
dV

≥ −
∫
C

(
3[αβγ]r/3

)q/r
dV

= 3q/r−
∫
C
[Ju]q/3dV

≥ 3q/r
[
µ2λ

]q/3
= Λ

([
µ2λ

]1/3
I
)
,

which establishes (B.5).

Now suppose that µ ≤ λ. Then, if we apply Lemma B.1 with ω(t) = tr and P :=

(adjF)(adjF)T/(detF) (with eigenvalues αβ/γ, βγ/α, and γα/β) we conclude, with the aid of

(B.4), that for any (x, y, z) ∈ C

[
Λ(∇u)

]r/q ≥ (ez ·Pez)r + (ex ·Pex)r + (ey ·Pey)r

=
|(adjF)Tez|2r

|Ju|r
+

|(adjF)Tex|2r

|Ju|r
+

|(adjF)Tey|2r

|Ju|r
,

(B.16)

where Ju := det∇u = αβγ. The arithmetic-geometric mean inequality now implies that

|(adjF)Tex|2r + |(adjF)Tey|2r ≥ 2
∣∣(adjF)Tex × (adjF)Tey

∣∣r . (B.17)

However,

(adjF)Tex × (adjF)Tey = (detF)F(ex × ey) = [Ju]Fez,

Ju = [F(adjF)]Tez · ez = (adjF)Tez · Fez ≤ |(adjF)Tez||Fez|,
(B.18)

and Fez = uz.

If we now combine (B.16), (B.17), and (B.18) we find, with the aid of the monotonicity of
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t 7→ tr, that [
Λ(∇u)

]p/q ≥ ( |Ju|r

|uz|2r
+ 2|uz|r

)p/r
= |uz|p

(
|Ju|r

|uz|3r
+ 2

)p/r

= |uz|p
2 +

[
|Ju|p/3

|uz|p

]3r/pp/r
(B.19)

Define

θ(s) :=
(

2 + s3r/p
)p/r

, G(s, t) := sθ

(
t

s

)
, H(s, t) := G(s, t)q/p

so that (B.19) implies

Λ(∇u) ≥ H
(
|uz|p, |Ju|p/3

)
.

Then

θ′′(s) = 6
ps

[−2+3r/p ]
(

2 + s3r/p
)[−2+p/r][

ps3r/p + (3r − p)
]
> 0

for s > 0 and 3r ≥ p and hence (see, e.g., [30, Lemma A.1]) H is strictly convex. Moreover,

∂H

∂s
= θ(τ) − τθ′(τ) = 2

(
1 − τ3r/p

)(
2 + τ3r/p

)[−1+p/r]
> 0

for τ := t/s < 1; thus for any t > 0 the mappings s 7→ G(s, t) and hence s 7→ H(s, t) are strictly

increasing on [t,∞). The remainder of the proof of (B.6) is then similar to the proof of (3.3)

in Proposition 3.1.

C The Homogeneity of Energy-Minimizing Deformations II.

Fix N ∈ N and define Λ : M3×3
+ → RN by

Λ(F) :=
(
Λ1(F), Λ2(F), Λ3(F), . . . , ΛN (F)

)
, (C.1)

where each component Λi : M3×3
+ → R is one of the functions, Λ(F), given in this section and

pimax is the corresponding maximum value of the parameter p.

Lemma C.1. Let Λ be given by (C.1). Suppose that the stored energy W ∈ C1(M3×3
+ ; [0,∞))

satisfies

W (F) = Ψ(Λ(F), (detF)p/3),

where p ∈ [1, pmax] with pmax := min{pimax, 1 ≤ i ≤ n}, Ψ : (0,∞)N+1 → R is (strictly) convex,

and Λ is given by (C.1). Then

t 7→W (
p
√
t I) is (strictly) convex on R+.
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Moreover, if in addition the reference configuration is stress free, then

λ 7→W (λI) is (strictly) increasing on [1,∞).

Proof. To obtain convexity define

ξ(t) := W (
p
√
t I) = Ψ

(
Λ(

p
√
t I), t

)
.

Then Proposition B.5 together with Proposition A.1 yield the (strict) convexity of ξ.

Next, if we take the derivative of ξ we find that

ξ̇(t) =
p√t
pt S(

p
√
t I) : I,

where S is the Piola-Kirchhoff stress tensor (2.6). Thus, if the reference configuration is stress

free, ξ̇(1) = 0. The (strict) convexity of ξ then implies that ξ and hence the mapping λ 7→W (λI)

is (strictly) increasing on [1,∞).

C.1 Energy Reduction by Symmetrization

Theorem C.2. Assume that the reference configuration is stress free. Suppose that the stored

energy W ∈ C1(M3×3
+ ; [0,∞)) satisfies

W (F) = Ψ
(
Λ(F), (detF)p/3

)
, (C.2)

where p ∈ [1, pmax] with pmax := min{p1max, p
2
max, p

3
max, . . . , p

N
max}, Λ is given by (C.1), and

Ψ : (0,∞)N+1 → R is increasing in each of its first N -arguments and convex. Let λ ≥ 1 and

u ∈ Aλ. Define µ = µ(λ, p,u) > 0 to be the unique positive real number that satisfies (3.2).

Then

−
∫
C
W
(
∇u
)
dV ≥ −

∫
C
W
(
∇uν

λ

)
dV, (C.3)

where uν
λ is given by (3.1) with ν := µ if µ ≤ λ and ν := λ if µ ≥ λ. Moreover, if µ ≤ λ, p > 1,

and Ψ is strictly increasing in one of its first N -arguments, then (C.3) is a strict inequality

unless u ∈ PSλ.

Proof. Fix λ ≥ 1, u ∈ Aλ, and define µ by (3.2). If we now let F = ∇u in (C.2), integrate over

the cylinder C, and apply Jensen’s inequality to the convex function Ψ we conclude, with the

aid of (3.2), that

−
∫
C
W (∇u) dV = −

∫
C
Ψ
(
Λ(∇u), [Ju]p/3

)
dV

≥ Ψ

(
−
∫
C
Λ(∇u) dV,−

∫
C

[Ju]p/3 dV

)
= Ψ

(
−
∫
C
Λ(∇u) dV,

(
µ2λ

)p/3)
.

(C.4)
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Now suppose that µ ≤ λ. Then we can make use of Proposition B.3, the monotonicity of

Ψ in each of its first N -arguments, (3.1), and (C.2), to get

Ψ

(
−
∫
C
Λ(∇u) dV,

(
µ2λ

)p/3) ≥ Ψ

(
−
∫
C
Λ(∇uµ

λ) dV,
(
µ2λ

)p/3)
= −
∫
C
W
(
∇uµ

λ

)
dV,

(C.5)

which when combined with (C.4) yields the desired inequality, (C.3) with ν = µ. Moreover, if

Ψ is strictly increasing in, say, its i-argument, then the inequality in (C.5) is a strict inequality

unless

−
∫
C
Λi(∇u) dV = −

∫
C
Λi(∇uµ

λ) dV.

Proposition B.3 now yields u ∈ PSλ when p > 1.

Finally, suppose that µ ≥ λ so that ν = λ. Then we can make use of Proposition B.3, the

monotonicity of Ψ in each of its first N -arguments, (3.1), and (C.2), to obtain

Ψ

(
−
∫
C
Λ(∇u) dV,

(
µ2λ

)p/3) ≥ Ψ
(
Λ
([
µ2λ

]1/3
I
)
,
(
µ2λ

)p/3)
= W (ηI) , where η := (µ2λ)1/3 ≥ λ ≥ 1

(C.6)

and we have made use of (C.2). However, Lemma C.1 then implies that W (ηI) ≥W (λI), which

together with (C.4) and (C.6) yields the desired result, (C.3) with ν = λ.

C.2 Existence of a Homogeneous Minimizer

Theorem C.3. Let W , Ψ , Λ, and p satisfy the hypotheses of Theorem C.2. Suppose, in

addition, that

lim
|F|→∞

W (F) = +∞, lim
detF→0+

W (F) = +∞. (C.7)

Then for each λ ≥ 1 there exists a κ = κ(λ) > 0 such that the deformation

uκ
λ(x, y, z) :=

κxκy
λz

 . (C.8)

is an absolute minimizer of the energy among deformations in Aλ.

Proof. Fix λ ≥ 1. Then (C.7) and Proposition 2.5 yield α > 0 and β > 0 such that

Φ(s, t, λ) ≥ Φ(α, β, λ) for every s > 0 and t > 0. (C.9)
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Now apply Theorem C.2 with u = u∗, where

u∗(x, y, z) =

αxβy
λz

 ,
to get a κ := ν > 0 such that

Φ(α, β, λ) = Ē(u∗) ≥ Ē(uκ
λ) = Φ(κ, κ, λ), (C.10)

where we have made use of (3.12) and (C.8).

We claim that the homogeneous deformation given by (C.8) with this value of κ is an

absolute minimizer of E among deformations in Aλ. To see this, let u ∈ Aλ. Then, by

Theorem C.2, there is ν > 0 such that the homogeneous deformation uν
λ given by (3.1) satisfies

(see (3.12))

Ē(u) ≥ Ē(uν
λ) = Φ(ν, ν, λ). (C.11)

The desired minimality of uκ
λ now follows from (C.10), (C.11), and (C.9) with s = t = ν.
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