
Preface

An example

The example which follows is a work session on the computer, using the
software MACSYMA. The user’s commands are entered in the lines be-
ginning with (ci). Here we are dealing with a limited (or Taylor series)
expansion, calculating an integral and checking that the derivative in the
result is indeed the initial function.

(c2) taylor(sinh(sin(x))-sin(sinh(x)) ,x ,0 , 15);
7 11 15
x x 5699 x

(d2)/T/ -- - ---- - ---------- + . . .
45 1575 1277025750

(c3) primitive:integrate(1/(x**2 + 1) ** 4 ,x);
5 3

5 atan(x) 15 x + 40 x + 33 x
(d3) --------- + ----------------------------

16 6 4 2
48 x + 144 x + 144 x + 48

(c4) derivative:diff(primitive, x);
4 2

75 x + 120 x + 33
(d4) ----------------------------

6 4 2
48 x + 144 x + 144 x + 48

5 3 5 3
(15 x + 40 x + 33 x) (288 x + 576 x + 288 x) 5

- --- + -----------
6 4 2 2 2

(48 x + 144 x + 144 x + 48) 16 (x + 1)

v

vi Preface

(c5) factor(ratsimp(derivative));
1

(d5) ---------
2 4

(x + 1)

All these calculations can, in theory, be done by a first year student,
but they are quite laborious and it is difficult to do them with pencil and
paper without making a mistake.

It is not sufficiently well-known that this type of calculation is as much
within the range of computers as is numerical calculation. The purpose of
this book is to demonstrate the existing possibilities, to show how to use
them, and to indicate the principles on which systems of non numerical
calculation are based, to show the difficulties which the designers of these
systems had to solve — difficulties with which the user is soon faced.

But before we try to describe how the authors hope to carry out this
ambitious design, we should first try to define the subject better.

Scientific calculation and algebraic calculation
From the start of electronic calculation, one of the main uses of computers
has been for numerical calculation. Very soon, applications to manage-
ment began to dominate the scene, as far as the volume of calculation
assigned to them is concerned. Nevertheless, scientific applications are still
the most prestigious, especially if we look at the performance required of the
computer: the most powerful computers are usually reserved for scientific
calculation.

This concept of “scientific calculation” conceals an ambiguity, which it
is important to note: before computers appeared on the scene, a calculation
usually consisted of a mixture of numerical calculation and what we shall
call “algebraic calculation”, that is calculation by mathematical formulae.
The only example of purely numerical calculation seems to have been the
feats of calculating prodigies such as Inaudi: the authors of tables, especially
of logarithms, did indeed carry out enormous numerical calculations, but
these were preceded by a restatement of the algebraic formulae and methods
which were essential if the work was to be within the bounds of what
is humanly possible. For example, the famous large calculations of the
19th century include a large proportion of formula manipulation. The best
known is certainly Le Verrier’s calculation of the orbit of Neptune, which
started from the disturbances of the orbit of Uranus, and which led to the
discovery of Neptune. The most impressive calculation with pencil and
paper is also in the field of astronomy: Delaunay took 10 years to calculate
the orbit of the moon, and another 10 years to check it. The result is not
numerical, because it consists for the most part of a formula which by itself
occupies all the 128 pages of Chapter 4 of his book.

Computer Algebra vii

The ambiguity mentioned above is the following: when computers came
on the scene, numerical calculation was made very much easier and it be-
came commonplace to do enormous calculations, which in some cases made
it possible to avoid laborious algebraic manipulations. The result was that,
for the public at large and even for most scientists, numerical calculation
and scientific calculation have become synonymous. When the title or list
of subjects of a congress or conference includes the words “scientific calcula-
tion”, we can generally be sure that it is a question of numerical calculation
only, even if computer algebra is also in the list of subjects.

However, numerical calculation does not rule out algebraic calculation:
writing the most trivial numerical program requires a restatement of the
formulae on which the algorithm is based. And, the power of computers
does not solve everything: calculating the development of the atmosphere
with the precision needed by meteorologists for a forecast 48 hours ahead
would require much more than 48 hours on the most powerful computer at
present available (CRAY). Multiplying their power by 10 would make the
situation only marginally better for, at the same time, the theory would
be being improved and the mesh-size would have to be divided by 2 (to
distinguish for example between the weather in Paris and that in Orléans),
and this would multiply by 8 the number of numerical calculations needed.

Computer Algebra

Thus algebraic calculation has not lost its relevance. However, it is most fre-
quently done with pencil and paper, even though the first software intended
to automate it is already quite old [Kahrimanian, 1953; Nolan, 1953]. It
was very quickly seen that such software for helping algebraic calculation
would have to be a complete system, which included a method with a very
special structure for representing non numerical data, a language making it
possible to manipulate them, and a library of effective functions for carrying
out the necessary basic algebraic operations.

And so there appeared systems which run very well, and the most
widely used of these are described or referred to in this book.

Writing, developing and even using these systems gradually merged
into an autonomous scientific discipline, obviously based on computer sci-
ence. But the objectives are in the field of artificial intelligence, even if the
methods are moving further and further away from it. Moreover, the al-
gorithms used bring into play less and less elementary mathematical tools.
And so this discipline seems to form a frontier between several fields, and
this adds both to its richness and, from the research aspect, to its difficulty.

The name of this discipline has long hesitated between “symbolic and
algebraic calculation”, “symbolic and algebraic manipulations”, and finally
settled down as “Computer Algebra” in English, and “Calcul Formel”, ab-

viii Preface

breviated to CALSYF, in French. At the same time societies were formed
to bring together the research workers and the users of this discipline: the
world-wide organisation is SIGSAM(1) group of the ACM(2) which organ-
ises the congresses SYMSAC and EUROSAM and publishes the bulletin
SIGSAM. The European group is called SAME(3) and organises congresses
called EUROCAM, EUROSAM,... the proceedings of which are referred
to in the bibliography. For French research workers there is the body of
the CNRS (Centre national de la recherche scientifique), the GRECO(4)

of Computer Algebra. And since 1985 a specialist review, the Journal of
Symbolic Computation, has been published.

Computer Algebra systems

There are very many computer algebra systems; but scarcely more than
ten are up-to-date, general and fairly widely available. In this book the
authors have chosen four as being especially representative:

- MACSYMA, the most developed.
- REDUCE, the most widely available of all the large systems.
- DERIVE, the system most easily available to micro-computers, which

means that it is very widely used but at the same time means that it
is mainly used by beginners.

- AXIOM, a very new system, with (currently) restricted availability,
but which, because of its completely different structure, can overcome
some limitations the other systems share, and can be the prototype for
the next generation of Computer Algebra systems.
The systems meioned here, and most of those not mentioned, are very

user friendly; admittedly, the superficial syntax of the language is not the
same; admittedly, the library of available functions varies from some dozens
to more than a thousand; admittedly, the internal structure of the system
varies considerably; but they all share the following properties:

- The programming is mainly interactive: the user does not, in theory,
know either the form or the size of his results and must therefore be
able to intervene at any time.

- Most of the data worked on are mathematical expressions, of which at
least the external representation is the one everyone is accustomed to.

- The language used is “ALGOL-like”.
- The implementation language is often LISP; in any case, the data

are list structures and tree structures, and memory management is

(1) Special Interest Group in Symbolic and Algebraic Manipulations.
(2) Association for Computing Machinery.
(3) Symbolic and Algebraic Manipulations in Europe.
(4) Groupe de REcherches COordonnées.

Computer Algebra ix

dynamic with automatic recovery of the available space.
Thus, once one of the Computer Algebra systems has been mastered,

changing to a different one does not usually present the programmer with
many problems, with far fewer in any case than does changing the system
used at the same time as changing computer.

That is why the authors thought it better to write a general introduc-
tion to Computer Algebra than a manual for a particular system.

And so, the introductory chapter “How to use a Computer Algebra
system” is written in MACSYMA, the commands and the results are ex-
tremely readable and easily understood. But REDUCE has been chosen
for the detailed description of a system, because it is more widely available.
The other chapters do not usually refer to a particular system.

Accessibility of Computer Algebra systems
Computer Algebra systems can generally be used only on fairly large ma-
chines whose operating system works in virtual memory: to work without
too much difficulty, a mega-byte of main memory seems to be the smallest
amount suitable. The most economical system is obviously DERIVE; the
most costly in work memory is AXIOM for which more than 10 mega-bytes
of work space are necessary at present. The one which needs most disk space
is probably MACSYMA whose compiled code is getting on for mega-bytes,
to which must be added several mega-bytes of line documentation.

At present the availability of the systems is as follows: MACSYMA
runs on VAX, and some personal work-stations (Symbolics, Sun), and even
on 386-based PCs. REDUCE can be used on almost all the main models
of large machines or of mini-computers, even though in some cases only
the old versions are available (Cyber, IBM series 360, 370,. . ., MULTICS,
all the UNIX systems,. . .). DERIVE can be used on almost every micro-
computer. As for AXIOM, it only works on IBM’s VM/CMS or RS/6000
systems.

Using Computer Algebra systems
For a beginner, the Computer Algebra languages are some of the simplest to
use. In fact, at first, he only needs to know some functions which allow him
to rewrite the problem in question in a form very similar to its mathematical
form. Even if the rewriting is clumsy or incorrect, the interactivity means
that after some playing around he can quickly find results unobtainable
with pencil and paper. And, for many applications, that is sufficient.

In programming language such as FORTRAN the syntactical subtleties
require a long apprenticeship whereas the work principles of the compiler
can be totally ignored, but here, the user must very quickly grasp “how
that works”, especially how the data are represented and managed.

x Preface

In fact, although it is usually difficult to foretell the time a calculation
will take and what its size will be, a knowledge of the working principles can
give an idea as to their order of magnitude and, if need be, optimise them.
These estimates are in fact essential: for most algebraic calculations, the
results are quasi-instantaneous, and all goes well. But, if this is not so, the
increases in the time and memory space required are usually exponential.
So the feasibility of a given calculation is not always obvious, and it is
stupid to commit large resources when a failure can be predicted.

Moreover, an intelligent modelling of the problem and a program adap-
ted to the structure of the data may make an otherwise impossible problem
easy. Thus, in Chapter 1 two programs for calculating the largest coefficient
of a polynomial are given; the text of the one which seems most natural
for someone used to FORTRAN is considerably more complicated than
the other, but above all it needs 10 times more time for a polynomial of
degree 30 ; if we move on to a polynomial of degree 1000, about 30 times
greater, the running time of the second program is in theory multiplied by
30, whereas that of the first is multiplied by a factor of the order of 1000,
which gives a running time ratio of 300 between the two programs, and real
times of about one minute and five hours.

Acquiring an efficient programming style and an ability to foresee the
size of a calculation is therefore much more important here than in numer-
ical calculation where the increase is generally linear. Unfortunately, this
is for many a matter of experience, which it is hard to pass on by way of
a manual. However, familiarity makes it easier to acquire this experience;
and that is why such a large part of the book is devoted to describing the
mathematical working of Computer Algebra systems.

Plan of the book

The book can be divided into four sections.
The first (Chapter 1) is an introduction to Computer Algebra with

the help of annotated examples, most of which are written in MACSYMA.
They can usually be understood on a first reading. Nevertheless, it is a
very useful exercise to program these examples or similar ones in MAC-
SYMA or in some other system. This obviously requires a knowledge of
the corresponding users’ manual.

The second part, which consists of Chapters 2, 3, and 4, describes the
working of Computer Algebra systems. Besides being interesting in itself,
the description of the problems which had to be solved and of the principles
behind the chosen solutions is essential for helping the user to get round the
problems of “combinatorial explosion” with which he will be confronted.

Chapter 5 makes up the third part and gives two Computer Algebra
problems, still at the research stage, even though the softwares described

Computer Algebra xi

are beginning to be widely used. They are very good examples, which
require all the power and all the possibilities of Computer Algebra systems
to solve difficult natural problems; they are good illustrations both of the
possibilities and of the difficulties inherent in this discipline.

Finally, a detailed presentation of REDUCE, as an appendix, enables
this book to serve as a manual, at least for the most widely used of these
systems.

There is also a detailed bibliography, which includes many more ref-
erences than appear explicitly in the text, so that the reader has access to
the methods, results and algorithms for which there was no room in the
book.

In conclusion, let us hope that this book, which till now has no parallel
anywhere in the world, will help to increase the use of this tool, so powerful
and so little known: Computer Algebra.

Daniel Lazard
Professor at the P. and M. Curie University (Paris VI)

ACKNOWLEDGEMENTS

The authors would like to thank all those who read the various drafts
of this book, in particular Mrs. H. Davenport, J. Della Dora, D. Duval,
M. Giusti, D. Lazard and J.C. Smith.

This book was typeset with the TEX system. The author of TEX,
D.E. Knuth, is responsible for the typographical excellence of the book,
but obviously not for the errors. The presentation owes much to the TEX
experts: C. Goutorbe at the C.I.C.G.* and C.E. Thompson of the Univer-
sity of Cambridge.

For the second edition, the authors would like to thank everyone who
commented on the first edition.

* The French original was prepared on the hardware of the C.I.C.G.
(Inter-University Computer Centre of Grenoble).

xii Preface

Foreword

It is now over thirty years since the computer was first used to per-
form algebraic calculations. The resulting programs could differentiate very
simple expressions, a far cry from the impressive array of sophisticated
calculations possible with today’s algebraic computation programs. Until
recently, however, such programs have only been accessible to those with
access to large main-frame computers. This has limited both the use and
the appreciation of algebraic computation techniques by the majority of
potential users. Fortunately, the personal computer revolution is changing
this; readily available machines are now appearing that can run existing
algebra programs with impressive ease. As a result, interest in computer
algebra is growing at a rapid pace.

Although programs exist for performing the esoteric algebraic com-
putations of interest to professional mathematicians, in this book we are
mainly concerned with the constructive methods used by physical scien-
tists and engineers. These include such mundane things as polynomial and
series manipulation, as well as more sophisticated techniques like analytic
integration, polynomial factorization and the analytic solution of differ-
ential equations. In addition, a growing number of scientists are finding
that these programs are also useful for generating numerical code from the
resulting expressions.

Algebraic computation programs have already been applied to a large
number of different areas in science and engineering. The most extensive
use has occurred in the fields where the algebraic calculations necessary are
extremely tedious and time consuming, such as general relativity, celestial
mechanics and quantum chromodynamics. Before the advent of computer
algebra, such hand calculations took many months to complete and were er-
ror prone. Personal workstations can now perform much larger calculations

xiii

xiv Foreword

without error in a matter of minutes.
Given the potential of computer algebra in scientific problem solving,

it is clear that a text book is needed to acquaint users with the available
techniques. There are books concerned with the use of specific algebraic
computation programs, as well as those oriented towards computer scien-
tists who study the field. However, this is the first general text to appear
that provides the practising scientist with the information needed to make
optimal use of the available programs. The appearance of an English ver-
sion of the original French text also makes it accessible to a wider class of
readers than was previously possible.

In addition to being a general text on the subject, this book also in-
cludes an annex describing the use of one particular algebra system, namely
REDUCE, a system I first designed in the late 1960s. The version described
here has undergone many changes and extensions since those days, and is
now in use by thousands of scientists and engineers throughout the world
on machines ranging in power from the IBM PC to the Cray X-MP. I am
sure that they will welcome this useful exposition of the system.

Anthony C. Hearn
The RAND Corporation

December 1987

ACKNOWLEDGEMENTS

The translators would like to thank J.P. Fitch and J.C. Smith for
their helpful comments on this translation, as well as the reader R. Cut-
ler at Academic Press. This translation was also prepared with TEX, and
C.E. Thompson again provided much useful advice. The data transfers
involved in preparing this translation would have been impossible without
the helpful advice and support of the University of Cambridge Computing
Service. For the re-printing, R.J. Bradford and M.A.H. MacCallum sig-
nalled a few mis-prints, which have been corrected. The second edition
owes much to the helpful comments of many, notably A.H.M. Levelt.

Contents

Preface . v
Foreword to English translation xiii

1 How to use a Computer Algebra system 1
1.1 Introduction . 1
1.2 Features of Computer Algebra systems 2
1.3 Syntax of the associated languages 3
1.4 Areas covered by existing systems 3
1.5 Computer Algebra by example 4

1.5.1 Simple operations on numbers 4
1.5.2 Polynomials and rational fractions 10
1.5.3 Matrix calculation 18
1.5.4 Differentiation – Taylor series 28
1.5.5 Simplification of formulae 34
1.5.6 Integration . 42
1.5.7 Ordinary differential equations 48

1.6 MACSYMA’s possibilities in Algebra 56
1.6.1 General Possibilities 56
1.6.2 The division of the circle into 17 equal parts 60

1.7 Availability of MACSYMA 70
1.8 Other systems . 70
1.9 AXIOM . 71

2 The problem of data representation 75
2.1 Representations of integers 75
2.2 Representations of fractions 77
2.3 Representations of polynomials 78

2.3.1 Canonical and normal representations 79

xv

xvi Table of contents

2.3.2 Dense and sparse representations 81
2.3.3 The g.c.d. 84

2.4 Polynomials in several variables 86
2.5 Representations of rational functions 88
2.6 Representations of algebraic functions 91

2.6.1 The simple radicals 91
2.6.2 Nested radicals 92
2.6.3 General algebraic functions 93
2.6.4 Primitive elements 95
2.6.5 Dynamic evaluation of algebraic functions 96

2.7 Representations of transcendentals 97
2.8 Representations of matrices 100

2.8.1 Dense matrices 100
2.8.2 Bareiss’ algorithm 103
2.8.3 Sparse matrices 104

2.9 Representations of series 105
2.9.1 Taylor series: simple method 105
2.9.2 Taylor series: Norman’s method 108
2.9.3 Other series . 109

3 Polynomial simplification 111
3.1 Simplification of polynomial equations 111

3.1.1 Reductions of polynomials 112
3.1.2 Standard (Gröbner) bases 113
3.1.3 Solution of a system of polynomials 115
3.1.4 Buchberger’s algorithm 117
3.1.5 Relationship to other methods 120

3.2 Simplification of real polynomial systems 122
3.2.1 The case of R1 122

3.2.1.1 Isolation of roots 124
3.2.1.2 Real algebraic numbers 128

3.2.2 The general case — (some definitions) 129
3.2.2.1 Decomposition of Rn 130

3.2.3 Cylindrical decompositions 131
3.2.3.1 The case of R2 133
3.2.3.2 The general case 134

3.2.4 Applications of cylindrical decomposition 135
3.2.4.1 Quantifier elimination 135
3.2.4.2 Robotics 137

4 Advanced algorithms 141
4.1 Modular methods . 141

4.1.1 g.c.d. in one variable 141

Computer Algebra xvii

4.1.1.1 The modular – integer relationship 143
4.1.1.2 Calculation of the g.c.d. 145
4.1.1.3 Cost of this algorithm 147

4.1.2 g.c.d. in several variables 150
4.1.2.1 Bad reduction 153
4.1.2.2 The algorithm 154
4.1.2.3 Cost of this algorithm 156

4.1.3 Other applications of modular methods 157
4.1.3.1 Resultant calculation 157
4.1.3.2 Calculating determinants 158
4.1.3.3 Inverse of a matrix 158
4.1.3.4 Other applications 160

4.2 p-adic methods . 161
4.2.1 Factorisation of polynomials in one variable 161

4.2.1.1 Berlekamp’s algorithm 161
4.2.1.2 The modular – integer relationship 164

4.2.2 Hensel’s Lemma — linear version. 167
4.2.2.1 Hensel’s Lemma — quadratic version 168
4.2.2.2 Hensel’s Lemma — refinement of the inverses . . 170
4.2.2.3 The factorisation algorithm 171
4.2.2.4 The leading coefficient 174

4.2.3 Factorisation in several variables 175
4.2.3.1 The algorithm 176
4.2.3.2 The leading coefficient 178

4.2.4 Other applications of p-adic methods 179
4.2.4.1 g.c.d. by a p-adic algorithm. 179

5 Formal integration and differential equations 183
5.1 Formal integration 183

5.1.1 Introduction 183
5.1.2 Integration of rational functions 185

5.1.2.1 The näıve method 185
5.1.2.2 Hermite’s method 187
5.1.2.3 Horowitz-Ostrogradski method 188
5.1.2.4 The logarithmic part 188

5.1.3 The integration of more complicated functions 190
5.1.4 Integration of logarithmic functions 192

5.1.4.1 The decomposition lemma 192
5.1.4.2 The polynomial part 193
5.1.4.3 The rational and logarithmic part 195

5.1.5 Integration of exponential functions 196
5.1.5.1 The decomposition lemma 197
5.1.5.2 The generalised polynomial part 199

xviii Table of contents

5.1.5.3 The rational and logarithmic part 199
5.1.6 Integration of mixed functions 200
5.1.7 Integration of algebraic functions 203
5.1.8 Integration of non-elementary functions 204

5.2 Algebraic solutions of o.d.e.s 204
5.2.1 First order equations 205

5.2.1.1 Risch’s problem 205
5.2.1.2 A theorem of Davenport 207

5.2.2 Second order equations 208
5.2.3 General order equations 210

5.2.3.1 Homogeneous equations 210
5.2.3.2 Inhomogeneous equations 210

5.3 Asymptotic solutions of o.d.e.s 212
5.3.1 Motivation and history 212
5.3.2 Classification of singularities 213
5.3.3 A program for solving o.d.e.s at a regular singularity . . 216
5.3.4 The general structure of the program 218
5.3.5 Some examples treated by “DESIR” 221

5.3.5.1 Examples with Bessel’s equation 221
5.3.5.2 Another example 223

Appendix. Algebraic background 229
A.1 Square-free decomposition 229
A.2 The extended Euclidean algorithm 231
A.3 Partial fractions . 232
A.4 The resultant . 233
A.5 Chinese remainder theorem 236

A.5.1 Case of integers 237
A.5.2 Case of polynomials 238

A.6 Sylvester’s identity 239
A.7 Termination of Buchberger’s algorithm 242

Annex. REDUCE: a Computer Algebra system 245
R.1 Introduction . 245

R.1.1 Examples of interactive use 246
R.2 Syntax of REDUCE 248

R.2.1 Syntactic elements 248
R.2.2 Expressions 249

R.2.2.1 Different types of expressions 249
R.2.2.2 Simplification of expressions 250
R.2.2.3 List expressions 252

R.2.3 Declarations 253
R.2.3.1 Plain variables 253

Computer Algebra xix

R.2.3.2 Asymptotic declarations 254
R.2.3.3 Array declarations 255
R.2.3.4 Operator declarations 255
R.2.3.5 Procedure declarations 257

R.2.4 Commands . 257
R.2.4.1 Assignment 257
R.2.4.2 Instruction group 258
R.2.4.3 Conditional statement 258
R.2.4.4 Iteration statement 258
R.2.4.5 Blocks 259
R.2.4.6 Local value assignment 259

R.3 Built-in facilities . 259
R.3.1 Prefix operators 259

R.3.1.1 Numeric operators 259
R.3.1.2 Mathematical operators 260
R.3.1.3 Differentiation 260
R.3.1.4 Integration 260
R.3.1.5 Factorisation 261
R.3.1.6 Resultants 261
R.3.1.7 Solution of systems of equations 262

R.3.2 Manipulation of expressions 263
R.3.2.1 Output of expressions 263
R.3.2.2 Parts of expressions 265

R.3.3 Substitution 267
R.3.3.1 Local substitution 267
R.3.3.2 Global substitution 268

R.4 Matrix algebra . 271
R.5 IRENA . 271
R.6 Conclusion . 274

Bibliography . 275

Index . 293

1. How to use a
Computer Algebra
system

1.1 INTRODUCTION
The idea of doing algebraic calculation on computers is not new. From l960
on, numerous programs have appeared on the market which are intended
to show that in the scientific field one can go beyond the purely numerical
area usually attributed to computers. The language LISP dates from this
period and opened the way to the first spectacular demonstrations of the
following possibilities: formal integration and proofs of theorems. In the
same vein, some people very quickly saw that they could ask the machine to
carry out algebraic operations which, though tedious, were useful for later
numerical calculation: the expansion of polynomial expressions, formal dif-
ferentiation etc. . . . The appearance of time-sharing systems contributed a
great deal to the generalisation of programs of algebraic calculation, and
they have gradually become genuine sub-systems which can be used in a
language close to the usual algorithmic languages. But as the subject is
much more open than numerical calculation or management there has never
been any standardisation, as there has been for those languages. That is
one of the reasons why these possibilities have so long been ignored by the
scientific and industrial world. For a long time too the use of these systems
has been limited to a certain type of machine and obviously this limitation
has not helped to spread knowledge of them. However, recently things have
been changing: the language LISP is finding favour again and its numer-
ous dialects and variations have not prevented a system such as REDUCE
from being available on a great number of computers and work-stations.
As of now, MACSYMA is commercially available on a certain number of
computers and is no longer considered to be an inaccessible system. More
recently, there have appeared some systems for micro-computers which, al-
beit limited, at least give us some feeling for the subject: muMATH and

1

2 How to use a Computer Algebra system

its replacement DERIVE fall into this catgeory. More recently, the appear-
ance of competing systems such as MAPLE and MATHEMATICA (written
in C) and AXIOM (formerly SCRATCHPAD, and available on IBM com-
puters) are certainly contributing to the greater understanding and use of
computer algebra.

1.2 FEATURES OF COMPUTER ALGEBRA SYSTEMS

The most intuitive, although somewhat restrictive, approach to Computer
Algebra systems is to say that they are made for the manipulation of every-
day scientific and engineering formulae. A mathematical formula which is
described in one of the usual languages (FORTRAN, PASCAL, BASIC,. . .)
can only be evaluated numerically, once the variables and parameters have
themselves been given numerical values. In a language which allows of al-
gebraic manipulations, the same formula can also be evaluated numerically,
but above all it can be the object of formal transformations: differentiation,
development in series, various expansions, even integration.

For example, one can, with just one command, ask for the decomposi-
tion into partial fractions of

x2 − 5
x(x − 1)4

which is −5
x

+
5

x− 1
− 5

(x− 1)2
+

6
(x− 1)3

− 4
(x− 1)4

and fairly easy to do by hand. But it is nice to do by machine the decom-
position of

x+ a

x(x− b)(x2 + c)

which is a rather more complicated form:

− a

bcx
+

a+ b

(bc+ b3)(x − b)
− (c− ab)x+ (b+ a)c

(c2 + b2c)(x2 + c)
.

As a general rule, Computer Algebra systems are drawn up to meet
the two following requirements:

- To provide a set of basic pre-programmed commands which will hand
over to the machine the wearisome calculations which occur in a process run
completely by the user: this is the role of an advanced desk-top machine.

- To offer a programming language which lets us define higher-level
commands or procedures to enlarge the original set of commands.

Computer Algebra 3

We see that there is no fundamental conflict with the aims of languages
such as LISP or APL: the same conversational aspect, the same possibili-
ties for defining procedures or functions and thus the same possibilities for
adding to the existing libraries on a given subject.

Naturally, when the algorithm is suitable, it is perfectly possible to
exploit algebraic calculation as a batch job. That depends only on the
computing environment and it is up to the user to see that all the data are
defined at the time of execution.

1.3 SYNTAX OF THE ASSOCIATED LANGUAGES
Although there are some differences between the systems, syntax is not the
main problem of Computer Algebra. In general a few hours and a little
practice are perfectly adequate. The syntax can be said to be largely that
of PASCAL. Of course there is an assignment instruction, the idea of calling
functions (commands), a fairly rich set of control structures (if, do, while,
repeat etc. . . .), possibilities for declaring procedures In brief, all the
arsenal of programming languages required for writing algorithms.

1.4 AREAS COVERED BY EXISTING SYSTEMS
If it is to be useful and to keep the user’s interest, a Computer Algebra
system must cover by means of a rich set of commands those areas which
immediately come to mind when one puts aside the limitations of hardware,
and of traditional programming languages. The following tools are part of
the necessary equipment:

- Operations on integers, on rational, real and complex numbers with
unlimited accuracy. Chapter 2 shows the importance of this.

- Operations on polynomials in one or more variables and on rational
fractions. In short, the obvious rational operations, calculating the g.c.d.,
factorising over the integers.

- Calculations on matrices with numerical and/or symbolic elements.
- Simple analysis: differentiation, expansion in series, Padé approxi-

mants etc.
- Manipulation of formulae: various substitutions, selection of coeffi-

cients and of parts of formulae, numerical evaluation, pattern recognition,
controlled simplifications,

Starting out from this common base, the systems may offer possibilities
in specific areas, possibilities which to some extent characterise their degree
of development. For example:

- Solution of equations.
- Formal integration.
- Calculation of limits.
- Tensor calculus.

4 How to use a Computer Algebra system

In addition, users have an opportunity to add to the function library by
passing on work which is sufficiently general to interest a group of people.
A typical example is the SHARE library of MACSYMA.

1.5 COMPUTER ALGEBRA BY EXAMPLE

In what follows we have chosen to expound, using the MACSYMA system,
a series of examples from some of the areas mentioned. Most of the ex-
amples can be repeated using other systems, especially REDUCE which
is described in the annex. It is obvious that we are not trying to replace
the MACSYMA programmers’ manual and the reader will at times have
to be satisfied with brief explanations given in the commentary. The ex-
amples are printed as they were given to the machine. The typography of
the results has not been changed. The lines typed by the user are labelled
(ci) and finish with “;” or “$”. The latter symbol tells MACSYMA not to
print the result. So time is saved if printing the result is not essential. The
result of a command is labelled (di). The symbol % used in a command
is the value associated with the previous command. The constants π, e, i
are written %pi, %e, %i. The assignment symbol is the colon. The running
times quoted after certain commands are for the version of MACSYMA
distributed on behalf of the U.S. Department of Energy, and installed on
an IBM RISC-6000 (Model 970).

1.5.1 Simple operations on numbers

(c1) n0 : 123456789123456789 * 123456789 + 987654321123456789;

(d1) 15241579753086420873647310

(c2) n1 : 100! ;

(d2) 93326215443944152681699238856266700490715968264381621

46859296389521759999322991560894146397615651828625369

7920827223758251185210916864000000000000000000000000

(c3) 101! / % ;

(d3) 101

MACSYMA has predicates and functions whose meaning is obvious
but the application of which can be very long. That is true of the predicate
of primality primep or of the factorisation function factor.

(c4) primep(12);

Computer Algebra 5

(d4) false

(c5) primep(216091);

(d5) true

(c6) factor(2**63-1);

2
(d6) 7 73 127 337 92737 649657

Let us calculate one of the largest prime numbers known, but not print
it since it has 65049 decimal figures.

(c7) large_prime : 2**216091 - 1 $

Here is an example of a loop with the instruction for. When the loop is
finished, MACSYMA prints “done”. That is, say, the (not very interesting)
value corresponding to the for instruction.

(c8) for a:1 thru 5 do
for b:1 thru 5 do
if gcd(a,b)=1
then print("a=",a,", b=", b ,", ",factor(b**6 + 3*a**6));

2
a= 1 , b= 1 , 2
a= 1 , b= 2 , 67

2
a= 1 , b= 3 , 2 3 61
a= 1 , b= 4 , 4099

2
a= 1 , b= 5 , 2 3907
a= 2 , b= 1 , 193
a= 2 , b= 3 , 3 307
a= 2 , b= 5 , 15817

2
a= 3 , b= 1 , 2 547
a= 3 , b= 2 , 2251
a= 3 , b= 4 , 61 103

2
a= 3 , b= 5 , 2 61 73
a= 4 , b= 1 , 12289
a= 4 , b= 3 , 3 4339
a= 4 , b= 5 , 103 271

2
a= 5 , b= 1 , 2 11719
a= 5 , b= 2 , 73 643

2
a= 5 , b= 3 , 2 3 3967
a= 5 , b= 4 , 50971

6 How to use a Computer Algebra system

(d8) done

Let us now find the first two odd prime numbers p such that

2p−1 ≡ 1 (mod p2).

(c9) for p:3 step 2 thru 3601 do
if primep(p) and (remainder(2**(p-1), p**2) =1)
then display(p);

p = 1093

p = 3511

(d9) done

Among some equations of the form x3 +px+q (p and q being relatively
prime integers) let us find one whose discriminant is a perfect square over
Z.

(c10) for n:2 thru 100 do
for p:1 thru (n-1) do

(q: n-p,
if (gcd(p,q)=1 and integerp((4*p**3+27*q**2)**(1/2)))
then display(p,q)
);

p = 1

q = 10

p = 13

q = 34

p = 33

q = 32

p = 69

q = 22

(d10) done

Examples of calculations with rational numbers:

(c11) s:0 $

(c12) for i:1 thru 100 do s:s+1/i;

Computer Algebra 7

(d12) done

(c13) s;

14466636279520351160221518043104131447711
(d13) ---

2788815009188499086581352357412492142272

(c14) s: sum(1/i, i, 1, 100);

14466636279520351160221518043104131447711
(d14) ---

2788815009188499086581352357412492142272

Obviously, MACSYMA can also calculate with real numbers in single
or double precision depending on the machine†:
(c15) 216091*0.69314718;

(d15) 149782.86727337999

(c16) a: 123.897 * 1234.6 /(1.0 -345.765e-03);

(d16) 233804.72796472211

But thanks to the function bfloat, one can go beyond the precision
and the range of the numbers offered by the hardware. In MACSYMA,
such large real numbers are written syntactically: n.nnnnnnnb± nn. The
default precision is the value of the symbol fpprec.

(c17) fpprec;

(d17) 16

(c18) bfloat(%pi);

(d18) 3.141592653589793b0

(c19) big: 1.123424213423452515135b53*2.2342345872541274512452
3423544b64

(d19) 2.50999323378944b117

(c20) fpprec: 36;

(d20) 36

(c21) bfloat(%pi);

† The version of MACSYMA on the RISC-6000 uses double precision.

8 How to use a Computer Algebra system

(d21) 3.14159265358979323846264338327950288b0

(c22) big: 1.123424213423452515135b53*2.2342345872541274512452

3423544b64;

(d22) 2.50999323378944021829124202358948023b117

(c23) bfloat(s);

(d23) 5.18737751763962026080511767565825316b0

The following example shows the slow convergence of the series
∑

1
n2

to its sum: π2

6 .

(c24) s2: sum(1/i**2, i, 1, 200)$

(c25) float(%);

(d25) 1.6399465785675531

(c26) float(%pi**2/6),numer;

(d26) 1.6449340668482264

We can use this classic problem to demonstrate function definition in
MACSYMA. We shall calculate π by Méchain’s formula:

π

4
= 4 arctan

1
5
− arctan

1
239

;

the expansion of which is:

π = 16
∞∑

p=0

(−1)p

(2p+ 1).52p+1
− 4

∞∑
p=0

(−1)p

(2p+ 1).2392p+1
.

The input parameter n of the function is the number of terms chosen in
the first series. We know that the error in such a series is less than the first
term omitted and has the same sign. The calculation of the second series
is done in such a way that the error is less than the error in the first series.

Computer Algebra 9

(c27) approx_pi (n) :=
block([s1,s2,isgn,isgn1,err1,err2,err,i,j,sav],

s1: 0, isgn: 1, sav: fpprec, fpprec: 3,
for i:1 thru n do
(j: 2*i -1,
s1: s1 + isgn /(j * 5**j), isgn: -isgn),

err1: 16/((2*n+1)*5**(2*n+1)), isgn1: isgn,
s1: 16*s1,
s2: 0, isgn: 1,
for i:1 step 1 while true do
(j: 2*i-1,
err2: 1/(j * 239**j),
if (4*err2 - err1)<=0 then return(done),
s2: s2 + isgn * err2,
isgn: -isgn),

err: bfloat(isgn1*(err1 + 4* err2)),
display(err), fpprec: sav,
return (s1 - 4*s2))$

We see that there is great similarity with the ALGOL-like program-
ming languages. On the left of the symbol := is the name of the function
followed by the list of the formal parameters. On the right we put the
definition of the function in the form of a simple expression, or by using
the symbol block in more complicated cases such as this. The instruction
return has different meanings depending on the context: in the loop for,
it makes us leave the loop, elsewhere it makes us leave the function, and
the value of its argument is the value returned.

(c28) approx_pi(12);

err = 2.15b-18

111648328176981713127224670033666469979152
(d28) --

35538766634625558164751756191253662109375

(c29) bfloat(%);

(d29) 3.1415926535897932363920156194308607b0

(c30) bfloat(%pi)- % ;

(d30) 2.07062776384864218442817626002126774b-18

(c31) sqrt(3.0);

(d31) 1.7320508075688772

(c32) fpprec: 45$

(c33) bfloat(sqrt(3));

(d33) 1.73205080756887729352744634150587236694280525b0

10 How to use a Computer Algebra system

(c34) log10_of_2: bfloat(log(2))/bfloat(log(10))$

(c35) integer(216091 * log10_of_2);

(d35) 65049

(c36) bfloat(large_prime);

(d36) 7.46093103064661343687339579400511489540228754 b65049

We end with some examples with complex numbers. We shall explain
later why we use the function expand.

(c37) z1: 4 + %i*19;

(d37) 19 %i + 4

(c38) z2: 3 + 17 * %i;

(d38) 17 %i + 3

(c39) z1+z2;

(d39) 36 %i + 7

(c40) z1*z2;

(d40) (17 %i + 3) (19 %i + 4)

(c41) expand(%);

(d41) 125 %i - 311

(c42) z1/z2;

19 %i + 4
(d42) ---------

17 %i + 3

(c43) rectform(%);

335 11 %i
(d43) ----- + -----

298 298

1.5.2 Polynomials and rational fractions

There is no need to expound the importance of polynomials and rational
fractions here as they occur naturally in algebraic calculations. MACSYMA

Computer Algebra 11

permits a certain number of manipulations on polynomials and rational
fractions. The names of the corresponding commands are easily understood.

(c1) p0: 2*x**3 + 7*x +9;

3
(d1) 2 x + 7 x + 9

(c2) p1: (a*x**2-y**3*z)*(y+b*z**2)*(x-y-2*z);

2 3 2
(d2) (- 2 z - y + x) (a x - y z) (b z + y)

MACSYMA does not expand the products of sums systematically. But
there are available functions such as expand, ratexpand or rat. The latter
allows the user, inter alia, to arrange the polynomials in the desired order.
The sign “/R/” in front of the result indicates a special form of machine
representation called recursive. Explanations are to be found in a later
chapter (see the section “Polynomials in several variables”).

(c3) p1: expand(p1);

3 4 4 3 3 3 2 3 4 2
(d3) 2 b y z + b y z - b x y z - 2 a b x z + 2 y z

2 2 3 2 5 4 2
- a b x y z + a b x z + y z - x y z - 2 a x y z

2 2 3
- a x y + a x y

(c4) p11: rat(p1,x,y,z);

3 4 4 3 2 3
(d4)/R/ 2 b y z + (b y - b x y - 2 a b x) z

4 2 3 2 5 4 2
+ (2 y - a b x y + a b x) z + (y - x y - 2 a x y) z

2 2 3
- a x y + a x y

(c5) p12: rat(p1,b,a,z,y,x);

2 3 2 2
(d5)/R/ (a y + b a z) x + (- a y + (- b a z - 2 a z) y

3 2 4 3 3 5

- 2 b a z) x + (- z y - b z y) x + z y

3 2 4 4 3

12 How to use a Computer Algebra system

+ (b z + 2 z) y + 2 b z y

(c6) p2: factor(p11);

3 2 2
(d6) (2 z + y - x) (y z - a x) (b z + y)

(c7) y0: 7*x**3-3*x+a;

3
(d7) 7 x - 3 x + a

(c8) y1: x**2-(a-1)*x +b;

2
(d8) x - (a - 1) x + b

(c9) q1 :y0/y1;

3
7 x - 3 x + a

(d9) ------------------
2
x - (a - 1) x + b

(c10) quotient(y0,y1);

(d10) 7 x + 7 a - 7

(c11) remainder(y0,y1);

2
(d11) (- 7 b + 7 a - 14 a + 4) x + (7 - 7 a) b + a

(c12) remainder(x**4-a*x**3+(a+1)*x**2-2*x+3*a-2, x**2-3*x+2);

(d12) (16 - 4 a) x + 7 a - 18

(c13) num(q1);

3
(d13) 7 x - 3 x + a

(c14) denom(q1);

2
(d14) x - (a - 1) x + b

(c15) y2: expand((x-a)**2*(y-b)*(z-c+1)**2);

2 2 2 2 2 2 2 2
(d15) x y z - 2 a x y z + a y z - b x z + 2 a b x z

2 2 2 2
- a b z - 2 c x y z + 2 x y z + 4 a c x y z - 4 a x y z

Computer Algebra 13

2 2 2 2
- 2 a c y z + 2 a y z + 2 b c x z - 2 b x z

2 2 2 2
- 4 a b c x z + 4 a b x z + 2 a b c z - 2 a b z + c x y

2 2 2
- 2 c x y + x y - 2 a c x y + 4 a c x y - 2 a x y

2 2 2 2 2 2 2 2
+ a c y - 2 a c y + a y - b c x + 2 b c x - b x

2 2 2 2
+ 2 a b c x - 4 a b c x + 2 a b x - a b c + 2 a b c

2
- a b

(c16) y3: expand((x-a)*(z-c+1));

(d16) x z - a z - c x + x + a c - a

(c17) gcd(y2,y3);

(d17) (x - a) z + (1 - c) x + a c - a

We see that the function gcd has indeed found the g.c.d. of the ex-
panded polynomials without trying to factorise the result. However, a call
to factor gives a neater result.

(c18) factor(%);

(d18) (x - a) (z - c + 1)

Similarly, a rational fraction is not systematically simplified by the
g.c.d. of its terms. To get this simplification we need to call a command
such as ratsimp.

(c19) q3: y2/y3;

2 2 2 2 2 2 2 2
(d19) (x y z - 2 a x y z + a y z - b x z + 2 a b x z

2 2 2 2
- a b z - 2 c x y z + 2 x y z + 4 a c x y z - 4 a x y z

2 2 2 2
- 2 a c y z + 2 a y z + 2 b c x z - 2 b x z

2 2 2 2
- 4 a b c x z + 4 a b x z + 2 a b c z - 2 a b z + c x y

14 How to use a Computer Algebra system

2 2 2
- 2 c x y + x y - 2 a c x y + 4 a c x y - 2 a x y

2 2 2 2 2 2 2 2
+ a c y - 2 a c y + a y - b c x + 2 b c x - b x

2 2 2 2
+ 2 a b c x - 4 a b c x + 2 a b x - a b c + 2 a b c

2
- a b)/(x z - a z - c x + x + a c - a)

(c20) ratsimp(y2/y3);

(d20) ((x - a) y - b x + a b) z + ((1 - c) x + a c - a) y

+ (b c - b) x - a b c + a b

The treatment of polynomials must have a way of getting the maximum
and minimum power of a variable, as well as the coefficient of a term such
as xi. This is the rôle of functions like hipow, lopow and coeff.

(c21) hipow(y2,c);

(d21) 2

(c22) coeff(y2,z,1);

2 2 2
(d22) - 2 c x y + 2 x y + 4 a c x y - 4 a x y - 2 a c y

2 2 2
+ 2 a y + 2 b c x - 2 b x - 4 a b c x + 4 a b x

2 2
+ 2 a b c - 2 a b

We can also go on to the elimination of variables between two equa-
tions: y0 = 0, y1 = 0 by the method of the resultant. (See the Appendix.)

(c23) resultant(y0,y1,x);

3 2 2
(d23) 49 b + 42 b + a (63 b - 4) - 12 b + a (19 - 42 b)

4 3
+ 7 a - 21 a

To exploit these different possibilities, we write a function which lets
us express a symmetric function (limited here to three variables a, b and c)
in terms of the fundamental symmetric functions, called p1, p2, p3. We use

Computer Algebra 15

Waring’s method [Dubreuil, l963].

(c24) waring3(vs):=
block([ca,cb,cc,ha,hb,hc,vp1,vp2,vp3,sn,vpn],
vp1: a+b+c,
vp2: a*b+b*c+c*a,
vp3: a*b*c,
vpn: vs, sn: 0,
while(not(vpn=0)) do
(ca: cb : cc : ha : hb : hc : 0,

ha : hipow (vpn,a),
ca : coeff(vpn, a**ha),
if (not (integerp (ca))) then

(hb: hipow (ca,b),
cb: coeff(ca,b**hb),
if (not (integerp (cb))) then

(hc: hipow (cb,c),
cc: coeff (cb,c**hc))

else cc: cb)
else cc: ca ,

ha: ha-hb, hb: hb-hc,
vpn: expand(vpn - cc * vp1**ha * vp2**hb * vp3**hc),
sn: sn + cc * p1**ha * p2**hb * p3**hc
),
return(rat(sn,p3,p2,p1))) $

As we want the result to be a function of the symbols p1, p2, p3, we
must revoke any possible previous assignment to them. The command kill
reserts varibles to their “atomic” state.

(c25) kill(p1,p2,p3)$

(c26) waring3(a**3+b**3+c**3);

3
(d26)/R/ p1 - 3 p2 p1 + 3 p3

(c27) s17: waring3(a**17+b**17+c**17);

17 15 14 2 13
(d27)/R/ p1 - 17 p2 p1 + 17 p3 p1 + 119 p2 p1

12 3 2 11
- 221 p3 p2 p1 + (- 442 p2 + 102 p3) p1

2 10 4 2 9
+ 1122 p3 p2 p1 + (935 p2 - 935 p3 p2) p1

3 3 8
+ (- 2805 p3 p2 + 255 p3) p1

5 2 2 7
+ (- 1122 p2 + 3060 p3 p2) p1

16 How to use a Computer Algebra system

4 3 6
+ (3570 p3 p2 - 1428 p3 p2) p1

6 2 3 4 5
+ (714 p2 - 4284 p3 p2 + 238 p3) p1

5 3 2 4
+ (- 2142 p3 p2 + 2380 p3 p2) p1

7 2 4 4 3
+ (- 204 p2 + 2380 p3 p2 - 595 p3 p2) p1

6 3 3 5 2
+ (476 p3 p2 - 1190 p3 p2 + 51 p3) p1

8 2 5 4 2 7
+ (17 p2 - 357 p3 p2 + 255 p3 p2) p1 - 17 p3 p2

3 4 5
+ 85 p3 p2 - 17 p3 p2

(c28) discri3: waring3(expand((a-b)**2 * (a-c)**2 * (b-c)**2));

3 2 2 3 2
(d28)/R/ - 4 p3 p1 + p2 p1 + 18 p3 p2 p1 - 4 p2 - 27 p3

The preceding method may be general; it is not however the most
efficient, especially for expressing sums of like powers. In the case we are
studying — for three variables only — as soon as we have obtained

s0 = 3, s1 = p1, s2 = p2
1 − 2p2

we can calculate sn by the following recurrence:

sn+1 = p1sn − p2sn−1 + p3sn−2.

That allows us to introduce indexed variables, which in this simple case can
be used in MACSYMA without prior declaration. The calculation of s17
on line (c27) takes 30 seconds on the RISC-6000. That of det[17] takes less
than a second by the present method.

(c29) det[0]: 3 $

(c30) det[1]: p1 $

(c31) det[2]: p1**2 - 2*p2 $

(c32) for n:3 thru 17 do det[n]:expand(p1*det[n-1]-p2*det[n-2]
+ p3*det[n-3]);

Computer Algebra 17

(d32) done

(c33) det[4];

2 2 4
(d33) - 2 p1 p3 + 2 p2 - 4 p1 p2 + p1

(c34) expand(s17 -det[17]);

0

Using this type of indexed variables is especially efficient in the follow-
ing recursive mechanism of definition in an array. The calculation of an
element will only be done once and the result will be stored. For example,
in c39, deter[5] was calculated as a result of the command c38.

(c35) deter[n] :=
if n=0 then 3 else
if n=1 then p1 else
if n=2 then p1**2 - 2*p2 else
rat(p1*deter[n-1]-p2*deter[n-2]+p3*deter[n-3],p3,p2,p1)$

(c36) deter[3];

3
(d36)/R/ p1 - 3 p2 p1 + 3 p3

(c37) deter[4];

4 2 2
(d37)/R/ p1 - 4 p2 p1 + 4 p3 p1 + 2 p2

(c38) sav7: deter[7]$

(c39) deter[5];

5 3 2 2
(d39)/R/ p1 - 5 p2 p1 + 5 p3 p1 + 5 p2 p1 - 5 p3 p2

We end with an example of factorisation of a polynomial in several
variables. The following example takes 40 seconds on the RISC-6000 (the
case n = 10 being responsible for the majority of this). Although factori-
sation algorithms are not discussed until Chapter 4, the reader can already
see that factorisation is an expensive process.

(c40) for n:2 thru 10 do print(factor((u^n+v^n)^n - (u^n-v^n)^n));

2 2
4 u v

18 How to use a Computer Algebra system

3 6 6
2 v (v + 3 u)

4 4 8 8
8 u v (v + u)

5 20 10 10 20
2 v (v + 10 u v + 5 u)

6 6 12 12 12 12
4 u v (v + 3 u) (3 v + u)

7 42 14 28 28 14 42
2 v (v + 21 u v + 35 u v + 7 u)

8 8 16 16 32 16 16 32
16 u v (v + u) (v + 6 u v + u)

9 18 18 54 18 36 36 18 54
2 v (v + 3 u) (v + 33 u v + 27 u v + 3 u)

10 10 40 20 20 40 40 20 20 40
4 u v (v + 10 u v + 5 u) (5 v + 10 u v + u)

(d40) done

1.5.3 Matrix calculation

Vectors and matrices, constantly used in numerical calculations, are obvi-
ously necessary in Computer Algebra. The user has several means available
for defining these objects.

(1) Explicit declaration:
(c1) m0: matrix([1, 2, 3], [4, 5, 6], [7, 8, 9]);

[1 2 3]
[]

(d1) [4 5 6]
[]
[7 8 9]

(c2) v1: [a, b, c];

(d2) [a b c]

(c3) v2: transpose(v1);

[a]
[]

(d3) [b]
[]
[c]

Computer Algebra 19

(2) Declaration with interactive assignment:
(c4) m1: entermatrix(3,3);

Is the matrix 1. Diagonal 2. Symmetric 3. Antisymmetric
4. General

Answer 1, 2, 3 or 4

2;

Row 1 Column 1: u;

Row 1 Column 2: v;

Row 1 Column 3: w;

Row 2 Column 2: x;

Row 2 Column 3: y;

Row 3 Column 3: z;

Matrix entered.

[u v w]
[]

(d4) [v x y]
[]
[w y z]

(3) Definition via a generating function for the elements:

(c5) h[i,j]:= 1/(i+j-1)$

(c6) hilbert4: genmatrix(h,4,4);

[1 1 1]
[1 - - -]
[2 3 4]
[]
[1 1 1 1]
[- - - -]
[2 3 4 5]

(d6) []
[1 1 1 1]
[- - - -]
[3 4 5 6]
[]
[1 1 1 1]
[- - - -]
[4 5 6 7]

20 How to use a Computer Algebra system

The elements are selected by a simple method:

(c7) s0: m0[1,2];

(d7) 2

(c8) s0: m1[1,1] + v1[2] * hilbert4 [3,3] ;

b
(d8) u + -

5

(c9) v3: row(hilbert4, 3);

[1 1 1 1]
(d9) [- - - -]

[3 4 5 6]

(c10) v4: col (hilbert4, 2);

[1]
[-]
[2]
[]
[1]
[-]
[3]

(d10) []
[1]
[-]
[4]
[]
[1]
[-]
[5]

One can also modify one element of the matrix and this modifies the
matrix itself.

(c11) m0[2,2] : x*y;

(d11) x y

(c12) m0;

[1 2 3]
[]

(d12) [4 x y 6]
[]
[7 8 9]

(c13) m0[2,2]: 5$

Computer Algebra 21

The operator of matrix multiplication is the dot “.”. The usual arith-
metical operators work element by element.

(c14) p: v3 . v4;

1
(d14) -

3

(c15) v6: m0 . v2;

[3 c + 2 b + a]
[]

(d15) [6 c + 5 b + 4 a]
[]
[9 c + 8 b + 7 a]

(c16) m2: 2 * m0;

[2 4 6]
[]

(d16) [8 10 12]
[]
[14 16 18]

(c17) m22: m0 * m0;

[1 4 9]
[]

(d17) [16 25 36]
[]
[49 64 81]

(c18) msquare: m0 . m0;

[30 36 42]
[]

(d18) [66 81 96]
[]
[102 126 150]

(c19) mp1: 1 + m0;

[2 3 4]
[]

(d19) [5 6 7]
[]
[8 9 10]

22 How to use a Computer Algebra system

There are also an exponential operator ^^, and functions for obtaining
the determinant and the characteristic polynomial.

(c20) invhilb4: hilbert4^^(-1);

[16 - 120 240 - 140]
[]
[- 120 1200 - 2700 1680]

(d20) []
[240 - 2700 6480 - 4200]
[]
[- 140 1680 - 4200 2800]

(c21) polc: rat(charpoly(m1,lambda),lambda);

3 2
(d21)/R/ - lambda + (z + x + u) lambda

2 2 2 2
+ ((- x - u) z + y - u x + w + v) lambda + (u x - v) z

2 2
- u y + 2 v w y - w x

We give several examples of MACSYMA’s ability to deal with matrices
obtained by permuting circularly the elements of a row vector (a, b, c, . . .).

(c22) p3: matrix([a, b, c], [c, a, b], [b, c, a]);

[a b c]
[]

(d22) [c a b]
[]
[b c a]

(c23) determinant(p3);

2 2 2
(d23) c (c - a b) + a (a - b c) - b (a c - b)

(c24) ratsimp(%);

3 3 3
(d24) a + b + c - 3 a b c

Such a determinant is obviously divisible by a+ b+ c:

(c25) factor(d24);

Computer Algebra 23

2 2 2
(d25) (c + b + a) (c - b c - a c + b - a b + a)

If in the cases 5, 7, 11 we limit ourselves to three parameters in the
initial vector, we find the following determinants:

a5 + b5 + c5 − 5abc(b2 − ac)

a7 + b7 + c7 − 7abc(b2 − ac)2

a11 + b11 + c11 − 11abc(b2 − ac)(b6 − 3ab4c+ 4a2b2c2 − a3c3)

We shall check one property of these matrices. Consider the expansion
of the binomial (u+ v)n. If we write

a = un + vn, b = C1
nu.v

n−1, c = C2
nu

2.vn−2, . . . ,

the determinant of the matrix is:

(un − (−1)n.vn)n.

This is related to the fact that the determinant of the matrix resulting from
permuting cyclically (u, v, 0, 0, . . .) is

(un − (−1)n.vn).

(c26) a: u**3+v**3$

(c27) b: 3*u**2*v$

(c28) c: 3*u*v**2$

(c29) p3: matrix([a,b,c],[c,a,b],[b,c,a]);

[3 3 2 2]
[v + u 3 u v 3 u v]
[]

(d29) [2 3 3 2]
[3 u v v + u 3 u v]
[]
[2 2 3 3]
[3 u v 3 u v v + u]

(c30) factor(determinant(p3));

3 2 2 3
(d30) (v + u) (v - u v + u)

24 How to use a Computer Algebra system

What follows is simply a device to get the result in the expected form:

(c31) expand(% ** (1/3)) **3 ;

3 3 3
(d31) (v + u)

Let us study cases 4 and 5 in turn:

(c32) a: u**4+v**4$

(c33) b: 4*u**3*v$

(c34) c:6*u**2*v**2$

(c35) d:4*u*v**3$

(c36) p4: matrix([a,b,c,d],
[d,a,b,c],
[c,d,a,b],
[b,c,d,a]) $

Instead of using the contrivance of line c31, it is better to use the
function sqfr which is analogous to factor but which brings out the factors
common to the polynomial and its derivatives.

(c37) sqfr(determinant(p4));

4 4 4
(d37) (v - u)

(c38) a: u**5 + v**5$

(c39) b: 5*u**4*v$

(c40) c: 10*u**3*v**2$

(c41) d: 10*u**2*v**3$

(c42) e: 5*u*v**4$

(c43) p5: matrix([a,b,c,d,e],
[e,a,b,c,d],
[d,e,a,b,c],
[c,d,e,a,b],
[b,c,d,e,a]) $

(c44) sqfr(determinant(p5));

5 5 5
(d44) (v + u)

Computer Algebra 25

We end by writing a function which gives the inverse of a matrix by
the Souriau method. We express the result in the form of the adjoint of the
initial matrix. The determinant is the value of the variable det. We shall see
that in c48 and c49 the value of det is different, since it is a global variable
which has a value given to it inside the procedure, and which therefore
changes at each call (so-called side-effects).

(c45) souriau(a):=block([b1,j,q,n],
n:length(a),
nm1:n-1,
b1:ident(n),
for j:1 thru nm1 do

(b1: ratexpand(b1.a),
q:0, for i:1 thru n do q:q + b1[i,i], q:q/j,
for i:1 thru n do b1[i,i]: ratexpand(b1[i,i] - q)
),

q:0,

for i:1 thru n do q: q + row(b1,i).col(a,i),
q:ratexpand(q/n),
if evenp(n) then (q:-q, b1:-b1),
det:q,
return(b1)) $

(c46) adjm1: souriau(m1);

[2]
[x z - y w y - v z v y - w x]

[]
(d46) [2]

[w y - v z u z - w v w - u y]
[]
[2]
[v y - w x v w - u y u x - v]

(c47) det;

2 2 2

(d47) u x z - v z - u y + 2 v w y - w x

(c48) expand(det - determinant(m1));

(d48) 0

(c49) invhilb4 - souriau(hilbert4) / det;

26 How to use a Computer Algebra system

[0 0 0 0]
[]
[0 0 0 0]

(d49) []
[0 0 0 0]
[]
[0 0 0 0]

To solve a linear system, we can use the command solve in the form:

solve([eq1, eq2, . . .], [x1, x2, . . .])

where the eqi are the equations and the xi are the unknowns. The absence
of a = in eqi implies eqi = 0. There follow some examples of unstable
numerical systems. The result of the function solve is given in the form of
a list. We shall see later how to extract the interesting values.

(c1) eq11: 3*x+4*y-7;

(d1) 4 y + 3 x - 7

(c2) eq12: 3*x+400001/100000 *y-700001/100000;

400001 y 700001
(d2) -------- + 3 x - ------

100000 100000

(c3) solve([eq11,eq12], [x,y]);

(d3) [[x = 1, y = 1]]

(c4) eq13: 3*x+ 399999/100000 *y -700004/100000;

399999 y 175001
(d4) -------- + 3 x - ------

100000 25000

(c5) solve([eq11,eq13], [x,y]);

23
(d5) [[x = --, y = - 4]]

3

(c6) eq14: 3*x+3999992/1000000 *y - 7000042/1000000;

499999 y 3500021
(d6) -------- + 3 x - -------

125000 500000

(c7) solve([eq11,eq14],[x,y]);

Computer Algebra 27

28 21
(d7) [[x = --, y = - --]]

3 4

The reader can now see how precise calculation over Q gives invaluable
information in cases of instability.

Of course, one can also solve systems where the matrix is symbolic.
Here the unknowns are u, v, r and s, and we can see that it is not necessary
to put the system in the form AX = B.

(c8) e1: a*(r+s) +3*b*(r-s) = u+v;

(d8) a (s + r) + 3 b (r - s) = u + v

(c9) e2: a*(r-s) -b*(r+s) = u-v;

(d9) - b (s + r) + a (r - s) = u - v

(c10) e3: 1-3*w = u + v;

(d10) - 3 w + 1 = u + v

(c11) e4: a**2+3*b**2-3*z = r+s;

2 2
(d11) - 3 z + 3 b + a = r + s

(c12) solve([e1,e2,e3,e4],[u,v,r,s]);

2 2 2
(d12) [[u = - (- 3 a z + b (6 a - 9 z) + b (9 w - 3)

4 4
+ a (3 w - 1) + 9 b + a)/(6 b),

2 2 2
v = (- 3 a z + b (6 a - 9 z) + a (3 w - 1) + b (3 - 9 w)

4 4
+ 9 b + a)/(6 b),

2 3 2 3
r=(3 a z + b (3 a - 9 z) - 3 w + 9 b - 3 a b - a + 1)

/(6 b),

2 3 2 3
s=(- 3 a z + b (3 a - 9 z) + 3 w + 9 b + 3 a b + a - 1)

/(6 b)

]]

28 How to use a Computer Algebra system

As well as the very general function solve, we also have available the
function allroots which allows us to locate all the roots of a polynomial
over R. The methodology behind this function is a generalisation of that
described in section 3.2.1.

(c13) p: z^5 - 7*z^4 + 3*z^3 - z + 11$

(c14) allroots(p);

(d15) [z = 0.092227604765184878 + 1.1204671547357445 %i,

z = 0.092227604765184878 - 1.1204671547357445 %i,

z = - 1.0235518217808477, z = 1.3003399097244841,

z = 6.5387567025259932]

1.5.4 Differentiation – Taylor series

Every Computer Algebra system contains a set, more or less complete, of
commands connected with the concept of differentiation. These opera-
tions are closely linked to the simplification commands. Without good
simplification tools, there is a risk of very quickly getting incomprehensible
formulae.

(c1) f1: 2*(log(x**2-x+1)/6 + atan((2*x-1)/sqrt(3))/sqrt(3)

-log(x+1)/3);

2 x - 1
2 atan(-------)

log(x - x + 1) sqrt(3) log(x + 1)
(d1) 2 (--------------- + ------------- - ----------)

6 sqrt(3) 3

(c2) df1: diff(f1,x);

2 2 x - 1 1
(d2) 2 (------------------ + -------------- - ---------)

2 2 3 (x + 1)
(2 x - 1) 6 (x - x + 1)

3 (---------- + 1)
3

(c3) df1: ratsimp(df1);

2 x
(d3) ------

3
x + 1

Computer Algebra 29

MACSYMA has also the function

taylor(function, variable, initial, order)

The symbol “/T/” at the front of the result means that we are dealing
with a truncated expansion. Operations on a result of this kind take into
account the order attached to it. On line c7, we use the function subst(x,
y, z) which substitutes x in place of y in z.

(c4) q: (1- sqrt(1-e**2))/e;

2
1 - sqrt(1 - e)

(d4) ----------------
e

(c5) taylor(q,e,0,10);

3 5 7 9
e e e 5 e 7 e

(d5)/T/ - + -- + -- + ---- + ---- + . . .
2 8 16 128 256

(c6) a3: (u-sin(u))/sin(u)**3;

u - sin(u)
(d6) ----------

3
sin (u)

(c7) a3: subst(2*t/(1+t**2), sin(u),a3)$

(c8) a3: subst(2*atan(t),u,a3)$

(c9) a3t: taylor(a3,t,0,10);

2 4 6 8 10
1 3 t 4 t 4 t 4 t 4 t

(d9)/T/ - + ---- + ---- - ---- + ---- - ----- + . . .
6 10 35 315 1155 3003

(c10) taylor(sqrt(1- (k*sin(x))**2),x,0,6);

2 2 4 2 4
k x (3 k - 4 k) x

(d10)/T/ 1 - ----- - ----------------
2 24

6 4 2 6
(45 k - 60 k + 16 k) x

- -------------------------- + . . .
720

30 How to use a Computer Algebra system

(c11) %*%;

2 4 2 6
2 2 k x (2 k) x

(d11)/T/ 1 - k x + ----- - --------- + . . .
3 45

One can also work with the differentiation operator. In the first exam-
ple we show how to obtain the successive derivatives of y with respect to
x, starting out from an implicit form g(x, y). The command depends here
means that g depends on x and y and that y depends on x. The function
part lets us choose a part of the formula by a method linked to the tree
representation of this formula in memory. We see that MACSYMA uses
the same symbol d for the total derivative and for the partial derivative.

(c12) depends(g,[x,y],y,[x]);

(d12) [g(x, y), y(x)]

(c13) diff(g,x);

dg dy dg
(d13) -- -- + --

dy dx dx

(c14) solve(%,diff(y,x));

dg
--

dy dx
(d14) [-- = - --]

dx dg
--
dy

(c15) dydx: part(%,1,2);

dg
--
dx

(d15) - --
dg
--
dy

(c16) diff(g,x,2);

Computer Algebra 31

2 2 2 2 2
dg d y dy d g dy d g d g dy d g

(d16) -- --- + -- (--- -- + -----) + ----- -- + ---
dy 2 dx 2 dx dx dy dx dy dx 2

dx dy dx

(c17) subst(dydx,diff(y,x),%)$

(c18) solve(%,diff(y,x,2))$

(c19) d2ydx2: part(%,1,2);

2 2 2
dg 2 d g d g dg 2 dg d g dg

(--) --- + --- (--) - 2 -- ----- --
dx 2 2 dy dx dx dy dy

dy dx
(d19) - -------------------------------------

dg 3
(--)
dy

(c20) diff(g,x,3)$

(c21) subst(dydx,diff(y,x),subst(d2ydx2,diff(y,x,2),%))$

(c22) solve(%,diff(y,x,3))$

(c23) d3ydx3: part(%,1,2);

3 2
dg 3 dg d g dg 3 d g 2

(d23) ((--) -- --- - 3 (--) (---)
dx dy 3 dx 2

dy dy

2 2 2 3
dg 2 d g dg dg d g dg 2 d g d g dg 4

+ (9 (--) ----- -- - 3 -- --- (--)) --- - --- (--)
dx dx dy dy dx 2 dy 2 3 dy

dx dy dx

3 2 2
dg d g d g d g dg 3

+ (3 -- ------ + 3 ----- ---) (--)
dx 2 dx dy 2 dy

dx dy dx

3 2
dg 2 d g dg d g 2 dg 2 dg 5

+ (- 3 (--) ------ - 6 -- (-----)) (--))/(--)
dx 2 dx dx dy dy dy

dx dy

(c24) remove([x,y],dependency)$

32 How to use a Computer Algebra system

Once we have these formulae we may want to apply them to a concrete
example. First we replace g by the function exp(x2 + y2)−1, then we hand
over to the very general MACSYMA command ev the task of applying the
differentiation operators. Obviously we will recover the derivatives linked
to the function

x2 + y2 = constant.

(c25) fct0: subst(%e**(x**2+y**2)-1,g,dydx);

2 2
d y + x
-- (%e - 1)
dx

(d25) - ------------------
2 2

d y + x
-- (%e - 1)
dy

(c26) ev(fct0,diff);

x
(d26) - -

y

(c27) fct1: subst(%e**(x**2+y**2)-1,g,d2ydx2)$

(c28) ev(fct1,diff)$

(c29) ratexpand(%);

2
1 x

(d29) - - - --
y 3

y

(c30) remove([g],dependency)$

The following example shows how to get the derivatives of a “function
of a function” by using a notation for composition: g ◦f . We use artificially
the non-commutative multiplication operator, i.e. the dot. The successive
derivatives of the function g will be indicated by a subscript.

(c31) depends(g,f,f,x);

(d31) [g(f), f(x)]

(c32) d1: diff(g,x);

Computer Algebra 33

df dg
(d32) -- --

dx df

(c33) subst(g[1].f ,diff(g,f),d1);

df
(d33) (g . f) --

1 dx

(c34) d2: diff(g,x,2);

2 2
df 2 d g d f dg

(d34) (--) --- + --- --
dx 2 2 df

df dx

(c35) dd2: d2$

(c36) for i:1 thru 2 do dd2: subst(g[i].f, diff(g,f,i), dd2)$

(c37) dd2;

2
d f df 2

(d37) (g . f) --- + (g . f) (--)
1 2 2 dx

dx

(c38) d3: diff(g,x,3)$

(c39) dd3: d3$

(c40) for i:1 thru 3 do dd3: subst(g[i].f,diff(g,f,i),dd3)$

(c41) dd3;

3 2
d f df d f df 3

(d41) (g . f) --- + 3 (g . f) -- --- + (g . f) (--)
1 3 2 dx 2 3 dx

dx dx

(c42) d5: diff(g,x,5)$

(c43) dd5: d5$

(c44) for i:1 thru 5 do dd5: subst(g[i].f,diff(g,f,i),dd5)$

(c45) dd5;

34 How to use a Computer Algebra system

5 4 2 3
d f df d f d f d f

(d45) (g . f) --- + 5 (g . f) -- --- + 10 (g . f) --- ---
1 5 2 dx 4 2 2 3

dx dx dx dx

3 2
df 2 d f df d f 2

+ 10 (g . f) (--) --- + 15 (g . f) -- (---)
3 dx 3 3 dx 2

dx dx

2
df 3 d f df 5

+ 10 (g . f) (--) --- + (g . f) (--)
4 dx 2 5 dx

dx

1.5.5 Simplification of formulae

The problem of simplification is a complex one, as we shall see later in the
book. Modern systems and especially MACSYMA, offer the user a set of
switches and parameters which let him control the expansion of formulae,
and thus prevent a brute force use of the commands from giving a very
complicated result in which the information is completely “drowned”. We
saw earlier the use of the function expand. In addition to it there is a whole
range of functions which enable us to carry out more delicate transforma-
tions: factorisation, limited expansions, use or not of the g.c.d., ordering
of the variables, distribution of products, use or not of commutativity etc.
The correct use of these switches and of the commands is a matter of prac-
tice. It is clear that brute force attack on a real problem can give rise to
surprises: huge expansions, prohibitive time taken, exhaustion of memory
. . . . It is hard to give exact rules, except think before you act and try
out some simple examples to appreciate what is involved. The following
few simple examples demonstrate some of the possibilities. The interested
reader should consult the REDUCE or MACSYMA manual.

We have already seen the function subst which performs a purely syn-
tactic substitution. Thus in line c2, subst does not recognise the grouping
x+y in the third argument. On the other hand the function ratsubst anal-
yses this third argument in more detail. Finally with the function fullsub,
defined in situ, we see that the process can be used recursively.

(c2) subst(a,x+y,x+z+y);

(d2) z + y + x

Computer Algebra 35

(c3) ratsubst(a,x+y,y+z+x);

(d3) z + a

(c4) ratsubst(b*a,a**2,a**4);

2 2
(d4) a b

(c5) fullsub(u,v,w):= if w=(w2: ratsubst(u,v,w))
then w else fullsub(u,v,w2)$

(c6) fullsub(b*a,a**2,a**4);

3
(d6) a b

With the system variables maxposex and maxnegex, we can control the
expansion of expressions so as to restrain those which would run the risk
of exploding.

(c7) maxposex: 4;

(d7) 4

(c8) p0: (a+b)**2 +(a+b)**3 +(a+b)**5;

5 3 2
(d8) (b + a) + (b + a) + (b + a)

(c9) p0: expand(p0);

5 3 2 2 2 3 2
(d9) (b + a) + b + 3 a b + b + 3 a b + 2 a b + a + a

(c10) maxnegex: 3;

(d10) 3

(c11) p2: 1/(x-a)**2 + 1/(x-b)**2 +a*b/(x-a-b)**4;

a b 1 1
(d11) ------------ + -------- + --------

4 2 2
(x - b - a) (x - b) (x - a)

(c12) p3: expand(p2);

1 1 a b
(d12) --------------- + --------------- + ------------

2 2 2 2 4
x - 2 b x + b x - 2 a x + a (x - b - a)

36 How to use a Computer Algebra system

The Boolean switch exponentialize, when set to true, lets us put
the trigonometrical and hyperbolic functions into exponential form.

(c13) exponentialize: true;

(d13) true

(c14) z1: cosh(x);

x - x
%e + %e

(d14) -----------
2

(c15) z0: tan(x);

%i x - %i x
%i (%e - %e)

(d15) - -----------------------
%i x - %i x

%e + %e

The switch exponentialize or the function bearing the same name
often prove useful in simplifying complicated trigonometrical expressions.
Morley’s theorem is an example*. Let ABC be a triangle. Let us take the
trisectors of the three angles. The two trisectors of the angles B and C
which are closest to the side BC intersect at A1. In the same way we get
B1 and C1. The triangle A1B1C1 is equilateral. It is sufficient to prove that
it is isosceles, that is: A1B1 = A1C1. Using the relations

AB = 2R sinC,BC = 2R sinA,CA = 2R sinB

(R being the radius of the circumscribed circle) and the well-known formu-
lae for resolution of triangles, one can express A1B1 and A1C1 as functions
of R, B and C. Without loss of generality, we may assume that R = 1. Here
we see that the function ev allows substitution in parallel : extremely useful
when, as here, we want to permute the variables in a formula. The equality
of the two lengths is shown in two steps. We first extract the numerator
of the difference of their squares. Having set the global parameter ratde-
nomdivide to false, we are assured that the rational fraction produced by
ratexpand will be a single fraction and not a sum of fractions. We then
apply the very general simplification function radcan to the exponential
form of this numerator. This “brute force” calculation is long and tedious
and the reader will undoubtedly prefer Coxeter’s elegant proof [Coxeter,

* D. Lazard suggested this example and the solution.

Computer Algebra 37

1961], but it is still true that this is a characteristic example of the help
that can be given by a Computer Algebra system.

(c3) ba1: sin(a) * sin(c/3) / sin((b+c)/3);

c
sin(a) sin(-)

3
(d3) -------------

c + b
sin(-----)

3

(c4) bc1: ev(ba1,a=c,c=a);

a
sin(-) sin(c)

3
(d4) -------------

b + a
sin(-----)

3

(c5) ba1: subst(%pi-b-c,a,ba1);

c
sin(-) sin(c + b)

3
(d5) -----------------

c + b
sin(-----)

3

(c6) bc1: subst(%pi-b-c,a,bc1);

- c - b + %pi

sin(-------------) sin(c)
3

(d6) -------------------------
%pi - c

sin(-------)
3

(c7) a1c12: ba1^2+bc1^2-2*ba1*bc1*cos(b/3)$

(c8) a1b12: ev(a1c12,b=c,c=b)$

(c9) ratdenomdivide: false$

(c10) r: num(ratexpand(a1b12-a1c12))$

Time= 0.10 sec.

(c11) radcan(exponentialize(r));

38 How to use a Computer Algebra system

Time= 5.13 sec.

(d11) 0

An operator can also be applied to each element of a sum, thanks to
the function map. In the following example we break down a fraction into
partial fractions (after expanding the denominator to make things a bit
more complicated), and then we factorise each element of the result with
the help of map.

(c1) e1: (x+2)/((x+3)*(x+b)*(x-c)**2);

x + 2
(d1) ------------------------

2
(x + 3) (x + b) (x - c)

(c2) e1:ratsimp(e1);

4 3
(d2) (x + 2)/(x + (- 2 c + b + 3) x

2 2 2
+ (c + (- 2 b - 6) c + 3 b) x + ((b + 3) c - 6 b c) x

2
+ 3 b c)

(c3) e2: partfrac(e1,x);

2 4 3
(d3) - (c + 4 c - b + 6)/((c + (2 b + 6) c

2 2 2 2
+ (b + 12 b + 9) c + (6 b + 18 b) c + 9 b) (x - c))

c + 2
+ -------------------------------

2 2
(c + (b + 3) c + 3 b) (x - c)

b - 2
+ ---

2 2 3 2
((b - 3) c + (2 b - 6 b) c + b - 3 b) (x + b)

1
- --

2
((b - 3) c + (6 b - 18) c + 9 b - 27) (x + 3)

Computer Algebra 39

(c4) e2: map(factor,e2);

2
c + 4 c - b + 6 c + 2

(d4) - ------------------------- + ------------------------
2 2 2

(c + 3) (c + b) (x - c) (c + 3) (c + b) (x - c)

b - 2 1
+ ------------------------ - ------------------------

2 2
(b - 3) (c + b) (x + b) (b - 3) (c + 3) (x + 3)

For a given polynomial, polydecomp returns a list of polynomials which
when composed together yield the input polynomial (beginning with the
last element of the list).

24 22 20 18 16 14 12
(d6) x + 6 x + 9 x - 10 x - 32 x - 2 x + 37 x

10 8 6 4
+ 10 x - 19 x - 4 x + 4 x + 1

(c7) polydecomp(p,x);
2

3 2 2 x - 5 2
(d7) [x + x + 1, x - 1, ------, 2 x + 1]

4

2
2 s - 13 2

(d6) [3 s - 2, -------, 6 s + 11, 4 s - 1]
12

Finally, one can define simplification rules by the function let and
apply them by the function letsimp.

(c1) let(a**2,%i);

2
(d2) a --> %i

(c3) e0: a**2*(a**4-a)- a**3 +1;

2 4 3
(d3) a (a - a) - a + 1

(c4) letsimp(e0);

(d4) - 2 %i a - %i + 1

(c5) let(om**3,1);

40 How to use a Computer Algebra system

3
(d5) om --> 1

(c6) let(om**2, -1-om)$

(c7) pxyz: (x+y+z)*(x+om*y+om**2*z)*(x+om**2*y+om*z);

2 2

(d7) (z + y + x) (om z + om y + x) (om z + om y + x)

(c8) pxyz: letsimp(expand(%));

3 3 3

(d8) z - 3 x y z + y + x

At the end of this section on simplification, we must point out the
impact of programming style. By using certain LISP-inspired mechanisms
available to the user, a considerable amount of time can sometimes be saved.
We demonstrate this phenomenon by two functions height1 and height2
which, in FORTRAN style for the first and LISP for the second, find the
greatest coefficient (in absolute value) of a polynomial over Z. The func-
tion construct is used to produce a polynomial of given degree and with
integral coefficients chosen at random between −235 and 235 − 1. To help
the reader understand the LISP form we have added some short examples
which use the functions numfactor, maplist and apply directly. For more
details the reader should consult the MACSYMA manual.

(c29) height1(poly,var):= block([m, maxi, i],

maxi: 0,

for i:0 thru hipow(poly,var) do

(m: abs(coeff(poly,var,i)),

if m>maxi then maxi: m),
return(maxi))$

(c30) height2(poly):= apply(max,maplist(absfact,poly))$

(c31) absfact(z):= abs(numfactor(z)) $

(c32) construct(n):= block([pol,i],

pol: 0,

for i:1 thru n do pol: pol+random() * x^i,

return (pol))$

(c33) p0: construct(10);

Computer Algebra 41

10 9 8 7
(d33) -13379176882 x + 8895517289 x - 9101752241 x - 426691508 x

6 5 4 3
+ 17446139911 x + 33598445718 x + 33193902370 x + 3493507944 x

2
- 5008989035 x - 17002352646 x

(c34) numfactor(-34*x**2);

(d34) -34

(c35) maplist(absfact,p0);

(d35) [1337917688, 8895517289, 9101752241, 426691508, 17446139911,
33598445718, 33193902370, 3493507944, 5008989035, 17002352646]

(c36) apply(max,%);

(d36) 33598445718

(c37) p1: construct(20)$

(c38) height1(p1,x);

Time= 80 msec.

(d38) 33598445718

(c39) height2(p1);

Time= 20 msec.

(d39) 33598445718

(c40) p2: construct(40)$

(c41) height1(p2,x);

Time= 180 msec.

(d41) 32727645108

(c42) height2(p2);

Time= 40 msec.

(d42) 32727645108

(c43) p64: construct(64)$

(c44) height1(p64,x);

Time= 340 msec.

42 How to use a Computer Algebra system

(d44) 34073350797

(c45) height2(p64);

Time= 60 msec.

(d45) 34073350797

1.5.6 Integration
The mechanisation of the search for integrals has always been an impor-
tant part of Computer Algebra, because of the prestige attaching to the
problem. The names Slagle, Moses and Risch are closely linked with this.
MACSYMA has been one of the first systems to benefit from an advanced
integration command. REDUCE benefited subsequently from the latest
improvements following the work of the Cambridge (U.K.) group. More
recently, AXIOM has benefited from the work of Bronstein [1987, 1990].

The command in MACSYMA is integrate. The results appear in a
form which may need rearranging (for example the result d2).

(c1) integrate(1/(1-x**4),x);

log(x + 1) atan(x) log(x - 1)
(d1) ---------- + ------- - ----------

4 2 4

(c2) integrate(sinh(x)**4,x);

4 x - 4 x
%e 2 x - 2 x %e
----- - 2 %e + 2 %e - ------- + 6 x

4 4
(d2) ---

16

(c3) integrate(x**3*cos(x**2),x);

2 2 2
x sin(x) + cos(x)

(d3) --------------------
2

Sometimes the final form of the result may be surprising:

(c4) integrate(sin(a/x)-cos(x**2),x);

(d4) (sqrt(%pi) ((sqrt(2) %i - sqrt(2))

(sqrt(2) %i + sqrt(2)) x
erf(------------------------)

2

Computer Algebra 43

(sqrt(2) %i - sqrt(2)) x
+ (sqrt(2) %i + sqrt(2)) erf(------------------------))

2

a
/ cos(-)

a [x
+ 8 sin(-) x + 8 a I ------ dx)/8

x] x
/

Definite integration is also possible. The symbol inf is the symbol
MACSYMA reserves for ∞. If the command integrate needs information,
a question is put to the user.

(c5) integrate(1/sqrt((1+x)**3 * (1+ 2*x)),x, 0,inf);

(d5) 2 sqrt(2) - 2

(c6) integrate(1/sqrt((1+x)**3 * (1 + k*x)),x,0,inf);

Is k positive, negative, or zero?

positive;

Is k - 1 zero or nonzero?

nonzero;

Is k - 1 positive or negative?

positive;

2 sqrt(k) 2
(d6) --------- - -----

k - 1 k - 1

(c7) integrate(1/sqrt(x * (u-x)),x,0,u);

Is u positive, negative, or zero?

positive;

(d7) %pi

The Laplace transform with the two commands laplace and ilt (the
inverse) should be mentioned together with definite integration.

(c12) laplace(%e**(a*t)*(b*t**2+c*t-sin(d*t)),t,s);

44 How to use a Computer Algebra system

3 2
(d12) - ((d - c) s + (- 3 a d + 3 a c - 2 b) s

2 2 2 2
+ (- c d + 3 a d - 3 a c + 4 a b) s + (a c - 2 b) d

3 3 2 5 4 2 2 3
- a d + a c - 2 a b)/(s - 5 a s + (d + 10 a) s

2 3 2 2 2 4 3 2 5
+ (- 3 a d - 10 a) s + (3 a d + 5 a) s - a d - a)

(c13) ilt(%,s,u);

Is d zero or nonzero?

nonzero;

a u 2 a u a u
(d13) - %e sin(d u) + b u %e + c u %e

The Laplace transform can be used to solve an integral equation. In
c15 we see the use of the symbol ’ which prevents evaluation, as we can
see in d15. This is similar to the quote of Lisp. Similarly, the Laplace
transform of an unknown function remains unevaluated.

(c15) ’integrate(cosh(a*x)*f(t-x),x,0,t) +b*f(t)=t**3;

t
/
[3

(d15) I f(t - x) cosh(a x) dx + b f(t) = t
]
/
0

(c16) laplace(%,t,s);

s laplace(f(t), t, s) 6
(d16) b laplace(f(t), t, s) + --------------------- = --

2 2 4
s - a s

We solve this linear equation for laplace(f(t), t, s).

(c17) linsolve([%], [’laplace(f(t),t,s)]);

2 2
6 s - 6 a

(d17) [laplace(f(t), t, s) = -------------------]
6 5 2 4

b s + s - a b s

Computer Algebra 45

The result of solve is in the form of a list. We extract the elements as
if it were a vector.

(c18) formu:%[1] $

Now we have to extract the interesting part, that is the right hand side
of the equation. For that we use the function part with arguments linked
to the structure of the formula. But we can check in advance that we do
extract the desired part, thanks to the function dpart.

(c19) dpart(formu, 2);

"""""""""""""""""""""
" 2 2 "
" 6 s - 6 a "

(d19) laplace(f(t), t, s) = "-------------------"
" 6 5 2 4"
"b s + s - a b s "
"""""""""""""""""""""

(c20) res: part(formu, 2)$

(c21) ilt(res,s,t);

t
- --- 2 2 2 2

2 b 6 a b + 6 2 (12 a b + 6)
(d21) %e ((----------- - ----------------)

6 3 6 3
a b a b

2 2
sqrt(4 a b + 1) t 2 2

sinh(-------------------)/sqrt(4 a b + 1)
2 b

2 2
2 2 sqrt(4 a b + 1) t

(6 a b + 6) cosh(-------------------) 3 2
2 b t 3 t

- ---------------------------------------)/b + -- + -----
6 3 b 2 2
a b a b

2 2
6 t 6 a b + 6

+ ----- + -----------
4 3 6 4
a b a b

46 How to use a Computer Algebra system

We conclude with a simple example of the solution of a Fredholm
integral equation of the second type. We want to solve the equation

f(x, λ) = x+ λx3

∫ 1

0

yf(y, λ)dy + λx2

∫ 1

0

y2f(y, λ)dy + λx

∫ 1

0

y3f(y, λ)dy

(1)
by the following method:

(1)We put

A(λ) =
∫ 1

0

yf(y, λ)dy

B(λ) =
∫ 1

0

y2f(y, λ)dy

C(λ) =
∫ 1

0

y3f(y, λ)dy

Equation (1) becomes

f(x, λ) = x+ λx3A(λ) + λx2B(λ) + λxC(λ) (2)

.
(2) In the definitions of A, B and C, we replace f(y, λ) by its value

from equation (2) with x replaced by y. If we integrate, we get three linear
equations in the three unknowns A, B and C.

(3) We solve this linear system and introduce the values found into (2).
Thus we get the desired function.

Solving it with the help of MACSYMA closely follows the algorithm.
To simplify the input, we start by defining a useful function f(q1, q2).

(c2) f(q1,q2):= q2*a*q1^3+q2*b*q1^2+q2*c*q1+q1;

3 2
(d2) f(q1, q2) := q2 a q1 + q2 b q1 + q2 c q1 + q1

(c3) eqa: a=integrate(y*f(y,l),y,0,1);

(20 c + 15 b + 12 a) l + 20
(d3) a = ---------------------------

60

(c4) eqb: b=integrate(y^2*f(y,l),y,0,1);

(15 c + 12 b + 10 a) l + 15
(d4) b = ---------------------------

60

Computer Algebra 47

(c5) eqc: c=integrate(y^3*f(y,l),y,0,1);

(42 c + 35 b + 30 a) l + 42
(d5) c = ---------------------------

210

(c6) sol: solve([eqa,eqb,eqc],[a,b,c]);

1575 l - 126000
(d6) [[a = - --------------------------------,

3 2
l - 4140 l - 226800 l + 378000

2100 l + 94500
b = --------------------------------,

3 2
l - 4140 l - 226800 l + 378000

2
l - 3510 l - 75600

c = - --------------------------------]]
3 2

l - 4140 l - 226800 l + 378000

We now extract the useful values from the resulting list, after checking
a by dpart.

(c7) dpart(sol,1,1,2);

""""""""""""""""""""""""""""""""""""
" 1575 l - 126000 "

(d7) [[a = "- --------------------------------",
" 3 2 "
" l - 4140 l - 226800 l + 378000"
""""""""""""""""""""""""""""""""""""

2100 l + 94500
b = --------------------------------,

l - 4140 l - 226800 l + 378000

2
l - 3510 l - 75600

c = - --------------------------------]]
3 2
l - 4140 l - 226800 l + 378000

(c8) a: part(sol,1,1,2) $

(c9) b: part(sol,1,2,2) $

(c10) c: part(sol,1,3,2) $;

48 How to use a Computer Algebra system

(c11) ratdenomdivide: false$

Now we have to evaluate f(x, l) by replacing a, b and c by their value.
We can use ev or a variant as is seen in c12.

(c12) f(x,l),eval;

3
l (1575 l - 126000) x

(d12) - --------------------------------
3 2
l - 4140 l - 226800 l + 378000

2
l (2100 l + 94500) x

+ --------------------------------
3 2
l - 4140 l - 226800 l + 378000

2
l (l - 3510 l - 75600) x

- -------------------------------- + x
3 2
l - 4140 l - 226800 l + 378000

Finally, we arrange and simplify the result using ratvars and ratsimp.

(c13) ratvars(x,l);

(d13) [x, l]

(c14) ratsimp(d12);

2 3 2
(d14) - (l (1575 x - 2100 x + 630 x)

3 2
+ l (- 126000 x - 94500 x + 151200 x) - 378000 x)

3 2
/(l - 4140 l - 226800 l + 378000)

1.5.7 Ordinary differential equations

MACSYMA can compute the solutions of ordinary differential equations of
first and second order. This part of MACSYMA is principally the work of
J. Moses. The principal commands are:

- ode2 for the actual integration;
- ic1, ic2 and bc2 which, once the general solution has been found,

allow one to find the particular solution required to satisfy certain initial
or boundary conditions.

Computer Algebra 49

The variable method has, as its value, the name of the method used.
When the function ode2 does not find a solution, it returns the constant
false. The constants of integration appear under the form %c, %k1 and
%k2. We have left the results as ode2 returns them, though some obvious
simplifications are possible.

(c4) depends(y,x);

(d4) [y(x)]

(c5) (x+y*diff(y,x))/sqrt(1+x^2+y^2) + (y-x*diff(y,x))/(x^2+y^2);

dy dy
y -- + x y - x --

dx dx
(d5) ----------------- + --------

2 2 2 2
sqrt(y + x + 1) y + x

(c6) ode2(%,y,x);
x

(d6) sqrt(y + x + 1) + atan(-) = %c
y

(c7) method;

(d7) exact

(c8) (1+x^2)*y^3 + (1-y^2)*x^3*diff(y,x);

3 2 dy 2 3
(d8) x (1 - y) -- + (x + 1) y

dx
(c9) ode2(%,y,x);

2 2
2 y log(y) + 1 2 x log(x) - 1

(d9) --------------- = --------------- + %c
2 2

2 y 2 x

(c10) method;

(d10) separable

(c11) x+y + (y-x)*diff(y,x);

dy
(d11) (y - x) -- + y + x

dx

(c12) ode2(%,y,x);

50 How to use a Computer Algebra system

2 2 x
log(y + x) + 2 atan(-)

y
(d12) ------------------------ = %c

4

(c13) method;

(d13) exact

(c14) x*y*diff(y,x) - y^2 -(x+y)^2 * %e^(-y/x);

dy 2 - y/x 2
(d14) x y -- - (y + x) %e - y

dx

(c15) ode2(%,y,x);
y/x

x %e

y + x

(d15) %c x = %e

(c16) method;

(d16) homogeneous

(c17) diff(y,x) + y*cos(x) -1/2*sin(2*x);

dy sin(2 x)
(d17) -- + cos(x) y - --------

dx 2

(c18) ode2(%,y,x);

- sin(x) sin(x)
(d18) y = %e ((sin(x) - 1) %e + %c)

(c19) method;

(d19) linear

(c20) eq5: x^2*diff(y,x) +6*x*y -27*y^3;

2 dy 3
(d20) x -- - 27 y + 6 x y

dx

(c21) sol:ode2(%,y,x);

1
(d21) y = --------------------

54 6
sqrt(------ + %c) x

13
13 x

Computer Algebra 51

(c22) method;

(d22) bernoulli

Now, let us check that d21 really is a solution of the differential equa-
tion, and find a particular solution using the command ic1.

(c23) radcan(ev(eq5,diff,sol));

(d23) 0

(c24) ic1(sol, x=1, y=2);

2 sqrt(13)
(d24) y = ------------------------

13
6 203 x - 216
x sqrt(- -------------)

13
x

(c25) (x*diff(y,x) - y)^2 = (y*diff(y,x)*(x^2+y^2))^2;

dy 2 2 2 2 2 dy 2
(d25) (x -- - y) = y (y + x) (--)

dx dx

(c26) ode2(%,y,x);

dy 2 2 2 2 2 dy 2
(e26) (x -- - y) = y (y + x) (--)

dx dx

First order equation not linear in y’

(d26) false

(c28) diff(y,x,2)+4*y-1/cos(2*x);

2
d y 1

(d28) --- + 4 y - --------
2 cos(2 x)

dx

(c29) sol: ode2(%,y,x);

cos(2 x) log(cos(2 x)) + 2 x sin(2 x)
(d29) y = ------------------------------------- + %k1 sin(2 x)

4

+ %k2 cos(2 x)

52 How to use a Computer Algebra system

(c30) method;

(d30) variationofparameters

(c31) ic2(sol,x=0,y=0,’diff(y,x)=0);

cos(2 x) log(cos(2 x)) + 2 x sin(2 x)
(d31) y = -------------------------------------

4

Let us now look at an example which is often found in physics, and
particularly in celestial mechanics [Chazy, 1953]. Consider the differential
equation

u′′ + u = εu2

with the initial conditions

u(0) =
1
r
, u′(0) = 0.

We will look for a solution of the form

u(t) = u0(t) + εu1(t) + ε2u2 + · · ·

and we will suppose that the conditions of Poincaré’s theorem are satisfied.
By hand, one rarely goes beyond the first order in ε, but with MACSYMA
it is easy to go further. The initial conditions are valid whatever the value
of ε, so for t = 0 we will have

u0 =
1
r
, u′0 = 0, u1 = 0, u′1 = 0, u2 = 0, u′2 = 0.

(c3) equa_init: ’diff(u,t,2) + u = eps*u^2;

2
d u 2

(d3) --- + u = eps u
2

dt

We substitute the expansion in the initial equation.

(c4) v: u0 + eps*u1 + eps^2*u2;
2

(d4) eps u2 + eps u1 + u0

(c5) depends([u0,u1,u2], t)$

Computer Algebra 53

(c6) eq: subst(v, u, equa_init);
2

d 2 2
(d6) --- (eps u2 + eps u1 + u0) + eps u2 + eps u1 + u0 =

2
dt

2 2
eps (eps u2 + eps u1 + u0)

We perform the differentiations, and simplify the result.

(c7) eq: ev(eq, diff);
2 2 2

2 d u2 2 d u1 d u0
(d7) eps ---- + eps u2 + eps ---- + eps u1 + ---- + u0 =

2 2 2
dt dt dt

2 2
eps (eps u2 + eps u1 + u0)

(c8) eq: ratexpand(eq);
2 2 2

2 d u2 2 d u1 d u0
(d8) eps ---- + eps u2 + eps ---- + eps u1 + ---- + u0 =

2 2 2
dt dt dt

5 2 4 3 3 2 2
eps u2 + 2 eps u1 u2 + 2 eps u0 u2 + eps u1 + 2 eps u0 u1

2
+ eps u0

We extract the equation satisfied by u0 and solve it.

(c9) equ0: ev(eq, eps=0);
2
d u0

(d9) ---- + u0 = 0
2

dt
(c10) solveu0: ode2(equ0, u0, t);

(d10) u0 = %k1 sin(t) + %k2 cos(t)

(c11) solveu0: ic2(solveu0, t=0, u0=1/r, ’diff(u0,t)=0);

cos(t)
(d11) u0 = ------

r
(c12) uu0: rhs(%);

54 How to use a Computer Algebra system

cos(t)
(d12) ------

r

Now we do the same for u1, taking account of the solution already
found for u0.

(c13) eq1: coeff(eq, eps, 1);
2

d u1 2
(d13) ---- + u1 = u0

2
dt

(c14) eq1: ev(eq1, u0=uu0);
2 2
d u1 cos (t)

(d14) ---- + u1 = -------
2 2

dt r
(c15) solveu1: ode2(eq1, u1, t);

cos(2 t) - 3
(d15) u1 = - ------------ + %k1 sin(t) + %k2 cos(t)

2
6 r

(c16) solveu1: ic2(solveu1, t=0, u1=0, ’diff(u1,t)=0);

cos(2 t) - 3 cos(t)
(d16) u1 = - ------------ - ------

2 2
6 r 3 r

(c17) uu1: rhs(%);
cos(2 t) - 3 cos(t)

(d17) - ------------ - ------
6 r 3 r

Now we can determine u2.

(c18) eq2: coeff(eq, eps, 2);

2
d u2

(d18) ---- + u2 = 2 u0 u1
2

dt

(c19) eq2: ev(eq2, u0=uu0, u1=uu1);
cos(2 t) - 3 cos(t)

2 cos(t) (- ------------ - ------)
2 2 2
d u2 6 r 3 r

(d19) ---- + u2 = ----------------------------------
2 r

dt

Computer Algebra 55

(c20) eq2: ratexpand(eq2);

2 2
d u2 cos(t) cos(2 t) 2 cos (t) cos(t)

(d20) ---- + u2 = - --------------- - --------- + ------
2 3 3 3

dt 3 r 3 r r

(c21) solveu2: ode2(eq2, u2, t);

3 cos(3 t) + 16 cos(2 t) + 60 t sin(t) + 66 cos(t) - 48
(d21) u2 =---

3
144 r

+ %k1 sin(t) + %k2 cos(t)

(c22) solveu2: ic2(solveu2, t=0, u2=0, ’diff(u2,t)=0);

3 cos(3 t) + 16 cos(2 t) + 60 t sin(t) + 66 cos(t) - 48
(d22) u2 =---

3
144 r

37 cos(t)
- ---------

3
144 r

(c23) uu2: rhs(%);

3 cos(3 t) + 16 cos(2 t) + 60 t sin(t) + 66 cos(t) - 48
(d23) ---

3
144 r

37 cos(t)
- ---------

3
144 r

Now we substitute these uui in the initial expansion. The function
trunc allows us to write the result in a form appropriate for a series ex-
pansion.

(c24) u_final: ev(v, u0=uu0, u1=uu1, u2=uu2)$

(c25) trunc(%);

cos(t) cos(2 t) - 3 cos(t)
(d25) ------ + eps (- ------------ - ------)

r 2 2
6 r 3 r

56 How to use a Computer Algebra system

2 3 cos(3 t) + 16 cos(2 t) + 60 t sin(t) + 66 cos(t) - 48
+ eps (---

3
144 r

37 cos(t)
- ---------) + . . .

3
144 r

1.6 MACSYMA’S POSSIBILITIES IN ALGEBRA

1.6.1 General Possibilities

MACSYMA possesses several facilities for working with algebraic num-
bers, in particular those numbers which are solutions of polynomials in
one variable with integer coefficients and leading coefficient 1*. So that
the appropriate simplications can be carried out, it is necessary to set the
switch algebraic to true. Furthermore, in order to simplify the denomi-
nators it is necessary to transform from the tree form to the recursive form
(see later). This is the reason for the function simplify in the following
examples.

(c1) algebraic: true$

(c2) simplify(e):=ratdisrep(rat(e))$

(c3) (5*(2-%i))/(3^(1/3)+%i);

5 (2 - %i)
(d3) ----------

1/3
%i + 3

(c4) simplify(%);

2/3 1/3 2/3 1/3
(3 + 7 3 - 1) %i - 7 3 + 3 + 7

(d4) - --
2

If we assign a prime number p as the value of the global variable modu-
lus, we are working over the field Zp, with a representation of the elements

* Such numbers are called algebraic integers.

Computer Algebra 57

which is symmetric with respect to 0 (including Z2, in which MACSYMA
uses either of 1 or −1 for the non-zero element). For example:

Z7 = {−3,−2,−1, 0, 1, 2, 3}.

The default value of modulus is false. We then work in Z, Q or R as the
case may be, and as we have done for all the examples in this chapter.

(c5) modulus: 7;

(d5) 7

(c6) p0: x^16+4;

16
(d6) x + 4

(c7) factor(p0);

4 2 4 2 4 2
(d7) (x - 2 x + 3) (x - x + 3) (x + x + 3)

4 2
(x + 2 x + 3)

(c8) ratexpand(%);

16
(d8) x - 3

(c9) modulus: 2;

(d9) 2

(c10) factor((x^16-x)/(x^4-x));

4 4 3 4 3 2
(d10) (x + x + 1) (x + x - 1) (x + x + x + x + 1)

(c11) simplify((x^16-x)/(x^4-x));

12 9 6 3
(d11) x + x + x + x + 1

(c12) factor(%);

4 4 3 4 3 2
(d12) (x + x + 1) (x + x - 1) (x + x + x + x + 1)

We can also define extensions of the ground field. That is the rôle of
the function tellrat. There is no check for irreducibility of the defining

58 How to use a Computer Algebra system

polynomials. Here again, we must use the function simplify to obtain a
reduced expression for elements of the new field.

(c13) tellrat(1+a+a^2);

2
(d13) [a + a + 1]

(c14) z0: 1+a+a^3+a^5+ 1/a;

5 3 1
(d14) a + a + a + - + 1

a

(c15) z0: simplify(z0);

(d15) a

(c16) simplify((x^2+x+a)*(x^2+x+a^2));

4
(d16) x + x + 1

(c17) tellrat(b^2+b+a);

2 2
(d17) [b + b + a, a + a + 1]

(c18) z1: a+b;

(d18) b + a

(c19) iz1: simplify(1/z1);

(d19) a b + 1

(c20) simplify(z1*iz1);

(d20) 1

(c21) tellrat(g^2+b*g+a+1);

2 2 2
(d21) [g + b g + a + 1, b + b + a, a + a + 1]

(c22) z2: a+b+g+1;

(d22) g + b + a + 1

(c23) iz2: simplify(1/z2);

(d23) ((a + 1) b + a) g + a b + 1

Computer Algebra 59

Let us go back to Q. The variable z2 still has formally the value 1 +
a+ b+ g.

(c24) modulus: false;

(d24) false

(c25) simplify(1/z2);

((a + 3) b - 3 a - 2) g + (- 3 a - 2) b + 2 a - 1
(d25) - ---

7

(c26) simplify(1/b);

(d26) (a + 1) b + a + 1

(c27) a0: a+6*b*g;

(d27) 6 b g + a

(c28) a1: simplify(1/a0);

(d28) - (((52422 a + 242820) b + 60084 a + 247536) g

+ (17676 a + 45972) b - 212117 a + 102415)/1244803

(c29) simplify(1/a1);

(d29) 6 b g + a

Unfortunately, as we shall see from c34 and d34, MACSYMA has
some problems when factorising the results in these extensions, and even
in simplifying rational fractions by taking the g.c.d.

(c30) p0: x^2 + 3*b*x +a*g+2;

2
(d30) x + 3 b x + a g + 2

(c31) p1: (x-a)*(x-g);

(d31) (x - a) (x - g)

(c32) p3: simplify(p0*p1);

4 3
(d32) x + (- g + 3 b - a) x + ((2 a - 3 b) g - 3 a b + 2)

2
x + ((4 a b + a - 1) g - 2 a - 1) x + ((a + 1) b + 2 a) g

+ a

60 How to use a Computer Algebra system

(c33) simplify(p3/p1);

4 3
(d33) (x + (- g + 3 b - a) x

2
+ ((2 a - 3 b) g - 3 a b + 2) x

+ ((4 a b + a - 1) g - 2 a - 1) x + ((a + 1) b + 2 a) g

2
+ a)/(x + (- g - a) x + a g)

(c34) factor(p3);

4 3 3 3 2 2
(d34) x - g x + 3 b x - a x - 3 b g x + 2 a g x

2 2
- 3 a b x + 2 x + 4 a b g x + a g x - g x - 2 a x - x

+ a b g + b g + 2 a g + a

1.6.2 The division of the circle into 17 equal parts
The classical method traditionally taught in algebra courses leads us to ex-
press cos 2π

17 in terms of radicals [Stewart, 1989]. We will employ a variation
which consists in passing via the tangent. It is easy to see that the roots of
the polynomial

(1 + iz)n − (1 − iz)n = 0

for n odd and z real are

tan
kπ

n
k = 0, . . . , n− 1.

This polynomial is divisble by 2iz, so let us consider instead the polynomial

(1 + iz)n − (1 − iz)n

2iz

whose roots are tan kπ
n with k = 1, . . . , n − 1. We note that this method

essentially forces us to divide the semi-circumference into 17 parts, and the
circle into 34, but this does not fundamentally change our problem.

(c4) poly16: ((1+%i*z)^17 - (1-%i*z)^17)/(2*%i*z)$

Computer Algebra 61

(c5) poly16: ratexpand(poly16);

16 14 12 10 8 6
(d5) z - 136 z + 2380 z - 12376 z + 24310 z - 19448 z

4 2
+ 6188 z - 680 z + 17

Let z1, z2, . . . , z16 be the 16 roots of this polynomial. If we write

z1 = tan
π

17

we know that the other roots can be expressed rationally in terms of z1 by
the classic addition formulae

z2 =
2z1

1 − z12
, · · · , zk =

z1 + zk−1

1 − z1zk−1
.

Hence we can define a function which generates the roots from z1.

(c6) gentan(z1,zk):=ratexpand((z1+zk)/(1-z1*zk));

z1 + zk
(d6) gentan(z1, zk) :=ratexpand ---------

1 - z1 zk

The root z1 is a primitive element of the splitting field of poly16 over
Q, and we can express in this field, Q(z1), the other roots as polynomials
in z1. But we know that this would be true if we had taken any other root
of the polynomial instead of z1. The equation poly16 = 0 is normal, and its
Galois group with respect to Q has order 16. Given the relations written
down earlier, a classical theorem tells us that the group, which we will call
G16, is metacyclic. It is therefore isomorphic to C16. Furthermore, it is
geometrically obvious that the roots are connected to each other by the
relations

z1 + z16 = 0, . . . , zk + z17−k = 0, k = 1, . . . , 16.

Now, rather than renumber the roots so as to generate the group via the
cycle (1, 2, 3, . . . , 16), we will keep the original numbering, which has a
geometric significance, and take as our generator of the group the cycle

p = (1, 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6).

62 How to use a Computer Algebra system

This cycle, formed by the powers of 3 modulo 17, is here introduced very
naturally as the permutation compatible with the above relations.

Before we go any further, let us do the preliminary calculation of the
expression of the roots as a function of an arbitrary one of them, say z, in
the field Q(z). This can be done very simply with the command tellrat
and the function we have already used, simplify. Obviously, we need only
do the first eight roots.

(c7) simplify(e):=ratdisrep(rat(e))$

(c8) array(y,8)$

(c9) y[1]: z$

(c10) for j:2 thru 8 do y[j]: gentan(z,y[j-1])$

At this point, the roots are stored in the table y in the form of rational
fractions in z.

(c11) array(x,16)$

(c12) x[1]: z$

(c13) algebraic: true$

(c14) tellrat(poly16);

16 14 12 10 8 6
(d14) [z - 136 z + 2380 z - 12376 z + 24310 z - 19448 z

4 2
+ 6188 z - 680 z + 17]

We will now put in the table x the expressions of the roots as polynomi-
als in z, i.e. in the polynomial form which they take in the splitting field. We
can obviously save time by only doing this expensive calculation for the first
eight roots, since the others are their opposites: x16 = −x1, x15 = −x2, . . .

(c15) for j:2 thru 8 do x[j]: simplify(y[j])$

Time= 63500 msec. (on a Micro-vax 3300).

(c16) for j:9 thru 16 do x[j]: -x[17-j]$

Out of curiosity, let us compare the two expressions for z2: y2 which
contains its rational function expression and x2 which contains its polyno-
mial expression in the field defined by poly16.

y[2];

Computer Algebra 63

2 z

2
1 - z

x[2];

15 13 11 9 7
(z - 135 z + 2245 z - 10131 z + 14179 z

5 3
- 5269 z + 919 z + 239 z)/128

Now let us return to the theoretical method for constructing the split-
ting field in stages. The composition series of the group G16 is obvious: let
us write it as

G16 .G8 .G4 .G2 . I

in which:
G8 is generated by p2 = (1, 9, 13, 15, 16, 8, 4, 2)(3, 10, 5, 14, 7, 12, 6)
G4 is generated by p4 = (1, 13, 16, 4)(2, 9, 15, 8)(3, 5, 14, 12)(6, 10, 11, 7)
G2 is generated by p8 = (1, 16)(2, 15)(3, 14)(4, 13)(5, 12)(6, 11)(7, 10)(8, 9)
and I is the unit permutation (1) †.

To construct the first extension of Q, the natural idea is to consider
the expression ϕ = x1x2x4x8x9x13x15x16, which is formally invariant under
the permutations of G8, and its conjugate ϕ′ = x3x5x6x7x10x12x14, which
are the solutions of a quadratic equation over Q. Calculations similar to
the later ones show that this equation is ϕ2 − 34ϕ+ 17.

But we can arrange to find a simpler equation. In fact, we know that
it is not the formal invariance that matters so much as the invariance of
values under the permutations of the sub-group. This is the case for the
quantity a = x1x2x3x4x5x6x7x8. We can verify that this is invariant under
the permutations of G8. For example, under p2,

x1x2x3x4x5x6x7x8 ⇒ x9x1x10x2x11x3x12x4.

This is none other than (−x8)x1(−x7)x2(−x6)x3(−x5)x4, which is equal
to a since there are an even number of negations. The other permutations
of the sub-group give different permutations of the symbols, but the result
can always be reduced to a. The conjugate of a, a′, obtained from a by
applying a permutation of G16/G8, such as p, is simply −a, and we see
immediately that a + a′ = 0 and aa′ = 17. The equation defining the
desired extension of Q is then

α2 − 17 = 0.

† G8,G4 and G2 are isomorphic to C8, C4 and C2 respectively.

64 How to use a Computer Algebra system

Let us now work in Q(α) and look for a quantity invariant under the
permutations of G4. Guided by the choice of a, let us take

b = x1x2x4x8.

As before, we can see that the value of this expression is invariant under
the permutations of G4, and that its conjugate is b′ = −b. The quantities
b and b′ are thus roots of a quadratic equation over Q(α) of the form

β2 − b2 = 0 b2 ∈ Q(α)

i.e.
b2 = u1α+ u2 u1, u2 ∈ Q.

To find u1 and u2, we will perform our calculations in Q(z), choosing to
identify α with a, since α = ±a, and we will identify as appropriate. We
begin with the computation of a =

∏8
j=1 zj.

(c17) temp: x[1]$

(c18) for j:2 thru 8 do temp: simplify(temp*x[j])$

(c19) a: temp;

14 12 10 8
(d19) (137 z - 18575 z + 318337 z - 1563775 z

6 4 2
+ 2691219 z - 1589925 z + 222819 z + 10931)/4096

Now we calculate b = x1x2x4x8 and b2.

(c20) temp: x[1]$

(c21) for j in [2,4,8] do temp: simplify(temp*x[j]);

(c22) b: temp$

(c23) bsquare: simplify(b^2);

14 12 10 8
(d23) - (137 z - 18575 z + 318337 z - 1563775 z

6 4 2
+ 2691219 z - 1589925 z + 222819 z - 6477)/1024

Now let us compute the expression b2 − u1a− u2.

(c24) equa: simplify(bsquare - u1*a - u2);

Computer Algebra 65

14 12
(d24) - ((137 u1 + 548) z + (- 18575 u1 - 74300) z

10 8
+ (318337 u1 + 1273348) z + (- 1563775 u1 - 6255100) z

6 4
+ (2691219 u1 + 10764876) z + (- 1589925 u1 - 6359700) z

2
+ (222819 u1 + 891276) z + 4096 u2 + 10931 u1 - 25908)/4096

(c25) equa: num(equa)$

This expression should be identically zero, so, in choosing two coeffi-
cients, we will have two equations to determine u1 and u2.

(c26) eq0: ev(equa,z=0);

(d26) - 4096 u2 - 10931 u1 + 25908

(c27) eq1: coeff(equa,z,14);

(d27) - 137 u1 - 548

(c28) solve([eq0,eq1],[u1,u2]);

(d28) [[u1 = - 4, u2 = 17]]

We should check that these values make the expression identically zero.

(c29) ev(equa,u1=-4,u2=17);

(d29) 0

The equation defining the field Q(β, α) is therefore

β2 + 4α− 17 = 0.

The group of the equation with respect to this new field is therefore G4.
By the same techniques as before, we will find that the quantity c = x1x4

is invariant in value under the permutations of G2. Again we have that
c′ = −c, and so c also satisfies a quadratic equation of the form

γ2 − c2 = 0 c2 ∈ Q(β, α)

i.e.
c2 = (u1α+ u2)β + (v1α+ v2) ui, vi ∈ Q.

We will again work in Q(z), identifying α with a and β with b. We will
need four equations to find the four rational coefficients u1, u2, v1 and v2.

66 How to use a Computer Algebra system

(c30) c: simplify(x[1]*x[4])$

(c31) csquare: simplify(c^2)$

(c32) equa: simplify(csquare-(u1*a + u2)*b - v1*a - v2)$

(c33) equa: num(equa);

14
(d33) - (137 v1 + 72 u2 - 497 u1 - 432) z

12
- (- 18575 v1 - 9752 u2 + 67423 u1 + 58688) z

10
- (318337 v1 + 165944 u2 - 1159961 u1 - 1019472) z

8
- (- 1563775 v1 - 799112 u2 + 5760127 u1 + 5196256) z

6
- (2691219 v1 + 1309176 u2 - 10181419 u1 - 9743696) z

4
- (- 1589925 v1 - 673128 u2 + 6427445 u1 + 6982528) z

2
- (222819 v1 + 39304 u2 - 1127627 u1 - 1652400) z

- 4096 v2 - 10931 v1 - 2312 u2 - 44013 u1 - 49504

(c34) eq0: ev(equa,z=0);

(d34) - 4096 v2 - 10931 v1 - 2312 u2 - 44013 u1 - 49504

(c35) eq1: coeff(equa,z,14);

(d35) - 137 v1 - 72 u2 + 497 u1 + 432

(c36) eq2: coeff(equa,z,12);

(d36) 18575 v1 + 9752 u2 - 67423 u1 - 58688

(c37) eq3: coeff(equa,z,10);

(d37) - 318337 v1 - 165944 u2 + 1159961 u1 + 1019472

(c38) solve([eq0,eq1,eq2,eq3],[u1,u2,v1,v2]);

Time= 500 msec.

Computer Algebra 67

(d38) [[u1 = - 2, u2 = - 4, v1 = - 2, v2 = 17]]

(c39) ev(equa,u1=-2,u2=-4,v1=-2,v2=17);

(d39) 0

The equation defining the field Q(γ, β, α) is therefore

γ2 + (2α+ 4)β + 2α− 17 = 0.

The group of the initial equation is now reduced to G2. In the new
field, x1, i.e. z, is invariant under the trivial group, and its conjugate is
x16 = −x1. For consistency, let us call these quantities d and d′. They are
the roots of a quadratic equation over Q(γ, β, α) of the form

δ2 − d2 = 0 d2 ∈ Q(γ, β, α)

i.e.

d2 = (((u1α+ u2)β + v1α+ v2)γ + (w1α+ w2)β + r1α+ r2)

with ui, vi, wi, ri ∈ Q. To calculate these rational coefficients, we proceed
as before, noting that eight equations are necessary.

(c40) dsquare: z^2$

(c41) equa: dsquare-(((u1*a+u2)*b+v1*a+v2)*c+(w1*a+w2)*b+r1*a+r2)$

(c42) equa: num(simplify(equa))$

(c43) eq0: ev(equa,z=0)$

(c44) eq1: coeff(equa,z,14)$

(c45) eq2: coeff(equa,z,12)$

(c46) eq3: coeff(equa,z,10)$

(c47) eq4: coeff(equa,z,8)$

(c48) eq5: coeff(equa,z,6)$

(c49) eq6: coeff(equa,z,4)$

(c50) eq7: coeff(equa,z,2)$

(c51) solve([eq0,eq1,eq2,eq3,eq4,eq5,eq6,eq7],
[u1,u2,v1,v2,w1,w2,r1,r2]);

Time= 4100 msec.

68 How to use a Computer Algebra system

(d51) [[u1 = 1, u2 = 4, v1 = - 1, v2 = - 4,
w1 = - 5, w2 = - 20, r1 = 3, r2 = 17]]

The equation defining the final extension is therefore

δ2 − (α+ 4)(β − 1)γ + 5(α+ 4)β − 3α− 17 = 0.

The initial group is therefore completely known, and δ, i.e. z, is ex-
pressible in terms of radicals by means of the above equations, which we
recapitulate here.

α2 − 17 = 0

β2 + 4α− 17 = 0

γ2 + (2α+ 4)β + 2α− 17 = 0

δ2 − (α+ 4)(β − 1)γ + 5(α+ 4)β − 3α− 17 = 0

We can therefore stop working in the field defined by the original irreducible
polynomial poly16, and work instead in terms of the successive extensions
of Q which we will define by the command tellrat. Even though it is
not strictly necessary, we will start a new MACSYMA session, and use the
symbols a, b, c, d instead of greek letters to save typing.

(c3) simplify(e):=ratdisrep(rat(e))$

(c4) algebraic: true$

(c5) tellrat(a^2-17);

2
(d5) [a - 17]

(c6) tellrat(b^2+4*a-17);

2 2
(d6) [b + 4 a - 17, a - 17]

(c7) tellrat(c^2+(2*a+4)*b+2*a-17);

2 2 2
(d7) [c + (2 a + 4) b + 2 a - 17, b + 4 a - 17, a - 17]

(c8) tellrat(d^2-(a+4)*(b-1)*c+5*b*(a+4)-3*a-17);

2
(d8) [d + ((- a - 4) b + a + 4) c + (5 a + 20) b - 3 a

2 2 2
- 17, c + (2 a + 4) b + 2 a - 17, b + 4 a - 17, a - 17]

Computer Algebra 69

(c9) bsquare: simplify(b^2);

(d9) 17 - 4 a

(c10) csquare: simplify(c^2);

(d10) (- 2 a - 4) b - 2 a + 17

(c11) dsquare: simplify(d^2);

(d11) ((a + 4) b - a - 4) c + (- 5 a - 20) b + 3 a + 17

This last value is that of the square of a root of the original polynomial.
Now let us calculate in R, taking the positive values of the square roots of
the quantities a, b and c.

(c12) a: sqrt(17.0);

(d12) 4.1231056256176606

(c13) b: sqrt(ev(bsquare));

(d13) 0.71244473296485089

(c14) c: sqrt(ev(csquare));

(d14) 0.17041139647094769

(c15) z: sqrt(ev(dsquare));

(d15) 0.18693239710795764

The choice of positive roots thus corresponds to tan π
17 , as one can see

by direct computation.

(c16) z1: tan(%pi/17),numer;

(d16) 0.18693239710797716

We can also easily find the expression in Q(c, b, a) of the square of
cos kπ

17 .

(c17) cos17square: simplify(1/(1+d^2));

((3 a + 13) b + 3 a + 9) c + (a + 3) b + a + 15
(d17) ---

32

(c18) cos17: sqrt(ev(cos17square));

(d18) 0.98297309968390434

70 How to use a Computer Algebra system

(c19) cos(%pi/17),numer;

(d19) 0.98297309968390179

With the choice of positive roots, we do find cos π
17 . Unfortunately,

these formulae are not a great help for an easy ruler-and-compass construc-
tion of the side of a 17-gon, and the numerical computations at the end,
which were merely checks, are not the desired result. The interesting result
is the form of the binomial quadratic equations which define the interme-
diate fields.

We have solved this problem in applying, step by step, the classical
method, and we have favoured clarity of exposition over cincision, in not
hesitating to repeat similar sequences of instructions. The reader has no
doubt noted the artificial character of simplification modulo an irreducible
polynomial: set the variable algebraic to true and apply two inverse op-
erations rat and ratdisrep. This gives rise to an impression of “hacking”,
rather than a systematic process. Further on there are several pages de-
voted to a language more recent than MACSYMA, developed by IBM and
of an incomparable superiority in this kind of algebra: AXIOM.

1.7 AVAILABILITY OF MACSYMA

The preceding examples have given only a brief survey of MACSYMA’s
possibilities. The interested reader should practise on a real system. He
might also consider aspects which we have not described here: functions for
drawing curves and surfaces, and especially the possibilities of the library
SHARE. The best versions of MACSYMA are installed on DEC computers
(VMS and ULTRIX) and on SUN, IBM and HP work-stations. There is
even a version for 80386-based PCs.

1.8 OTHER SYSTEMS

The present supremacy of MACSYMA’s library should not make us over-
look the existence of other systems for Computer Algebra. REDUCE, which
is described later (see the Annex), has developed very rapidly over the last
few years. It is to be found on almost all machines in the scientific world.
The LISP pre-processor used for its execution, RLISP, is a system which is
easy to understand and to adapt. We should also mention MAPLE (written
in the language C and available under UNIX, Macintosh or PC–386) which
is fairly wide-spread. As a starting system we must mention muMATH
and its successor DERIVE which work on micro-computers. The most se-
rious competitors to MACSYMA seem to be MAPLE, MATHEMATICA
and AXIOM. This last is considered with several details in the following

Computer Algebra 71

section. MATHEMATICA would like to see itself as the modern successor
of MACSYMA. Written in C, it is available on a wide range of machines,
(from the Macintosh to the Cray-2!). The graphical side is particularly
well-developed, and considerably surpasses MACSYMA.

1.9 AXIOM

This system, with a strictly mathematical approach and a typing system as
close as possible to abstract algebra, was designed by the Computer Algebra
group at IBM (Yorktown Heights) under the name SCRATCHPAD, and is
now distributed and supported by NAG (Oxford). A full study of this
system would be impossible in this book, and the reader should consult the
new documentation [Jenks & Sutor, 1992] and the other sources. There are
also several seminars and courses on AXIOM available. Nevertheless, we
give here a flavour of AXIOM’s potential.

Suppose we want to write a function quotient which divides two poly-
nomials according to increasing degree. First we must define the type of
the function:
• the first two arguments are from the domain of polynomials in one

variable (known to AXIOM as UnivariatePolynomial or UP) over the
rational numbers (FRAC INT), so that the AXIOM type equivalent to
the mathematician’s Q[x] is abbreviated as UP(x,FRAC INT);

• the third is from the domain of non-negative integers (NonNegativeIn-
teger or NNI);

• the result is either from the domain UP(x,FRAC INT) or the special
token failed.

The actual definition of quotient uses primitives resembling those of MAC-
SYMA. We observe that it is usually necessary to define the types of vari-
ables before using them.

quotient:(UP(x,FRAC INT),UP(x,FRAC INT),NNI) ->
Union(‘‘failed’’, UP(x,FRAC INT))

quotient(p1,p2,n) ==
minimumDegree(p1) < minimumDegree(p2) => ‘‘failed’’
reste:UP(x,FRAC INT):=p1
degp2:=minimumDegree(p2)
coefp2:=coefficient(p2,degp2)
quot:UP(x,FRAC INT):=0
while degree(quot) < n repeat

deg:=minimumDegree(reste)
mon:=monomial(coefficient(reste,deg)/coefp2,deg-degp2)$

UP(x,FRAC INT)
reste:=reste-(mon*p2)
quot:=quot+mon

quot

72 How to use a Computer Algebra system

The use of the expression $UP(x,FRAC INT) indicates that the function
monomial from the type UP(x,FRAC INT), rather than, say, the monomial
from UP(y,FRAC INT), which should be used.

This function can now be used: at the first use, the AXIOM system
will compile it.

(3) ->quotient(1,1+x,8)
Compiling function quotient with type (UnivariatePolynomial(x,
Fraction Integer),UnivariatePolynomial(x,Fraction Integer),
NonNegativeInteger) -> Union(‘‘failed’’,UnivariatePolynomial(x,
Fraction Integer))

8 7 6 5 4 3 2
(3) x - x + x - x + x - x + x - x + 1
Type: Union(UnivariatePolynomial(x,Fraction Integer),...)

(4) ->quotient(x**2-x+1,x**3-x-6/7,8)

(4)
84778967 8 18089477 7 2286095 6 166061 5 8281 4
-------- x - -------- x + ------- x - ------ x - ---- x
10077696 1679616 279936 46656 7776

+
4459 3 889 2 91 7
---- x - --- x + -- x - -
1296 216 36 6

Type: Union(UnivariatePolynomial(x,Fraction Integer),...)

Now let us consider an algebraic extension, for which MACSYMA was
not completely satisfactory. We will use the domain SimpleAlgebraicEx-
tension, which takes as parameters a field, a polynomial structure over
that field, and a polynomial belonging to that structure. This will suffice
to define a new type, which we call etx1.

(1) ->ext1:=SAE(FRAC INT,UP(a,FRAC INT),a**2+a+1)

(1)
SimpleAlgebraicExtension(Fraction Integer,UnivariatePolynomial(a,
Fraction Integer),a*a+a+1)

Type: Domain
(2) ->e:ext1:=convert(((3/4)*a**2-a+(7/4))::UP(a,FRAC INT))

7
(2) - - a + 1

4
Type: SimpleAlgebraicExtension(Fraction Integer,
UnivariatePolynomial(a,Fraction Integer),a*a+a+1)
-- inversion de e:
(3) ->recip(e)

28 44
(3) -- a + --

93 93

Computer Algebra 73

Type: Union(SimpleAlgebraicExtension(Fraction Integer,
UnivariatePolynomial(a,Fraction Integer),a*a+a+1),....)
(4) ->e**2

105 33
(4) - --- a - --

16 16
Type: SimpleAlgebraicExtension(Fraction Integer,
UnivariatePolynomial(a,Fraction Integer),a*a+a+1)
(5) ->e:=convert((a**2-1)::UP(a,FRAC INT))

(5) - a - 2
Type: SimpleAlgebraicExtension(Fraction Integer,
UnivariatePolynomial(a,Fraction Integer),a*a+a+1)

Now let us take two expanded polynomials p1 and p2, with coefficients
in the field Q(a), which we called ext1, (x2 − a2)(x2 +3x+ a) and x2 − a2.
We notice that this time the system correctly simplifies the rational function
p2/p1.

(6) ->p1:UP(x,ext1):=x**4+3*x**3+(2*a+1)*x**2+(3*a+3)*x-1

4 3 2
(6) x + 3x + (2a + 1)x + (3a + 3)x - 1

Type: UnivariatePolynomial(x,SimpleAlgebraicExtension(Fraction
Integer,UnivariatePolynomial(a,Fraction Integer),a*a+a+1))
(7) ->p2:UP(x,ext1):= x**2+a+1

2
(7) x + a + 1

Type: UnivariatePolynomial(x,SimpleAlgebraicExtension(Fraction
Integer,UnivariatePolynomial(a,Fraction Integer),a*a+a+1))
(8) ->p2/p1

1
(8) -----------

2
x + 3x + a

Type: Fraction UnivariatePolynomial(x,SimpleAlgebraicExtension
(Fraction Integer,UnivariatePolynomial(a,Fraction Integer),a*a+a+1))

Let the reader take heart! This example was deliberately complicated
in order to demonstrate the possibilities of AXIOM to mathematicians. All
the examples we gave of MACSYMA can be transcribed almost verbatim,
without the requirement to declare domains. Most recent of the computer
algebra systems offered to mathematicians and engineers, it is certain that
AXIOM should have a considerable impact. As with the other systems, it
is widespread use of the system which will guarantee its growth, and it is

74 How to use a Computer Algebra system

extremely encouraging to note that its authors have succeeded in making
it available.

2. The problem of data
representation

This chapter is devoted to a basic aspect of Computer Algebra: the
representation of mathematical objects on the computer. In this chapter
we shall consider questions of the form: “How are the data represented on
the computer?”; “I can present my problem in several ways — which will be
the most efficient?” etc. We shall not go into the very technical questions
of REDUCE or MACSYMA, but we shall explain the general principles,
and the representation traps into which the user may so easily fall.

2.1 REPRESENTATIONS OF INTEGERS

“God created the integers: the rest is the work of man” said the great
mathematician Kronecker. Nevertheless, man has some problems with rep-
resenting integers. Most computer languages treat them as a finite set, such
as {−231, . . . , 231−1}. It is very easy to say “my data are small, the answer
will be small, so I shall not need large integers and this finite set will be
enough”, but this argument is completely false.

Suppose we want to calculate the g.c.d. of the following two polynomi-
als [Knuth, 1969; Brown, 1971]:

A(x) =x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5;

B(x) =3x6 + 5x4 − 4x2 − 9x+ 21.

Since we know Euclid’s algorithm we can begin to calculate (we shall return
to this example in the sub-section “The g.c.d.”). The last integer calculated
has 35 decimal digits, that is 117 bits, and as the result is an integer we find
that the polynomials are relatively prime. However, the data are small (the
biggest number is 21), and the result “relatively prime” was a yes/no answer
and only needed 1 bit. This problem of intermediate expression swell is one

75

76 The problem of data representation

of the biggest problems in Computer Algebra. Similar problems have been
pointed out in integration [Davenport, 1981, pp. 165–172] and elsewhere.
In the chapter “Advanced algorithms” we give an example of an algorithm
for the g.c.d. of polynomials, which does not have this defect.

So, it is necessary to deal with the true integers of mathematicians,
whatever their size. Almost all Computer Algebra systems do this, and a
trivial test of a Computer Algebra system is to calculate such a number.
The representation of large integers (sometimes called “bignums”) is fairly
obvious: we choose a number N as base, just as the normal decimal rep-
resentation uses 10 as base, and every number is represented by its sign
(+ or −) and a succession of “digits” (that is the integers between 0 and
N − 1) in this base. The most usual bases are the powers of 2 or of 10:
powers of 10 make the input and the output of the numbers (that is their
conversion from or into a decimal representation) easier, whilst powers of
2 make several internal calculations more efficient, since multiplication by
the base and division by the base can be done by a simple shift. Hence a
system which is aimed at the printing of large numbers should choose a base
which is a power of 10, whilst one which is aimed at calculating with such
numbers, which are rarely printed, will more likely choose a base which is
a power of 2. Normally it is worth choosing as large a base as possible
(provided that the “digits” can be stored in one word). For example, on a
computer with 32 bits (such as the large IBM 30XX, the Motorola 680X0,
the Intel 386 and 486, and the vast majority of “RISC” systems), we can
choose 109 as the decimal base, or 230 or 231 as the binary base. Usually
232 is not used, because it makes addition of numbers difficult: the carry
(if there is one) cannot be stored in the word, but has to be retrieved in a
way which is completely machine-dependent (“overflow indicator” etc.).

Once we have chosen such a representation, addition, subtraction and
multiplication of these integers are, in principle at least, fairly easy — the
same principles one learns in primary school for decimal numbers suffice.
Nevertheless, the multiplication of numbers gives rise to a problem. The
product of two numbers each contained in one word requires two words
for storing it. Most computers contain an instruction to do this, but “high
level” languages do not give access to this instruction (the only exception is
BCPL [Richards and Whitby-Strevens, 1979], with its MULDIV operation).
Therefore almost all the systems for large integers contain a function written
in machine language to do this calculation.

Division is much more complicated, since the method learnt at school
is not an algorithm as it requires us to guess a number for the quotient.
Knuth [1981] describes this problem in detail, and gives an algorithm for
this guesswork, which is almost always right, can never give too small an
answer and can never give an answer more than one unit too big (in such an

Computer Algebra 77

event, the divisor has to be added to the numerator to correct this error).
To calculate the g.c.d. there is Euclid’s algorithm and also several other
ways which may be more efficient. Knuth [1981] treats this problem too.

But the fact that the systems can deal with large numbers does not
mean that we should let the numbers increase without doing anything. If we
have two numbers with n digits, adding them requires a time proportional
to n, or in more formal language a time O(n). Multiplying them requires a
time 0(n2)*. Calculating a g.c.d., which is fundamental in the calculation
of rational numbers, requires O(n3), or O(n2) with a bit of care**. This
implies that if the numbers become 10 times longer, the time is multiplied
by 10, or by 100, or by 1000. So it is always worth reducing the size of
these integers. For example it is more efficient to integrate 1/x+2/x2 than
to integrate 12371265/(249912457x)+ 24742530/(249912457x2).

When it comes to factorising, the position is much less obvious. The
simple algorithm we all know, which consists of trying all the primes less
than N1/2, requires a running time O(N1/2 log2N), where the factor of
log2N comes from the size of the integers involved. If N is an integer
with n digits, it becomes O(10n/2n2), which is an exponential time. Bet-
ter algorithms do exist† with a running time which increases more slowly
than the exponentials, but more quickly than the polynomials, that is
O(exp((n logn)1/2)), or even O(exp(n1/3 log2/3 n)). For integers of a re-
alistic size, we find [Wunderlicht, 1979] O(N .154), which is a little less than
O(10n/6). Macmillan and Davenport [1984] give a brief account of what
is meant by “realistic”. Much research is being done on this problem at
present, largely because of its cryptographic interest. In general, we can
say that the reflex “I have just calculated an integer; now I am going to
factorise it” is very dangerous. We should also note that specialised fac-
torisation software, often running on parallel computers, is always more
efficient than the general-purpose computer algebra systems.

2.2 REPRESENTATIONS OF FRACTIONS

Fractions (that is the rational numbers) are obviously almost always rep-
resented by their numerator and denominator. As a rule they must not

* In principle, O(n log n log logn) is enough [Aho et al., 1974, Chapter
8], but no computer algebra system uses this at the present time, for it is
more like 20n logn log logn.
** In principle, O(n log2 n log logn) [Aho et al., 1974, Chapter 8], but

again no system uses it.
† These algorithms are now implemented in the major computer algebra

systems such as REDUCE 3.3, MAPLE V and AXIOM. This marks a net
improvement from the situation in 1986, when this book first appeared.

78 The problem of data representation

be replaced by floating numbers for this entails not only loss of preci-
sion, but completely false results‡. For example, the g.c.d. of x3 − 8
and (1/3)x2 − (4/3) is (1/3)x − (2/3), whereas the g.c.d. of x3 − 8 and
.333333x2 − 1.33333 is .000001, because of truncation.

All calculations with rational numbers involve calculating g.c.d.s, and
this can be very costly in time. Therefore, if we can avoid them, the
calculation will usually go much better. For example, instead of the above
calculation, we can calculate the g.c.d. of x3 − 8 and x2 − 4, and this
can be calculated without any g.c.d. over the integers. The same is true
of the relation polynomials — rational functions, and we shall show an
algorithm (Bareiss’ algorithm) which does not need recourse to fractions
for elimination in matrices.

The algorithms of addition, multiplication etc. of fractions are fairly
easy, but nevertheless there are possible improvements. Let us consider for
example multiplication:

a

b
× c

d
=
p

q
.

The most obvious way is to calculate p = ac, q = bd, and then to remove
the g.c.d. But, supposing that a/b and c/d are already reduced, we can
conclude that

gcd(p, q) = gcd(a, d) gcd(b, c).

Then it is more efficient to calculate the two g.c.d.s on the right than the
g.c.d. on the left, for the data are smaller.

It is the same for addition:

a

b
+
c

d
=
p

q
.

Here we can calculate p = ad + bc and q = bd, but it is more efficient to
calculate q = bd/ gcd(b, d) and

p = a
d

gcd(b, d)
+ c

b

gcd(b, d)
.

It is still necessary to take out the g.c.d. of p and q, but this method yields
p and q smaller than does the simpler method.

2.3 REPRESENTATIONS OF POLYNOMIALS
Now we shall consider the fundamental calculation of all Computer Algebra
systems, that which distinguishes them from other systems: polynomial

‡ For example, the SMP system had several problems arising from the
use of such a representation for rational numbers.

Computer Algebra 79

calculation. We must stress that the adjective “polynomial” applies to
programmed calculations and not necessarily to the types of data to which
the calculations apply. For example, the calculation

(x− y)(x + y) = x2 − y2

is a polynomial calculation, but

(cos a− sin b)(cos a+ sin b) = cos2 a− sin2 b

is also one: in fact we have here the same calculation, with the variable x
replaced by cos a and the variable y replaced by sin b.

All Computer Algebra systems manipulate polynomials in several vari-
ables (normally an indefinite number*). We can add, subtract, multiply and
divide them (at least if the division is without remainder — see later), but
in fact the interesting calculation is simplification. It is not very interesting
to write the product of (x+ 1) and (x− 1) as (x+ 1)(x− 1): to write it as
x2 − 1 is much more useful.

“Simplification” is a word with many meanings. It is obvious that
x− 1 is “simpler” than (x2 − 1)/(x+ 1), but is x999 − x998 + x997 − · · · − 1
“simpler” than (x1000 − 1)/(x + 1)? To deal with this somewhat nebulous
idea, let us define exactly two related ideas which we shall need.

2.3.1 Canonical and normal representations

A representation of mathematical objects (polynomials, in the present case,
but the definition is more general) is called canonical if two different rep-
resentations always correspond to two different objects. In more formal
terms, we say a correspondence f between a class O of objects and a class
R of representations is a representation of O by R if each element of O cor-
responds to one or more elements of R (otherwise it is not represented) and
each element of R corresponds to one and only one element of O (otherwise
we do not know which element of O is represented). The representation is
canonical if f is bijective. Thus we can decide whether two elements of O
are equal by verifying that their representations are equal.

If O has the structure of a monoid (and almost every class in Com-
puter Algebra is at least a monoid), we can define another concept. A
representation is called normal if zero has only one representation. (One
may ask “Why zero?” The reason is that zero is not legitimate as a second
parameter for division, and therefore one has to test before dividing. If

* CAMAL requires their number to be declared, but this constraint is
one of the reasons for the speed of CAMAL.

80 The problem of data representation

there were other excluded values, the definition of “normal” would be more
complicated.) Every canonical representation is normal, but the converse is
false (as we shall see later). A normal representation over a group gives us
an algorithm to determine whether two elements a and b of O are equal: it
is sufficient to see whether a− b is zero or not. This algorithm is, of course,
less efficient than that for canonical representations, where it is sufficient
to see whether the representations of a and b are equal.

So we can say that a simplification should yield a representation which
would be at least normal, and if possible canonical. But we want much
more, and it is now that subjectivity comes into play. We want the simpli-
fied representation to be “regular”, and this would exclude a representation
such as the following (where we have defined A = x2 + x, and we then de-
mand some variations of A) :

object : representation
A : x(x+ 1)

A+ 1 : x3 − 1
x− 1

A− x : x2

A+ x+ 1 : (x+ 1)2

Brown’s storage method [1969] raises this question of regularity. Given
a normal representation, he proposes to construct a canonical representa-
tion. All the expressions which have already been calculated are stored,
a1, . . . , an. When a new expression b is calculated, for all the ai we test
whether b is equal to this ai (by testing whether ai − b is zero). If b = ai,
we replace b by ai, otherwise an+1 becomes b, which is a new expression.
This method of storing yields a canonical representation, which, however,
is not at all regular, because it depends entirely on the order in which the
expressions appear. Moreover, it is not efficient, for we have to store all the
expressions and compare each result calculated with all the other stored
expressions.

Also, we want the representation to be “natural” (which today at least
excludes the use of Roman numerals), and, at least in general, “compact”
(which forbids the representation of integers in unary, so that 7 becomes
1111111). Fortunately there are many representations with these proper-
ties, and every Computer Algebra system has (at least!) one. Most of
the systems (in particular REDUCE) always simplify (that is — put into
canonical form): MACSYMA is an exception and only simplifies on de-
mand.

For polynomials in one variable, these representations are, mathemati-
cally speaking, fairly obvious: every power of x appears only once (at most),
and therefore the equality of polynomials comes down to the problem of
equality of coefficients.

Computer Algebra 81

2.3.2 Dense and sparse representations

Now we have to distinguish between two types of representation: dense
or sparse. Every Computer Algebra system has its own representation (or
its own representations) for polynomials and the details only begin to be
interesting when we have to tinker with the internal representation, but the
distinction dense/sparse is important. A representation is called sparse if
the zero terms are not explicitly represented. Conversely, a representation
is called dense if all the terms (or at least those between the monomial
of highest degree and the monomial of lowest degree) are represented —
zero or non-zero. Normal mathematical representation is sparse: we write
3x2 + 1 instead of 3x2 + 0x+ 1.

The most obvious computerised representation is the representation of
a polynomial a0 +a1x+ · · ·+anx

n by an array of its coefficients [a0, a1, . . . ,
an]. All the ai, zero or non-zero, are represented, therefore the represen-
tation is dense. In this representation, the addition of two polynomials of
degree n involves n + 1 (that is O(n)) additions of coefficients, whereas
multiplication by the näıve method involves O(n2) multiplications of coef-
ficients (one can do it in O(n log n) [Aho et al., 1974, Chapter 8], but no
system uses this at present — see Probst and Alagar [1982] for an applica-
tion and a discussion of the cost).

A less obvious representation, from the computing point of view, but
closer to the mathematical representation, is a sparse representation: we
store the exponent and the coefficient, that is the pair (i, ai), for all the
non-zero terms aix

i. Thus 3x2 + 1 can be represented as ((2, 3), (0, 1)).
This representation is fairly difficult in FORTRAN, it is true, but it is
more natural in a language such as LISP (the language preferred by most
workers in Computer Algebra). We stress the fact that the exponents must
be ordered (normally in decreasing order), for otherwise ((2, 3), (0, 1)) and
((0, 1), (2, 3)) would be two different representations of the same polyno-
mial. To prove that this representation is not very complicated, at least
not in LISP, we give procedures for the addition and multiplication of poly-
nomials with this representation. Readers who are not familiar with LISP
can skip these definitions without losing the thread.

We shall use a representation in which the CAR of a polynomial is a
term, whilst the CDR is another polynomial: the initial polynomial less the
term defined by the CAR. A term is a CONS, where the CAR is the exponent
and the CDR is the coefficient. Thus the LISP structure of the polynomial
3x2+1 is ((2 . 3) (0 . 1)), and the list NIL represents the polynomial
0. In this representation, we must note that the number 1 does not have
the same representation as the polynomial 1 (that is ((0 . 1))), and
that the polynomial 0 is represented differently from the other numerical
polynomials.

82 The problem of data representation

(DE ADD-POLY (A B)
(COND ((NULL A) B)

((NULL B) A)
((GREATERP (CAAR A) (CAAR B))

(CONS (CAR A) (ADD-POLY (CDR A) B)))
((GREATERP (CAAR B) (CAAR A))

(CONS (CAR B) (ADD-POLY A (CDR B))))
((ZEROP (PLUS (CDAR A) (CDAR B)))
; We must not construct a zero term
(ADD-POLY (CDR A) (CDR B)))

(T (CONS (CONS (CAAR A) (PLUS (CDAR A) (CDAR B)))
(ADD-POLY (CDR A) (CDR B))))))

(DE MULTIPLY-POLY (A B)
(COND ((OR (NULL A) (NULL B)) NIL)

; If a = a0+a1 and b = b0+b1, then ab =
; a0b0 + a0b1 + a1b

(T (CONS (CONS (PLUS (CAAR A) (CAAR B))
(TIMES (CDAR A) (CDAR B)))

(ADD-POLY (MULTIPLY-POLY (LIST (CAR A))
(CDR B))

(MULTIPLY-POLY (CDR A) B))))))

If A has m terms and B has n terms, the calculating time (that is
the number of LISP operations) for ADD-POLY is bounded by O(m + n),
and that for MULTIPLY-POLY by O(m2n) ((m(m+ 3)/2− 1)n to be exact).
There are multiplication algorithms which are more efficient than this one:
roughly speaking, we ought to sort the terms of the product so that they
appear in decreasing order, and the use of ADD-POLY corresponds to a sort-
ing algorithm by insertion. Of course, the use of a better sorting method
(such as “quicksort”) offers a more efficient multiplication algorithm, say
O(mn logm) [Johnson, 1974]. But most systems use an algorithm similar
to the procedure given above.

There is a technical difficulty with this procedure, discovered recently
by Abbott et al. [1987]. We shall explain this difficulty in order to illustrate
the problems which can arise in the translation of mathematical formulae
into Computer Algebra systems. In MULTIPLY-POLY, we add a0b1 to a1b.
The order in which these two objects are calculated is important. Obviously,
this can change neither the results nor the time taken. But it can change the
memory space used during the calculations. If a and b are dense of degree
n, the order which first calculates a0b1 should store all these intermediate
results before the recursion finishes. Therefore the memory space needed is
O(n2) words, for there are n results of length between 1 and n. The other
order, a1b calculated before a0b1, is clearly more efficient, for the space

Computer Algebra 83

used at any moment does not exceed O(n). This is not a purely theoretical
remark: Abbott et al. were able to factorise x1155 − 1 with REDUCE in 2
mega-bytes of memory, but they could not remultiply the factors without
running out of memory.

In any case, one might think that the algorithms which deal with sparse
representation are less efficient that those which deal with dense representa-
tion: m2n instead of mn for elementary multiplication or mn logm instead
of max(m,n) log max(m,n) for advanced multiplication. It also looks as
though there is a waste of memory, for the dense representation requires
n+2 words of memory to store a polynomial of degree n (n+1 coefficients
and n itself), whilst sparse representation requires at least 2n, and even 4n
with the natural method in LISP. In fact, for completely dense polynomials,
this comparison is fair. But the majority of polynomials one finds are not
dense. For example, a dense method requires a million multiplications to
check

(x1000 + 1)(x1000 − 1) = x2000 − 1,

whereas a sparse method only requires four, for it is the same calculation
as

(x+ 1)(x− 1) = x2 − 1.

When it is a question of polynomials in several variables, all realistic
polynomials ought to be sparse — for example, a dense representation of
a5b5c5d5e5 contains 7776 terms.

Therefore, the calculating time, at least for addition and multiplica-
tion, is a function of the number of terms rather than of the degree. We
are familiar with the rules bounding the degree of a result as a function of
the degrees of the data, but the rules for the number of terms are different.
Suppose that A and B are two polynomials, of degree nA and nB with
mA and mB terms. Then the primitive operations of addition, subtrac-
tion, multiplication, division, calculation of the g.c.d. and substitution of a
polynomial for the variable of another one satisfy the bounds below:

Operation Degree Number of terms
of result in result

A+B max(nA, nB) mA +mB

A−B max(nA, nB) mA +mB

A ∗B nA + nB mAmB

A/B nA − nB nA − nB + 1
g.c.d.(A,B) min(nA, nB) ≤ min(nA, nB) + 1

subst(x = A,B) nAnB nAnB + 1

The bound we give for the number of terms in the result of a division
is a function of the degrees, and does not depend on the number of terms

84 The problem of data representation

in the data. This may seem strange, but if we think of (xn − 1)/(x− 1) =
xn−1+xn−2+ · · ·+1, we see that two terms in each polynomial can produce
a polynomial with an arbitrarily large number of terms.

For the g.c.d., the problem of limiting (non-trivially) the number of
terms is quite difficult. Coppersmith and Davenport [1991] have shown
that, whatever n > 1 and ε > 0 are chosen, there is a polynomial p such
that pn has at most ε times as many terms as p. In particular, if we take
n = 2 and write p = gcd(p2, (p2)′), we get a g.c.d. which has 1/ε times
as many terms as the inputs. For substitution, it is still possible for the
result to be completely dense, even though the data are sparse. From this
we deduce a very important observation: there may be a great difference
between the time taken for calculating a problem in terms of x and the
same problem in terms of x− 1 (or any other substitution).

To show what this remark means in practice, let us consider the matrix

A =

 1 + 2x x+ x4 x+ x9

x+ x4 1 + 2x4 x4 + x9

x+ x9 x4 + x9 1 + 2x9

 .

We can calculate A2 in .42 seconds (REDUCE on a micro-computer Mo-
torola 68000), but if we rewrite it in terms of y = x−1, this calculating time
becomes 5.26 seconds — more than 10 times more. This problem comes up
likewise in factorisation, as we shall see in Chapter 4.

2.3.3 The g.c.d.
As we shall see later, calculations with rational fractions involve calculating
the g.c.d. of the numerator and denominator of fractions. These calcula-
tions are less obvious than one might think, and to illustrate this remark
let us consider the g.c.d. of the following two polynomials (this analysis is
mostly taken from Brown [1971]) :

A(x) =x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5;

B(x) =3x6 + 5x4 − 4x2 − 9x+ 21.

The first elimination gives A− (x2

3 − 2
9)B, that is

−5
9
x4 +

1
9
x2 − 1

3
,

and the subsequent eliminations give

−117
25

x2 − 9x+
441
25

,

Computer Algebra 85

233150
19773

x− 102500
6591

,

and, finally,

−1288744821
543589225

.

It is obvious that these calculations on polynomials with rational coefficients
require several g.c.d. calculations on integers, and that the integers in these
calculations are not always small.

We can eliminate these g.c.d. calculations by working all the time with
polynomials with integer coefficients, and this gives polynomial remainder
sequences or p.r.s. Instead of dividing A by B in Q, we can multiply A by
a power (that is with exponent the difference of the degrees plus one) of
the leading coefficient of B, so that this multiple of A can be divided by B
over Z. Thus we deduce the following sequence:

−15x4 + 3x2 − 9,

15795x2 + 30375x− 59535,

1254542875143750x− 1654608338437500

and
12593338795500743100931141992187500.

These sequences are called Euclidean sequences (even though Euclid did
not know about polynomials as algebraic objects). In general, the coeffi-
cients of such a sequence undergo an exponential increase in their length
(as functions of the degrees of the given polynomials).

Obviously, we can simplify by the common factors of these sequences
(this algorithm is the algorithm of primitive sequences), but this involves
the calculation of the g.c.d., which puts us back into the morass from which
we have just emerged. Fortunately, it is possible to choose the coefficients
by which we multiply A before dividing it by B etc., so that the increase of
the coefficients is only linear. This idea, due independently to Brown and to
Collins, is called sequence of sub-resultant polynomials (sub-resultant p.r.s.).
This algorithm is described by Brown [1971] and by Loos [1982], but it is
important enough to be described here, even though we omit the proofs.

Suppose that the data are two polynomials F1 and F2 with integer
coefficients. We determine their g.c.d. with the help of a sequence of poly-
nomials F3, Let δi be the difference between the degrees of Fi and Fi+1,
and fi the leading coefficient of Fi. Then the remainder from the division
of f δi−1+1

i Fi−1 by Fi is always a polynomial with integer coefficients. Let
us call it βi+1Fi+1, where βi+1 is to be determined. The algorithm called

86 The problem of data representation

“Euclidean” corresponds to the choice of βi+1 = 1, and the choice of the
g.c.d. of all the coefficients of the remainder for βi+1 corresponds to the
algorithm of primitive sequences. If we put

β3 = (−1)δ1+1,

βi = −fi−2ψ
δi−2
i

where the ψ are defined by

ψ3 = −1,

ψi = (−fi−2)
δi−3ψ

1−δi−3
i−1 ,

then (by the Sub-resultant Theorem [Loos, 1982]) the Fi are always polyno-
mials with integer coefficients, and the increase in length of the coefficients
is only linear. For the same problem as before, we get the sequence:

F3 = 15x4 − 3x2 + 9,

F4 = 65x2 + 125x− 245,
F5 = 9326x− 12300,
F6 = 260708,

and the growth is clearly less great than for the previous sequences.
This algorithm is the best method known for calculating the g.c.d., of

all those based on Euclid’s algorithm applied to polynomials with integer
coefficients. In the chapter “Advanced algorithms” we shall see that if
we go beyond these limits, it is possible to find better algorithms for this
calculation.

2.4 POLYNOMIALS IN SEVERAL VARIABLES
There is a new difficulty as soon as we begin to calculate with polynomials in
several variables: do we write x+y or y+x? Mathematically, we are dealing
with the same object, and therefore if we want a canonical representation,
we ought to write only one of these expressions. But which one? To be
able to distinguish between them, we have to introduce a new idea — that
of an order among the variables. We have already used, implicitly, the idea
of an order among the powers of a variable, since we write x3 +x2 +x1 +x0

instead of x2 +x0 +x3 +x1, but this order seems “natural” (Norman [1982]
has written a system which does not order the monomials according to this
arrangement, but this gives rise to many unsolved problems). The idea of
an order among the variables may seem artificial, but it is as necessary as
the other. When we have decided on an order, such as “x is more important

Computer Algebra 87

than y”, we know that x+ y is the canonical representation, but that y+x
is not.

When it is a question of more complicated monomials (we recall that
a monomial is a product of powers of variables, such as x2y3 or x1y2z3),
there are various ways of extending this order. The most common ways are
the following:
(a) We can decide that the main variable (the one which is in front of

all the others in our order) is to determine the order as exactly as
possible, and that we will only consider the powers of other variables
if the powers of the first variable are equal. This system is called
lexicographic, for it is the same system as the one used in a dictionary,
where one looks first at the first letter of the two words, and it is only
if they are the same that one looks at the second etc. In this system,
the polynomial (x+ y)2 +x+ y+1 is written x2 +2xy+x+ y2 + y+1
(if x is more“principal” than y).

(b) We can decide that the total degree of the monomial (that is the sum
of the powers of the variables) is the most important thing, and that
the terms of total degree 2 ought to appear before all the terms of
total degree 1 etc. We use the previous method to distinguish between
terms of the same total degree. This system is called total degree, or,
more precisely, total degree, then lexicographic. In this system, the
polynomial (x + y)2 + x + y + 1 is written x2 + 2xy + y2 + x + y + 1
(if x is more “principal” than y).

(c) Instead of the lexicographic method, we can use the opposite. For a
polynomial in one variable, this is the same as the increasing order of
the powers, and this gives rise to difficulties (at least from the näıve
point of view) in division and when calculating g.c.d.s. But this system
has advantages when linked to the total degree method, as total degree,
then inverse (also known as reverse) lexicographic. In this system, the
polynomial (x + y)2 + x + y + 1 is written y2 + 2xy + x2 + y + x + 1
(if x is more “principal” than y).
The reader might think that the systems (b) and (c) are equivalent,

but with the order of the variables inverted. That is true for the case of
two variables, but not for more than two. To show the difference, let us
look at the expansion of (x+ y+ z)3. First of all, in the order total degree
then lexicographic (x before y before z), we get

x3 + 3x2y + 3x2z + 3xy2 + 6xyz + 3xz2 + y3 + 3y2z + 3yz2 + z3.

In the order total degree, then inverse lexicographic (z before y before x),
we get

x3 + 3x2y + 3xy2 + y3 + 3x2z + 6xyz + 3y2z + 3xz2 + 3yz2 + z3.

88 The problem of data representation

In this order, we have taken all the terms which do not involve z, before
attacking the others, whereas the first order chose all the terms containing
x2 (even x2z) before attacking the others.

In fact, deciding which of these systems is the best for a particular
calculation is not always very obvious, and we do not have any good criteria
for choosing (but see Buchberger [1981]). Most of the existing systems use
a lexicographic order, but each system has its own particular methods.
Lexicographic representation has an interesting consequence: as all the
terms with xn are grouped together (supposing that x is the main variable),
we can therefore consider this polynomial as a polynomial in x, whose
coefficients are polynomials in all the other variables. So the polynomial in
case (a) can be written in the form x2+x(2y+1)+(y2+y+1). This form is
called recursive, in contrast to the distributed form x2 +2xy+x+y2 +y+1.
The recursive form is used by most systems.

This discussion provides us with some indications about the behaviour
of systems. For example, in MACSYMA, the function INPART lets us choose
one part of an expression, but it operates on the internal form, which is more
or less inverse lexicographic recursive. Similarly, REDUCE has a function
COEFF, which gives the coefficients of an expression, seen as a polynomial in
one named variable. As the internal representation of REDUCE is lexico-
graphic recursive, it is obvious that this function is much quicker when the
named variable is the principal one. For example, if we take (w+x+y+z)6,
the time of COEFF varies between .50 seconds (w named) and .84 seconds
(z named). In general, the calculation time (and the work memory) may
vary greatly according to the order of the variables [Pearce and Hicks, 1981,
1982, 1983], but the reasons are not always very obvious. We do not know
of any good general rules for choosing the order, for it is largely determined
by the form desired for printing the results. We must also point out that
changing the order is expensive, since all the results which have already
been calculated have to be re-expressed in the new order.

These questions of order are not just internal details which concern only
the programmers: they can influence the results obtained. For example,
suppose we want to divide 2x− y by x+ y. If x is the main variable, then
the quotient is 2, and the remainder is −3y. But if y is the main variable,
then the quotient is −1, and the remainder is 3x.

2.5 REPRESENTATIONS OF RATIONAL FUNCTIONS
Most calculations use not only polynomials, but also fractions of them, that
is, rational functions. The same remarks which applied in the polynomial
case apply here: the calculation

1
sinx

+
1

cosx
=

cosx+ sinx
cosx sinx

Computer Algebra 89

is a rational calculation — in fact it is the same calculation as
1
b

+
1
a

=
a+ b

ab
.

If we represent a rational function by a polynomial (the numerator) di-
vided by another polynomial (the denominator), we have of course a normal
representation, for the function represents zero if and only if its numerator
is zero. With REDUCE, it is possible not to use this representation (OFF
MCD), but we do not advise this, because we no longer know whether a for-
mula represents zero or not, and this causes many problems with Gaussian
elimination, for example in(

1 1/(x− 1)
1/(x+ 1) 1/(x2 − 1)

)
.

If we want a canonical representation, we have to do more than express
in the form of the quotient of two polynomials. For example, the formulae
(x − 1)/(x + 1) and (x2 − 2x + 1)/(x2 − 1) represent the same element of
Q(x), but they are two different formulae.

Here we must say a few words about the difference between the el-
ements of Q(x) and the functions of Q into itself which they represent.
Seen as functions of Q into itself, f(x) = (x − 1)/(x + 1) and g(x) =
(x2 − 2x+ 1)/(x2 − 1) are two different functions, for the first is defined at
the value x = 1 (where it takes the value 0), whereas g(x) is not defined,
since it becomes 0/0. But this singularity is not “intrinsic”, because the
function defined by

g1(x) =


x2 − 2x+ 1
x2 − 1

(x 6= 1)

0 (x = 1)

is continuous, differentiable etc. at x = 1. In general, it is not very hard to
check that, if f1 = p1/q1 is a simplification of f = p/q (where p, q, p1 and
q1 are polynomials), then at each value x0 of x where f is defined, f1(x0)
is defined and equal to f(x0), and, moreover, if f(x1) is not defined, but
f1(x1) is defined, then the function

g(x) =
{
f(x) (x 6= x1)
f1(x) (x = x1)

is continuous etc. at x = x1. Thus this kind of simplification of a formula
only changes the function by eliminating such singularities*.

* The reader who is familiar with the theory of denotational semantics
can express these ideas differently by noting that f1 is higher (in the lattice
of partial functions of Q into itself) than the function f .

90 The problem of data representation

Seen algebraically, i.e. as elements of Q(x), the expressions (x − 1)/
(x + 1) and (x2 − 2x+ 1)/(x2 − 1) are equal, since the difference between
them is 0/(x2 − 1) = 0. Thus there is a slight distinction between the
elements of Q(x) and the functions of Q into itself, but, with the usual abuse
of language, we call the elements of Q(x) rational functions. (Bourbaki :
“. . . the abuses of language without which any mathematical text threatens
to become pedantic and even unreadable”).

After this short digression, we return to the problem of a canonical rep-
resentation for rational functions, that is to say, the elements of Q(x). We
have established that (x− 1)/(x+ 1) and (x2 − 2x+ 1)/(x2 − 1) are two
different representations of the same function. The definition of “canoni-
cal” implies the fact that at least one of them is not canonical. The natural
choice is to say that there must not be any divisor common to the numer-
ator and the denominator. This implies that (x2 − 2x+ 1)/(x2 − 1) is not
canonical, for there is a g.c.d. which is (x − 1). If we remove this g.c.d.,
we come back to (x− 1)/(x+ 1). In general, we find a representation with
the degree of the numerator as small as possible (and the same for the de-
nominator). If there were only one such representation, it would be a good
choice for a canonical representation. Unfortunately, the condition that the
degree of the numerator is to be minimised does not give us uniqueness, as
the following examples show:

−2x+ 1
2x+ 1

=
2x− 1
−2x− 1

=
4x− 2
−4x− 2

=
−x+ 1/2
x+ 1/2

=
x− 1/2
−x− 1/2

.

To resolve these ambiguities, most existing systems take into account
the following rules (for rational functions with coefficients in Q):
(1) no rational coefficient in the expression (which eliminates the last two

expressions);
(2) no integer may divide both the numerator and the denominator of the

expression (which eliminates (4x− 2)/(−4x− 2));
(3) the leading coefficient of the denominator of the expression must be

positive (which eliminates the second expression).
There are several other possibilities, but these rules are the ones most used,
and are sufficient to give a canonical form for polynomials over Q. The
case of more general coefficient domains is explained by Davenport and
Trager [1990]. As we have already said in the case of rational numbers,
the fact that one can calculate with rational fractions does not mean that
one should calculate with them. If one can find an algorithm which avoids
these calculations, it will in general be more efficient. We shall see later
that Bareiss’ algorithm is a variation of Gaussian elimination which does
not need the use of fractions.

Computer Algebra 91

2.6 REPRESENTATIONS OF ALGEBRAIC FUNCTIONS

We understand by algebraic a solution of a polynomial equation.
√

2 is an
algebraic number, since it is both a number and a solution of the equation
α2 − 2 = 0. This equation has two roots, but we shall not differentiate be-
tween them in this section. In the next chapter we shall see how to differen-
tiate between the different real values which satisfy the same equation, but
this is unnecessary for many applications. 3

√
x2 − 1 is an algebraic function,

because it is both a function and a solution of the equation β3−x2 +1 = 0.
Almost all this section applies to both functions and numbers: in general
we shall speak of algebraic functions, even though most of the examples
are algebraic numbers. Every radical is an algebraic expression, but the
opposite is false, as the great mathematician Abel proved. More precisely,
the algebraic number γ which is a solution of γ5 + γ + 1 = 0 cannot be
expressed in radicals.

One can therefore distinguish three classes of algebraic expressions:
(1) the simple radicals, such as

√
2 or 3

√
x2 − 1;

(2) the simple or nested radicals, which include also expressions such as√
1 +

√
2 or 3

√√
2 + 3

√
x;

(3) the general algebraic expressions, which also include expressions such
as the algebraic number γ defined by γ5 + γ + 1 = 0.

Each class is contained in the subsequent ones.

2.6.1 The simple radicals

For the first class, the representation is fairly obvious: we consider each
radical as a variable appearing in a polynomial or rational expression. Ob-
viously, if α is an n-th root, we only use the powers 0, . . . , n− 1 of α, and
we replace the higher powers by lower powers.

This representation is not canonical for two different reasons. In the
first place there is a problem with rational fractions which contain algebraic
expressions. Let us look for example at 1/(

√
2− 1) and

√
2 + 1. These two

expressions are not equal, but they represent the same number, for their
difference is zero:

1√
2 − 1

− (
√

2 + 1) =
1√

2 − 1
− (

√
2 + 1)(

√
2 − 1)√

2 − 1

=
1 − (

√
2)2 + 1√

2 − 1
=

0√
2 − 1

= 0.

One solution is to insist that the roots appear only in the numerator: this
forbids the representation 1/(

√
2−1). For every root α, we can achieve this

by multiplying the numerator n and the denominator d of the expression

92 The problem of data representation

by a polynomial d1, such that the algebraic quantity α does not appear in
the product dd1. In this case,

n

d
=
nd1

dd1

and α is removed from the denominator. We can calculate this polynomial
d1 by applying the extended Euclideanalgorithm (see the Appendix) to
the pair d and p, where p is the polynomial defining α. This application
produces two polynomials d1 and d2 such that dd1 + pd2 = c, where c does
not depend on α, and then dd1 = c.

With this restriction, we can be sure that we shall have a canonical
system, if the radicals form an independent system. But this representation
is not always very efficient: for example 1√

2 +
√

3 +
√

5 +
√

7
becomes

22
√

3
√

5
√

7 − 34
√

2
√

5
√

7 − 50
√

2
√

3
√

7 + 135
√

7+
62

√
2
√

3
√

5 − 133
√

5 − 145
√

3 + 185
√

2
215

.

Because of this growth, we often stop at the normal representation given
by rational fractions in the powers of α less than n.

But even with this restriction to polynomials, there is another problem:
that of the interdependence of the radicals. A very simple example of this
kind of problem is that we must not construct

√
1, which is equal to 1.

Similarly, we can calculate with
√

2, or with
√

8, but not with both of
them, for

√
8 = 2

√
2, and this representation is not canonical and not

even normal. Similarly, among the radicals
√

2,
√

3 and
√

6, we can work
with any two out of the three: if they are all present we get the relation√

2
√

3 =
√

6. All these examples are “obvious”, and we might suppose
that it is enough to make sure that all the numbers (or polynomials or
rational functions) which are in the radicals are relatively prime, and that
the radicals cannot be simplified. Unfortunately, things are a little more
complicated. Let us consider α = 4

√−4. One might suppose that there is no
possible simplification, but in fact α2 = 2α−2. This is a consequence of the
factorisation x4 + 4 = (x2 − 2x+ 2)(x2 + 2x+ 2). Following Capelli [1901],
we can prove that this example (and variations on it such as 4

√−4.34) is the
only possible non-trivial simplification. Najid-Zejli [1984, 1985] has studied
these questions, and has given an algorithm to decide if there is a relation
between non-nested radicals.

2.6.2 Nested radicals
The problems are more difficult for the second class, i.e. the nested radicals.
The first problem, that of the equivalence between rational fractions which

Computer Algebra 93

contain radicals, has the same “solution” as before, and the same defects.
The other problem, that of relations between the radicals, is still not solved
(in a satisfactory manner). There is a general solution, but it is the same
solution as for general algebraic expressions, and we shall consider it later.
We cannot prove that this problem is difficult, but there are many surprising
examples. We cite the identities√

9 + 4
√

2 = 1 + 2
√

2 (1)√
5 + 2

√
6 +

√
5 − 2

√
6 = 2

√
3 (2)√

x+
√
x2 − 1 =

√
x+ 1

2
+

√
x− 1

2
(3)√

16 − 2
√

29 + 2
√

55 − 10
√

29 =
√

22 + 2
√

5 −
√

11 + 2
√

29 +
√

5 (4)

3
√

5
√

32/5− 5
√

27/5 = 5

√
1
25

+ 5

√
3
25

− 5

√
9
25

= 5

√
1
25

(
1 + 5

√
3 − 5

√
3
2
)

(5)√
(112 + 70

√
2) + (46 + 34

√
2)
√

5 = (5 + 4
√

2) + (3 +
√

2)
√

5 (6)

where we owe (1) to Davenport [1981], (2) and (3) to Zippel [1985], (4) to
Shanks [1974], (5) to Ramanujan [1927] and (6) to Borodin et al. [1985].
Recently, Borodin et al. [1985] and Zippel [1985] have been studying this
problem, and they have found algorithms which can solve several nested
radicals, either by writing them in a non-nested way, or by proving that
there is no simplification of this kind. But these algorithms are limited to
a few special cases, such as square roots with two levels of nesting. Landau
[1992a, 1992b] has improved the procedure, but it is still not guaranteed
to find a minimal de-nesting. The general case remains, as we said earlier,
unresolved (in a satisfactory way).

2.6.3 General algebraic functions
Now we look at algebraic functions which are defined as being the roots
of some polynomial. It is possible that there exists a representation in
terms of radicals, but, as we have already stated, it is also possible that
there is not one. So, let α be an algebraic function (or number) defined
as the root of the polynomial p(α). If the polynomial p is not irreducible,
even simple calculations confront us with many problems. For example,
take p(α) = α2 − 3α + 2. Thus α is an algebraic number of degree two.
(α−1) and (α−2) are two numbers, a priori non-zero. But their product is

94 The problem of data representation

p(α), which reduces to zero. In fact, this is a generalisation of the problem
we came up against with simple radicals, where

√
1 was not a legitimate

radical. In this case, seen from this new angle, the problem is that the
polynomial defining

√
1, i.e. α2 − 1, is not irreducible and has a factor

α − 1. In the same way, our new polynomial has factors α − 1 and α − 2,
and therefore one of the expressions (α− 1) and (α− 2) is zero.

Even if the factors are not linear, any calculation with the roots of
a reducible polynomial may result in an impasse, where two expressions,
apparently non-zero, give zero when multiplied. The other difficulty which
may arise is the impossibility of dividing by a non-zero expression, for it
may have a non-trivial g.c.d. with the polynomial defining α. Therefore
we require, mathematically speaking, that the polynomials defining the
algebraic numbers and functions be irreducible, and most computer algebra
systems impose the same restriction, or else do not guarantee the results if
the polynomials are not irreducible. An alternative philosophy is sketched
in section 2.6.5.

All the examples of the preceding sub-sections, where the radicals were
simpler than had been thought, have in common the fact that the polyno-
mials were not irreducible.

√
1 is only an integer, because the polynomial

which seems to define it, that is α2 − 1, factorises into (α − 1)(α + 1).
Similarly, 4

√−4 is not legitimate, for its polynomial, α4 + 4, factorises into
(α2 − 2α+ 2)(α2 + 2α+ 2).

The same is true for nested radicals. We consider equation (1) of the
previous sub-section, where the polynomial defining

√
9 + 4

√
2 is α2− (9+

4
√

2). This polynomial factorises into (α − (1 + 2
√

2))(α + (1 + 2
√

2)),
and therefore the nested radical has a simpler form. If we want to treat
only polynomials with integer coefficients, we can say that α is a root of
α4 − 18α2 +49 (which is the norm* of the polynomial already given). This
polynomial also factorises into (α2 − 2α− 7)(α2 + 2α− 7), and the roots of
the first factor are 1 ± 2

√
2.

Thus, a definition such as “α a root of p(α)” is legitimate if and only
if p is irreducible. Here “legitimate” means that the use of polynomials in
α (of degree less than that of p) gives a canonical representation, and that
the use of such rational functions (which do not contain this root in the
denominator) also gives a canonical representation.

When several roots appear, obviously all the polynomials defining them
must be irreducible. But we need more than that, in the sense that they
must be irreducible, not only separately, but also together. Consider, for
example, α a root of α5 − α − 1, and β a root of β5 + 5β4 + 10β3 +
10β2 + 4β − 1. These two polynomials are irreducible, when viewed as

* These norms can be calculated using resultants — see the Appendix.

Computer Algebra 95

polynomials with integer coefficients. But if we take the polynomial defining
β as a polynomial whose coefficients may depend on α, the situation is very
different. In fact this polynomial factorises into

(β − α+ 1)
(β4+β3(α+4)+β2(α2+3α+6)+β(α3+2α2+3α+4)+α4+α3+α2+α).

This factorisation should not surprise us, because β is only α − 1, as the
linear factor above proves. (The other factor corresponds to the fact that
α5 − α − 1 has five roots, and β can be expressed in terms of a different
root from the root chosen as α.)

Thus, to verify that a system of roots αi of polynomials pi is legitimate,
we have to factorise p1 as a polynomial with integer coefficients, then p2

as a polynomial with coefficients in Z[α1], then p3 as a polynomial with
coefficients in Z[α1, α2], then If all the pi are polynomials with integer
coefficients, the order among the pi does not change the result. If a pi

depends on an αj , pj has to be factorised before pi. Note that, in fact, this
process can easily be very expensive, for factorisations over algebraic fields
are very hard to carry out. Abbott [1988] quotes more than 40 minutes to
factorise the polynomial

x9 + 9x8 + 36x7 + 69x6 + 36x5 − 99x4 − 303x3 − 450x2 − 342x− 226

over the extension generated by α, a root of

α9 − 15α6 − 87α3 − 125 = 0.

2.6.4 Primitive elements

Instead of studying several algebraic numbers (or functions), such as
√

2 and√
3, we can always* go back to the case of a single algebraic number (or of a

single algebraic function), in terms of which all the others can be expressed.
This quantity is called a primitive element for the field generated by the
given quantities, or, more simply, a primitive element for the quantities
themselves.

For example, the number α defined as a root of the polynomial α4 −
10α2 +1 is

√
2+

√
3, and in terms of α,

√
2 = (α3−9α)/2 and

√
3 = (11α−

* Given that we are working in a field with characteristic zero, that is
an extension of the integers. This theorem does not hold if we are working
in an extension of the integers modulo p, but we are not interested in this
at present.

96 The problem of data representation

α3)/2. α is therefore a primitive element for the field Q[
√

2,
√

3]. These
primitive elements can be calculated from the polynomials which define
the given quantities, by using the resultant (see the appendix “Algebraic
background”). For example, α is defined by the resultant of x2 − 3 and
(x − y)2 − 2. We can already see that the relation between α and

√
2 and√

3 is not obvious.
The primitive elements are often very complicated. Najid-Zejli [1985]

noted that the primitive element corresponding to two roots α and β of
the polynomial x4 + 2x3 + 5 is (at least if we calculate with the well-known
algorithms [Trager, 1976]) a root of

γ12 + 18γ11 + 132γ10 + 504γ9

+ 991γ8 + 372γ7 − 3028γ6 − 6720γ5

+ 11435γ4 + 91650γ3 + 185400γ2 + 194400γ + 164525.

This polynomial is itself discouraging enough, but, in addition, the expres-
sions for α and β in terms of γ require numbers with fourteen digits. When
we are dealing with a primitive element for three of the roots (which is
at the same time a primitive element for all the roots), the corresponding
polynomial has coefficients of more than 200 digits.

We can conclude that, although primitive elements are fairly useful
theoretically, they are too difficult to calculate and to use in practice.

2.6.5 Dynamic evaluation of algebraic functions
This section presents an alternative philosophy of working with algebraic
numbers and functions, originally presented by Della Dora et al. [1985] and
Dicrescenzo and Duval [1985], and later refined by Dicrescenzo and Duval
[1988]. The idea is that, rather than insisting a priori that the defining
polynomials be irreducible, we proceed on the optimistic assumption that
they are irreducible, and perhaps we will discover some factorisations a
posteriori.

Many arithmetic operations (addition, subtraction, multiplication) can
take place normally. Division may not be possible, because we may discover
an uninvertible element. For example, if we assume that the polynomial
x2 − 1 is irreducible, and let α be a root of this polynomial, we can divide
by α+ 2, because

1 = (x+ 2) · −(x− 2)
3

+ (x2 − 1) · 1
3

(calculated by applying the extended Euclidean algorithm to x + 2 and
x2 − 1), and, since α2 − 1 = 0, this means that

1 = (α+ 2) · −(α− 2)
3

,

Computer Algebra 97

so dividing by α+ 2 is the same as multiplying by −(α− 2)/3.
However, we will come to grief if we attempt to divide by α− 1, since

applying the extended Euclidean algorithm to x−1 and x2−1 will discover
that the two are not relatively prime, and in fact we have a factor x− 1 of
x2 − 1. At this point, the calculation must branch, depending on what α
is, or what it may be.
if α is a root of x− 1,
then we are trying to divide by zero, and we must think again (if we were

doing Gaussian elimination, we would choose a different pivot);
else α is a root of x+1 and the calculation is well-founded, since α−1

is now known to be −2.
Of course, a realistic example would be substantially more complicated, and
one might have to make several splittings of the original polynomial, ending
up with some kind of decision tree. Furthermore, a practical application
might be able to discard some branches, for example, we might know that
α was real, and so be able to discard branches where α had to be complex
(see section 3.2.1 for methods of making this decision).

2.7 REPRESENTATIONS OF TRANSCENDENTALS

Transcendental functions group together several classes of functions, each
with its own special rules. In general, a function such as sinx is repre-
sented by a structure such as (SIN X) in LISP, or a “record” in PASCAL.
Numbers such as sin 1 or sinπ can also be represented in this way. Thus,
this structure is regarded as a variable and can appear in polynomials or
rational functions. In REDUCE, for example, such a structure is called a
“kernel”. We have already seen that polynomial or rational calculations
can apply to variables of this kind. The great problem then is the simplifi-
cation of these variables, and their relation to one another. We know a lot
of rules of simplification, such as

sin(x+ y) = sinx cos y + cosx sin y (1)

sinx cos y =
sin(x+ y) + sin(x − y)

2
(2)

log(xy) = log x+ log y (3)
log expx = x (4)

exp(x+ y) = expx exp y (5)
sinπ = 0. (6)

Most Computer Algebra systems let the user define rules of this kind,
which the system will take into account. For example, in REDUCE we can
express the rules (1)–(6) by:

98 The problem of data representation

FOR ALL X,Y LET SIN(X+Y) = SIN(X)*COS(Y)+COS(X)*SIN(Y);
FOR ALL X,Y LET SIN(X)*COS(Y) = (SIN(X+Y)+SIN(X-Y))/2;
FOR ALL X,Y LET LOG(X*Y) = LOG(X) + LOG(Y);
FOR ALL X LET LOG(EXP(X)) = X;
FOR ALL X,Y LET EXP(X+Y) = EXP(X)*EXP(Y);
LET SIN(PI)=0;

There is a difference between the last rule and the others: the last one
applies to a special number, whilst the others apply to any possible value
of X or Y, which is expressed by the preamble FOR ALL.

Nevertheless, there are still some pitfalls in this area of rules (or, more
exactly, rewrite rules). Firstly, we see that rule (1) implies that sin 2x =
2 sinx cos x, whereas its expression in REDUCE does not have the same
effect, for REDUCE does not see that 2x = x + x. Therefore a better
translation of the first rule would be

FOR ALL X,Y LET SIN(X+Y) = SIN(X)*COS(Y)+COS(X)*SIN(Y);
FOR ALL X LET SIN(2*X) = 2*SIN(X)*COS(X);

but even this is not enough (because of sin 3x etc.), and we have to add a
rule such as

FOR ALL X,N SUCH THAT NUMBERP N AND N>1 LET
SIN(N*X) = SIN((N-1)*X)*COS(X) + COS((N-1)*X)*SIN(X);

with corresponding rules for cos.
Secondly, rules (1) and (2) are mutual inverses. If we ask REDUCE

to apply both, it loops* when we enter sin(a + b), for rule (1) rewrites it
in the form sin a cos b+ cos a sin b, and the first term of this is rewritten by
rule (2) in the form 1

2 (sin(a + b) + sin(a− b)), which contains the original
term, to which rule (1) can be applied again.

Thirdly, this simplification by rewrite rules can be very expensive.
Every rewrite needs a resimplification (from the polynomial point of view)
of the expression we are trying to simplify. Moreover, the simplification we
have just done may give rise to other simplifications.

Fourthly, we are not certain that we have given all the necessary rules.
Because of the interactive nature of Computer Algebra systems, this is not
always a serious problem, but often we want all the trigonometric functions
to be linearised, or all the logarithms to be independent etc.

All these problems can be linked to the fact that we are using a general
method, that is the method of rewrite rules, to solve a problem which is

* In principle. In fact, the present version of REDUCE notices that it
has applied more rules than a system limit allows, stops and gives an error
message.

Computer Algebra 99

clearly less general, such as the simplification of logarithmic or trigonomet-
ric functions. If we have a function of which we know nothing but some
rules, the approach by rewrite rules is the only possible one.

There is a difference between knowing some possible simplifications
(which may be rewrite rules), and knowing not only these simplifications,
but also that they are the only possible ones. For example, we are familiar
with the rules:

log(fg) = log f + log g; exp(f + g) = exp f ∗ exp g;
exp log f = log exp f = f ; (1)

but are they the only possible simplifications?
There are theorems which can describe precisely the possible simpli-

fications. The first, and the one which covers the most important case, is
Risch’s structure theorem [Risch, 1979; Rosenlicht, 1976], which says, in
effect, that the rules (1) are the only possible simplifications for functions
generated by the operators exp and log. Although we are referring to fairly
recent literature, the theorem (or, more exactly, the underlying principles)
has been known since Liouville, but it is only Computer Algebra which
requires such theorems to be explicit.

Structure Theorem. Let K be a field of constants and θ1, . . . , θn alge-
braic, exponential (when we write θi = ui = exp vi) or logarithmic (when
we write θi = vi = log ui) functions, with each θi defined over K(x, θ1, . . . ,
θi−1), and with K(x, θ1, . . . , θn) having K as the field of constants.

(a) In these conditions, a θi which is an exponential (θ′i = v′iθi) is transcen-
dental over K(x, θ1, . . . , θi−1) if, and only if, vi cannot be expressed as

c+
∑i−1

j=1 njvj , where c belongs to K and the ni are rational numbers.

(b) Similarly, a θi which is a logarithm (θ′i = u′i/ui) is transcendental over
K(x, θ1, . . . , θi−1) if, and only if, no power un

i of ui can be expressed as

c
∏i−1

j=1 u
nj

j , where c belongs to K and n and the nj are integers (with
n 6= 0).

This theorem may seem fairly complicated, but it can be re-expressed
informally in a much simpler form:
(a) An exponential function is independent of the exponentials and loga-

rithms which have already been introduced if, and only if, its argument
cannot be expressed as a linear combination (with rational coefficients)
of the logarithms and arguments of the exponentials which we have al-
ready introduced. Such a combination means that the new exponential
is a product of powers of the exponentials and of the arguments of the
logarithms already introduced.

100 The problem of data representation

(b) A logarithmic function is independent of the exponentials and loga-
rithms already introduced if, and only if, its argument cannot be ex-
pressed as a product (with rational exponents) of the exponentials and
of the arguments of the logarithms already introduced. Such a product
means that the new logarithm is a linear combination (with rational co-
efficients) of the logarithms and arguments of the exponentials already
introduced.
This theorem only applies to functions. The position for numbers

defined by exponentials and logarithms is much less clear. It is conjectured
(the Ax–Schanuel conjecture [Ax, 1971]) that this theorem continues to
hold, but we have no idea how to prove that. We do not even know whether
e (= exp(1)) and π (= (1/i) log(−1)) are independent or not.

2.8 REPRESENTATIONS OF MATRICES
There are two styles of matrix calculations, which can be called implicit and
explicit. An example of implicit calculation is provided by the mathematical
expression “Let A and B be two square matrices of the same dimension”.
Here we have not defined exactly the dimension of the matrices and we have
said nothing of their elements. On the other hand, in explicit calculation,
we define exactly all the elements of the matrix, which may be, not only
numbers, but also polynomials, rational functions, or any symbolic objects.

In fact, in implicit calculation A and B are variables. But the poly-
nomial or rational calculation we have already seen does not apply to such
variables, for they are non-commutative variables. For example, AB may
be different from BA. Several Computer Algebra systems let the user work
with such variables. In MACSYMA, for example, we saw in the examples
in Chapter 1 that there are two different operators for multiplication: A∗B
for commutative multiplication and A.B for non-commutative multiplica-
tion. Thus A ∗B −B ∗A becomes 0, but A.B −B.A remains unchanged.
In REDUCE (see also the description of REDUCE’s operators in the An-
nex), the possibilities are similar, but the manner of expressing them is
different. From the moment we declare NONCOM M, the kernels which begin
with M (such as M(1) or M(A,B)) will be non-commutative kernels, and will
not commute with other non-commutative kernels, but will commute with
ordinary (commutative) kernels. We can use rewrite rules to say that some
non-commutative objects satisfy certain constraints.

In the remainder of this section, we shall deal with explicit matrix cal-
culation. Here, as with polynomials, there is the distinction dense/sparse.

2.8.1 Dense matrices
The obvious way of representing an explicit matrix is an array of the ele-
ments of the matrix (if the implementation language does not have arrays,

Computer Algebra 101

which is the case with several dialects of LISP, we can use vectors of vec-
tors, or even lists of lists, but a representation by lists is less efficient). If
the signs <...> signify a vector, then the matrix a b c

d e f
g h i


will be represented by < < a b c > < d e f > < g h i > > . For dense
matrices, this method works quite well, and most Computer Algebra sys-
tems use it. The algorithms for the addition and multiplication of these
matrices are the same as for numerical matrices, and imply that one can add
two matrices of size n in O(n2) operations, and multiply them in O(n3) op-
erations. As with numerical matrices, there are “non-obvious” algorithms
for multiplication, which are, asymptotically, more efficient than usual al-
gorithms, such as those of Strassen [1969] (which gives us an algorithm of
complexity O(nlog2 7)), Winograd [1968] and Coppersmith and Winograd
[1982]. Asymptotically, the fastest known methods are O(n2.376) — see
Coppersmith and Winograd [1990]. For numerical matrices, these meth-
ods are only quicker from n > 20 on, and are at most 18% quicker when
n = 100 [Brent, 1970]. It is probable that the same conclusions hold to a
large extent for the matrices of Computer Algebra. We do not know of any
system which uses these “fast” methods.

When it comes to inversion, and problems associated with it such as
the solution of linear systems and finding the determinant, the algorithms
of numerical calculation are not easy to apply, for the difficulties which
arise are very different in Computer Algebra and numerical calculation. In
the first place, Computer Algebra does not have any problem of numerical
stability, and therefore every non-zero element is a good pivot for Gaussian
elimination. In this respect, Computer Algebra is simpler than numerical
calculation.

On the other hand, there is a big problem with the growth of the data,
whether they be intermediate or final. For example, if we take the generic
matrix of size three, that is  a b c

d e f
g h i

 ,

its determinant is

aei− afh− bdi+ bfg + cdh− ceg,

102 The problem of data representation

and its inverse is

1
aei− afh− bdi+ bfg + cdh− ceg

 ei− fh −bi+ ch bf − ce
−di+ fg ai− cg −af + cd
dh− eg −ah+ bg ae− bd

 .

For the generic matrix of size four, the determinant is

afkp− aflo− agjp+ agln+ ahjo− ahkn− bekp+ belo
+bgip− bglm− bhio+ bhkm+ cejp− celn− cfip+ cflm

+chin− chjm− dejo+ dekn+ dfio− dfkm− dgin+ dgjm,

and the inverse is too large to be printed here. Therefore, in general,
the data swell enormously if one inverts generic matrices, and the same is
true for determinants of generic matrices, or for solutions of generic linear
systems. Such results may appear as intermediate data in a calculation,
the final result of which is small, for example in the calculation of the

determinant, equal to 0, of a matrix of type
(
M M
M M

)
, where M is a

generic matrix.
The other big problem, especially for the calculation of determinants,

is that of division. According to Cramer’s rule, the determinant of a ma-
trix is a sum (possibly with negations) of products of the elements of the
matrix. Thus, if the elements belong to a ring (such as the integers or
the polynomials), the determinant also belongs to it. But the elimination
method requires several divisions. These divisions may not be possible (for
example one cannot divide by 5 or 2 in the ring of integers modulo 10, but

nevertheless the matrix
(

5 2
2 5

)
has a well defined determinant, that is, 1).

Even if the divisions are possible, they imply that we have to calculate with
fractions, which is very expensive because of the necessary g.c.d.s (which
are often non-trivial).

Bareiss [1968] has described a cunning variation of Gaussian elimina-
tion, in which each division in the ring has to give a result in the ring, and
not a fraction*. This method (described in the next sub-section) is very
often used in Computer Algebra, if the ring of the elements allows division
(more precisely, if the ring is integral). Otherwise, there is a method found
by Sasaki and Murao [1981, 1982] where one adds several new variables to
the ring, and where one keeps only a few terms in these variables.

Cramer’s method, which writes the determinant of a matrix of size n
as the sum of n! products of n elements of the matrix, is very inefficient

* The ideas behind this algorithm go back to Dodgson [1866], better
known as “Lewis Carroll”.

Computer Algebra 103

numerically: the number of operations is O(n(n!)), instead of O(n3) for
Gaussian elimination. But, in Computer Algebra, the cost of an operation
depends on the size of the data involved. In this expansion, each intermedi-
ate calculation is done on data which are (at least if there is no cancellation)
smaller than the result. It seems that in the case of a matrix of polynomi-
als in several variables (these polynomials have to be sparse, otherwise the
cost would be enormous), Cramer’s method is clearly much faster than any
method based on Gaussian elimination. For the case of a matrix of integers
or of polynomials in one variable, Bareiss’ method seems to be the most
efficient.

2.8.2 Bareiss’ algorithm

In fact, Bareiss has produced a whole family of methods for elimination
without fractions, that is, where all the divisions needed are exact. These
methods answer the problem stated in the section “Representations of frac-
tions”, the problem of finding an algorithm which does not require calcu-
lations with fractions. The simplest method, called “one step”, which has
in fact been known since Jordan, is based on a generalisation of Sylvester’s
identity. Let a(k)

i,j be the determinant

∣∣∣∣∣∣∣∣∣
a1,1 a1,2 . . . a1,k a1,j

a2,1 a2,2 . . . a2,k a2,j

.
ak,1 ak,2 . . . ak,k ak,j

ai,1 ai,2 . . . ai,k ai,j

∣∣∣∣∣∣∣∣∣ .

In particular, the determinant of the matrix of size n (whose elements are
(ai,j)) is a(n−1)

n,n . The basic identity is the following:

a
(k)
i,j =

1

a
(k−2)
k−1,k−1

∣∣∣∣∣ a
(k−1)
k,k a

(k−1)
k,j

a
(k−1)
i,k a

(k−1)
i,j

∣∣∣∣∣ .
In other words, after an elimination, we can be certain of being able to di-
vide by the pivot of the preceding elimination. These identities are demon-
strated in the Appendix.

To demonstrate Bareiss’ method, let us consider a generic matrix of
size three, that is:  b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3

 .

104 The problem of data representation

After elimination by the first row (without division), we have the matrix b1,1 b1,2 b1,3

0 b2,2b1,1 − b2,1b1,2 b2,3b1,1 − b2,1b1,3

0 b3,2b1,1 − b3,1b1,2 b3,3b1,1 − b3,1b1,3

 .

A second elimination gives us the matrix
b1,1 b1,2 b1,3

0 b2,2b1,1 − b2,1b1,2 b2,3b1,1 − b2,1b1,3

0 0
b1,1(b3,3b2,2b1,1 − b3,3b2,1b1,2 − b3,2b2,3b1,1

+b3,2b2,1b1,3 + b3,1b2,3b1,2 − b3,1b2,2b1,3)

 ,

and it is obvious that b1,1 divides all the elements of the third row.
The general identity is

a
(k)
i,j =

1(
a
(l−1)
l,l

)k−l

∣∣∣∣∣∣∣∣∣
a
(l)
l+1,l+1 . . . a

(l)
l+1,k a

(l)
l+1,j

.

a
(l)
k,l+1 . . . a

(l)
k,k a

(l)
k,j

a
(l)
i,l+1 . . . a

(l)
i,k a

(l)
i,j

∣∣∣∣∣∣∣∣∣ ,
of which the identity we have already quoted is the special case l = k − 1.

2.8.3 Sparse matrices
When we are dealing with sparse matrices, Computer Algebra comes close
to the methods of numerical calculation. We often use a representation
where each row of the matrix is represented by a list of the non-zero elements
of the row, each one stored with an indication of its column. We can also
use a method of storing by columns, and there are several more complicated
methods. In this case, addition is fairly simple, but multiplication is more
difficult, for we want to traverse the matrix on the left row-by-row, but the
matrix on the right column-by-column.

For the determinant, the general idea is Cramer’s expansion, but there
are several tricks for choosing the best direction for the expansion, and for
using results already calculated, instead of calculating them again. Smit
[1981] shows some of these techniques.

The inverse of a sparse matrix is usually dense, and therefore should
not be calculated. Thus, there are three general ways of solving the system
Ax = b of linear equations. In the first place, there is a formula (due
apparently to Laplace), which expresses the elements xi of the solution in
terms of the bj and of the Ai,j , which are the minors of A, that is the

Computer Algebra 105

determinants of the matrix obtained by striking out the i-th column and
the j-th row of A. In fact

xi =
∑

Ai,jbj .

These minors can be calculated by Cramer’s rule, and the chances of re-
using intermediate results of a calculation in subsequent calculations are
good. Smit [1981] describes several tricks which improve this algorithm.
But one defect which must be noted is that memory has to be used to store
the reusable results.

A second way is to use Gaussian elimination (or one of the variants
described for the case of a dense matrix). We can choose the rows (or
columns) to be eliminated according to the number of non-zero elements
they contain (and, among those which have the same number, one can try
to minimise the creation of new elements, and to maximise the superim-
position of non-zero elements in the addition of rows or columns). This
“intelligent elimination” is fairly easy to write*, but, in general, the matrix
becomes less and less sparse during these operations, and the calculating
time remains at O(n3). This method was used by Coppersmith and Dav-
enport [1985] to solve a system of 1061 equations in 739 variables, and this
swell did indeed appear.

Very recently, several authors have adapted the iteration methods from
numerical calculation, such as the method of Lanczos and the method of
conjugate gradients, to Computer Algebra. These methods seem asymptot-
ically more worth-while than Gaussian elimination, although, for a small
problem, or even for the problem of Coppersmith and Davenport, they are
less rapid. Coppersmith et al. [1986] discuss these methods.

2.9 REPRESENTATIONS OF SERIES
Computer Algebra is not limited to finite objects, such as polynomials.
It is possible to deal with several types of infinite series. Obviously, the
computer can deal with only a finite number of objects, that is, the first
terms of the series.

2.9.1 Taylor series: simple method
These series are very useful for several applications, especially when it is a
question of a non-linear problem, which becomes linear when we suppress
some small quantities. Here one can hope that the solution can be repre-
sented by a Taylor series, and that a small number of terms suffices for the
applications (e.g. numerical evaluation).

* The author has done it in less than a hundred lines in the language
SCRATCHPAD-II [Jenks, 1984] — now AXIOM.

106 The problem of data representation

Very often these series can be calculated by the method called succes-
sive approximation. Let us take for example the equation y2 = 1+ ε, where
y is an unknown and ε is small, and let us look for an expression of y as
a Taylor series with respect to ε. Let us write yn for the series up to the
term cnε

n, with y0 = 1 (or −1, but we shall expand the first solution). We
can calculate yn+1, starting from yn, by the following method:

1 + ε = y2
n+1 +O(εn+2)

=
(
yn + cn+1ε

n+1
)2

+O(εn+2)

= y2
n + 2yncn+1ε

n+1 +O(εn+2)

= y2
n + 2y0cn+1ε

n+1 +O(εn+2).

If dn+1 is the coefficient of εn+1 in 1 + ε − y2
n, this formula implies that

cn+1 = dn+1/2y0. This gives a fairly simple REDUCE program for the
evaluation of y, as far as ε10 for example (using E for ε):

ARRAY TEMP(20);
Y:=1;
FOR N:=1:10 DO <<

COEFF(1+E-Y**2,E,TEMP);
Y:=Y+TEMP(N)*(E**N)/2 >>;

This program has the disadvantage that it explicitly calculates all the terms
of y2, even those which contribute nothing to the result. REDUCE has a
mechanism for avoiding these calculations: the use of WEIGHT and WTLEVEL.
The details are given in the annex on REDUCE, but here we shall give the
algorithm rewritten to use this mechanism.
WEIGHT E=1;
Y:=1;
FOR N:=1:10 DO <<

WTLEVEL N;
Y:=Y+(1+E-Y**2)/2 >>;

In this case, there are more direct methods, such as the binomial formula,
or direct programming which only calculates the term in en of y2, but they
are rather specialised. This method of successive approximation can be
applied to many other problems — Fitch [1985] gives several examples.

Series can be manipulated in the same way as the polynomials — in
fact most Computer Algebra systems do not make any distinction between
these two. In general, the precision (that is the highest power of e, in the
case we have just dealt with) of a result is the minimum of the precisions
of the data. For example, in

n∑
i=0

aie
i +

m∑
j=0

bje
j =

min(m,n)∑
i=0

(ai + bi)ei,

Computer Algebra 107

the terms of the result with i > min(m,n) cannot be determined purely
as a function of the data — we have to know more terms ai or bj than
those given. In particular, if all the initial data have the same precision,
the result has also the same precision — we do not get the accumulation of
errors that we find in numerical calculation.

Nevertheless, there is a possible loss of precision in some cases. For
example, if we divide one series by another which does not begin with a
term with exponent zero, such as the following series:

n∑
i=1

aie
i

/ m∑
j=1

bje
j =

min(m−1,n)∑
i=0

cie
i,

we find that there is less precision. (We note that c0 = a1/b1 — it is
more complicated to calculate the other ci, but the method of successive
approximation is often used in this calculation.)

This can also happen in the case of calculating a square root:√√√√ n∑
i=0

aiei =
n∑

j=0

bje
j

if a0 6= 0 (in this case, b0 =
√
a0, and the other bi can be determined,

starting out from this value, by the method of successive approximation).
On the other hand, if a0 = 0, the series has a very different form. If a1 6= 0,
the series cannot be written as a series in e, but it needs terms in

√
e; it is

then a Puiseux series. If a0 = a1 = 0, but a2 6= 0, then the series is still a
Taylor series: √√√√ n∑

i=2

aiei =
n−1∑
j=1

bje
j .

Here there is indeed a loss of precision, for the coefficient bn is not deter-
mined by the given coefficients ai, but, it requires a knowledge of an+1 for
its determination.

We must take care to avoid these losses in precision, for simply using
polynomial manipulation does not alert us to them. But the situation is
much less complicated than in numerical calculation. There is no gradual
loss of precision, such as that generated by numerical rounding. The cir-
cumstances which give rise to these losses are well defined, and one can
program so that they are reported. If necessary, one can work to a higher
precision and check that the results are the same, but this is a solution of
last resort.

108 The problem of data representation

2.9.2 Taylor series: Norman’s method
There are applications in which the losses of precision described in the last
paragraph occur very frequently. Moreover, the simple method requires all
the terms of the intermediate results to be calculated before the first term
of the final result appears. Norman [1975] therefore suggested the following
method: instead of calculating all the terms c0, . . . , cn of a series before
using them, we state the general rule which expresses ci in terms of these
data, and leave to the system the task of calculating each ci at the moment
when it is needed.

For normal operations, these general rules are not very complicated,
as the following table shows (an upper case letter indicates a series, and
the corresponding lower case letter indicates the coefficients of the series):

C = A+B ci = ai + bi

C = A−B ci = ai − bi

C = A×B ci =
i∑

j=0

ajbi−j

C = A/B ci =
ai −

∑i−1
j=0 cjbi−j

b0
(D)

(The last equation only holds in the case b0 6= 0 — the general equation is
a bit more complicated.) Norman has also shown that any function defined
by a linear differential equation gives rise to a similar equation for the
coefficients of the Taylor series.

These rules have been implemented by Norman [1975] in SCRATCH-
PAD-I [Griesmer et al., 1975], a system which automatically expands the
values given by these rules. It is enough to ask for the value of c5, for
example, for all the necessary calculations to be done. Moreover, the system
stores the values already calculated, instead of calculating them again. This
last point is very important for the efficiency of this method. Let us take,
for example, the case of a division (equation (D) above). The calculation
of each ci requires i additions (or subtractions), i multiplications and one
division, and this gives us (n+ 1)2 operations for calculating c0, . . . , cn.

But, if we suppose that the ci are not stored, the cost is very different.
The calculation of c0 requires a division. The calculation of c1 requires a
multiplication, a subtraction and a division, but also involves the calcu-
lation of c0, which means the cost of one addition (or subtraction), one
multiplication and two divisions, which we call [A = 1,M = 1, D = 2]. The
calculation of c2 needs two additions/subtractions, two multiplications and
one division, plus the calculation of c0 and c1, which costs [A = 3,M =
3, D = 4], a cost which is already higher than the storage method, for c0 has

Computer Algebra 109

been calculated twice. The calculation of c3 requires [A = 3,M = 3, D = 1]
plus the calculation of c0, c1, c2, which costs [A = 7,M = 7, D = 8]. Sim-
ilarly, the calculating cost for c4 is [A = 15,M = 15, D = 16], and the
general formula for cn is [A = M = 2n − 1, D = 2n]. The situation would
have been much worse, if the data ai and bi had required similar calculations
before being used.

But such a system of recursive calculation can be implemented in other
Computer Algebra systems: Davenport [1981] has constructed a sub-system
in REDUCE which expands Puiseux series (that is series with fractional
exponents) of algebraic functions. The internal representation of a series is
a list of the coefficients which have already been calculated, and to this is
added the general rule for calculating other coefficients. For example, if T1
and T2 are two of these representations, the representation corresponding
to T1 ∗ T2, with two coefficients c0 and c1 already calculated, would be*:

(((0 . c0) (1 . c1)) TIMES T1 T2)

and the command to calculate c2 will change this structure into

(((0 . c0) (1 . c1) (2 . c2)) TIMES T1 T2) ,

with perhaps some expansion of T1 and T2 if other terms of these series
have been called for.

This idea of working with a infinite object of which only a finite part
is expanded is quite close to the idea of lazy evaluation which is used in
computer science. It is very easy (perhaps one hundred lines [Ehrhard,
1986]) to implement Taylor series in this way in lazy evaluation languages,
such as “Lazy ML” [Mauny, 1985]. AXIOM has adopted this philosophy
for the majority of its infinite objects, not just for series.

2.9.3 Other series
There are several kinds of series besides Taylor series (and its variants such
as the Laurent or Puiseux series). A family of series which is very useful in
several areas is that of Fourier series, that is

f = a0 +
n∑

i=1

ai cos it+ bi sin it.

The simple function sin t (or cos t) represents the solution of y′′ + y = 0,
and several perturbations of this equation can be represented by Fourier se-
ries, which are often calculated by the method of successive approximation.
Fitch [1985] gives some examples.

* For technical reasons, Davenport uses special symbols, such as TAY-
LORTIMES instead of TIMES.

110 The problem of data representation

For Computer Algebra systems, based on polynomial calculation, it is
more difficult to treat this series than it is to treat Taylor series. The reason
is that the product of two base terms is no longer a base term: εi×εj = εi+j ,
but cos it× cos jt 6= cos(i + j)t. Of course, it is possible to re-express this
product in terms of base functions, by the rewrite rules given in the section
“Representation of transcendental functions”, but (for the reasons given in
that section) this may become quite costly. If we have to treat large series
of this kind, it is more efficient to use a representation of these series, in
which the multiplication can be done directly, for example a vector of the
coefficients of the series. There are systems in which a representation of
this kind is used automatically for Fourier series — CAMAL [Fitch, 1974]
is one example of this.

The reader may notice that the relation between truncation and mul-
tiplication of these series is not as clear as it was for Taylor series. If we use
the notation b. . .cn to mean that an expression has been truncated after
the term of index n (for example, εn or cosnt), we see that⌊(∞∑

i=0

aiε
i

)(∞∑
i=0

biε
i

)⌋
n

=
⌊⌊ ∞∑

i=0

aiε
i

⌋
n

⌊ ∞∑
i=0

biε
i

⌋
n

⌋
n

, (T)

but that⌊(∞∑
i=0

ai cos it
)(∞∑

i=0

bi cos it
)⌋

n

6=
⌊⌊ ∞∑

i=0

ai cos it
⌋

n

⌊ ∞∑
i=0

bi cos it
⌋

n

⌋
n

.

(F)
For this reason, the coefficients of our Fourier series must tend to zero in
a controlled fashion, for example ai = O(εi) where ε is a quantity which is
considered small. In this case, the equation (F) becomes a true equality.

The reader can easily find other series, such as Poisson series, which can
be treated in the same way. Section 5.3 illustrates some of these questions
at greater length.

3. Polynomial
simplification

3.1 SIMPLIFICATION OF POLYNOMIAL EQUATIONS
Very often, when studying some situation, we find that it is defined by a
system of polynomial equations. For example, a position of the mechanical
structure made up of two segments of lengths 1 and 2 respectively, and
joined at one point is defined by nine variables (three points each with
three co-ordinates) subject to the relations:

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 = 1,

(x1 − x3)2 + (y1 − y3)2 + (z1 − z3)2 = 4;
(1)

or perhaps to the relations:

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 = 1,
(2x1 − x2 − x3)(x3 − x2) + (2y1 − y2 − y3)(y3 − y2)+

+(2z1 − z2 − z3)(z3 − z2) = −3
(1′)

(where we have replaced the second equation by the difference between the
two equations); or likewise to the relations:

(2x1 − x2 − x3)(x3 − x2) + (2y1 − y2 − y3)(y3 − y2)+
+(2z1 − z2 − z3)(z3 − z2) = −3,

(x1 − x3)2 + (y1 − y3)2 + (z1 − z3)2 = 4;

(1′′)

or many other variants. The fundamental question of this section can be
expressed thus: which finite list of relations must we use?

Every calculation about the movement of this object must take these
relations into account, or, more formally, take place in the ideal generated
by these generators. A general treament of this theory can be found in
Becker & Weispfenning [1993].

111

112 Polynomial simplification

Definition. The ideal* generated by a family of generators consists of the
set of linear combinations of these generators, with polynomial coefficients.

Definition. Two polynomials f and g are equivalent with respect to an
ideal if their difference belongs to the ideal.

If we regard the generators of the ideal as polynomials with value zero, this
definition states that the polynomials do not differ.

Therefore, the questions for this section are:
(1) How do we define an ideal?
(2) How do we decide whether two polynomials are equivalent with respect

to a given ideal?

3.1.1 Reductions of polynomials

Obviously, there are several systems of generators for one ideal. We can al-
ways add any linear combination of the generators, or suppress one of them
if it is a linear combination of the others. Is there a system of generators
which is simple? Naturally, this question requires us to be precise about
the idea of “simple”. That depends on the order over the monomials of our
polynomials (see the section “Polynomials in several variables”).

Let us consider polynomials in the variables x1, x2, . . . , xn, the coef-
ficients of which belong to a field k (that is that we can add, multiply,
divide them, etc.). Let < be an order over the monomials which satisfies
the following two conditions:

(a) If a < b, then for every monomial c, we have ac < bc.

(b) For all monomials a and b with b 6= 1, we have a < ab.

The three orders “lexicographic”, “total degree then lexicographic” and
“total degree then inverse lexicographic” satisfy these criteria. Let us sup-
pose that every (non-zero) polynomial is written in decreasing order (ac-
cording to <) of its monomials:

∑n
i=1 aiXi with ai 6= 0 and Xi > Xi+1 for

every i. We call X1 the principal monomial and a1X1 the principal term of
the polynomial.

Let G be a finite set of polynomials, and > a fixed order, satisfying
the above conditions.

Definition. A polynomial f is reduced with respect to G if no principal
monomial of an element of G divides the principal monomial of f .

In other words, no combination f − hgi of f and an element of G can have
a principal monomial less (for the order <) than the principal monomial of

* This definition is the general definition in abstract algebra, specialised
to the case of the polynomials.

Computer Algebra 113

f . If f is not reduced, we can subtract from it a multiple of an element of
G in order to eliminate its principal monomial (and to get a new principal
monomial less than the principal monomial of f); this new polynomial is
equivalent to f with respect to the ideal generated by G. This process is
called a reduction of f with respect to G. We must note that a polynomial
can have several reductions with respect to G (one for each element of
G whose principal monomial divides the principal monomial of f). For
example, let G = {g1 = x − 1, g2 = y − 2} and f = xy. Then there are
two possible reductions of f : by g1, which gives f − yg1 = −y, and by g2,
which gives f − xg2 = −2x. A polynomial f cannot have an infinite chain
of reductions: we have to terminate with a reduced polynomial.

The definition of reduced involves the principal monomial of f , and
implies that there is no linear combination f − hgi which has a principal
monomial less than that of f . It is possible that there are other monomials
of f which can be eliminated to make the linear combination “smaller”.
For example, let us suppose that the variables are x and y, subjected to the
lexicographic order y < x, and that G = {y−1}. The polynomial x+y2+y
is reduced, for its principal monomial is x. Nevertheless, we can eliminate
the monomials y2 and y with respect to G. This fact leads to the following
definition, which is stronger than that of “reduced”.

Definition. A polynomial f is completely reduced with respect to G if no
monomial of f is divisible by the principal monomial of an element of G.

3.1.2 Standard (Gröbner) bases

Definition. A system of generators (or basis) G of an ideal I is called a
standard basis or Gröbner basis (with respect to the order <) if every re-
duction of an f of I to a reduced polynomial (with respect to G) always
gives zero.

An equivalent definition is that every f has only one reduced form with
respect to G. Another, more effective, definition will be given in the next
section. In the language of computer science we say that reduction with
respect to G has the Church-Rosser property. In general, the standard bases
of an ideal give us much more information about the ideal than arbitrary
bases.

For example, let us consider the ideal generated by the three polyno-
mials

114 Polynomial simplification

g1 = x3yz − xz2,

g2 = xy2z − xyz,

g3 = x2y2 − z.

It is obvious that x = y = z = 0 makes all these polynomials vanish: it is
not obvious that there are other solutions. The standard basis of this ideal
(with respect to the lexicographic order x > y > z) is formed from* g2 and
g3 and from the following three polynomials:

g4 = x2yz − z2,

g5 = yz2 − z2,

g6 = x2z2 − z3.

(A standard basis may very well contain more polynomials than the initial
basis — we shall return to this remark at the end of the next section.) It
is now obvious that there are two possibilities: either z = 0, or z 6= 0. If
z = 0, these polynomials reduce to x2y2, therefore x = 0 or y = 0. If z 6= 0,
then these polynomials reduce to y = 1 and x2 = z. Therefore, the set of
common zeros of G consists of two straight lines (x = z = 0 and y = z = 0)
and a parabola (y = 1, x2 = z).

We now state some theorems on standard bases. We shall not prove
them: the reader who is interested in the proofs should consult the papers
by Buchberger [1970, 1976a, b, 1979, 1981, 1985].

Theorem 1. Every ideal has a standard basis with respect to any order
(which satisfies the conditions (a) and (b) above).

Theorem 2. Two ideals are equal if and only if they have the same reduced
standard bases (with respect to the same order).

By reduced basis, we mean a basis, each polynomial of which is completely
reduced with respect to all the others. This restriction to reduced bases
is necessary to eliminate trivialities such as {x − 1, (x− 1)2}, which is a
different basis from {x − 1}, but only because it is not reduced. In fact,
this theorem gives a canonical representation for the ideals (as soon as we
have fixed an order and a canonical representation for the coefficients).

Theorem 3. A system of polynomial equations is inconsistent (it can never
be satisfied, even if we add algebraic extensions — for example over the
complex numbers C) if and only if the corresponding standard basis (with
respect to any order satisfying the conditions (a) and (b) above) contains
a constant.

* g1 is not necessary, since it is reduced to zero by g4.

Computer Algebra 115

3.1.3 Solution of a system of polynomials

Theorem 4. A system of polynomial equations has a finite number* of
solutions over C if and only if each variable appears alone (such as zn) in
one of the principal terms of the corresponding standard basis (with respect
to any order satisfying the conditions (a) and (b) above).

If this basis is computed with respect to a lexicographic order, we can
determine all the solutions by the following method. Lexicographic orders
are not always the easiest to compute with, but Faugère et al. [1993]
have shown that it is comparatively inexpensive to transform any zero-
dimensional basis into a lexicographic one.

Let us suppose that the variables are x1, x2, . . . , xn with x1 > x2 >
. . . xn. The variable xn appears alone in the principal term of a generator of
the standard basis. But all the other terms of this generator are less (in the
sense of <) than this term, and therefore can contain only xn, for we are
using the lexicographic order. Thus we have a polynomial in xn (and only
one, because with two polynomials, we can always reduce one with respect
to the other), which has only a finite number of roots. xn−1 appears by
itself (to the power k, for example) in the principal term of a generator of
the standard basis. But the other terms of this generator are less (in the
sense of <) than this term, and can therefore contain only xn−1 (to a power
less than k) and, possibly, xn , for we are using the lexicographic order. For
every possible value of xn, we have** k possible values of xn−1: the roots
of this polynomial in xn−1. It is possible that there are other polynomials
in xn−1 and xn, and that certain combinations of values of xn−1 and xn

do not satisfy these polynomials, and must therefore be deleted, but we are
certain of having only a finite number of possibilities for xn−1 and xn. We
determine xn−2, . . . , x1 in the same way.

In fact, there is a much simpler algorithm, invented independently by
Gianni [1989] and Kalkbrener [1989], to find these finite solutions. We will
illustrate their theorem on a simple example, but one which illustrates the
point. Consider the following standard basis:{

x2 − 1, (y − 1)x− y + 1, y2 − 1
}
,

where x = x1 and y = x2. The algorithm sketched in the preceding para-
graph tells us to take the unique polynomial in x2 and to solve it: there

* In geometry, such an ideal is called zero-dimensional.
** In general. It is possible that there are multiple roots, and therefore

the number of separate roots would be less than k.

116 Polynomial simplification

are two solutions y = 1 and y = −1. For each of these solutions we must
solve the other equations.
y = +1 Here the other equations become x2 − 1 and 0, and we have two

solutions for x: x = 1 and x = −1.
y = −1 Here the other equations become x2 − 1 and −2x + 2, and now

there is only one solution x = 1, since x = −1 does not satisfy
−2x+ 2.

The Gianni-Kalkbrener theoremsays that, for each variable xk, it is both
necessary and sufficient to consider the the polynomial of lowest degree in
that variable, such that its leading coefficient does not vanish for the values
of xk+1, . . . , xn being considered. In our example, when y = 1 the leading
coefficient of (y− 1)x− y+1 vanishes, and we have to take x2 − 1, whereas
when y = −1, the leading coefficient does not vanish, and it is sufficient
to take this polynomial, and to ignore x2 − 1. Lazard [1992] considers
several improvements on this algorithm, especially some based on the idea
of dynamic evaluation (see section 2.6.5).

It should be noted that the condition on zero-dimensional ideals is
that each variable appears by itself. It cannot be replaced by the weaker
condition that each variable appears as principal variable, as we see from
the following example. Let us consider two variables x and y, with x > y.
Our ideal is generated by (y − 1)x+ (y− 1) and y2 − 1, which (for reasons
we shall explain later) form a standard basis, but a basis which does not
satisfy the hypothesis of theorem 4, for x does not appear by itself. There
are two possible solutions for y, that is 1 and −1. If y = −1, the other
generator becomes −2x − 2, which vanishes when x = −1. But, if y = 1,
the other generator vanishes completely, and x is not determined.

Theorem 4 has an obvious converse: an ideal is not of dimension zero
if and only if there is a variable which does not appear by itself in one
of the principal terms of the standard basis. In this case, the theory is
substantially more complicated (Giusti [1984] gives some indications, but
it is a subject for which algorithms are still being developed). It is easy to
conjecture that the number of such variables determines the dimension of
the ideal (one, if there is a curve on which all the polynomials vanish; two,
if it is a question of a surface etc.), but this conjecture is false. Let us take
as an example the following two ideals:

I1 = {x2 − 1, (x− 1)y, (x+ 1)z},
I2 = {x2 − 1, (x− 1)y, (x− 1)z}.

Their standard bases with respect to the lexicographic order x > y > z are

I1 = {x2 − 1, (x− 1)y, (x+ 1)z, yz},
I2 = {x2 − 1, (x− 1)y, (x− 1)z}.

Computer Algebra 117

In both, x appears by itself, but neither y nor z does. Now I1 has dimension
one, for its solutions are the two straight lines x = 1, z = 0 and x = −1,
y = 0, whereas I2 has dimension 2, for its solutions are the plane x = 1 and
the isolated point x = −1, y = z = 0.

3.1.4 Buchberger’s algorithm

Theorem 1 of the last section but one tells us that every ideal has a standard
basis — but how do we calculate it? Similarly, how can we decide whether
a basis is standard or not? In this section we shall explain Buchberger’s
algorithm [1970], with which we can solve these problems. We suppose that
we have chosen once and for all an order on the monomials, which satisfies
conditions (a) and (b) of the section “Reductions of polynomials”.

Definition. Let f and g be two non-zero polynomials, with principal terms
fp and gp. Let h be the l.c.m. of fp and gp. The S-polynomial of f and g,
S(f, g), is defined by

S(f, g) =
h

fp
f − h

gp
g.

The l.c.m. of two terms or monomials is simply the product of all the
variables, each to a power which is the maximum of its powers in the two
monomials. h/gp and h/fp are monomials, therefore S(f, g) is a linear
combination with polynomial coefficients of f and g, and belongs to the
ideal generated by f and g. Moreover, the principal terms of the two
components of S(f, g) are equal (to h), and therefore cancel each other.
We note too that S(f, f) = 0 and that S(g, f) = −S(f, g).

Theorem 5. A basis G is a standard basis if, and only if, for every pair
of polynomials f and g of G, S(f, g) reduces to zero with respect to G.

This theorem gives us a criterion for deciding whether a basis is stan-
dard or not — it is enough to calculate all the S-polynomials and to check
that they do reduce to zero. But if we do not have a standard basis, it is pre-
cisely because one of these S-polynomials (say S(f, g)) does not reduce to
zero. Then, as its reduction is a linear combination of the elements of G, we
can add it to G without changing the ideal generated. After this addition,
S(f, g) reduces to zero, but there are new S-polynomials to be considered.
It is a remarkable fact, which we again owe to Buchberger [1970], that this
process always comes to an end (and therefore gives a standard basis of the
ideal). A proof of this fact is given in the Appendix, along with a formal
presentation of the algorithm.

Let us apply this algorithm to the example {g1, g2, g3} of the previous
section. The S-polynomials to be considered are S(g1, g2), S(g1, g3) and

118 Polynomial simplification

S(g2, g3). The principal terms of g2 = xy2z − xyz and g3 = x2y2 − z are
xy2z and x2y2, whose l.c.m. is x2y2z. Therefore

S(g2, g3) = xg2 − zg3 = (x2y2z − x2yz)− (x2y2z − z2) = −x2yz + z2.

This polynomial is non-zero and reduced with respect to G, and therefore
G is not a standard basis. Therefore we can add this polynomial (or, to
make the calculations more readable, its negative) to G — call it g4. Now
G consists of

g1 = x3yz − xz2,

g2 = xy2z − xyz,

g3 = x2y2 − z,

g4 = x2yz − z2,

and the S-polynomials to be considered are S(g1, g2), S(g1, g3), S(g1, g4),
S(g2, g4) and S(g3, g4). Fortunately, we can make a simplification, by
observing that g1 = xg4, and therefore the ideal generated by G does
not change if we suppress g1. This simplification leaves us with two S-
polynomials to consider: S(g2, g4) and S(g3, g4).

S(g2, g4) = xg2 − yg4 = −x2yz + yz2,

and this last polynomial can be reduced (by adding g4), which gives us
yz2 − z2. As it is not zero, the basis is not standard, and we must enlarge
G by adding this new generator, which we call g5. Now G consists of

g2 = xy2z − xyz,

g3 = x2y2 − z,

g4 = x2yz − z2,

g5 = yz2 − z2,

and the S-polynomials to be considered are S(g3, g4), S(g2, g5), S(g3, g5)
and S(g4, g5).

S(g3, g4) = zg3 − yg4 = −z2 + yz2,

and this last one can be reduced to zero (by adding g5) (in fact, this re-
duction follows from Buchberger’s third criterion, which we shall describe
later).

S(g2, g5) = zg2 − xyg5 = −xyz2 + xyz2 = 0.

S(g4, g5) = zg4 − x2g5 = −z3 + x2z2 = x2z2 − z3,

Computer Algebra 119

where the last rewriting arranges the monomials in decreasing order (with
respect to <). This polynomial is already reduced with respect to G, G is
therefore not a standard basis, and we must add this new polynomial to G
— let us call it g6. Now G consists of

g2 = xy2z − xyz,

g3 = x2y2 − z,

g4 = x2yz − z2,

g5 = yz2 − z2,

g6 = x2z2 − z3,

and the S-polynomials to be considered are S(g3, g5), S(g2, g6), S(g3, g6),
S(g4, g6) and S(g5, g6). The reader can check that G reduces all these
S-polynomials to zero, and that G is therefore a standard basis of the ideal.

We must note that this algorithm can benefit from several optimisa-
tions. Buchberger [1979] has given a criterion (Buchberger’s third criterion)
which eliminates several of the S-polynomials studied. He proves that if
there is an element h of this basis, such that the principal monomial of h
divides the l.c.m. of the principal monomials of f and g, and if we have
already considered S(f, h) and S(h, g), then it is not necessary to consider
S(f, g), for it should reduce to zero.

This criterion has been much generalised by Backelin and Fröberg
[1991], who construct a graph: the vertices represent the polynomials of
G, and there is an edge between two vertices if the S-polynomial between
the corresponding polynomials has already been computed. They show
that, under certain technical conditions, it is never necessary to consider
the S-polynomial between two polynomials belonging to the same connected
component of this graph.

We have not mentioned the choice of the S-polynomial to be studied.
In general, there are several S-polynomials to be considered, even after ap-
plying Buchberger’s criterion. The algorithm gives the same result for every
choice, but the calculating time may be very different. Buchberger [1979]
claims that the choice of an S-polynomial such that the l.c.m. of the prin-
cipal monomials is of minimal total degree (amongst all the S-polynomials
to be considered) is good, and works well with his criterion. But this may
still leave several possibilities open. There are many heuristics, of which
it is claimed that they choose a “good” S-polynomial from the list of S-
polynomials, but this is an active research topic.

Nevertheless, the fact that we have an algorithm does not mean that
every problem can be solved easily. Although Buchberger has proved that
his algorithm terminates, he has not given any limit for the calculating

120 Polynomial simplification

time or for the number of polynomials in the standard basis. In fact, these
problems are very difficult, and are being actively studied. Mayr and Mayer
[1982] have shown that calculating a standard basis requires, in general,
a memory space exponential in n, the number of variables. In practice,
there are problems which have been solved very easily by this algorithm
[Gebauer and Kredel, 1984], but also problems which use several mega-
bytes of memory without being solved.

The case of one variable is trivial (it is discussed in the next section).
For the case of two variables, Buchberger [1983] and Lazard [1983] were
able to prove that, if all the data are of total degree bounded by d, the
total degrees of a standard basis are bounded by 2d − 1 if the order is a
“total degree” order, and always bounded by d2. Moreover, the number
of polynomials in the standard basis is bounded by k + 1, where k is the
minimum of the total degrees of the principal monomials of all the data.
All these limits are best possible.

The case of more than two variables is more complicated. Mora has
given [Lazard, 1983] an example of a seemingly small problem,

{xk+1 − yk−1zt, xzk−1 − yk, xky − zkt}

with the order total degree, then inverse lexicographic x > z > y > t, but
such that the standard basis contains the polynomial yk2+1−zk2

t, of degree
almost the square of the degree of the data.

Using the results of Giusti [1984] and Möller–Mora [1984], it is pos-
sible to show that the degrees of all the polynomials occurring during the
calculation of the Gröbner basis of a homogeneous ideal via Buchberger’s
algorithm are bounded by a function of the form O

(
(nd)(n+1)2s+1

)
, where

d is the maximum of the degrees of the input polynomials, n is the number
of variables, and s is the dimension of the ideal (which is therefore bounded
by n), i.e. a bound doubly exponential in n.

3.1.5 Relationship to other methods
Buchberger’s algorithm is, in fact, a combination of several well-known
ideas. For the case of one variable and two polynomials, it is equivalent to
Euclid’s algorithm for the g.c.d. of these polynomials. Every S-polynomial
is the polynomial of highest degree less (a multiple of) the other, and after
increasing the basis by this S-polynomial, the polynomial of higher degree
can be dropped, for it reduces to zero with respect to the others. The
extension to several polynomials is closely linked to the corresponding gen-
eralisation of Euclid’s algorithm.

For the case of several variables and linear polynomials, Buchberger’s
algorithm corresponds to Gaussian elimination, for S(f1, f2) (supposing

Computer Algebra 121

that f1 and f2 contain the same principal variable — if not S(f1, f2) =
0) is a linear combination (with constant coefficients) of f1 and f2 which
eliminates the principal variable. f2 reduces to zero with respect to f1 and
S(f1, f2), and can therefore be cancelled. Thus we eliminate the principal
variable of all the polynomials except f1, and then we continue with the next
variable. We end up (if the system is not singular) with a triangular system,
that is one which satisfies the hypothesis of theorem 4, and the algorithm
indicated in the proof of it is equivalent to the use of back-substitution to
determine the solution of a triangular linear system.

For general systems, there is another method for finding the solutions,
that of repeated elimination [Moses, 1966]. For example, for the polynomials
g1, g2 and g3 which we have used as an example, we can eliminate x from
these polynomials (using the resultant with respect to x). This gives us
polynomials of the form

(y − 1)aybzc

(a, b and c being integers). These polynomials seem to suggest that there
are three families of solutions: y = 1 with z and x related (in fact by x2 = z,
as we already know); y = 0 with z and x related (in fact the relationship is a
little special — z = 0) and z = 0 with y and x related (here the relationship
is x = 0).

In this case, elimination has given the same results as Buchberger’s
algorithm, but, in general, elimination may give, not only the true solutions,
but also some parasitic solutions, that is solutions of the reduced system
which are not solutions of the given system. Let us take a fairly simple
example: that of the equations

(y − 1)x+ (y − 1) and (y + 1)x.

If we eliminate x from the second equation, we find the system

(y − 1)x+ (y − 1) and y2 − 1,

of which we already know that the solutions are the point y = x = −1 and
the line y = 1 with x undetermined. On the contrary, if we eliminate x
from the first equation, we find the system

(y + 1)x and y2 − 1,

the solutions of which are the line y = −1 with x undetermined, and the
point y = 1 with x = 0. Thus, we see that elimination may even give
inconsistent results, depending on the order of elimination. To make the
elimination correct, we must check that all the solutions satisfy all the given

122 Polynomial simplification

equations. If the equations are not satisfied, it is still possible that a subset
of the solution holds, such as the subset y = x = −1 of the “solution”
y = −1 and x undetermined, which we found before.

The corresponding standard basis is

2x− y + 1 and y2 − 1

the solutions of which are finite (theorem 4), and are given explicitly by
y = ±1 with the corresponding values of x: x = 0 (when y = 1) and x = −1
(when y = −1).

3.2 SIMPLIFICATION OF REAL POLYNOMIAL SYSTEMS
In this section, we shall study a problem which may seem very similar to the
problem in the last section. The latter dealt with the simplification of a sys-
tem of polynomial equations over an arbitrary field, and gives an algorithm
for expressing the equations in canonical form, for determining whether two
systems are equivalent etc. Now we shall consider the same questions, but
restricting ourselves to real values. This is, indeed, the setting needed for
most problems arising from robotics, CAD (Computer Aided Design) etc.
In fact, we shall see that these two situations are quite different.

Real systems differ from the other systems in two ways:
(1) one can add inequalities, something which has no meaning for complex

numbers;
(2) the dimension of the space of solutions is not as obvious as before,

given some equations (or even a single equation).
Let us enlarge upon this last point. Suppose we have two variables, x and y.
If we add a non-trivial equation, we have in the case of complex numbers,
a one-dimensional space of solutions. With real numbers the case is more
complicated.
• The equation x2 + y2 = 1 gives a one-dimensional space, that is, the

circle.
• The equation x2 + y2 = 0 gives a zero-dimensional space, that is, the

point x = y = 0.
• The equation x2 +y2 = −1 gives an empty space, for this equation has

no real solution.
As we said, research on the problems of the previous section is con-

tinuing, and there are a lot of important questions still unsolved. This is
even truer of our present problem; so we shall only give a brief survey of
the known methods and algorithms.

3.2.1 The case of R1

This is relatively simple. We take several polynomial equalities and inequal-
ities in one variable, and we ask what is the number of real solutions. We

Computer Algebra 123

shall always study the case where all the coefficients are rational numbers.
It suffices, at least in principle, to study the case of a system of the form

p1(x) = · · · = pk(x) = 0; q1(x) > 0; . . . ; qk(x) > 0,

since the solutions to a system which contains an inequality of the form
qi(x) ≥ 0 are the union of those of the system with qi(x) = 0 and those
of the system with qi(x) > 0. Moreover, it is possible to replace the pi by
their g.c.d. (written p), for a common root is necessarily a root of the g.c.d.

To solve this system, it is enough to know about all the roots of p and
of the qi, where the word “know” has a special meaning.

Definition. A root α of a polynomial p is said to be isolated if two rational
numbers a and b are given such that a ≤ α ≤ b and p has only one root in
the interval [a, b]. This interval is called the isolating interval of α.

A degenerate case of this definition is the case of a rational root, for which
it suffices to choose a = α = b (but this choice is not obligatory).

Proposition. Given an isolated root of a polynomial, we can reduce the
size of the isolating interval, so that it is as small as desired.

Proof. For simple roots, the procedure is straightforward. In the cases
a = α (that is p(a) = 0) or α = b, the interval can be reduced to a point.
In the other cases, we calculate c = 1

2 (a + b), and we determine the signs
of p(a), p(c) and p(b). Those of p(a) and of p(b) are necessarily different,
and the sign of p(c) is equal to one of them. We reject the interval [a, c) (or
(c, b]) on which the sign does not change, and keep the other — [c, b] (or
[a, c]), in which the root is to be found. We have thus divided the size of
the interval by two, and we can go on until the interval is sufficiently small.

If we want to treat polynomials with multiple roots, we have to use
the sign of the square-free part of p, that is p/ gcd(p, p′).

With the help of these ideas, we can construct the following algorithm
for solving our problem.
[1] Isolate all the roots of p and of the qi.
[2] Reject those roots of p which are also roots of the qi, for they do not

satisfy qi(α) > 0. In other words:

p1 := p/ gcd(p, p′);
for all i do p1 := p1/ gcd(p1, qi);

and keep only those roots of p where p1 changes sign in the isolating
interval.

124 Polynomial simplification

[3] Reduce the intervals so that each interval defining a root of p1 does
not contain a root of one of the qi, i.e. so that the isolating intervals
of p and of the qi are disjoint.

[4] For each root α of p1, isolated between a and b, check that all the qi
are positive. It is enough to check that qi(a) > 0, for we have ensured
that qi has no root between a and α, and cannot therefore change sign.
This algorithm is purely rational and does not require any calculation

with floating-point numbers. It requires an isolating algorithm, which we
shall now describe.

3.2.1.1 Isolation of roots
In this section, we shall consider a polynomial p(x) =

∑n
i=0 aix

i, with in-
teger coefficients. This latter limitation is not really a limitation, for the
roots of a polynomial do not change if we clear denominators. Without loss
of generality, we may suppose that p has no multiple factors (that is, that
p and p′ are relatively prime), for the factors do not change the roots, but
only their multiplicities. This is a problem which has been studied by many
famous mathematicians, for example, Descartes in the seventeenth century,
Fourier, Sturm and Hermite in the nineteenth century, and by Computer
Algebraists since the birth of the subject. Amongst recent papers, we men-
tion those by Collins and Loos [1982] and by Davenport [1985b]: we give a
summary of the latter (omitting the proofs).

Definition. The Sturm sequence associated with the polynomial p is a
sequence of polynomials with rational coefficients p0(x), p1(x), . . . , pk(x)
(where k ≤ n and pk is constant), defined by the following equations:

p0(x) = p(x),
p1(x) = p′(x), (1)
pi(x) = −remainder(pi−2(x), pi−1(x))

where “remainder” means the remainder from the division of one polyno-
mial of Q[x] by another.

In fact, we only need the sign of an evaluation of the elements of a Sturm
sequence; so it is appropriate to clear its denominators, and to treat the
sequence as a sequence of elements of Z[x]. This is very similar to the
calculation of a g.c.d., and the elements of a Sturm sequence are (to within
a sign — a subtlety which it is easy to overlook) the successive terms of
the application of Euclid’s algorithm to p and p′; and this is why we always
end up with a constant, for p and p′ were supposed relatively prime. Sturm
sequences can be calculated by all the methods for calculating the g.c.d.:
• näıvely (but we strongly recommend that this is not used — see section

2.3.3 for an example of the growth of the integers involved);

Computer Algebra 125

• by the method of sub-resultants (see the same section), but we have to
make certain that the factors suppressed in this method do not change
the sign of the polynomial;

• by the modular method (described in the next chapter), but here there
is a serious problem with the treatment of signs and this is quite hard
to solve.
Sturm sequences are interesting because of their relationship with the

real roots of p, and this relationship is clarified in the following definition
and theorem.

Definition. Let y be a real number which is not a root of p. The variation
at the point y of the Sturm sequence associated with p, written V (y), is
the number of variations of sign in the sequence p0(y), p1(y),. . . ,pk(y).

For example, if the values of the elements of the sequence are −1, 2,
1, 0 and −2, the variation is 2, for the sign changes between −1 and 2, and
between 1 and −2 (the zeros are always ignored).

Sturm’s Theorem. If a and b are two points, which are not real roots of
p, such that a < b, then the number of real roots of p in the interval (a, b)
is V (a) − V (b).

It is possible to take the values ∞ and −∞ for a and b, by taking
for V (∞) the number of variations of sign between the leading coefficients
of the elements of the Sturm sequence, and for V (−∞) the same number
after changing the signs of the leading coefficients of the elements of odd
degree. In particular, the number of real roots is a function of the signs of
the leading coefficients.

For this theorem to give us an algorithm for finding the real roots of a
polynomial, we have to bound the roots of this polynomial, so that we can
start our search from a finite interval. There are three such bounds, which
we cite here.

Proposition 1 [Cauchy, 1829; Mignotte, 1992, Theorem 4.3]. Let
α be a root of p. Then

|α| ≤ 1 + max
(∣∣∣∣an−1

an

∣∣∣∣ , ∣∣∣∣an−2

an

∣∣∣∣ , . . . , ∣∣∣∣ a0

an

∣∣∣∣).
This bound is invariant if we multiply the polynomial by a constant,

but it behaves badly under the transformation x→ x/2, which only changes
the roots by a factor 2, but may change the bound by a factor 2n. The
next two bounds do not have this defect.

126 Polynomial simplification

Proposition 2 [Cauchy, 1829; Mignotte, 1992, Theorem 4.3]. Let
α be a root of p. Then

|α| ≤ max
(∣∣∣∣nan−1

an

∣∣∣∣ , ∣∣∣∣nan−2

an

∣∣∣∣1/2

,

∣∣∣∣nan−3

an

∣∣∣∣1/3

. . . ,

∣∣∣∣na0

an

∣∣∣∣1/n)
.

Proposition 3 [Knuth, 1981]. Let α be a root of p. Then

|α| ≤ 2 max
(∣∣∣∣an−1

an

∣∣∣∣ , ∣∣∣∣an−2

an

∣∣∣∣1/2

,

∣∣∣∣an−3

an

∣∣∣∣1/3

. . . ,

∣∣∣∣ a0

an

∣∣∣∣1/n)
.

Each of these propositions also gives us a bound for the minimal abso-
lute value of a root of a polynomial (supposing that the constant coefficient
is not zero) — we replace x by 1/x in the polynomial, or, in other words, we
look for the largest root of a0x

n +a1x
n−1 + · · ·+an−1x+an, the reciprocal

of which is the smallest root of anx
n + an−1x

n−1 + · · ·+ a1x+ a0. Each of
these propositions can be used to find more accurate bounds on the largest
or smallest root, by working harder with the coefficients [Davenport and
Mignotte, 1990].

These bounds give us the isolating algorithm displayed below. Result
is a list of intervals (that is of pairs of rational numbers), each of which
contains only one root. Work is a list of structures, containing two ra-
tional numbers defining an interval with several roots, and the values of
the variation of the Sturm sequence at these two points. We suppose that
Maximal Bound and Minimal Bound return rational numbers. In this case,
all the numbers manipulated by this algorithm are rational, and the calcu-
lations can be carried out without any loss of accuracy.

We stress the reliability of this algorithm, because the roots of a poly-
nomial, especially the real roots, are very unstable as a function of the
coefficients. A very good example of this instability is given by Wilkinson
[1959], who considers the polynomial

W (x) = (x+ 1)(x+ 2) · · · (x+ 20) = x20 + 210x19 + · · · + 20!.

This polynomial looks completely normal, the roots are well separated from
one another etc. The leading coefficients of the elements of its Sturm se-
quence are all positive, and we deduce that V (∞) = 0, V (−∞) = 20, and
that the polynomial has 20 real roots. Let us consider, as Wilkinson did, a
very small perturbation of this polynomial, that is

Ŵ (x) = W (x) + 2−23x19 = x20 + (210 + 2−23)x19 + · · · + 20!

(the number 2−23 is chosen to change the last bit out of 32 in the coefficient
of x19). It seems “obvious” that Ŵ and W are so close that Ŵ must also

Computer Algebra 127

Isolating algorithm for real roots

S := {p0, . . . , pk} := Sturm(p);
N := Variations(S,−∞) − Variations(S,∞);
if N = 0 then return ∅;
if N = 1 then return [−∞,∞];
M := Maximal Bound(p);
Result := ∅;
Work := {[−M,M,Variations(S,−∞),Variations(S,∞)]};
while Work 6= ∅ do;

[a, b, Va, Vb] := element of (Work);
Work := Work \ {[a, b, Va, Vb]};
c := 1

2 (a+ b);
if p(c) = 0 then Result := Result ∪ {[c, c]};

M := Minimal Bound(subst(x = x− c, p)/x);
Vc+ := Variation(c+M);
Vc− := Vc+ + 1;
if Va = Vc− + 1 then

Result := Result ∪ {[a, c−M]};
if Va > Vc− + 1 then

Work := Work ∪ {[a, c−M,Va, Vc−]};
if Vb = Vc+ − 1 then

Result := Result ∪ {[c+M, b]};
if Vb < Vc+ − 1 then

Work := Work ∪ {[c+M, b, Vc+, Vb]};
else Vc := Variation(S, c);

if Va = Vc + 1 then
Result := Result ∪ {[a, c]};

if Va > Vc + 1 then
Work := Work ∪ {[a, c, Va, Vc]};

if Vb = Vc − 1 then
Result := Result ∪ {[c, b]};

if Vb < Vc − 1 then
Work := Work ∪ {[c, b, Vc, Vb]};

return Result;

have 20 real roots, but that is completely false. In fact, Ŵ has only ten real
roots, and the imaginary parts of the other roots are fairly big — between
0.8 and 3. The signs of the leading coefficients of the Sturm sequence of Ŵ
become negative from the eighth polynomial on, and V (∞) = 15, whereas
V (−∞) = 5.

128 Polynomial simplification

This reliability is all the more important because the interesting ques-
tions in mechanics, CAD or robotics are often about the existence or not
of real roots, or the value of a parameter, for which the roots of interest
begin to exist. It looks as if Computer Algebra is the only tool capable of
answering these questions.

However, we must be aware that these calculations can be fairly ex-
pensive. For example, we have already seen that the resultants and the
coefficients which appear in the Sturm sequence may be large. The fact
that the roots of a polynomial may be very close to one another implies
that many bisections may be needed before separating two roots, and that
the numerators and denominators which occur in the rational numbers may
become quite big. All this may considerably increase the running time for
the algorithm in question.

Theorem [Davenport, 1985b]. The running time of this algorithm is
bounded by O(n6(logn+ log

∑
a2

i)
3).

This bound is somewhat pessimistic, and it seems that the average
time is more like O(n4) [Heindel, 1971]. Other methods, which may be
more efficient, are described by Collins and Loos [1982].

3.2.1.2 Real algebraic numbers
The previous chapter dealt with the representation of algebraic numbers
from a purely algebraic point of view and we did not distinguish between
the different roots of an irreducible polynomial. That point of view is
appropriate for many applications, such as integration. But we now have
available the tools necessary for dealing with algebraic numbers in a more
numerical way.

Definition. A representation of a real algebraic number consists of: a
square-free polynomial p with integral coefficients; and an isolating interval
[a, b] of one of its roots.

We have not insisted on the polynomial being irreducible, for we have
all the information needed to answer questions such as “Is this algebraic
number a root of this other polynomial q?”. In fact, the solution of this
question is fairly simple — “yes” if and only if the g.c.d. of the two poly-
nomials has a root in the interval [a, b], and one can test this by checking
whether the g.c.d. changes sign between a and b (the g.c.d. cannot have
multiple roots).

As we have already said, by starting from such a representation, we can
produce rational approximations (and therefore approximations in floating-
point numbers) of arbitrary precision.

There are other representations possible for real algebraic numbers,
for example a real algebraic number α is uniquely defined by a polynomial

Computer Algebra 129

p such that p(α) = 0 and by the signs of p′(α), p′′(α), and so on. This
representation is used by Coste and Roy [1988].

3.2.2 The general case — (some definitions)
Before we can deal with this case, we need several definitions which are, in
some sense, generalisations of the ideas of “root” and of “interval”.

Definition. A semi-algebraic component of Rn is a set of points satisfying
a family of polynomial equalities and inequalities:{

(x1, . . . , xn) : p1(x1, . . . , xn) = · · · = pk(x1, . . . , xn) = 0;

q1(x1, . . . , xn) > 0; . . . ; qk(x1, . . . , xn) > 0
}
.

This is, obviously, the natural generalisation of the situation in R1,
which we have just looked at. It is worth noting that this definition of
“component” is an algebraic definition, not a topological one. For example,
the polynomial

p(x, y) = (x2 + y2)
(
(x− 3)2 + y2 − 1

)
= 0

defines one semi-algebraic component, but two topological components of
different dimensions. {p(x, y) = 0 ∩ x < 1} is the point (x = 0, y = 0), but
{p(x, y) = 0 ∩ x > 1} is the circle of radius 1 about (3, 0), of dimension 1.
In fact, it is more natural to look, not only at the components, but also at
the objects constructed by set operations starting from components.

Definition. A semi-algebraic variety is either a semi-algebraic component,
or one of the sets A ∪B, A ∩ B and A \ B, where A and B are two semi-
algebraic varieties.

This definition characterises the sets of Rn which can be described in
terms of polynomial equalities and inequalities, for example{

(x, y, z) : x2 + y2 + z2 > 0 or (x 6= 0 and y2 − z ≤ 0)
}

can be written as a semi-algebraic variety in the form

A ∪ ((B ∪ C) ∩ (D ∪E)),

where

A =
{
(x, y, z) : x2 + y2 + z2 > 0

}
B = {(x, y, z) : x > 0}

C = {(x, y, z) : x < 0}
D =

{
(x, y, z) : y2 − z < 0

}
E =

{
(x, y, z) : y2 − z = 0

}
.

130 Polynomial simplification

We can test whether a point (with rational or algebraic coefficients, in the
sense defined in the previous section) belongs to such a variety, by checking
whether the point belongs to each component, and by applying the Boolean
laws corresponding to the construction of the variety. We can do this more
economically: if the variety is of the form A ∪ B, there is no need to test
the components of B if the point belongs to A.

But if we start from such a description, it is very hard to understand
the structure of a semi-algebraic variety, even if we can determine whether
some points belong to the variety. Here are some questions which can be
asked about a variety:
(1) Is it empty?
(2) What is its dimension?
(3) Is it connected?

3.2.2.1 Decomposition of Rn

In this section, we shall look at a method for decomposing Rn which allows
us to analyse the structure of a semi-algebraic variety.

Definition. A decomposition of Rn is the representation of Rn as the
union of a finite number of disjoint and connected semi-algebraic compo-
nents.

By requiring the components to be disjoint and connected, a decompo-
sition is already rather more manageable than an arbitrary semi-algebraic
variety. It is often useful to know one point in each component of a decom-
position.

Definition. A decomposition is pointed if, for every component, a point
with rational or algebraic coefficients belonging to this component is asso-
ciated with it.

The points given in the components form a set of representatives of
Rn with a point in each component. Before we can use such a set, we must
know that it really is representative.

Definition. A decomposition of Rn is invariant for the signs of a family
of polynomials ri(x1, . . . , xn) if, over each component of the decomposition,
each polynomial is:
• always positive or
• always negative or
• always zero.

For example, the decomposition of R1 as

(−∞,−2) ∪ {−2} ∪ (−2, 1) ∪ {1} ∪ (1,∞)

Computer Algebra 131

(which can be written more formally as

{x : −x− 2 > 0} ∪ {x : x+ 2 = 0} ∪ {x : x+ 2 > 0 and 1 − x > 0}
∪{x : x− 1 = 0} ∪ {x : x− 1 > 0}

according to the formal definition of a decomposition) is invariant for the
sign of the polynomial (x+ 2)(x− 1).

Proposition. Let V be a semi-algebraic variety, and D a decomposition
of Rn invariant for the signs of any polynomials occurring in the definition
of V (we shall abbreviate this to “invariant for the signs of V ”). For every
component C of D, C ∩ V = ∅ or C ⊂ V .

In fact, a pointed decomposition which is invariant for the signs of V
gives us a lot of information about the variety V . Starting from such a
decompostion, we can test whether the variety is empty or not by testing
whether each of the points marking the decomposition belongs to the variety
or not. If the variety contains a point of Rn, then the proposition implies
that it contains the whole of the component it is in, and therefore also the
point which marks it.

3.2.3 Cylindrical decompositions

Although the idea of decomposition is useful, it is not sufficiently construc-
tive to enable us to compute with any decomposition. In fact, the previous
section is not really part of Computer Algebra, because the ideas in it are
not completely algorithmic. In this section we shall define a type of decom-
position which is much more constructive, and we shall sketch an algorithm
for calculating it. We suppose that we have chosen a system of co-ordinates
x1, . . . , xn of Rn.

Definition. A decomposition D of Rn, that is Rn = E1 ∪ · · · ∪ EN , is
cylindrical if n = 0 (the trivial case) or if:
(a) Rn−1 has a cylindrical decomposition D′, which we can write Rn−1 =

F1 ∪ · · · ∪ Fm and
(b) For each component Ei of D, there is a component Fj of D′ such that

Ei is written in one of the following forms{
(x1, . . . , xn) : (x1, . . . , xn−1) ∈ Fj and xn < fk(x1, . . . , xn−1)

}
(1){

(x1, . . . , xn) : (x1, . . . , xn−1) ∈ Fj and xn = fk(x1, . . . , xn−1)
}

(2){
(x1, . . . , xn) : (x1, . . . , xn−1) ∈ Fj and fk(x1, . . . , xn−1) < xn

and xn < fk′(x1, . . . , xn−1)
}
(3){

(x1, . . . , xn) : (x1, . . . , xn−1) ∈ Fj and xn > fk(x1, . . . , xn−1)
}

(4)

132 Polynomial simplification

where the fk are the solutions of polynomial equations with rational
coefficients, for example “fk(x1, . . . , xn−1) is the third real root of the
polynomial p(x1, . . . , xn−1, z), considered as a polynomial in z”.

The idea behind this definition, introduced by Collins [1975], is quite
simple — Rn−1 is divided according to the decomposition D′, and above
each component Fj we consider the cylinder* of all the points (x1, . . . , xn)
with (x1, . . . , xn−1) belonging to Fj . We require this cylinder to be in-
tersected by a finite number N of surfaces, which are single-valued with
respect to (x1, . . . , xn−1), i.e. which can be written in the form xn =
fk(x1, . . . , xn−1). Moreover, we require that these surfaces do not touch,
and a fortiori that they do not cross. So it is possible to arrange the surfaces
in increasing order of xn for a point (x1, . . . , xn−1) of a given Fj , and this
order is the same for every point of Fj . Thus the cylinder is divided into
N surfaces of type (2), of the same dimension as that of Fj , N − 1 “slices”
between two surfaces given by equations of type (3) and of dimension equal
to that of Fj plus one, and two semi-infinite “slices”, given by equations of
type (1) and (4), likewise of dimension one plus that of Fj .

A cylindrical decomposition of R1, invariant for the signs of a fam-
ily of polynomials, is quite easy to calculate — we have to know about
(in the sense of isolating them) all the roots of the polynomials, and the
decomposition is made up of these roots and of the intervals between them.

Theorem [Collins, 1975]. There is an algorithm which calculates a cylin-
drical decomposition of Rn invariant for the signs of a family P of polyno-
mials with integer coefficients. If the family P contains m polynomials, of
degree less than or equal to d and with coefficients bounded by 2H (length
bounded by H), the time taken to finish this algorithm is bounded by

(2d)2
2n+8

m2n+6
H3. (5)

The principle behind this algorithm is quite simple: it is based on
the following plan for n > 1, and we have already seen how to solve this
problem in the case n = 1.
[1] Calculate a family Q of polynomials in the variables x1, . . . , xn−1, such

that a decomposition of Rn−1 invariant for their signs can serve as a
basis for the decomposition of Rn invariant for the signs of P .

[2] Calculate, by recursion, a decomposition D′ of Rn−1 invariant for the
signs of Q.

[3] For each component F of D′, calculate the decomposition of the cylin-
der above F induced by the polynomials of P .

* More precisely, the generalised cylinder. If Fj is a disc, we have a true
cylinder.

Computer Algebra 133

Stage [1] is the most difficult: we shall come back to its implementation
later. Stage [2] is a recursion, and stage [3] is not very difficult. If Q is
well chosen, each element of P (seen as a polynomial in xn) has a constant
number of real roots over each component of D′, and the surfaces defined
by these roots do not intersect. The decomposition of each cylinder induced
by these polynomials is therefore cylindrical, and we have found the desired
cylindrical decomposition.

It is clear that all the conceptual difficulty in this algorithm arises from
the choice of Q. This choice requires a good knowledge of analysis, and of
real geometry, which we cannot give here for the general case.

3.2.3.1 The case of R2

For the sake of simplicity, we shall restrict ourselves for the present to the
case n = 2, writing x and y instead of x1 and x2. We begin with the family
P , and we have to determine a family Q of polynomials in the variable
x, such that a decomposition of R1 invariant for the signs of Q can serve
as the foundation for a cylindrical decomposition of R2. We may suppose
that the elements of P are square-free and relatively prime. What are the
restrictions which the components Fj of this decomposition of R1 have to
satisfy?
(1) Over each component, each polynomial of P has a constant number of

real roots.
(2) Over each component, the surfaces (in fact, in R2 they are only curves)

given by the roots of the elements of P do not intersect.
For the first restriction, there are two situations in which the number of

real (and finite) roots of a polynomial pi(x, y) (considered as a polynomial
in y) could change: a real finite root could become infinite, or it could
become complex. For the second situation, we must note that the complex
roots of a polynomial with real coefficients always come in pairs, and that
therefore one real root cannot disappear. There must be a multiple root for
a particular value x0 of x, for two roots of a polynomial equation pi(x, y) = 0
to be able to vanish. The critical values of x which have to appear in the
decomposition of R1 are the values x0 of x for which one of the polynomials
of P has a multiple root. If pi(y) has a multiple root, gcd(pi, dpi/dy) is not
trivial (see section A.1 in the Appendix). In other words, for this value
x0 of x, we have Resy(pi(x0, y), dpi(x0, y)/dy) = 0 (see section A.4). But
this resultant is a polynomial in x, written Discy(pi). The critical values
are therefore the roots of Discy(pi) for each element pi of P . We still
have to deal with the possibility that a finite root becomes infinite when
the value of x changes. If we write the equation p(y) = 0 in the form
an(x)yn + . . .+ a0(x) = 0, where the ai are polynomials in x, and therefore
always have finite values, it is obvious that an has to cancel to give a root

134 Polynomial simplification

of p(y) which tends to infinity. That can also be deduced from the bounds
on the values of roots of polynomials given in the last sub-section.

There are two possibilities for the second restriction also. The two
curves which intersect may be roots of the same element or of two dif-
ferent elements of P . In the first case, this element of P has a multiple
root where two of its roots intersect; and the case of multiple roots has
already been dealt with in the last paragraph. In the second case, the cor-
responding polynomials must, at the value x0 of x where these two curves
intersect, have a common root, the value of y at the point of intersection.
In other words, if pi and pj are polynomials, their g.c.d. is not trivial, and
Resy(pi(x0, y), pj(x0, y)) = 0. The hypothesis that the elements of P have
no multiple factors implies that the polynomial Resy(pi, pj) is not iden-
tically zero, and therefore x0 is determined as a root of the polynomial
Resy(pi, pj).

If we use the notation lc(p) to denote the leading coefficient of a poly-
nomial p, we have proved the following result:

Proposition. If P = {p1, . . . , pn} is a family of square-free polynomials
relatively prime in pairs, it suffices to take for Q the following family:

{lcy(pi); 1 ≤ i ≤ n}∪{Discy(pi); 1 ≤ i ≤ n}∪{Resy(pi, pj); 1 ≤ i < j ≤ n} .
The reader will notice a great increase in the size of the data involved

in this reduction to R1. If the family P consists of m polynomials of degree
bounded by d, then Q consists of O(m2) polynomials of degree bounded by
O(d2). Moreover, the coefficients of the elements of Q will be fairly large —
they are bounded by (d+ 1)2dB2d, where B is a bound for the coefficients
of the elements of P .

3.2.3.2 The general case
The analysis we gave for the case n = 2 was rather special to that case.
The main principles of the general case are the same, but there are many
more possibilities to be considered. The reader should consult the articles
of Collins [1975] or of Arnon et al. [1984], or the recent results of McCallum
[1985a, b]. He has proved that normally* it is enough to take the resul-
tants and the discriminants, as we did in the case of R2, and also all the
coefficients.

Theorem [McCallum, 1985a, b]. With the same hypotheses as Collins’
theorem, it is possible to calculate a decomposition in time bounded by

(2d)n2n+7
m2n

H3. (6)

* If the primitive part of each polynomial only cancels identically as a
polynomial in xn at a finite number of points of Rn−1.

Computer Algebra 135

This result has been slightly improved [Davenport, 1985b], to give

(2d)n2n+5
m2n

H3. (7)

These growths all behave doubly exponentially with respect to n, and we
may ask whether this is really necessary. After all, the problems do not
seem to be very complicated. Unfortunately, this behaviour is intrinsic
to the problem of calculating a cylindrical decomposition, because of the
following result.

Theorem [Davenport and Heintz, 1988]. There are examples where
the space needed to write a cylindrical decomposition, and a fortiori the
calculating time, is doubly exponential in n.

More exactly, if n is of the form 10r + 2, there is a family of 12r linear
equations and two equations of degree four, such that the family can be
written in O(n) symbols, but such that a cylindrical decomposition of Rn

invariant for its signs needs a space

222r+1
= 22(n+3)/5

. (8)

The equations of Davenport and Heintz are specialised, and the result
only holds for one choice of co-ordinates, that is of the order of elimination
of the variables. In other co-ordinates, the decomposition may be very much
simpler. But this proves that the calculation can be very expensive, and
the examples in the next section show that this high cost features largely
in the applications.

3.2.4 Applications of cylindrical decomposition
There are as many applications as there are polynomial systems with real
solutions: we can mention only two of these applications.

3.2.4.1 Quantifier elimination
We recall that a quantifier is one of the two symbols ∀ (for all) and ∃ (there
exist). Quantifiers are used in the form ∀x p(x), which means “for all x, the
proposition p(x) is true”. All the quantified variables in this section are
quantified over the real numbers — more formally, we are interested in the
first order theory of R. We will use the familiar logical signs ∧ (and), ∨
(or, in the inclusive sense) and ¬ (logical inversion). This theory contains
expressions of the following types, where the xi are variables, the pi are
polynomials, and A and B are, recursively, expressions of this “theory”:

pi(xi, xj , . . .) = 0; pi(xi, xj , . . .) > 0;
A ∧B; A ∨B; ¬A;

∃xi A; ∀xi A.

136 Polynomial simplification

For example, the expression

∀xax4 + bx3 + cx2 + dx+ e > 0 (9)

is an expression of this theory.

Definition. The problem of quantifier elimination is that of finding an
algorithm, which, given a logical expression containing quantifiers, finds an
equivalent expression which does not contain any.

We can, for example, ask for an expression equivalent to (9), that is an
expression in the variables a, b, c, d and e which is true if and only if the
polynomial is always positive.

Tarski [1951] proved that most problems in elementary algebra and in
Euclidean geometry can be solved by eliminating quantifiers, and he gave
an algorithm for doing it. But his algorithm was completely impractical.

Collins [1975] has used cylindrical decomposition to eliminate quanti-
fiers. The idea is quite simple, although the details are somewhat technical,
chiefly because of the possibility of having several quantifiers referring to
variables with the same name. So we shall give some examples, rather than
a complete algorithm.

Let us consider for example in expression (9) the variables a,. . . ,e as
co-ordinates x1,. . . ,x5 (their order is unimportant); the quantified variable
x must be x6 (here the order is important). Let us make a cylindrical
decomposition D of R6 invariant for the sign of the polynomial of (9). For
each component Fi of the cylindrical decomposition of R5 on which D is
based, there is a finite number of components Ei,j ofD, each with its typical
point zi,j. If the polynomial of (9) is positive at the typical point zi,j , it is
positive throughout the component Ei,j . If the polynomial is positive for
all the typical points above Fi, it is positive for all the cylinder above Fi.
It follows that the semi-algebraic variety of R5 which contains exactly the
solutions of (9) is⋃{

Fi : ∀jai,jx
4
i,j + bi,jx

3
i,j + ci,jx

2
i,j + di,jxi,j + ei,j > 0

}
,

where we have written the typical point zi,j as (ai,j , bi,j, ci,j , di,j , ei,j, xi,j).
This solution was given by Arnon [1985]. However, none of the above
implies that this solution is the simplest solution, nor that this procedure
is the best method for finding a solution. This problem was solved with
pencil and paper by Mignotte [1986] for the polynomial x4 + px2 + qx+ r,
and by Lazard [1988] in the general case (except that he used MACSYMA
to expand the necessary resultants). Both found solutions simpler than
that obtained algorithmically.

Computer Algebra 137

Another problem of this kind is the ellipse problem: what are the
conditions on a, b, c and d for the ellipse{

(x, y) :
(x− c)2

a2
+

(y − d)2

b2
≤ 1
}

to be completely contained in the circle x2 + y2 = 1. Here there are two
quantifiers, for the problem can be rewritten in the form

∀x ∀y
(

(x− c)2

a2
+

(y − d)2

b2
≤ 1 ⇒ x2 + y2 ≤ 1

)
.

This problem has still not been solved in a completely automatic way,
although Arnon and Smith [1983] have solved the special case d = 0.
Mignotte [1986] has also solved this case with pencil and paper, and Lazard
[1988] has solved the general case, using MACSYMA to expand a polyno-
mial T of degree 12 with 105 terms, which features in the solution. The
solution he gives has the form

T ≥ 0 ∧ (c2 + (b+ |d|)2 ≤ 1) ∧ (d2 + (a+ |c|)2 ≤ 1)

∧
((

(b2 ≤ a)∧(a2 ≤ b)
)∨(

(a > b)∧(a2d2 ≤ (1 − a2)(a2 − b2))
)∨(

(b > a)∧(b2c2 ≤ (1 − b2)(b2 − a2))
))
,

which, as we can see, is not very simple, especially because of the size of T .
We can deduce from these two examples that this tool is very general,

but that it seems rather expensive, at least with the existing implementa-
tions.

3.2.4.2 Robotics
One of the problems of robotics is the problem of robot motion planning,
that is of deciding how the robot can move from one place to another
without touching the walls, without damaging itself on other robots etc.
There are, it is true, many other problems, but we shall consider only
this one. For the sake of simplicity, we limit ourselves to the case of one
robot, and this is difficult enough — the case of several robots is studied in
Schwartz and Sharir [1983b]. We suppose that all the obstacles are fixed,
and are defined by polynomial equations, and that the robot too is given
by polynomial equations.

If we choose a certain number of points on the robot, we can fix exactly
the position of each of its parts. For example, if the robot is rigid, it

138 Polynomial simplification

is sufficient to choose three points which are not collinear. If we need k
points, the position of the robot is determined by a point in R3k. But
there are constraints between these points — for example two points of
the same rigid part of the robot are always at the same distance from one
another. Thus our points in R3k have to satisfy a system of polynomial
equations (and, possibly, inequalities).

The obstacles define several polynomial inequalities, which have to
be satisfied for the position of the robot to be “legitimate”, for example,
that it does not cross a wall. The laws of physics may introduce several
inequalities, for example, the robot must be in a state of equilibrium under
the effect of gravity. All these equations and inequalities give us a semi-
algebraic variety in R3k. In principle, the problem of motion planning is
fairly simple: are the departure position and the desired position connected
in the variety? In other words, is there a path in the variety which links
the departure position to the desired position? If there is one, then it gives
the desired movement; if not the problem has no solution.

This idea has been studied by Schwartz and Sharir [1983a], where they
explained how to find the path. Starting from a cylindrical decomposition,
the problem breaks down into two stages.
• The geometric aspect: which components are next to one another (we

need only consider the components in the variety of legitimate posi-
tions).

• The combinatorial aspect: given the graph of the neighbourhood re-
lations between the components, find the paths in this graph which
join the component of the departure position and the component of
the desired position.

The reader is advised to consult their articles for the details.
Unfortunately, this algorithm scarcely seems practicable. One of the

simplest problems of motion planning is the following:

Given in R2 a right-angled “corridor” of width unity, say (x >
0 ∧ 0 ≤ y ≤ 1) ∪ (y > 0 ∧ 0 ≤ x ≤ 1), can we get a rod of length
three (and of infinitesimal width) to negotiate it.

The answer is “no”, because the biggest rod which can negotiate it is of
length 2

√
2. Davenport [1986] tried to solve this problem by Schwartz and

Sharir’s method. The semi-algebraic variety is in R4 (for we take the two
extremities of the rod as points of reference), and is defined by an equation,
requiring that these two points be always at a distance three from one
another, and by eight inequalities, two for each wall of the corridor. To find
a cylindrical decomposition of R4, we have to determine one of R3, then one
of R2 and finally one of R1. For R1, we find 184 (irreducible) polynomials,
of total degree 801, and maximum degree 18. This reduction took ten

Computer Algebra 139

minutes cpu-time with REDUCE on a DEC 20–60. These polynomials have
375 real roots, which can be isolated (in the sense of isolating the roots of
each polynomial) in five minutes. But we have to isolate all the roots of
all the polynomials, and Davenport was unable (with the technology of
1986) to do the calculation, because of the growth in the numerators and
denominators of the rational numbers involved.

140 Polynomial simplification

4. Advanced algorithms

Computer Algebra, in general, manipulates quite familiar mathemat-
ical objects, and the manipulations are, in principle, fairly simple. But as
we have already seen, even for calculating the g.c.d. of two polynomials
with integer coefficients, näıve algorithms are extremely costly. We there-
fore introduced methods, such as sub-resultant sequences of polynomials,
which seem to be much more efficient. We said:

This algorithm is the best method known for calculating the g.c.d.,
of all those based on Euclid’s algorithm applied to polynomials
with integer coefficients. In the chapter “Advanced algorithms”
we shall see that if we go beyond these limits, it is possible to find
better algorithms for this calculation.

4.1 MODULAR METHODS
In this section, we shall describe the first (historically speaking) family of
non-obvious algorithms, and we shall start with its greatest success: the
g.c.d.

4.1.1 g.c.d. in one variable
This section is set in the following context: A and B are two polynomials,
belonging to the ring Z[x], whose g.c.d. we want to calculate. The restric-
tion to integer coefficients does not present any problem, for we can always
multiply the polynomials by an integer so as to eliminate any denominator.
A slight variation of the classic example of Knuth [1969] (see also Brown
[1971]), where this calculation by näıve methods becomes very costly, is:

A(x) =x8 + x6 − 3x4 − 3x3 + x2 + 2x− 5;

B(x) =3x6 + 5x4 − 4x2 − 9x+ 21

141

142 Advanced algorithms

(see the calculations in the section “The g.c.d.” of Chapter 2). Let us sup-
pose that these two polynomials have a common factor, that is a polynomial
P (of non-zero degree) which divides A and B. Then there is a polynomial
Q such that A = PQ. This equation still holds if we take each coefficient as
an integer modulo 5. If we write P5 to signify the polynomial P considered
as a polynomial with coefficients modulo 5, this equation implies that P5

divides A5. Similarly, P5 divides B5, and therefore it is a common factor*
of A5 and B5. But calculating the g.c.d. of A5 and B5 is fairly easy:

A5(x) =x8 + x6 + 2x4 + 2x3 + x2 + 2x;

B5(x) =3x6 + x2 + x+ 1;

C5(x) =remainder(A5(x), B5(x)) = A5(x) + 3(x2 + 1)B5(x) = 2x2 + 3;

D5(x) =remainder(B5(x), C5(x)) = B5(x) + (x4 + x2 + 3)C5(x) = x;
E5(x) =remainder(C5(x), D5(x)) = C5(x) + 3xD5(x) = 3.

Thus A5 and B5 are relatively prime, which implies that P5 = 1. As the
leading coefficient of P has to be one, we deduce that P = 1.

The concept of modular methods is inspired by this calculation, where
there is no possibility of intermediate expression swell, for the integers mod-
ulo 5 are bounded (by 4). Obviously, there is no need to use the integers
modulo 5: any prime number p will suffice (we chose 5 because the calcula-
tion does not work modulo 2 and 3, for reasons we shall explain later). In
this example, the result was that the polynomials are relatively prime. This
raises several questions about generalising this calculation to an algorithm
capable of calculating the g.c.d. of any pair of polynomials:
(1) how do we calculate a non-trivial g.c.d.?
(2) what do we do if the modular g.c.d. is not the modular image of the

g.c.d. (as in the example in the footnote*)?
(3) how much does this method cost?

Before we can answer these questions, we have to be able to bound the
coefficients of the g.c.d. of two polynomials.

Theorem (Landau-Mignotte inequality). Let Q =
∑q

i=0 bix
i be a

divisor of the polynomial P =
∑p

i=0 aix
i (where ai and bi are integers).

Then
q∑

i=0

|bi| ≤ 2q

∣∣∣∣ bqap

∣∣∣∣
√√√√ p∑

i=0

a2
i .

See the paper by Landau [1905], and those by Mignotte [1974, 1982].

* Note that we cannot deduce that P5 = gcd(A5, B5): a counter-example
is A = x − 3, B = x + 2, where P = 1, but A5 = B5 = x + 2, and so
gcd(A5, B5) = x+ 2, whereas P5 = 1.

Computer Algebra 143

Corollary 1. Every coefficient of the g.c.d. of A =
∑α

i=0 aix
i and B =∑β

i=0 bix
i (with ai and bi integers) is bounded by

2min(α,β) gcd(aα, bβ)min

 1
|aα|

√√√√ α∑
i=0

a2
i ,

1
|bβ |

√√√√ β∑
i=0

b2i

 .

Proof. The g.c.d. is a factor of A and of B, the degree of which is, at most,
the minimum of the degrees of the two polynomials. Moreover, the leading
coefficient of the g.c.d. has to divide the two leading coefficients of A and
B, and therefore has to divide their g.c.d.

A slight variation of this corollary is provided by the following result.

Corollary 2. Every coefficient of the g.c.d. of A =
∑α

i=0 aix
i and B =∑β

i=0 bix
i (where ai bi are integers) is bounded by

2min(α,β) gcd(a0, b0)min

 1
|a0|

√√√√ α∑
i=0

a2
i ,

1
|b0|

√√√√ β∑
i=0

b2i

 .

Proof. If C =
∑γ

i=0 cix
i is a divisor of A, then Ĉ =

∑γ
i=0 cγ−ix

i is a
divisor of Â =

∑α
i=0 aα−ix

i, and conversely. Therefore, the last corollary
can be applied to Â and B̂, and this yields the bound stated.

It may seem strange that the coefficients of a g.c.d. of two polynomials
can be greater than the coefficients of the polynomials themselves. One
example which shows this is the following (due to Davenport and Trager):

A = x3 + x2 − x− 1 = (x+ 1)2(x− 1);

B = x4 + x3 + x+ 1 = (x+ 1)2(x2 − x+ 1);

gcd(A,B) = x2 + 2x+ 1 = (x+ 1)2.

This example can be generalised, as say

A = x5 + 3x4 + 2x3 − 2x2 − 3x− 1 = (x+ 1)4(x− 1);

B = x6 + 3x5 + 3x4 + 2x3 + 3x2 + 3x+ 1 = (x+ 1)4(x2 − x+ 1);

gcd(A,B) = x4 + 4x3 + 6x2 + 4x+ 1 = (x+ 1)4.

4.1.1.1 The modular – integer relationship
In this sub-section, we answer the question raised above: what do we do if
the modular g.c.d. is not the modular image of the g.c.d. calculated over
the integers?

144 Advanced algorithms

Lemma 1. If p does not divide the leading coefficient of gcd(A,B), the
degree of gcd(Ap, Bp) is greater than or equal to that of gcd(A,B).

Proof. Since gcd(A,B) divides A, then (gcd(A,B))p divides Ap. Similarly,
it divides Bp, and therefore it divides gcd(Ap, Bp). This implies that the
degree of gcd(Ap, Bp) is greater than or equal to that of gcd(A,B)p. But the
degree of gcd(A,B)p is equal to that of gcd(A,B), for the leading coefficient
of gcd(A,B) does not cancel when it is reduced modulo p.

This lemma is not very easy to use on its own, for it supposes that
we know the g.c.d. (or at least its leading coefficient) before we are able to
check whether the modular reduction has the same degree. But this leading
coefficient has to divide the two leading coefficients of A and B, and this
gives a formulation which is easier to use.

Corollary. If p does not divide the leading coefficients of A and of B (it
may divide one, but not both), then the degree of gcd(Ap, Bp) is greater
than or equal to that of gcd(A,B).

As the g.c.d. is the only polynomial (to within an integer multiple)
of its degree which divides A and B, we can test the correctness of our
calculations of the g.c.d.: if the result has the degree of gcd(Ap, Bp) (where
p satisfies the hypothesis of this corollary) and if it divides A and B, then
it is the g.c.d. (to within an integer multiple).

It is quite possible that we could find a gcd(Ap, Bp) of too high a
degree. For example, in the case we have already cited of

A(x) =x8 + x6 − 3x4 − 3x3 + x2 + 2x− 5;

B(x) =3x6 + 5x4 − 4x2 − 9x+ 21,

gcd(A2, B2) = x + 1 (it is obvious that x + 1 divides the two polynomials
modulo 2, because the sum of the coefficients of each polynomial is even).
The following lemma shows that this possibility can only arise for a finite
number of p.

Lemma 2. Let C = gcd(A,B). If p satisfies the condition of the corollary,
and if p does not divide Resx(A/C,B/C), then gcd(Ap, Bp) = Cp.

Proof. A/C and B/C are relatively prime, for otherwise C would not be
the g.c.d. of A and B. By the corollary, Cp does not vanish. Therefore

gcd(Ap, Bp) = Cp gcd(Ap/Cp, Bp/Cp).

For the lemma to be false, the last g.c.d. has to be non-trivial. This implies
that the resultant Resx(Ap/Cp, Bp/Cp) vanishes, by proposition 1 of sec-
tion A.4 in the Appendix. This resultant is the determinant of a Sylvester

Computer Algebra 145

matrix, and |Mp| = (|M |)p, for the determinant is only a sum of prod-
ucts of the coefficients. In the present case, this amounts to saying that
Resx(A/C,B/C)p vanishes, that is that p divides Resx(A/C,B/C). But
the hypotheses of the lemma exclude this possibility.

Definition. If gcd(Ap, Bp) = gcd(A,B)p, we say that the reduction of this
problem is good, or that p is of good reduction. If not, we say that p is of
bad reduction.

This lemma implies, in particular, that there are only a finite number
of values of p such that gcd(Ap, Bp) does not have the same degree as that
of gcd(A,B), that is the p which divide the g.c.d. of the leading coefficients
and the p which divide the resultant of the lemma (the resultant is non-
zero, and therefore has only a finite number of divisors). In particular, if
A and B are relatively prime, we can always find a p such that Ap and Bp

are relatively prime.

4.1.1.2 Calculation of the g.c.d.
In this section we answer the question posed earlier: how do we calculate
a non-trivial g.c.d.? One obvious method is to use the Landau-Mignotte
inequality, which can determine an M such that all the coefficients of the
g.c.d. are bounded by M , and to calculate modulo a prime number greater
than 2M . This method translates into the following algorithm:

M := Landau Mignotte bound(A,B);
do p := find large prime(2M);

if degree remainder (p,A) or degree remainder (p,B)
then C := modular gcd(A,B, p);

if divide(C,A) and divide(C,B)
then return C;

forever;

(where the algorithm Landau Mignotte bound applies the corollaries of their
inequality, the algorithm find large prime returns a prime number greater
than its argument (a different number each time), the algorithm degree
remainder verifies that the reduction modulo p does not change the degree,
that is that p does not divide the leading coefficient, the algorithm modu-
lar gcd applies Euclid’s algorithm modulo p and the algorithm divide verifies
that the polynomials divide over the integers). In fact, it is not necessary to
test that p does not divide the leading coefficients — the Landau-Mignotte
bound (corollary 1) implies that p is greater than one of the leading coeffi-
cients of A and B.

The drawback to this method is that it requires lengthy calculations
modulo p, which may be a fairly large integer. So we suggest a method

146 Advanced algorithms

which uses several small primes and the Chinese remainder theorem (see
the appendix). If we calculate Cp and Cq, where C is the desired g.c.d., and
p and q are two primes, then this theorem calculates Cpq for us. We must
point out that this theorem is applied in its integer form, to each coefficient
of C separately. There is no question of using the polynomial version, even
though we are trying to recover a polynomial. This method translates into
the following algorithm:

M := Landau Mignotte bound(A,B);
Avoid := gcd(lc(A), lc(B));

E0: p := find prime(Avoid);
C := modular gcd(A,B, p);

E1: if degree(C) = 0 then return 1;
Known := p;
Result := C;
while Known ≤ 2M

do p := find prime(Avoid);
C := modular gcd(A,B, p);
if degree(C) < degree(Result) then go to E1;
if degree(C) = degree(Result)

then Result := CRT (Result ,Known, C, p);
Known := Known × p;

if divide(Result , A) and divide(Result , B)
then return Result;

go to E0;

(where “lc” denotes the leading coefficient of a polynomial, the sub-algo-
rithms of the last algorithm have the same meaning here, and the algo-
rithm find prime returns a prime which does not divide its argument (a
different prime each time), and the algorithm CRT applies the Chinese
remainder theorem to each coefficient of the the two polynomials Result
(modulo Known) and C (modulo p), representing the integers modulo M
between −M/2 and M/2). The two go to* in this algorithm correspond to
the two ways of detecting that all the chosen primes were of bad reduction:
• either we find a p (satisfying the corollary of lemma 1) such that the

degree of the g.c.d. modulo p is smaller than the degrees already cal-
culated (and therefore they come from bad reductions);

* which could be replaced by loops, or other tools of structured program-
ming, if one desired.

Computer Algebra 147

• or we get to the end of the calculations with a result which seems good,
but which does not divide A and B, since all the reductions have been
bad (an unlikely possibility).

If the first reduction was good, no go to would be executed.
This algorithm is open to several improvements. It is not necessary

for the p to be genuinely prime. It suffices if the infinite set of the p has
an infinite number of prime factors, for we know that there is only a finite
number of values with bad reduction. If p is not a prime, it is possible that
the algorithm modular-gcd finds a number which is not zero, but which
cannot be inverted modulo p, such as 2 (mod 6). This discovery leads to
a factorisation of the modulus, and we can therefore work modulo the two
factors separately. The line

Known := Known × p;

should of course be replaced by

Known := lcm(Known , p);

and the implementation of the Chinese remainder theorem should be capa-
ble of dealing with moduli which are not relatively prime.

It is not absolutely necessary to go as far as Known > 2M . The
Landau-Mignotte bounds are often far too pessimistic, although Mignotte
[1981] proved that they cannot, in general, be reduced. It is possible to test
at each stage whether we have found a common divisor, for we know that
this method can never find a polynomial of too small a degree. But these
tests can be very costly, and a compromise often used is to test after those
stages in which the value does not change, that is to replace the line

then Result := CRT (Result ,Known, C, p);

by the lines

then Previous := Result ;
Result := CRT (Result ,Known, C, p);
if Previous = Result and

divide(Result , A) and divide(Result , B)
then return Result ;

Another improvement is to insert, after label E1, the line

M := UpdatedLM(A,B, degree(C))

to allow for the fact that we have a better idea of the degree of the g.c.d.

148 Advanced algorithms

4.1.1.3 Cost of this algorithm

We now analyse the basic algorithm, as we have written it, without the im-
provements outlined at the end of the last paragraph. We add the following
hypotheses:
(1) All the primes have already been calculated (this hypothesis is not

very realistic, but we have outlined a method which can use numbers
which are not prime, and in practice this search for primes is not very
expensive);

(2) Each prime p is sufficiently small for all the calculations modulo p to
be done in time O(1); that is, the numbers modulo p can be dealt with
directly on the computer, for one word is enough to store them;

(3) The polynomials A and B are of degree less than or equal to n, and
satisfy the bound √√√√ α∑

i=0

a2
i ,

√√√√ β∑
i=0

b2i ≤ H

(which would be satisfied if all the coefficients were less thanH/
√
n+ 1,

and which implies that all the coefficients are less than H).
The coefficients of the g.c.d. are bounded by 2nH , according to the Landau-
Mignotte inequality. If N1 is the number of p with good reduction we need,
the product of all these pmust be greater than 2n+1H , and this implies that
N1 < (n+1) log2H (where we use the inequality that every prime is at least
2: a more delicate analysis would bring in analytic number theory without
improving the order obtained for the running time). Moreover, there are
the p of bad reduction — let us suppose that there are N2 of them. They
must divide the resultant of A/C and B/C. These two polynomials are
factors of A and B, and therefore their coefficients (in fact, the sum of the
absolute values of the coefficients) are bounded by 2nH . Their resultant is,
therefore, bounded by (2nH)2n. This implies N2 < n(n+ log2H). We can
deduce a better bound N2 < n log2H , if we note that “bad reduction” is
equivalent to saying that one of the minors of Sylvester’s matrix is divisible
by p, even though it is not zero (see Loos [1982]).

The big while loop is therefore executed at most N1 + N2 times —
probably fewer, for we have supposed that the resultant had all its factors
distinct and small, and that we meet all its factors before finding enough p
of good reduction. The expensive operations of this loop are the modular
g.c.d. and the application of the Chinese remainder theorem. For the mod-
ular g.c.d., we first have to reduce the coefficients of A and B modulo p —
O(n log2H) operations — and then to calculate the g.c.d. — O(n2) oper-
ations. The Chinese remainder theorem is applied to all the coefficients of
the supposed g.c.d. We write C for the g.c.d. modulo p, and D for the g.c.d.

Computer Algebra 149

modulo M , the product of all the p already calculated (written Known in
the algorithm). To prove the theorem we calculate integers f and g such
that fM + gp = 1, and prove that e = c+ (d− c)fM is the value modulo
Mp which reduces to c modulo M and d modulo p. Calculating f and* g
requires O(log2M) operations (for p is supposed small, by hypothesis 2).
f is bounded by p, and b− a can be calculated modulo p (for the result is
modulo MP). The multiplication (b−a)fM is the multiplication of a large
number M by a small number, and requires O(log2M) operations. As we
have at most n+ 1 coefficients to calculate, the total cost of a cycle of the
loop is O(n(n + log2H) + n log2M) operations. As M < 2n+1H , this can
be simplified to O(N(n+ log2H)).

Thus we deduce a total cost of O(n(n + log2H)2) operations for the
loop. The last stage of this algorithm is checking the result, by dividing A
and B by the result, and this checks that we have found a common divisor of
A and B. The most expensive case is the division of a polynomial of degree
n by a polynomial of degree n/2, and this requires n2/4 operations by näıve
methods. As these operations were performed on integers of size (number of
digits) bounded** by n log2H , we find that the total cost of these divisions
is O(n4 log2

2H) operations. This is somewhat annoying, since this implies
that the verification is considerably more costly than the calculation itself.
We can use “efficient” methods (based on the Fast Fourier Transform), and
this gives us

O
(
n3 log2H log2 n log2(n log2H) log2 log2(n log2H)

)
operations, but this notation conceals a fairly large constant, and the cost
remains higher than that for the loop. Brown [1971] therefore proposed
continuing the loop until we are sure of having exhausted all the p of bad
reduction, that is adding to the condition of the while the phrase

or
∏
p < Resultant Bound

* Although we do not use g in this calculation, the extended Euclidean al-
gorithm calculates it automatically. It need only be calculated once, rather
than once per coefficient. This does not alter the asymptotic cost, but it is
quite important in practice, for the constant concealed by the notation O
is considerably larger for the extended Euclidean algorithm than that for
multiplication.
** If we find an integer of the quotient greater than this bound, this

implies that the division is not exact, and therefore we can terminate the
divide operation immediately. This remark is quite important in practice,
for a division of this kind which fails may generate huge coefficients — for
example the division of x100 by x− 10 gives a remainder 10100. See Abbott
et al. [1985] for a discussion of the cost of the divide operation.

150 Advanced algorithms

where the product extends over all the p already provided by find prime,
and the variable Resultant Bound is given the value of a bound for the
resultant of A and B, and this limits also all the minors, as the cancellation
of one of them was the condition of bad reduction. With this addition, we
know that we have chosen a p of good reduction, and that the final result is
correct. This addition is of theoretical use, reducing the calculating time to
O(n3log3

2H), but implementers prefer the algorithm in the form in which
we stated it.

In practice, we can suppose that the algorithm does not find many p of
bad reduction. If, in addition, we suppose that the coefficients of the g.c.d.
are less than H , and if we add a termination test (such as that outlined in
the preceding paragraph), we arrive at a cost of O(n log2H (n + log2H)).
In any case this algorithm is asymptotically more efficient than the sub-
resultant algorithm (O(n4 log4

2H) according to Loos [1982]). This efficiency
is borne out in practice.

4.1.2 g.c.d. in several variables

The previous section showed the use of modular calculations for avoiding
intermediate expression swell. When we calculate modulo p, we have a
guarantee that the integers do not exceed p − 1 (or p/2 if we are using a
symmetric representation). This method gives an algorithm for calculating
g.c.d.s in one variable which is more efficient than the sub-resultant polyno-
mial sequences algorithm. Can it be generalised to polynomials in several
variables? Before we can answer this question, we must settle some details.

The most obvious algorithm for calculating the g.c.d. in several vari-
ables x1, . . . , xn is to convert Euclid’s algorithm into Q(x1, . . . , xn−1)[xn].
But this has one big theoretical drawback (and several practical ones): it
calculates only the dependence of the g.c.d. on xn. For example, if it is
applied to

A(x1, x2) = (x1 − 1)x2 + (x1 − 1),
B(x1, x2) = (x1 − 1)x2 + (−x1 + 1),

the answer would be that they are relatively prime, even though they have
a factor of x1 − 1 in common.

Definition. Let R be an integral domain, and p ∈ R[x], with coefficients

a0, . . . , ak, such that p =
∑k

i=0 aix
i. The content of p, written cont(p),

is the g.c.d. of all its coefficients. If the content of a polynomial is one,
the polynomial is called primitive. The primitive part of a polynomial p,
written pp(p), is defined by pp(p) = p/ cont(p).

It is easy to deduce that the primitive part of a polynomial is primitive.
The following result is quite well known in mathematical literature, and it

Computer Algebra 151

demonstrates the great importance of this idea. In the section on factori-
sation, we shall present this lemma in a slightly different form.

Gauss’s Lemma. Let p and q be two polynomials of R[x]. Then cont(pq)
= cont(p) cont(q) (and therefore pp(pq) = pp(p) pp(q)).

Corollary. Let p and q be two polynomials of R[x]. Then

cont gcd(p, q) = gcd(cont(p), cont(q)),

pp gcd(p, q) = gcd(pp(p), pp(q)).

Thus, given two polynomials in several variables, we can call one variable
the “main variable” (written x), and we can calculate the g.c.d. by multi-
plying the g.c.d. of the primitive parts (found by Euclid’s algorithm, taking
care that the result is primitive) by the g.c.d. of the contents. This second
g.c.d., as well as the g.c.d.s needed to calculate the contents, do not involve
the variable x, and can therefore be done recursively.

The context of this section is as follows: A and B are two polynomials
belonging to the ring Z[x1, . . . , xr] whose g.c.d. we want to calculate. Re-
stricting ourselves to polynomials and to integer coefficients does not cause
any problems, for we can always multiply the polynomials by an integer to
eliminate a numerical denominator, and by a polynomial in several xi to
eliminate a polynomial denominator. Therefore, the procedure in the last
paragraph can be expressed in terms of two recursive algorithms:

proc gcd(A,B, r);
Ac; = content(A, r);
Ap; = A/Ac;
Bc; = content(B, r);
Bp; = B/Bc;
return content(Euclid (Ap,Bp, r), xr) × gcd(Ac,Bc, r − 1);

proc content(A, r);
Result := coeff (A, xr, 0);
i := 1;
while Result 6= 1 and i < degree(A, xr)

do Result := gcd(Result , coeff (A, xr, 0), r − 1);
i := i+ 1;

return Result;

where the operators degree and coeff extract the indicated components from
their first parameter, considered as a polynomial in the second, and the al-
gorithm Euclid applies this algorithm to its first two parameters, considered
as polynomials in one variable, that is the third parameter. Here we have

152 Advanced algorithms

chosen to suppress the content of A and B before applying Euclid’s al-
gorithm — this choice does not alter the result, but it makes the Euclid
parameters smaller. The algorithm content stops as soon as it finds that
the content is one: this can save useless calculations. The problems with
this algorithm are many.
(a) The intermediate expression swell in Euclid’s algorithm. Even if we

use the method of sub-resultant polynomial remainder sequences, the
intermediate degrees will grow considerably.

(b) The number of recursive calls. If we want to calculate the g.c.d. of two
polynomials in two variables, of degree ten in each one, so that the
g.c.d. is of degree five in each variable, we need:
20 calls to calculate the two contents;
1 call to calculate the g.c.d. of the two contents;
5 calls to calculate the content of the result of Euclid;

that is 26 recursive calls. The case of the three variables therefore needs
26 calls on the algorithm gcd in two variables, each needing about 26
calls on gcd in one variable.

(c) Moreover, all the integers appearing as coefficients can become very
large.
These drawbacks are not purely hypothetical. To illustrate the enor-

mous swell which occurs we give a very small example, chosen so that the
results will be small enough to be printed, in two variables x and y (x being
the main variable):

A = (y2 − y − 1)x2 − (y2 − 2)x+ (y2 + y + 1);
B = (y2 − y + 1)x2 − (y2 + 2)x+ (y2 + y + 2).

The first elimination gives

C = (2y2 + 4y)x+ (2y4 + y2 − 3y + 1),

and the second gives

D = −4y10 + 4y9 − 4y8 + 8y7 − 7y6 + y5 − 4y4 + 7y3 − 14y2 + 3y − 1.

Here we see a growth in the size of the integers, and a very significant
growth in the power of y. Note that a generic problem of this degree can
result in a polynomial of degree 32 in y.

As we saw in the last section, modular calculation can avoid this growth
of integer coefficients. But we have to be more subtle to get round the other
problems of growth of the powers of non-principal variables, and of recursive
calls. Let us suppose that the two polynomials A and B of our example
have a common factor, that is a polynomial P (of non-zero degree) which

Computer Algebra 153

divides A and B. Then there exists a polynomial Q such that A = PQ.
This equation is still true if we evaluate every polynomial at the value y = 2.
If we write Py=2 to signify the polynomial P evaluated at the value y = 2,
this equation implies that Py=2 divides Ay=2. Similarly, Py=2 divides By=2,
and is therefore a common factor* of Ay=2 and By=2. But the calculation
of the g.c.d. of Ay=2 and By=2 is quite simple:

Ay=2(x) =x2 − 2x+ 7;

By=2(x) =3x2 − 6x+ 8;
remainder(Ay=2(x), By=2(x)) =29.

Thus Ay=2 and By=2 are relatively prime, and this implies that Py=2 = 1.
Since the leading coefficient of P has to divide the g.c.d. of the leading
coefficients of A and B, which is one, we deduce that P = 1.

This calculation is quite like the calculation modulo 5 which we did in
the last section, and can be generalised in the same way. The reader who is
interested in seeing mathematics in the most general setting should consult
the article by Lauer [1982], which gives a general formalisation of modular
calculation.

4.1.2.1 Bad reduction

We have defined a number p as being of bad reduction for the calculation
of the g.c.d. of A and B if

gcd(A,B)p 6= gcd(Ap, Bp).

We have also remarked that, if p is not of bad reduction, and if one of the
leading coefficients of A and B is not divisible by p, then the g.c.d. modulo
p has the same degree as the true g.c.d. These remarks lead to the following
definition.

Definition. Let A and B be two polynomials of R[y][x], where R is a
integral domain. The element r of R is of good reduction for the calculation
of the g.c.d. of A and B if

gcd(A,B)y=r = gcd(Ay=r, By=r).

* As in the previous section, it must be observed that we cannot deduce
that Py=2 = gcd(Ay=2, By=2): a counter example is A = yx+2, B = 2x+y,
where P = 1, but Ay=2 = By=2 = 2x+2, and thus gcd(Ay=2, By=2) = x+1,
whereas Py=2 = 1.

154 Advanced algorithms

Otherwise, r is of bad reduction.

Proposition. r is of bad reduction if and only if y − r divides

Resx

(
A

gcd(A,B)
,

B

gcd(A,B)

)
.

Proposition. If r is of good reduction and y − r does not divide the
two leading coefficients (with respect to x) of A and B, gcd(A,B) and
gcd(Ay=r, By=r) have the same degree with respect to x.

The proofs of these propositions are similar to those of the previous
section. A key result of that section was the Landau-Mignotte inequality,
which is rather difficult to prove, and rather surprising, for the obvious con-
jecture, that the coefficients of a factor must be smaller than the coefficients
of the original polynomial, is false. Abbott [1988] quotes the surprising ex-
ample of

x41 − x40 − x39 + x36 + x35 − x33 + x32 − x30 − x27 + x23 + x22 − x21

−x20 + x19 + x18 − x14 − x11 + x9 − x8 + x6 + x5 − x2 − x+ 1,

which has a factor of

x33 + 7x32 + 27x31 + 76x30 + 174x29 + 343x28 + 603x27 + 968x26

+1442x25 + 2016x24 + 2667x23 + 3359x22 + 4046x21 + 4677x20

+5202x19 + 5578x18 + 5774x17 + 5774x16 + 5578x15 + 5202x14

+4677x13 + 4046x12 + 3359x11 + 2667x10 + 2016x9 + 1442x8 + 968x7

+603x6 + 343x5 + 174x4 + 76x3 + 27x2 + 7x+ 1.

In the present case, things are very much simpler.

Proposition. If C is a factor of A, then the degree (with respect to y) of
C is less than or equal to that of A.

4.1.2.2 The algorithm
Armed with these results, we can calculate the g.c.d. of two polynomials
in n variables by a recursive method, where r is the index of the leading
variable (which will not change) and s is the index of the second variable,
which will be evaluated. The algorithm is given on the next page. The
initial call has to be done with s = r − 1. When s drops to zero, our
polynomial is in one variable, the recursion is terminated, and we call on a
gcd simple procedure (which may well be the modular g.c.d. procedure of
the last section) to do this calculation.

Computer Algebra 155

Algorithm of modular g.c.d.

proc gcd(A,B, r, s);
if s = 0 then return gcd simple(A,B, xr);
M := 1 + min(degree(A, xs), degree(B, xs));

E0: do v := random();
Av := subs(xs, v, A);
Bv := subs(xs, v, B);
while degree(Av, xr) 6= degree(A, xr)

and degree(Bv, xr) 6= degree(B, xr)
C := gcd(Av,Bv, r, s− 1);

E1: Known := xs − v;
n := 1;
Res := C;
while n ≤M

do do v := random();
Av := subs(xs, v, A);
Bv := subs(xs, v, B);
while degree(Av, xr) 6= degree(A, xr)

and degree(Bv, xr) 6= degree(B, xr)
C := gcd(Av,Bv, r, s− 1);
if degree(C, xr) < degree(Res, xr) then go to E1;
if degree(C, xr) = degree(Res, xr)

then Res := CRT (Res,Known, C, xs − v);
Known := Known × (xs − v);n := n+ 1;

if divide(Res, A) and divide(Res, B)
then return Res;

go to E0;

In this algorithm, we have supposed that the random algorithm returns
a random integer (a different number each time), and the CRT algorithm
applies the Chinese remainder theorem (polynomial version) to each coef-
ficient (with respect to xr) of the two polynomials Res (modulo Known)
and C (modulo xs − v). The two loops do . . .while, which are identical,
choose a value v which satisfies the condition that xs − v does not divide
the two leading coefficients of A and B.

As in the modular g.c.d. algorithm of the last section, the two go to in
this algorithm correspond to two ways of detecting whether all the chosen
values were of bad reduction:
• either we find a v such that the degree of the g.c.d. after the evaluation
xs = v is smaller than the degrees already calculated (and that they

156 Advanced algorithms

therefore come from bad reductions);
• or else we get to the end of the calculation with a result which looks

good but which does not divide A and B because all the reductions
have been bad (a rather unlikely possibility).

If the first reduction was good, no go to would be carried out.
This algorithm can be improved upon in the same way as the algorithm

for the case of one variable, by replacing the line

then Result := CRT (Result ,Known, C, xs − v);

by the lines

then Previous := Result;
Result := CRT (Result ,Known, C, xs − v);
if Previous = Result and

divide(Result , A) and divide(Result , B)
then return Result ;

4.1.2.3 Cost of this algorithm
We now analyse the näıve algorithm as it is written, without the improve-
ment described at the end of the last paragraph. We use the following
notation: r means the total number of variables (thus, after r − 1 recur-
sions, we shall call the algorithm gcd simple), the degrees with respect to
each variable are bounded by n, and the lengths of all the coefficients are
bounded by d.

We need at most n+ 1 values of good reduction. We can leave out of
account the small loops do . . .while, for in total, they repeat at most n
times, for a repetition means that the value of v returned by random is a
common root of the leading coefficients of A and B, whereas a polynomial
of degree n cannot have more than n roots. If N is the number of values of
xs of bad reduction we find, then the big loop is gone through N + n + 1
times. It is then necessary to bound N , which is obviously less than or
equal to the number of v of bad reduction.

Let C be the true g.c.d. ofA and B. Thus, A/C and B/C are relatively
prime, and their resultant (see the Appendix) with respect to xr is non-zero.
If v is of bad reduction, Axs=v and Bxs=v have a g.c.d. greater than Cxs=v,
i.e.

(
A
C

)
xs=v

and
(

B
C

)
xs=v

are not relatively prime, and therefore their
resultant with respect to xr must be zero. But if the leading coefficients do
not cancel,

Resxr

(
A

C
,
B

C

)
xs=v

= Resxr

((
A

C

)
xs=v

,

(
B

C

)
xs=v

)
.

Computer Algebra 157

(If one of the leading coefficients (for example, that of A) cancels, the
situation is somewhat more complicated. The resultant on the right is the
determinant of a Sylvester matrix of dimension smaller than that on the
left. In this case, the resultant on the right, multiplied by a power of the
other leading coefficient, is equal to the resultant on the left. In any case,
one resultant cancels if and only if the other cancels.) This implies that v
is a root of Resxr(A/C,B/C). This is a polynomial of degree at most 2n2,
and therefore N ≤ 2n2.

In this loop, the most expensive operations are the recursive call to the
algorithm gcd and the application of the Chinese remainder theorem. For
the latter, we have to calculate at most n+1 coefficients of a polynomial in
xr , by applying the theorem to Known and xs − v. Known is a product of
linear polynomials, and the section on the Chinese remainder theorem in the
appendix “Algebraic background” gives an extremely simple formulation in
this case. In fact, we only have to evaluate Res at the value v, to multiply
the difference between it and C by a rational number and by Known, and to
add this product to Res. The multiplication (the most expensive operation)
requires a running time O(n2s−1d2) for each coefficient with respect to the
calculated xr, that is, a total time of O(n2sd2). Thus, if we denote by
gcd(s) the running time of the algorithm gcd with fourth parameter equal
to s, the cost of one repetition of the loop is gcd(s− 1) +O(n2sd2).

The total cost therefore becomes

(2n2 + n+ 1)
(
gcd(s− 1) +O(n2sd2)

)
.

The results of the last section, which dealt with the case of one variable,
imply that gcd(0) = O(n3d3). An induction argument proves that gcd(s) =
O(n2s+3d3). The initial value of s is r − 1, and therefore our running time
is bounded by O(n2r+1d3). This is rather pessimistic, and Loos [1982] cites
a conjecture of Collins that on average the time is rather O(nr+1d2).

4.1.3 Other applications of modular methods

Modular methods have many other applications than g.c.d.s, although this
was the first one. Some of these applications also have the idea of bad reduc-
tion, for others the reductions are always good. Obviously, the algorithm
is much simpler if the reductions are always good.

In general, we illustrate these applications by reduction modulo p,
where p is a prime number, as we did in the first section. If the problems
involve several variables, we can evaluate the variables at certain values,
as we did for the g.c.d. in several variables. The generalisation is usually
fairly obvious, and can be looked up in the references cited.

158 Advanced algorithms

4.1.3.1 Resultant calculation
Resultants are defined in the Appendix. As this calculation is very closely
linked to that of the g.c.d., we should not be surprised by the existence of
a link between the two. In fact, as the resultant of two polynomials A and
B is a polynomial in the coefficients of A and B, we see (at least if p does
not divide the leading coefficients) that

Resx(A,B)p = Resx(Ap, Bp).

As this equation always holds, every p is of good reduction. We exclude
those p which divide the leading coefficients in order to avoid the complica-
tions that arise when the degrees of A and B change. The Appendix gives
bounds on the size of a resultant, and they tell us how many p are needed
to guarantee that we have found the resultant. Collins [1971] discusses this
algorithm, and it turns out to be the most efficient method known for this
calculation.

4.1.3.2 Calculating determinants
The resultant is only the determinant of the Sylvester matrix, and we may
hope that the modular methods will let us calculate general determinants.
This is in fact possible — all we have to do is to calculate the determinant
modulo a sufficient number of p, and apply the Chinese remainder theorem.
We have to determine the number of p required — in other words, we
must bound the determinant. Let us suppose that the determinant is of
dimension n, and that the entries are ai,j .

Theorem.

| det(ai,j)| ≤ n!
(

max
i

max
j

|ai,j |
)n

.

Proof. The determinant consists of the sum of n! terms, of which each is
the product of n elements of the matrix.

Theorem (Hadamard’s bound [1893]).

| det(ai,j)|2 ≤
n∏

i=1

(n∑
j=1

|ai,j |2
)
.

4.1.3.3 Inverse of a matrix
This problem is rather more complicated, for the elements of the inverse of
a matrix with integer coefficients are not necessarily integers. Moreover, it
is possible that the matrix can be inverted over the integers, but that it is
singular modulo p, and therefore bad reduction can occur. If inversion does

Computer Algebra 159

not work modulo p, this implies that p divides the determinant, and, if the
matrix is not truly singular, there are only finitely many such p. Therefore,
if we avoid such p, inversion is possible. There are two solutions to the
problem set by the fact that the elements of the inverse are not necessarily
integers. The first is to note that they are always rational numbers whose
denominators are divisible by the determinant. Therefore, if we multiply
the element modulo p by the determinant (which we calculate once and for
all) modulo p, we get back to the numerator modulo p, which is used to
find the true solution.

The other solution is important, because it can be applied to other
problems where the desired solutions are fractions. Wang [1981] suggested
this method in the context of the search for decompositions into partial
fractions, but it can be applied more generally. First we need some algebraic
background. Let M be an integer (in practice, M will be the product of all
the primes of good reduction we have used), and a/b a rational number such
that b and M are relatively prime (otherwise, one of the reductions was not
good). If we apply the extended Euclidean algorithm (see the Appendix)
to b and M , we find integers c and d such that bc + Md = 1 — in other
words bc ≡ 1 (mod M). We can extend the idea to a rational congruence
by saying

a

b
≡ ac (mod M).

Moreover, if a and b are less than
√
M/2, this representation is unique, for

a/b ≡ a′/b′ implies ab′ ≡ a′b. For example, if M = 9, we can represent all
the fractions with numerator and denominator less than or equal to 2, as
we see in the following table:

Modulo 9 Fraction

0 0/0
1 1/1 = 2/2
2 2/1
3 —
4 −1/2
5 1/2
6 —
7 −2/1
8 −1/1 = −2/2

We have proved the second clause of the following principle.

Principle of Modular Calculation. An integer less than 1
2M has a

unique image n modulo M . Similarly, a rational number whose numerator
and denominator are less than

√
M/2 has a unique image modulo M .

160 Advanced algorithms

In the case of integers, given the image n, calculating an integer is
fairly simple — we take n or n −M , according to whether n < M/2 or
n > M/2. For rational numbers, this “reconstruction” is not so obvious.
Wang [1981] proposed, and Wang et al. [1982] justified, using the extended
Euclidean algorithm (many other authors made this discovery at about
the same time). Each integer calculated in Euclid’s algorithm is a linear
combination of two data. We apply the algorithm to n and M , to give a
decreasing series of integers ai = bin + ciM . In other words, n ≡ ai/bi
(mod M). It is very remarkable that if there is a fraction a/b equivalent to
n with a and b less than

√
M/2, this algorithm will find them, and they

will be given by the first element of the series with ai <
√
M/2. We can

adapt Euclid’s algorithm to do this calculation.

q := M ;
r := n;
Q := 0;
R := 1;
while r 6= 0

do t := remainder(q, r);
T := Q− bq/rcR;
q := r;
r := t;
Q := R;
R := T ;
if r <

√
M/2 then

if |R| <√M/2 then
return r/R

error “no reconstruction”;
error “common factor”;

We have made a simplification with respect to the algorithm of the ap-
pendix: it is not necessary to store the dependencies of r with respect to
M , and so we do not calculate them in this algorithm.

4.1.3.4 Other applications
Of course, we can use modular methods for many calculations linked to the
calculation of an inverse, such as the solution of a system of linear equations
[Chou and Collins, 1982]: here there is bad reduction when p divides one of
the denominators of the solution. Several matrix calculations are described
by Gregory and Krishnamurthy [1984] and Krishnamurthy [1985]. As we
have already said, Wang [1981] introduced the calculation of fractions to
break down a fraction P/QR into partial fractions: here bad reduction
corresponds to a value of p such that Q and R are not relatively prime

Computer Algebra 161

modulo p.
Here we must describe the great drawback of modular calculation: it

does not take into account the sparse nature of a problem. If we have to
calculate a polynomial of degree 99, with 100 terms, we need 100 values
of the polynomial before we can do the Lagrange interpolation, even if
the polynomial has only two non-zero coefficients. We have already said
that every realistic polynomial in several variables has to be sparse, and
therefore modular methods do not apply very well to these polynomials.
Zippel [1979] tried to give a probabilistic character to this method, so as
to apply it to the problem of g.c.d. in several variables, and this is the
algorithm used by default in MACSYMA.

4.2 p-ADIC METHODS

In this section, we shall consider the other large family of advanced meth-
ods in Computer Algebra, and we begin with the first application of it —
factorisation.

4.2.1 Factorisation of polynomials in one variable

We suppose that there is a polynomial f(x), with integer coefficients, and
we ask: can we determine whether there exist polynomials g and h, of
degree strictly less than that of f , such that f = gh.

Gauss’s Lemma (Equivalent version). Let f ∈ Z[x], and f = gh with g
and h in Q[x]. Then there is a rational number q such that qg and q−1h
belong to Z[x].

This lemma, well-known in algebra, indicates that the restriction to factors
with integer coefficients does not reduce its generality

Since we can calculate square-free decompositions fairly efficiently, we
can suppose that f is square-free. We write f = anx

n + · · · + a0. Every
linear factor of f must take the form bx + c, where b divides an and c
divides a0, and we can therefore look for linear factors. In theory, it is
possible to find factors of higher degree by solving systems of equations
which determine the coefficients, but this method can only be used if the
degrees are very small.

With the success of the modular methods described in the preceding
section in mind, we can try to apply them here. It is indeed true that
f = gh implies fp = gphp, and also that the factorisation modulo p is,
at least, a finite problem, for there are only a finite number of possible
coefficients. In fact, there is quite an efficient algorithm, which we shall
explain in the next sub-section.

162 Advanced algorithms

4.2.1.1 Berlekamp’s algorithm
In this section, we suppose that the problem is to factorise a polynomial
f(x) modulo p, and f is assumed to be square-free. We must state several
facts about calculation modulo p, some of which are well-known.

Proposition 1. If a and b are two integers modulo p, then (a + b)p ≡
ap + bp.

Proof. By the binomial formula, we can expand (a+ b)p as follows:

(a+ b)p = ap +
(
p

1

)
ap−1b+ · · · +

(
p

p− 1

)
abp−1 + bp

≡ ap + bp

for all the binomial coefficients are divisible by p.

Proposition 2 (Fermat’s little theorem). ap ≡ a modulo p.

Proof. By induction on a, for the proposition is true when a = 0 or a = 1.
In general, a = (a − 1) + 1, and we can apply the previous proposition to
this expression:

ap = ((a− 1) + 1)p = (a− 1)p + 1p = (a− 1) + 1 = a.

Corollary. Every integer modulo p is a root of xp − x, and therefore

xp − x = (x− 0)(x− 1) . . . (x − (p− 1)).

These two propositions extend to polynomials, in the following manner.

Proposition 3. If a and b are two polynomials modulo p, then (a+ b)p ≡
ap + bp.

The proof is the same as for proposition 1.

Proposition 4. Let a(x) be a polynomial, then a(x)p ≡ a(xp) modulo p.

Proof. By induction on the degree of a, for the proposition is true when a
is only a number, by proposition 2. In general, a(x) = â(x)+anx

n, where â
is a polynomial of degree less than that of a, and we can apply the previous
proposition to this expression:

a(x)p = (â(x) + anx
n)p = â(x)p + (anx

n)p = â(xp) + anx
np = a(xp).

Let us now suppose that f factorises into r irreducible polynomials:

f(x) = f1(x)f2(x) . . . fr(x)

Computer Algebra 163

(r is unknown for the present). Since f has no multiple factors, the fi

are relatively prime. Let s1, . . . , sr be integers modulo p. By the Chinese
remainder theorem (see the Appendix) there is a polynomial v such that

v ≡ si (mod p, fi(x)), (1)

where this calculation is modulo the polynomial fi and modulo the prime
number p. Moreover, the degree of v is less than that of the product of the
fi, that is f . Such a polynomial v is useful, for if si 6= sj , then gcd(f, v−si)
is divisible by fi, but not by fj , and therefore leads to a decomposition of
f . We have the following relation:

v(x)p ≡ sp
j ≡ sj ≡ v(x) (mod fj(x), p),

and, by the Chinese remainder theorem,

v(x)p ≡ v(x) (mod f(x), p). (2)

But, on replacing x by v(x) in the corollary above,

v(x)p − v(x) ≡ (v(x) − 0)(v(x) − 1) . . . (v(x) − (p− 1)) (mod p). (3)

Thus, if v(x) satisfies (2), f(x) divides the left hand side of (3), and each
of its irreducible factors, the fi, divides one of the polynomials on the right
hand side of (3). But this implies that v is equivalent to an integer modulo
fi, that is that v satisfies (1). We have proved (by Knuth’s method [1981],
p. 422) the following result.

Berlekamp’s Theorem [1967]. The solutions v of (1) are precisely the
solutions of (2).

We have already said that the solutions of (1) provide information
about the factorisation of f , but we still have the problem of finding them.
Berlekamp’s basic idea is to note that (2) is a linear equation for the co-
efficients of v. This remark may seem strange, but it is a consequence of
proposition 4. In fact, if n is the degree of f , let us consider the matrix

Q =


q0,0 q0,1 . . . q0,n−1

q1,0 q1,1 . . . q1,n−1

...
...

...
qn−1,0 qn−1,1 . . . qn−1,n−1

 ,

where
xpk ≡ qk,n−1x

n−1 + · · · + qk,1x+ qk,0 (mod f(x), p).

164 Advanced algorithms

If we consider a polynomial as a vector of its coefficients, multiplication by
Q corresponds to the calculation of the p-th power of the polynomial. The
solutions of (2) are thus the eigenvectors of the matrix Q (mod p) for the
eigenvalue 1. Berlekamp’s algorithm can be expressed as follows:
[1] Verify that f has no multiple factors. If not, we have to do a square-free

decomposition of f , and apply this algorithm to each of its elements.
[2] Calculate the matrix Q.
[3] Find a basis of its eigenvectors for the eigenvalue 1. One eigenvector

is always the vector [1, 0, 0, . . . , 0], corresponding to the fact that the
integers are always solutions of (2). The size of this basis is the number
of irreducible factors of f .

[4] Calculate gcd(f, v − s) for every integer s modulo p, where v is the
polynomial corresponding to a non-trivial eigenvector. This ought to
give a decomposition of f . If we find fewer factors than we need, we
can use other eigenvectors.
Note that stage [4] is the most expensive, and that, if we stop at stage

[3], we have already determined the number of irreducible factors. The
running time of this algorithm is O(n3 + prn2), where r is the number of
factors (average value lnn). This is very fast if p is small, but may be
expensive if p is not small. Knuth [1981] describes several variants of this
algorithm, some of them where the dependence on p is rather of the form
log3 p.

4.2.1.2 The modular – integer relationship
The previous section provides an efficient algorithm for the factorisation
modulo p of a polynomial. How can it be used to factorise a polynomial
with integer coefficients? Of course, if the polynomial does not factorise
modulo p (which does not divide the leading coefficient), the polynomial is
then irreducible, for f = gh implies fp = gphp. But the converse is false
— for example x2 +1 is irreducible, but factorises modulo all primes of the
form 4k+1, for −1 is a square modulo a number of that kind. Nevertheless,
this polynomial is irreducible modulo numbers of the form 4k+3, and thus
we can prove that it is irreducible over the integers by proving that it is
irreducible modulo 3. In fact, there is an infinite number of “good” p, and
an infinite number of “bad” p.

Unfortunately, there are irreducible polynomials which factorise mod-
ulo all the primes. The simplest example is x4 + 1, which always factorises
as the product of two polynomials of degree two, which may still be re-
ducible. This proof requires the use of several properties of squares modulo
p — the reader may skip the detailed analysis if he wishes.
p = 2 Then x4 + 1 = (x+ 1)4.
p = 4k + 1 In this case, −1 is always a square, say −1 = q2. This gives

Computer Algebra 165

us the factorisation x4 + 1 = (x2 − q)(x2 + q).

p = 8k ± 1 In this case, 2 is always a square, say 2 = q2. This gives us the
factorisation x4+1 = (x2−(2/q)x+1)(x2+(2/q)x+1), which
is a version of the factorisation x4+4 = (x2−2x+2)(x2+2x+
2) which we met in the section on the representation of simple
radicals. In the case p = 8k + 1, we have this factorisation
and the factorisation given in the previous case. As these two
factorisations are not equal, we can calculate the g.c.d.s of
the factors, in order to find a factorisation as the product of
four linear factors.

p = 8k + 3 In this case, −2 is always a square , say −2 = q2. This is a
result of the fact that −1 and 2 are not squares, and so their
product must be a square. This property of −2 gives us the
factorisation x4+1 = (x2−(2/q)x−1)(x2+(2/q)x−1), which
is likewise a version of the factorisation x4 + 4 = (x2 − 2x +
2)(x2 + 2x+ 2).

This polynomial is not an isolated oddity: Kaltofen et al. [1981, 1983]
have proved that there is a whole family of polynomials with this property
of being irreducible, but of factorising modulo every prime. Several people
have said that these polynomials are, nevertheless, “quite rare”, but Abbott
et al. [1985] have established that they can occur in the manipulation of
algebraic numbers.

We have, therefore, to find a method of factorisation which works even
if the modular factorisation does not correspond to the factorisation over
the integers. At the beginning of this chapter we quoted the Landau-
Mignotte inequality, which lets us bound the the coefficients of a factor of
a polynomial, in terms of the degree and size of coefficients of the initial
polynomial. This inequality is useful in the present case, for it lets us find
an N such that all the coefficients of the factors of a polynomial must lie
between −N/2 and N/2. This gives the following algorithm for factorising
the polynomial f , due essentially to Zassenhaus [1969]:

[1] Choose an N sufficiently large for all the coefficients of the factors of
f to be smaller than N/2. Take care that N does not have a factor in
common with the leading coefficient of f .

[2] Factorise the polynomial modulo N . If we suppose f monic, we always
choose monic factors. We write f = f1f2 . . . fk (mod N).

[3] Taking the fi modulo N as polynomials with integer coefficients, test
whether they divide f . Every fi which divides f is an irreducible factor
of f .

[4] If there are any fi which do not divide f , we have to form polynomials

166 Advanced algorithms

of the type fifj (mod N), and test whether these polynomials (with
integer coefficients between −N/2 and N/2) divide f . Every combi-
nation which divides f is an irreducible factor of f . Those fi which
occur in a factor of f can be discarded.

[5] If there are some fi left, we have to form polynomials of the type fifjfk

(mod N), and test whether these polynomials (with integer coefficients
between −N/2 and N/2) divide f . Every combination which divides
f is an irreducible factor of f . We continue until every combination
(or its complement) has been tested.

[6] If there are any fi left, their product is an irreducible factor of f .

For example, every factor of x4 + 1 must have coefficients less than
(or equal to) 16, and therefore it is possible to use N = 37, which yields
the factorisation x4 + 1 ≡ (x2 − 6)(x2 + 6) (mod 37), and these factors
are irreducible. Considered as polynomials with integer coefficients, these
factors do not divide x4 + 1. So we take the combination of them, that is
x4 + 1 itself. This divides x4 + 1, and is therefore an irreducible factor,
which is what we set out to prove.

This algorithm may be exponential (that is it may require a running
time which is an exponential function) in terms of the number of factors
found modulo N , because of the number of combinations to be tested in
stage [5]. In fact, if the polynomial is irreducible, but has n factors modulo
N , there are about 2n−1 polynomials which have to be tested to see if they
are divisors of f . This problem is called the combinatorial explosion of
the running cost. It was solved recently by Lenstra et al. [1982], but their
method seems to be of theoretical rather than of practical interest.

Nevertheless, in practice, we are confronted rather with the following
problem: calculating a factorisation modulo N seems to be the most ex-
pensive stage of the algorithm. Normally, N is too big for us to be able
to take a prime p > N , and to use Berlekamp’s algorithm directly, for the
dependence on p is quite significant, even for the improved versions. More-
over, we want to be able to use small p, so as to find out quickly that a
polynomial is irreducible.

Modular methods can be used, but here we come across a problem
we have not met before. Suppose, for example, that f factorises as g1h1

(mod p1) and as g2h2 (mod p2), with all the factors of the same degree.
We can apply the Chinese remainder theorem to the coefficients of g1 and
g2, in order to find a polynomial with coefficients modulo p1p2, which is a
factor of f modulo p1p2 (and similarly for h1 and h2). But it is equally
possible to apply the theorem to g1 and h2, or to g2 and h1. In effect,
the ring (Z/p1p2Z)[x] does not have unique factorisation, and f has two
different factorisations modulo p1p2. If we find the same behaviour modulo

Computer Algebra 167

p3, we find four factorisations modulo p1p2p3, and, in general, the number
of different factorisations may be an exponential function of the number of p
chosen. Thus, the modular approach is not very useful for this calculation,
and we have to find a different method for factorising modulo N . This time
we shall use N = pk, where p is a prime; such methods are called “p-adic”.

4.2.2 Hensel’s Lemma — linear version.
In this section, we shall see how to calculate a factorisation of f modulo pk,
starting from a factorisation modulo p calculated by Berlekamp’s algorithm,
which we have already described. For simplicity, we consider first the case
of a monic polynomial f , which factorises modulo p as f = gh, where g
and h are relatively prime (which implies that f modulo p is square-free,
that is, that p does not divide the resultant of f and f ′). We use subscripts
to indicate the power of p modulo which an object has been calculated.
Thus our factorisation can be written f1 = g1h1 (mod p1) and our aim is
to calculate a corresponding factorisation fk = gkhk (mod pk) such that
pk is sufficiently large.

Obviously, g2 ≡ g1 (mod p), and therefore we can write g2 = g1 + pĝ2
where ĝ2 is a measure of the difference between g1 and g2. The same holds
for f and h, so that f2 = g2h2 (mod p2) becomes

f1 + pf̂2 = (g1 + pĝ2)(h1 + pĥ2) (mod p2).

Since f1 = g1h1 (mod p1), this equation can be rewritten in the form

f1 − g1h1

p
+ f̂2 = ĝ2h1 + ĥ2g1 (mod p).

The left hand side of this equation is known, whereas the right hand side
depends linearly on the unknowns ĝ2 and ĥ2. Applying the extended Eu-
clidean algorithm (see the Appendix) to g1 and h1, which are relatively
prime, we can find polynomials ĝ2 and ĥ2 of degree less than g1 and h1

respectively, which satisfy this equation modulo p. The restrictions on the
degrees of ĝ2 and ĥ2 are valid in the present case, for the leading coefficients
of gk and hk have to be 1. Thus we can determine g2 and h2.

Similarly, g3 ≡ g2 (mod p2), and we can therefore write g3 = g2+p2ĝ3
where ĝ3 is a measure of the difference between g2 and g3. The same is true
for f and h, so that f3 = g3h3 (mod p3) becomes

f2 + p2f̂3 = (g2 + p2ĝ3)(h2 + p2ĥ3) (mod p3).

Since f2 = g2h2 (mod p2), this equation can be rewritten in the form

f2 − g2h2

p2
+ f̂3 = ĝ3h2 + ĥ3g2 (mod p).

168 Advanced algorithms

Moreover, g2 ≡ g1 (mod p), so this equation simplifies to

f2 − g2h2

p2
+ f̂3 = ĝ3h1 + ĥ3g1 (mod p).

The left hand side of this equation is known, whilst the right hand side
depends linearly on the unknowns ĝ3 and ĥ3. Applying the extended Eu-
clidean algorithm to g1 and h1, which are relatively prime, we can find the
polynomials ĝ3 and ĥ3 of degrees less than those of g1 and h1 respectively,
which satisfy this equation modulo p. Thus we determine g3 and h3 start-
ing from g2 and h2, and we can continue these deductions in the same way
for every power pk of p until pk is sufficiently large.

We must note that Euclid’s algorithm is always applied to the same
polynomials, and therefore it suffices to perform it once. In fact, we can
state the algorithm in the following form:

Algorithm Hensel’s — linear version;
Input f, g1, h1, p, k;
Output gk, hk;
g := g1;
h := h1;
grecip, hrecip := ExtendedEuclid(g1, h1, p);
for i := 2 . . . k do

Discrepancy := f − gh (mod pi)
pi−1 ;

gcorr := Discrepancy ∗ hrecip (mod p, g1);
hcorr := Discrepancy ∗ grecip (mod p, h1);
g := g + pi−1gcorr ;
h := h+ pi−1hcorr ;

return g, h;

Here the algorithm ExtendedEuclid has to return grecip and hrecip such
that

grecip ∗ g1 + hrecip ∗ h1 = 1 (mod p).

4.2.2.1 Hensel’s Lemma — quadratic version
There is another version of this algorithm, which doubles the exponent
of p at each stage, rather than increasing it by one. We shall give the
mathematical explanation of the move from p2 to p4, and then the general
algorithm. In fact, g4 ≡ g2 (mod p2), and therefore we can write g4 =
g2 + p2ǧ4 where ǧ4 is a measure of the difference between g2 and g4. The
same is true of f and h, so that f4 = g4h4 (mod p4) becomes

f2 + p2f̌4 = (g2 + p2ǧ4)(h2 + p2ȟ4) (mod p4).

Computer Algebra 169

Since f2 = g2h2 (mod p2), this equation can be rewritten in the form

f2 − g2h2

p2
+ f̌4 = ǧ4h2 + ȟ4g2 (mod p2).

The left hand side of this equation is known, whilst the right hand side
depends linearly on the unknowns ǧ4 and ȟ4. By applying the extended
Euclidean algorithm to g2 and h2, which are relatively prime modulo p2

because they are so modulo p, we can find polynomials ǧ4 and ȟ4 of degrees
less than those of g2 and h2 respectively, satisfying this equation modulo p2.
The restrictions on the degrees of ǧ4 and ȟ4 hold in the present case, because
the leading coefficients of g and h have to be 1. So we have determined g4
and h4 directly, starting from g2 and h2, we can continue in the same way
for every power of p with exponent a power of two until p2l

is sufficiently
large.

Algorithm Hensel — quadratic version 1;
Input f, g1, h1, p, k;
Output gk, hk,modulus;
g := g1;
h := h1;
modulus := p;
for i := 1 . . . dlog2 ke do

Discrepancy := f − gh (mod modulus2)
modulus ;

grecip, hrecip := ExtendedEuclid(g, h,modulus);
gcorr := Discrepancy ∗ hrecip (mod modulus, g);
hcorr := Discrepancy ∗ grecip (mod modulus, h);
g := g + modulus ∗ gcorr ;
h := h+ modulus ∗ hcorr ;
modulus := modulus2;

return g, h,modulus;

This algorithm gives solutions modulo a power of p which may be greater
than pk, but which can always be reduced if necessary. Here the algorithm
ExtendedEuclid must give grecip and hrecip such that

grecip ∗ g + hrecip ∗ h = 1 (mod modulus).

We can look at Hensel’s methods as variations of another well-known
method with quadratic convergence — that of Newton for finding the simple
roots of real equations. This method starts from an approximation x1 to
the root of F (x) = 0, and calculates successively better approximations by
the sequence

x2n = xn − F (xn)
F ′(xn)

.

170 Advanced algorithms

In general, x2n has twice as many correct digits as xn has. If we take g
as a variable, and F = f − gh, then we find g2n = gn + f−gnh

h , which is
the equation we use. There is, in fact, a theory of p-adic numbers, where
two numbers are “close” if they differ from one another by a multiple of a
power of p (the greater the power, the closer the integers). With this idea of
“distance”, Hensel’s quadratic algorithm is precisely Newton’s algorithm,
and the need for a simple root implies that g and h have to be relatively
prime. Lipson [1976] studies this connection.

This quadratic convergence is very useful in the case of real numbers,
but it is less helpful in the present case. For floating-point numbers, in
general, the running time is independent of the data, whereas, for us, pre-
cision is equivalent to the length of the integers, and therefore a doubling
of precision corresponds to a multiplication of the running time by four.
Comparison of linear and quadratic methods depends on details of imple-
mentation, and there is no clear cut result in this area. Several authors use
a hybrid method, that is they use the quadratic method as long as pi is
contained in one word in the computer, and then they go over to the linear
method. Abbott [1988] proposes another hybrid method, which uses the
quadratic method initially, then changes to the linear method for the last
few steps. His analyses indicates that this is the most efficient method.

There are several versions of Hensel’s method: we shall describe only
some of them. First, we note that it is possible to work with several factors
at once, rather than with two factors. It suffices to calculate the inverses
of all the factors (except g!) modulo g for each factor g. In the linear
algorithm, this is not very costly, for the inverses are only calculated once,
but it is quite costly for the quadratic algorithm.

4.2.2.2 Hensel’s Lemma — refinement of the inverses

This observation has led several people to note that the inverses modulo
pk are related to the inverses modulo pk/2: in fact they are equivalent
modulo pk/2. We can see the inverse G of g as a solution of the equation
Gg ≡ 1 (mod h, pk), and this equation can be solved by Hensel’s method.
As before, we shall study the move from p2 to p4, by supposing that g2G2 ≡
1 (mod h2, p

2), and that the aim is to find a G4 such that g4G4 ≡ 1
(mod h4, p

4). We write g4 = g2 + p2ǧ4 as before, and G4 = G2 + p2Ǧ4.
Thus the equation we want is translated into

(g2 + p2ǧ4)(G2 + p2Ǧ4) = 1 (mod h4, p
4).

This is rewritten in the form

p2g2Ǧ4 = 1 − g2G2 − p2ǧ4G2 (mod h4, p
4).

Computer Algebra 171

By the recursive definition of G2, p2 divides the right hand side of this
equation, and therefore we find

g2Ǧ4 =
1 − g2G2

p2
− ǧ4G2 (mod h4, p

2).

But h2 = h4 (mod p2), and therefore this equation is effectively modulo
h2 and p2. But, by induction, G2 is the inverse of g2, and this equation can
be solved for Ǧ4:

Ǧ4 = G2

(
1 − g2G2

p2
− ǧ4G2

)
(mod h2, p

2).

This equation gives us a Hensel algorithm which only uses the extended
Euclidean algorithm at the beginning. We state it, as usual, for the case of
two factors.
Algorithm Hensel — quadratic version 2;
Input f, g1, h1, p, k;
Output gk, hk,modulus;
g := g1;
h := h1;
grecip, hrecip := ExtendedEuclid(g1, h1, p);
modulus := p;
for i := 1 . . . dlog2 ke do

Error := f − gh (mod modulus2)
modulus ;

gcorr := Error ∗ hrecip (mod modulus , g);
hcorr := Error ∗ grecip (mod modulus , h);
g := g + modulus ∗ gcorr ;
h := h+ modulus ∗ hcorr ;
if this is not the last iteration

then Error := 1 − g ∗ grecip (mod h,modulus2)
modulus − gcorr ∗ grecip;

grecipcorr := Error ∗ grecip (mod modulus , h);

Error := 1 − h ∗ hrecip (mod g,modulus2)
modulus − hcorr ∗ hrecip;

hrecipcorr := Error ∗ hrecip (mod modulus , g);
grecip := grecip+ modulus ∗ grecipcorr ;
hrecip := hrecip+ modulus ∗ hrecipcorr ;

modulus := modulus2;
return g, h,modulus;

4.2.2.3 The factorisation algorithm
Using the Hensel algorithm from the previous section, we can give an al-
gorithm for factorising polynomials with integer coefficients. First, we sup-

172 Advanced algorithms

pose that our polynomial f is monic and square-free (if not, we first find
the square-free decomposition by the method described in the Appendix).

Algorithm for factorising in one variable
do p := prime();

fp := f (mod p);
while degree(f) 6= degree(fp) or gcd(fp, f

′
p) 6= 1;

{g1, . . . , gn} := Berlekamp(fp, p);
if n = 1 then return {f};
k := logp(2 ∗ Landau Mignotte bound(f));
Factors := Hensel(f, {g1, . . . , gn}, p, k);
Answer := {};
for each element g of Factors do

if g divides f then
Answer := Answer ∪ {g};
Factors := Factors \ {g};
n := n− 1;

Combine := 2;
while 2 ∗Combine ≤ n do

for each Combine-subset E of Factors do
g :=

∏
h∈E h (mod pk);

if g divides f then
Answer := Answer ∪ {g};
Factors := Factors \ E;
n := n− Combine ;
if 2 ∗ Combine > n then

exit from both loops;
Combine := Combine + 1;

if Factors 6= ∅ then
g :=

∏
h ∈ Factors

h (mod pk);

Answer := Answer ∪ {g};
return Answer;

In this algorithm we suppose that the sub-algorithm prime returns a
different prime number at each call, for example by running through the
list 2, 3, 5, 7, 11,. . . . Berlekamp applies the Berlekamp algorithm described
in a previous sub-section (or one of the variants of it), and returns a list
of the factors of fp. Landau Mignotte bound returns an integer such that
each factor of f has all its coefficients less than this integer. We have to
multiply by two to allow for the choice of signs. We suppose that there is

Computer Algebra 173

a Hensel algorithm (called Hensel) which takes n factors, although we have
only given a version which takes two. We are not interested here in the
details (linear/quadratic etc.).

There are several possible optimisations. For example, if 2∗Combine =
n, there is no need to look at all the Combine-subsets of Factors, but only
at half of them, for the others are their complements.

It would be possible to take several values of p, in order to find one
which gives the minimum number of modular factors. In an even more
complicated way, we can try to get the maximum information from fac-
torisations modulo the different p. For example, if f factorises into two
polynomials of degree two modulo a prime, and a polynomial of degree
three and one of degree one modulo another prime, we can deduce that f is
irreducible. But programming these tests is not self-evident. Musser [1978]
claims that the optimal number of p to choose is five, but the exact value
of this number obviously depends on the implementation of the algorithms.

Note that the expensive stage is, in practice, the Hensel lemma, al-
though, in theory, trying all the combinations may take an exponential
time. If we have to test several combinations, the division test may be very
costly. Abbott et al. [1985] have pointed out that it is possible to improve
this stage by testing that the trailing coefficients divide before testing the
polynomials.

The algorithm we have described is quite well structured, with one
main program and two sub-programs, that is, Berlekamp and Hensel. We
must confess that production implementations are much more complicated
than this ideal structure would suggest.

(a) Berlekamp’s algorithm gives the number of factors (that is the size
of the basis of eigenvectors) after the third stage, whilst many more
calculations are needed to find the factors. It is therefore possible to
start several (five according to Musser [1978]) instances of Berlekamp’s
algorithm with different p, and to stop them after the third stage, get
all possible information from the numbers of factors, and then to restart
again the promising instances. This is easy to say, but more difficult
to write in most existing programming languages.

(b) It is possible to test, during the Hensel algorithm, whether one of the
factors (mod pj , or p2j

for a quadratic version) is a true factor of the
polynomial [Wang, 1983]. We can use the method described for the
modular g.c.d., and test one factor to see if it changes after one Hensel
stage, that is we can add, after lines of the form

gcorr := Error ∗ hrecip (mod modulus, g);

174 Advanced algorithms

lines of the style

if gcorr = 0
then if g divides f then . . . ;

If this happens, we can remove it from the list of the p-adic fac-
tors and reduce f . This may change the Landau-Mignotte bound,
and therefore the necessary power of p. This optimisation means that
most of the variables of the factorisation algorithm can be modified by
Hensel’s algorithm: a violation of the principles of modular program-
ming.

These remarks, and others we have made, imply that real implemen-
tations are quite complicated programs.

4.2.2.4 The leading coefficient
In the previous sections we have supposed that the polynomial we want to
factorise is monic. Every problem of factorising polynomials can be reduced
to this case, by performing the following two steps:
[1] Multiply the polynomial f by an−1

n , where n is the degree of f and an

is its leading coefficient.
[2] Make the substitution y = x/an.

Since the leading coefficient is now an
n, and all the other coefficients are

divisible by an−1
n , this substitution makes the polynomial monic, and does

not take it out of Z[x]. In fact, the polynomial
∑n

i=0 aix
i is replaced by

the polynomial

n∑
i=0

aia
n−1−i
n xi = xn + an−1x

n−1 + anan−2x
n−2 + · · · + an−1

n a0.

This substitution has the great disadvantage of making the coefficients, and
therefore the Landau-Mignotte bound, grow, and thus the size of all the
integers entering into the algorithm increases. Is there a different method?

We recall that we could only consider monic f because of the condition
on the degrees of the “corrections” ĝi, which were always smaller in degree
than that of gi. Indeed, a factorisation of a polynomial of R[x] is only
determined to within units (invertible elements of R). For integers modulo
p, each non-zero element is invertible, and therefore it is possible to multiply
the factorisation by any number. The basic idea is to make the polynomial
monic modulo p at the outset, and to do the division by using the following
remark: if g divides f , then cg divides anf , where the constant c is chosen
such that the leading coefficient of cg will be an. Thus the algorithm has
to be modified as follows:

Computer Algebra 175

(a) the Berlekamp call has to be on the monic version of fp;
(b) the Landau-Mignotte bound has to be multiplied by an, because it

is now the coefficients of ang which have to be bounded (rather than
those of g);

(c) in the Hensel algorithm we have to replace f by f/an (calculated mod-
ulo a suitable power of p);

(d) the division tests of the kind

if g divides f

have to be replaced by tests of the following kind:

if ang (mod pk) divides anf

and it is the primitive part of ang (mod pk) which has to be added
to the result.
We can also use the determination of rational numbers starting from

their modular values, as described in section 4.1.3.3. Instead of factorising
a polynomial with integer coefficients, we can factorise a monic polyno-
mial with rational coefficients. Of course, p must not divide the leading
coefficient of the initial polynomial, which becomes the denominator of the
rational coefficients. Wang [1983] gives an account of this.

4.2.3 Factorisation in several variables
The factorisation of polynomials in several variables is done in the same
way as factorisation in one variable. As in the case of a g.c.d., the idea
of reduction modulo p is replaced by the idea of an evaluation y := r,
and the variables are replaced until we find a polynomial in one variable.
We shall only give a brief account of this algorithm, because the details
are complicated, even though the principles are similar to those we have
already seen.

We shall need, of course, an equivalent of Hensel’s lemma. This is quite
easy to construct: we replace p by y − r everywhere in the equations and
the algorithms. There are linear and quadratic versions of these algorithms,
and it is not obvious which is the best, but it seems that most systems use
a linear version.

We do not need a Landau-Mignotte style inequality, for the degree of
a factor is always less than the degree of the initial polynomial. Moreover,
we can say that, if the degree of a polynomial is n, at least one of its factors
is of degree less than or equal to n/2.

There is still the same idea of bad reduction. For example, the poly-
nomial x2−y is irreducible (because its degree in y is one), but it factorises
at each square value of y, such as y = 1 or y = 4. Now the situation is very
much better than in the case of polynomials in one variable.

176 Advanced algorithms

Hilbert’s Irreducibilty Theorem. Let f(y1, . . . , ys, x1, . . . , xr) be an ir-
reducible polynomial of Z[y1, . . . , ys, x1, . . . , xr]. Let M(N) be the number
of evaluations y1 = b1,. . . ,ys = bs with |bi| < N such that the polynomial
f(b1, . . . , bs, x1, . . . , xr) of Z[x1, . . . , xr] is reducible, that is that the eval-
uation is bad. Then there exist constants α and C with 0 < α < 1 and
M(N) ≤ C(2N + 1)s−α.

As the number of possible evaluations, written P (N), is (2N+1)s, this
theorem states that limN→∞M(N)/P (N) = 0: in other words, that the
probability that an evaluation will be “bad” tends towards zero when the
the integers become sufficiently large. In practice, bad reductions seem to
be quite rare.

4.2.3.1 The algorithm

We still suppose that the polynomial to be factorised is square-free. If the
variables of this polynomial f are x1, . . . , xr , we shall describe an algorithm
which has as parameters f , r and s, the latter being the the index of the
variable which is to be replaced, supposing that xs+1, . . . , xr−1 have already
been replaced by integer values. Suppose, to start with, that the polynomial
f to be factorised is monic with respect to xr.

We have given a version which only raises the factors to a power of
(xs − v) such that one of the two factors has to be of degree less than or
equal to this power. This decision implies that it is necessary to test all the
combinations of factors, rather than half of them, but this seems to be more
efficient than to go up to twice the degree, supposing that bad reductions
are quite rare.

In this algorithm we suppose that random gives us a random value
for the evaluation, choosing first the smallest values. We use factorise-
univariate to factorise the polynomials in one variable, and the Hensel
sub-algorithm to apply Hensel’s lemma which raises a factorisation modulo
xs − v up to (xs − v)k.

The algorithm as presented here is recursive in the variables: we can
imagine a parallel version which evaluates all the variables but one, fac-
torises this polynomial, and then does several Hensel-type parallel stages
to recover the variables. The parallel versions are in general more efficient,
but more complicated to describe (and to write!). For a description see the
article by Wang [1978].

There are three possibilities which may increase the running time
needed for this algorithm, which is in general quite fast. Classically they
are described (for example, by Wang [1978]) as being:
(1) bad zeros, that is the impossibility of using 0 as value v;
(2) parasitic factors, that is, bad reduction;

Computer Algebra 177

Algorithm of factorisation in several variables

proc factorise(f, r, s);
if s = 0 then return factorise-univariate(f);
do v := random();

fv := fxs:=v;
while degree(f) 6= degree(fv) or gcd(fv, fv′) 6= 1;

{g1, . . . , gn} := factorise(fv, r, s− 1);
if n = 1 then return {f};
k := degree(f, xs)/2;
Factors := Hensel(f, {g1, . . . , gn}, xs − v, k);
Answer := {};
for each element g of Factors do

if g divides f then
Answer := Answer ∪ {g};
Factors := Factors \ {g};
n := n− 1;

Combine := 2;
while Combine < n do

for each Combine-subset E of Factors do
g :=

∏
h∈E h (mod (xs − v)k);

if g divides f then
Answer := Answer ∪ {g};
Factors := Factors \ E;
n := n− Combine ;

Combine := Combine + 1;
if Factors 6= ∅ then

g :=
∏

h ∈ Factors
h (mod (xs − v)k);

Answer := Answer ∪ {g};
return Answer;

(3) leading coefficient, which we have already seen in the case of one
variable.
Bad zeros are very serious in practice, because of a phenomenon we

have already come across in section 2.4, that is that every realistic poly-
nomial in several variables must be sparse. A sparse polynomial remains
sparse modulo xn

s , but becomes dense (in the variable xs) modulo (xs−v)n

for non-zero v. In fact, evaluation at a non-zero value corresponds to the
substitution xs → xs − v followed by an evaluation xs = 0, and we have
already noted that such a substitution destroys the sparse nature of a poly-

178 Advanced algorithms

nomial, and can greatly increase the running time. This is not very serious
for the recursive method, but is disastrous for the parallel method. There
are several devices which try to avoid this problem, and we refer the reader
to the papers by Viry [1982] and Wang [1978] for the details.

The effects of parasitic factors can be mitigated by taking several eval-
uations, as we have already seen in the case of one variable. But to do this
becomes recursively very expensive: if we take two evaluations instead of
one, the cost of the calculation is multiplied by 2r−1, and it is probable that
we shall need many more than two. Bad evaluations give rise to a combi-
natorial explosion, which we have already come across in the case of one
variable, but here they cause another problem as well. It is very probable
that the false factors are not sparse, and therefore that the Hensel lemma
will be very expensive to execute.

4.2.3.2 The leading coefficient
We have already seen in the case of one variable that it is possible to
remove the leading coefficient by a change of variable. But this was rather
expensive in that case, and in the present case it would indeed be very
expensive, because it increases the degree and destroys the sparse nature.
For example, let us suppose that we have to factorise a polynomial of degree
five in four variables. If the leading coefficient is of degree five, the degree
after substitution would be 25, and a fairly small problem has turned into
a very big problem. As for the number of terms, the polynomial

(w4 + x4 + y4 + 1)z4 + (w + x+ y + 1)(z4 + 43 + z2 + z + 1)

contains 24 terms (in its expanded form), but its equivalent which is monic
with respect to z contains 247 (and fills several screens).

We have suggested a different method for the case of one variable,
which consists in working with the monic equivalent (modulo pk) of the
polynomial to be factorised. This is not very efficient in the present case,
for the inverse (modulo (xs − v)k) of a polynomial can be quite large, even
if it can be calculated (for the ring of the other variables is not necessarily
a field, and the inverse may well require rational fractions in the other
variables x1,. . . ,xs−1). So we have to find another device.

Wang [1978] found one in a parallel setting, that is where the polyno-
mial is reduced to one variable. We put

f(x1, . . . , xr) = an(x1, . . . , xr−1)xn
r + . . . ,

where an is the leading coefficient troubling us. Wang suggests finding
an evaluation v1,. . . ,vr−1 of the variables x1,. . . ,xr−1 which satisfies the
following three conditions:

Computer Algebra 179

(1) an(v1, . . . , vr−1) does not cancel — this is necessary so that the de-
gree of the reduced polynomial is equal to the degree of the initial
polynomial;

(2) f(v1, . . . , vr−1, xr) has no multiple factors — this is necessary for the
Hensel lemma;

(3) each factor (after suppressing multiple factors) of the leading coefficient
an(x1, . . . , xr−1) (these are all polynomials with r− 1 variables), when
evaluated at x1 = v1,. . . ,xr−1 = vr−1, contains as factor a prime which
is not contained in the evaluations of the other factors.
The first two conditions are always necessary — it is the third which

is the key to Wang’s method. When we have found a substitution of
this kind, we can factorise the leading coefficients of all the factors of
f(v1, . . . , vr−1, xr). When we look at the primes which identify the fac-
tors of an, we can determine the leading coefficients of those factors in n
variables which correspond to those factors in one variable.

As soon as we know the leading coefficients, we can insist on these
leading coefficients for the factors before starting Hensel’s algorithm. In
this case, all the corrections satisfy the condition on their degrees which is
fundamental to this algorithm. Therefore, we have a method of factorising
which can work well with a non-trivial leading coefficient, and which does
not require any transformation of the polynomial. The cost of this method
is the sum of two components:
(1) the factorisation of the leading coefficient (and, by induction, its lead-

ing coefficient etc.);
(2) the difficulty of finding substitutions which satisfy all these conditions.
The second component seems to be the more significant, but research is in
progress in this area.

4.2.4 Other applications of p-adic methods

For a p-adic method to be valid, we have to have a Hensel algorithm,
that is an algorithm for going from the solution modulo pk to the solution
modulo pk+1 or p2k (in the case of several variables, we replace p by xs−v).
We have mentioned two algorithms of this kind — the refinement of the
factors of a polynomial, and the refinement of multiplicative inverses. Wang
[1981] has generalised the application to the inverses for the calculation of
decompositions into partial fractions.

As an example of another application of refinement of factors, we now
explain the p-adic method for calculating g.c.d.s. And we can compare the
advantages and disadvantages of the modular and p-adic methods.

4.2.4.1 g.c.d. by a p-adic algorithm.
Let us first consider the case of one variable, and, as at the beginning of

180 Advanced algorithms

this chapter, let us suppose that A and B are two polynomials with integer
coefficients of which we want to calculate the g.c.d. We choose a prime p
which does not divide the two leading coefficients of A and B, and let F1

be the g.c.d. of A (mod p) and B (mod p) (we use subscripts to denote
the power of p modulo which we are calculating). Thus we can write the
following system:

A1 ≡F1G1 (mod p); (A)
B1 ≡F1H1 (mod p). (B)

For the present, we consider the case where gcd(A,B) is monic (for example,
A or B is monic, or, more generally, the g.c.d. of their leading coefficients
is one). Always supposing that the reduction was good, we have to refine
one of these equations until the power of p is sufficiently great for Fk to be
equal to the true solution F . This can indeed be done if F1 and G1 are
relatively prime, by applying Hensel’s lemma to equation (A). Or, if F1

and H1 are relatively prime, we can apply Hensel’s algorithm to equation
(B). What can be done if neither of these possibilities holds?

There are two solutions.
(a) We can do one step of Euclid’s algorithm before going over to the p-

adic methods. Instead of considering A and B, we consider B and
C = remainder(A,B) (supposing that A is of degree greater than
that of B). By Euclid’s algorithm, gcd(A,B) = gcd(B,C). Like-
wise gcd(A1, B1) = gcd(B1, C1). None of the factors of gcd(F1, G1)
or gcd(F1, H1) can divide gcd(F1, C1/F1), and therefore, after a finite
number of these steps, we have exhausted all the factors of F1, and one
of the conditions of Hensel’s algorithm is then necessarily satisfied.

(b) We can take a linear combination ofA andB, that isD = λA+µB, and
take J1 = λG1 + µH1. With probability one, F1 and J1 are relatively
prime, and we have refined the equation

D1 = F1J1.

If we cannot suppose that the true g.c.d. is monic, we can follow the
method used for factorising in one variable, by multiplying the equation
throughout by a bound for the leading coefficient, that is the g.c.d. of the
leading coefficients of A and B. In any event, we arrive at a refinement of
the form Ak = FkGk. If Fk divides A (seen as polynomials with integer
coefficients), then Fk is the g.c.d. of A and B. If not, the reduction was
bad, and we have to start again. From this we can deduce one disadvantage
of the p-adic method — it is more sensitive to bad reductions. This defect
can be mitigated by looking for several reductions, for a good reduction
will give the lowest degree.

Computer Algebra 181

These methods can be generalised to polynomials in several variables:
see Yun [1974]. Here we can see one advantage of the p-adic method — it
can take advantage of the sparse nature of the data. To be able to use it,
we have to overcome the three problems of bad zeros, parasitic factors and
leading coefficient. Wang [1980] has suggested ways of approaching these
problems, rather similar to those we have outlined for factorisation.

182 Advanced algorithms

5. Formal integration
and differential equations

5.1 FORMAL INTEGRATION
In this section we shall describe the theory and practice of formal inte-
gration. Computers are very useful for numerical integration, that is the
finding of definite integrals. But Computer Algebra also lets us perform
formal integration, that is the discovery of integrals as formulae. These
calculations, which cannot be done numerically, are one of the great suc-
cesses of Computer Algebra.

5.1.1 Introduction
We must distinguish between formal integration and numerical integration.
Naturally, numerical integration which consists in giving a numerical value
to a definite integral, such as

∫ 1

0
x2 dx = 1/3, was one of the first ways

the computer was used. Formal differentiation was undertaken quite early
in the history of computers [Kahrimanian, 1953; Nolan, 1953], but it was
Slagle [1961] who took the first steps towards integration. Why was there
this delay?

The reason is to be found in the big difference between formal integra-
tion and formal differentiation. Differentiation, as it is taught in school, is
an algorithmic procedure, and a knowledge of the derivatives of functions
plus the following four rules

(a± b)′ = a′ ± b′

(ab)′ = a′b+ ab′(a
b

)′
=
a′b− ab′

b2

f(g(t))′ = f ′(g(t))g′(t)

183

184 Formal integration and differential equations

enables us to differentiate any given function. In fact, the real problem
in differentiation is the simplification of the result, because if it is not
simplified, the derivative of 2x+ 1 is given as 0x+ 2 ∗ 1 + 0, or, if 2x+ 1 is
represented as 2x1 + 1x0,

0x1 + 2
(
0(log x)x1 + 1 ∗ 1 ∗ x1−1

)
+ 0x0 + 1

(
0(log x)x0 + 0 ∗ 1 ∗ x0−1

)
.

On the other hand, integration seems to be a random collection of
devices and of special cases. It looks as if there is only one general rule,∫
f + g =

∫
f +

∫
g (and this rule is not always valid — see equation (1) in

the section “Integration of rational fractions” and the subsequent discus-
sion). For combinations other than addition (and subtraction) there are no
general rules. For example, because we know how to integrate expx and x2

it does not follow that we know how to integrate their composition expx2:
as we shall see later, this function has no integral simpler than

∫
expx2dx.

So we learn several “methods” such as: integration by parts, integration by
substitution, integration by looking up in the printed tables of integrals etc.
And in addition we do not know which method or which combination of
methods will work for a given integral. So the first moves (made by Slagle)
were based on the same heuristics as those used by humans.

This way was quite quickly outdated (after the work of Moses [1967;
1971b]) by truly algorithmic methods. Now there is a whole theory of
integration, which we can only summarise quite briefly. Unless otherwise
indicated, all integration in this chapter is with respect to x.

Since differentiation is definitely simpler than integration, it is appro-
priate to rephrase the problem of integration as the “inverse problem” of
differentiation, that is, given a function a, instead of looking for its integral
b, we ask for a function b such that b′ = a.

Definition. Given two classes of functions A and B, the integration prob-
lem from A to B is to find an algorithm which, for every member a of A,
either gives an element b of B such that a = b′, or proves that there is no
element b of B such that a = b′.

For example, if A = Q(x) and B = Q(x), then the answer for 1/x2 must
be −1/x, whilst for 1/x it must be “impossible”. On the other hand, if
B = Q(x, log x), then the answer for 1/x must be log x.

Richardson [1968] gives a theorem, which proves that the problem of
integration for A = B = Q(i, π, exp, log, ||) (where || denotes the absolute
value) is insoluble. But those wanting an integration algorithm need not
despair: in fact the problem of determining whether a constant is zero or not
cannot be decided within this field. So, Richardson takes an indeterminable
constant c, and considers the function cex2

. Since, as is well known (and

Computer Algebra 185

as we shall prove later), the function ex2
cannot be integrated in B, we

see that cex2
can only be integrated if c = 0, a question which cannot be

decided. From now on, we shall suppose that our classes of functions are
effective, that is that every problem of equality can be decided.

5.1.2 Integration of rational functions
In this section, we deal with the case of A = C(x), where C is a field
of constants (and, according to what we have just said, effective). Every
rational function f can be written in the form p+ q/r, where p, q and r are
polynomials, q and r are relatively prime, and the degree of q is less than
that of r. It is well known that∫

f + g =
∫
f +

∫
g, (1)

but in the theory of algebraic integration we have to be somewhat cautious.
It is quite possible for

∫
f + g to have an explicit form, even though

∫
f

and
∫
g have not. One example of this phenomen is

∫
xx + (log x)xx, whose

integral is xx, whilst its two summands do not have any integrals (in finite
form). In fact, (1) must only be used if it is known that two of the three
integrals exist.

A polynomial p always has a finite integral, so (1) holds for x = p and
y = q/r. Therefore the problem of integrating f reduces to the problem
of the integration of p (which is very simple) and of the proper rational
function q/r. The remainder of this section is devoted to the integration of
a proper rational function.

5.1.2.1 The näıve method
If the polynomial r factorises into linear factors, such that

r =
n∏

i=1

(x− ai)
ni ,

we can decompose q/r into partial fractions (see the Appendix):

q

r
=

n∑
i=1

bi
(x− ai)

ni
,

where the bi are polynomials of degree less than ni. These polynomials can
be divided by x− ai, so as to give the following decomposition:

q

r
=

n∑
i=1

ni∑
j=1

bi,j

(x− ai)
j ,

186 Formal integration and differential equations

where the bi,j are constants.
This decomposition can be integrated, then

∫
q

r
=

n∑
i=1

bi,j log (x− ai) −
n∑

i=1

ni∑
j=2

bi,j

(j − 1)(x− ai)
j−1

.

Thus, we have proved that every rational function has an integral which
can be expressed as a rational function plus a sum of logarithms of rational
functions with constant coefficients — that is, that the integral belongs to
the field C(x, log).

Although this proof is quite well known, it has several defects from the
algorithmic point of view.
(1) It requires us to factorise r completely, which is not always possible

without adding several algebraic quantities to C. As we have already
seen, manipulating these algebraic extensions is often very difficult.

(2) Even if the algebraic extensions are not required, it is quite expensive
to factorise a polynomial r of high degree.

(3) It also requires a big decomposition into partial fractions.
To prove that there are several integrals which can be determined without
too much difficulty (with pencil and paper), let us consider∫

5x4 + 60x3 + 255x2 + 450x+ 274
x5 + 15x4 + 85x3 + 225x2 + 274x+ 120

= log(x5 + 15x4 + 85x3 + 225x2 + 274x+ 120)
= log(x + 1) + log(x+ 2) + log(x+ 3) + log(x+ 4) + log(x+ 5);

∫
5x4 + 60x3 + 255x2 + 450x+ 275

x5 + 15x4 + 85x3 + 225x2 + 274x+ 120

=
25
24

log(x+1)+
5
6

log(x+2)+
5
4

log(x+3)+
5
6

log(x+4)+
25
24

log(x+5)

(the expression with a single logarithm is too long to write here: it contains
the logarithm of a polynomial of degree 120, of which the largest coefficients
have 68 decimal places);∫

5x4 + 1
(x5 + x+ 1)2

=
−1

(x5 + x+ 1)
;

∫
5x4 + 1

(x5 + x+ 1)
= log (x5 + x+ 1).

Computer Algebra 187

The first equation is an example where we can factorise the denominator
(which is only (x+ 1)(x+ 2)(x+ 3)(x+ 4)(x+ 5)), but the decomposition
into partial fractions would be quite tiresome. The second one shows that a
very small difference can greatly change the integral. The last two examples
have denominators which do not factorise at all over Q, and we have to add
four algebraic extensions before it factorises completely (or an extension of
degree 120!). So, we can state the following problem: Find an algorithm
of integration of rational functions which brings in only those algebraic
quantities necessary for expressing the integral.

5.1.2.2 Hermite’s method
This method [Hermite, 1872] enables us to determine the rational part of the
integral of a rational function without bringing in any algebraic quantity.
Similarly, it finds the derivative of the sum of logarithms, which is also a
rational function with coefficients in the same field as f . We have seen that
a factor of the denominator r which appears to the power n, appears to the
power n − 1 in the denominator of the integral. This suggests square-free
decomposition (see the Appendix).

Let us suppose, then, that r has a square-free decomposition of the
form

∏n
i=1 r

i
i. The ri are then relatively prime, and we can construct a

decomposition into partial fractions (see the Appendix):

q

r
=

q∏n
i=1 r

i
i

=
n∑

i=1

qi
ri
i

.

We know that every element on the right hand side has an integral, and
therefore (1) holds, and it suffices to integrate each element in turn. This is
done with Bézout’s identity (see once more the Appendix) applied to ri and
r′i, which are relatively prime, and hence there are an a and a b satisfying
ari + br′i = 1.∫

qi
ri
i

=
∫
qi(ari + br′i)

ri
i

=
∫

qia

ri−1
i

+
∫
qibr

′
i

ri
i

=
∫

qia

ri−1
i

+
∫

(qib/(i− 1))′

ri−1
i

−
(
qib/(i− 1)

ri−1
i

)′

= −
(
qib/(i− 1)

ri−1
i

)
+
∫
qia+ (qib/(i− 1))′

ri−1
i

,

and we have been able to reduce the exponent of ri. We can continue in
this way until the exponent becomes one, when the remaining integral is a
sum of logarithms.

188 Formal integration and differential equations

5.1.2.3 Horowitz-Ostrogradski method
Hermite’s method is quite suitable for manual calculations, but the dis-
advantage of it is that it needs several sub-algorithms (square-free decom-
position, decomposition into partial fractions, Bézout’s identity), and this
involves some fairly complicated programming. Therefore Horowitz [1969,
1971] proposed the following method, which seems to have been known to
the Russian mathematician Ostrogradski.

The aim is still to be able to write
∫
q/r in the form q1/r1 +

∫
q2/r2,

where the integral remaining gives only a sum of logarithms when it is
resolved. By Hermite’s method and the discussion above, we know that r1
has the same factors as r, but with the exponent reduced by one, and that
r2 has no multiple factors, and that its factors are all factors of r. The
arguments of the section “Square-free decompositions” (in the Appendix)
imply that r1 = gcd(r, r′), and that r2 divides r/ gcd(r, r′). We may suppose
that q2/r2 is not necessarily written in reduced form, and therefore that
r2 = r/ gcd(r, r′).

Then
q

r
=
(
q1
r1

)′
+
q2
r2

=
q′1
r1

− q1r
′
1

r21
+
q2
r2

=
q′1r2 − q1s+ q2r1

r
,

where s = r′1r2/r1 (the division here is without remainder).
Thus, our problem reduces to a purely polynomial problem, that is

q = q′1r2 − q1s+ q2r1, (2)

where q, s, r1 and r2 are known, and q1 and q2 have to be determined. But
the degrees of q1 and q2 are less than the degrees m and n of r1 and r2
respectively. So, we write q1 =

∑m−1
i=0 aix

i and q2 =
∑n−1

i=0 bix
i. Equation

(2) is rewritten as a system of m+ n linear equations in n+m unknowns.
Moreover, this system can be solved, and integration (at least this sub-
problem) reduces to some linear algebra.

5.1.2.4 The logarithmic part
The two methods described above can reduce the integration of any rational
function to the integration of a rational function (say q/r) whose integral
would be only a sum of logarithms. We know that this integral can be
resolved by completely factorising the denominator, but, as we have already
seen, this is not always necessary for an expression of the results. The real
problem is to find the integral without using any algebraic numbers other

Computer Algebra 189

than those needed in the expression of the result. This problem has been
solved by Rothstein [1976] and by Trager [1976] — we give the latter’s
solution.

Let us suppose that ∫
q

r
=

n∑
i=1

ci log vi (3)

is a solution to this integral where the right hand side uses the fewest
possible algebraic extensions. The ci are constants and, in general, the
vi are rational functions. Since log(a/b) = log a − log b, we can suppose,
without loss of generality, that the vi are polynomials. Furthermore, we
can perform a square-free decomposition, which does not add any algebraic
extensions, and we can apply the rule log

∏
pi

i =
∑
i log pi. Moreover, since

c log pq + d log pr = (c+ d) log p+ c log q + d log r, we can suppose that the
vi are relatively prime, whilst still keeping the minimality of the number of
algebraic extensions (even though the number of logarithms may change).
Moreover, we can suppose that all the ci are different.

Differentiating equation (3), we find

q

r
=

n∑
i=1

civ
′
i

vi
. (3′)

The assumption that the vi are square-free implies that no element of this
summation can simplify, and the assumption that the vi are relatively prime
implies that no cancellation can take place in this summation. This implies
that the vi must be precisely the factors of r, i.e. that r =

∏n
i=1 vi. Let

us write ui =
∏

j 6=i vj . Then we can differentiate the product of the vi,
which shows that r′ =

∑
v′iui. If we clear the denominators in (3′), we find

that q =
∑
civ

′
iui. These two expressions for q and r′ permit the following

deductions:

vk = gcd(0, vk)

= gcd
(
q −

∑
civ

′
iui, vk

)
= gcd (q − ckv

′
kuk, vk)

since all the other ui are divisible by vk

= gcd
(
q − ck

∑
v′iui, vk

)
for the same reason

= gcd (q − ckr
′, vk) .

190 Formal integration and differential equations

If l 6= k, we find that

gcd (q − ckr
′, vl) = gcd

(∑
civ

′
iui − ck

∑
v′iui, vl

)
= gcd (clv′lul − ckv

′
lul, vl)

since all the other ui are divisible by vl

=1

since vl has no repeated factors, or any factors in common with the product
ul of the other vi. With the help of these calculations, we can proceed to
the following calculation:

gcd (q − ckr
′, r) = gcd

(
q − ckr

′,
n∏

i=1

vi

)

=
n∏

i=1

gcd (q − ckr
′, vi)

since the vi are relatively prime
= gcd (q − ckr

′, vk)
since all the other terms disappear

= vk.

Hence, if we know the ck, we can calculate the vk. Furthermore, the
ck are precisely the values of y for which gcd(q − yr′, r) 6= 1. But these
values can be calculated with the help of the resultant (see the Appendix).
Resx(q− yr′, r) is a polynomial in y, which is zero if, and only if, the g.c.d.
is non-trivial. Hence it suffices to calculate this polynomial (which does not
need any algebraic extensions) and, for each of its roots ck, to determine
vk = gcd(q − ckr

′, r).

5.1.3 The integration of more complicated functions
As soon as we leave the case of rational functions, we find functions whose
integrals cannot be expressed in simpler terms. For example, we can say
that ∫

e−x2
=
√
π

2
erfx,

but this is only a re-expression of the definition of the function erf. Now,
one could remark that

∫
1/x = log x is only a re-expression of the definition

of the function log, and that is a valid comment. But the difference is that
log is “well known” (a term that will be made precise later). In other words,
which classes of functions B will we allow as classes of possible integrals?
Liouville proposed the following definition, which seems quite suitable.

Computer Algebra 191

Definition. Let K be a field of functions. The function θ is an elementary
generator over K if:
(a) θ is algebraic over K, i.e. θ satisfies a polynomial equation with coef-

ficients in K;
(b) θ is an exponential over K, i.e. there is an η in K such that θ′ = η′θ,

which is only an algebraic way of saying that θ = exp η;
(c) θ is a logarithm over K, i.e. there is an η in K such that θ′ = η′/η,

which is only an algebraic way of saying that θ = log η.

Definition. Let K be a field of functions. An overfield K(θ1, . . . , θn) of K
is called a field of elementary functions over K if every θi is an elementary
generator over K. A function is elementary over K if it belongs to a field
of elementary functions over K.

If K is omitted, we understand C(x): the field of rational functions.
This definition also includes the trigonometric functions — for exam-

ple, sinx is elementary (over C(x)), since

sinx =
1
2i
(
eix + e−ix

)
=

1
2i

(
θ +

1
θ

)
,

where θ is the exponential of ix. This is also true for the inverses of trigono-
metric functions — for example tan−1 x = log

(
x+i
x−i

)
. We will use the

notation K(elem) for the class of elementary functions over K.
The previous section showed that every rational function has an el-

ementary integral. Furthermore, this integral has a particular form — a
rational function (whose calculation needs no algebraic extensions) plus a
sum of logarithms with constant coefficients. We shall find that this form
holds in a much more general context, as the following result shows.

Theorem (Liouville’s Principle). Let f be a function from some func-
tion field K. If f has an elementary integral over K, it has an integral of
the following form: ∫

f = v0 +
n∑

i=1

ci log vi, (4)

where v0 belongs to K, the vi belong to K̂, an extension of K by a finite
number of constants algebraic over K, and the ci belong to K̂ and are
constant.

Another way of putting this is to say that, if f has an elementary integral
over K, then f has the following form:

f = v′0 +
n∑

i=1

civ
′
i

vi
. (4′)

192 Formal integration and differential equations

This theorem is fundamental for the theory of integration in terms of
elementary functions. In what follows, we shall use the expression “We can
integrate in A with results in B” as an abbreviation of “There exists an
algorithm which, given an element a of A, returns an element b of B such
that a = b′, or shows that no function of B has this property”. If we omit
B, we mean the class A(elem).

5.1.4 Integration of logarithmic functions
This section is devoted to the study of fields of functions generated by a
single logarithm. We shall work in the following setting:
(i) K is a field of functions, assumed to be effective, such that we can

integrate in K;
(ii) θ is a logarithm over K, θ′ = η′/η, and θ is assumed transcendental

over K;
(iii) K(θ) has the same constants as K.
This last hypothesis avoids the difficulties which can occur if θ gives rise
to new constants. For example, if K = Q(x, log x) and θ = log 2x, K(θ)
contains the constant log 2. This hypothesis, as well as the hypothesis that θ
is transcendental, can be checked by means of the Risch Structure Theorem
(see section 2.7). The aim is to show that we can integrate in K(θ). On the
whole, the methods are similar to those used in the integration of rational
functions, but there are several occasions when a little care is necessary.

5.1.4.1 The decomposition lemma
We can write our function f of K(θ) in the form p+ q/r, where p, q and r
are polynomials of K[θ], q and r are relatively prime, and the degree of q
is less than that of r. Can we, then, treat p and q/r separately, i.e. can we
apply the decomposition (1)?

Decomposition Lemma. If f has an elementary integral over K, then p
and q/r each possess an elementary integral over K.

Proof. From Liouville’s principle (in the form of equation (4′)),

p+
q

r
= v′0 +

n∑
i=1

civ
′
i

vi
.

In this decomposition, we can suppose that v1,. . . ,vk are monic polyno-
mials in θ whose coefficients belong to K, whilst vk+1, . . . , vn belong to
K. Furthermore, we can write v0 in the form p̂ + q̂/r̂, where p̂, q̂ and r̂
are polynomials in θ, and q̂/r̂ is a proper rational function. With these
conventions and using the following properties of differentiation —
(a) the derivative of a polynomial is a polynomial;

Computer Algebra 193

(b) the derivative of a proper rational function is itself a proper rational
function —

we see that

p+
q

r
=
(
p̂+

q̂

r̂

)′
+

n∑
i=1

civ
′
i

vi

= p̂′ +
n∑

i=k+1

civ
′
i

vi︸ ︷︷ ︸
polynomial

+
(
q̂

r̂

)′
+

k∑
i=1

civ
′
i

vi︸ ︷︷ ︸
proper rational function

.

Since the decomposition “polynomial + proper rational function” is unique
(remember that θ is assumed to be transcendental), this equation lets us
deduce the following two equations:

p = p̂′ +
n∑

i=k+1

civ
′
i

vi
;

q

r
=
(
q̂

r̂

)′
+

k∑
i=1

civ
′
i

vi
.

These two equations can be integrated formally, in order to give

∫
p = p̂+

n∑
i=k+1

ci log vi;

∫
q

r
=
q̂

r̂
+

k∑
i=1

ci log vi.

These equations prove the stated result, and, furthermore, they provide
further information about the shape of the integrals. In the following sub-
sections, we consider these two parts separately.

5.1.4.2 The polynomial part

Suppose p is written in the form
∑m

i=0 Aiθ
i, and that p̂ is written in the

form
∑n

i=0Biθ
i. The last equations in the proof of the decomposition

194 Formal integration and differential equations

lemma imply that

m∑
i=0

Aiθ
i =

(n∑
i=0

Biθ
i

)′
+

n∑
i=k+1

civ
′
i

vi

=
n∑

i=0

B′
iθ

i +
n∑

i=1

iBiθ
′θi−1 +

n∑
i=k+1

civ
′
i

vi
.

We recall that the vi which occur in this expression belong to K. Since θ
is transcendental, we can deduce that the coefficients of each power of θ in
the two parts must be equal. This implies that n = m or n = m+ 1. The
coefficients of θm+1 give the equation 0 = B′

m+1, from which we deduce
that Bm+1 must be a constant.

The coefficients of θm (supposing that m > 0) give the equation:

Am = B′
m + (m+ 1)Bm+1θ

′.

This equation can be rewritten in an integral form:

Bm =
∫

(Am − (m+ 1)Bm+1θ
′)

= −(m+ 1)Bm+1θ +
∫
Am.

This equation implies that Am must have an elementary integral, and hy-
pothesis (i) of this section tells us that there is an algorithm for finding this
integral (or for proving that this function does not have an elementary inte-
gral, which means that p does not have one either). Moreover, this integral
must be of a special form: an element of K plus a (constant) multiple of
θ. θ is the only logarithm which may be added to K in order to express
this integral. (It is therefore possible to optimise this integration of Am,
but this makes the presentation much more complicated, and so we shall
not do it here.) This integration determines Bm+1, and determines Bm to
within a constant. Let us call this constant bm.

The coefficients of θm−1 (supposing m > 1) give the equation:

Am−1 = B′
m−1 +m(Bm + bm)θ′.

This equation can be rewritten in an integral form:

Bm−1 =
∫

(Am−1 −m(Bm + bm)θ′)

= −mbmθ +
∫

(Am−1 −mBmθ
′). (5)

Computer Algebra 195

As we have already done for the coefficients of θm, we can deduce that
Am−1 −mBmθ

′ has an elementary integral, which must belong toK, except
possibly for a constant multiple of θ, which determines bm. Thus, Bm−1 is
determined to within a constant, which we shall call bm−1.

We continue in this way as far as the coefficients of θ0:

A0 = B′
0 + 1(B1 + b1)θ′ +

n∑
i=k+1

civ
′
i

vi
.

This equation can be rewritten in an integral form:

B0 +
n∑

i=k+1

ci log vi =
∫

(A0 − (B1 + b1)θ′)

= −b1θ +
∫

(A0 −B1θ
′).

We deduce from this that A0 −B1θ
′ has an elementary integral. This time,

it is not necessary for the integral to belong to K, and it can contain new
logarithms. The coefficient of θ in this integral gives us b1. As before, B0 is
only determined to within a constant, but this constant is the constant of
integration, which remains undetermined. Thus we have found the whole
of the integral of the polynomial part (or else we have shown that there is
none).

5.1.4.3 The rational and logarithmic part
The last equations in the proof of the decomposition lemma imply that

q

r
=
(
q̂

r̂

)′
+

k∑
i=1

civ
′
i

vi
.

The problem is similar to that of the rational functions, and the solution
is also similar. In fact, Hermite’s method works in this case as it does for
rational functions, except that the meaning of the symbol ′ must be taken
into account. In the case of a polynomial in the variable x,(n∑

i=0

aix
i

)′
=

n∑
i=1

iaix
i−1,

whilst for a polynomial in the variable θ,(n∑
i=0

aiθ
i

)′
=

n∑
i=1

iaiθ
′θi−1 +

n∑
i=0

ai
′θi.

196 Formal integration and differential equations

Although they have to be proved again, all the necessary results in the
Appendix still hold, and Hermite’s method works (or, more exactly, the
Hermite-Ostrowski method, for it was Ostrowski [1946] who made this gen-
eralisation).

The logarithmic part is calculated in almost the same way as in the
case of rational functions. We have proved that the coefficients of the
logarithms, which by Liouville’s theorem have to be constants, are the roots
of the polynomial Resθ(q − yr′, r). But in the present context, we can no
longer be certain that these roots are constants. Let us take the example
of
∫
dx/ log x, where q = 1 and r = log x.

Reslog x

(
1 − y

1
x
, log x

)
=
∣∣∣1 − y

x

∣∣∣ = x− y

x
,

and the root of this polynomial is y = x, which is not a constant. In this
case, we can conclude that the integral is not elementary, for an elementary
integral must have constant coefficients. If we apply the same method
to
∫
dx/x log x, we find the polynomial y = 1, and the integral becomes

log log x.

5.1.5 Integration of exponential functions
This section is devoted to the study of functions generated by an exponen-
tial. Here we have the same process as in the last section, except where
the differences in behaviour between logarithmic and exponential functions
compel us to make distinctions. In this section, we are operating within
the following context:
(i) K is a field of functions, supposed effective, such that we know how

to integrate in K and such that we know how to solve the differential
equation y′ + fy = g in K (see the next section for the solution of this
problem);

(ii) θ is an exponential over K, θ′ = η′θ, and θ is supposed transcendental
over K;

(iii) K(θ) has the same constants as K.
The last hypothesis avoids the difficulties which may arise if θ gives rise
to new constants. For example, if K = Q(x, expx) and θ = exp(x + 1),
K(θ) contains the constant e. This hypothesis, like the hypothesis that θ
is transcendental, can be verified using the Risch Structure Theorem (see
section 2.7). The aim is to prove that we know how to integrate in K(θ).
The methods for the rational part are to a large extent similar to those for
the integration of logarithmic functions, but the polynomial part is rather
different.

We must point out that the choice of θ is somewhat arbitrary. 1
θ is also

an exponential: that of −η. So it is obvious that the “polynomial part”

Computer Algebra 197

must take this symmetry into account. In the last section, we used the
ideas of square-free decomposition etc., saying they hold also for the case
of polynomials in one logarithmic variable. But they do not hold in the
case of an exponential variable: for example, if θ = expx, the polynomial
p = θ has no multiple factors, but gcd(p, p′) = θ, and such a non-trivial
g.c.d. normally implies that p has a multiple factor. It is not difficult to
verify that these concepts are valid if θ does not divide p.

5.1.5.1 The decomposition lemma
We can write this function f of K(θ) in the form p + q/r, where p is a
generalised polynomial (that is

∑n
i=−m aiθ

i), q and r are polynomials of
K[θ] such that θ does not divide r, q and r are relatively prime, and the
degree of q is less than that of r. So can we deal with p and q/r separately,
that is, apply the decomposition (1)?

Decomposition lemma. If f has an elementary integral over K, then
each of the terms of p, and also q/r, have an elementary integral over K.

Proof. By Liouville’s principle (in the form of equation (4′)),

p+
q

r
= v′0 +

n∑
i=1

civ
′
i

vi
.

In this decompositon, we can suppose that v1,. . . ,vk are monic polynomials
in θ of degree ni (the coefficients of which belong to K), whereas vk+1,. . . ,vn

belong to K. We can also suppose that none of the vi is divisible by θ, for
log θ = η. Moreover, we can write v0 in the form p̂ + q̂/r̂, in the same
way as we broke down f . With these conventions and using the properties
that the derivative of a generalised polynomial is a generalised polynomial,
and that the derivative of a proper rational function (such that θ does not
divide its denominator) is a proper rational function (such that θ does not
divide its denominator), we see that:

p+
q

r
=
(
p̂+

q̂

r̂

)′
+

n∑
i=1

civ
′
i

vi

= p̂′ +
n∑

i=k+1

civ
′
i

vi︸ ︷︷ ︸
part “p”

+
(
q̂

r̂

)′
+

k∑
i=1

civ
′
i

vi︸ ︷︷ ︸
part “r”

.

In the section on logarithmic functions, we remarked that the two parts of
this decomposition were a polynomial and a proper rational function. This

198 Formal integration and differential equations

observation does not hold for the present case. Let us suppose that vi (with
i ≤ k) is written in the form θni +

∑ni−1
j=0 aiθ

i. The polynomial v′i is also a
polynomial of degree ni, that is

niη
′θni +

(ni−1∑
j=0

aiθ
i

)′
,

and therefore civ′i/vi is not a proper rational fraction. However,

civ
′
i

vi
− ciniη

′ =
ci(v′i − niη

′vi)
vi

is a proper rational fraction. We therefore have the following decomposition:

p+
q

r
= p̂′ +

n∑
i=k+1

civ
′
i

vi
+ η′

k∑
i=1

cini︸ ︷︷ ︸
generalised polynomial

+
(
q̂

r̂

)′
+

k∑
i=1

ci(v′i − niη
′vi)

vi︸ ︷︷ ︸
proper rational function

(where, moreover, θ does not divide the denominator of the second part).
Since decompositions of the form “generalised polynomial + proper

rational function” (of which θ does not divide the denominator) are unam-
biguous (we recall that θ is supposed transcendental), we can deduce from
this equation the following two equations:

p = p̂′ +
n∑

i=k+1

civ
′
i

vi
+ η′

k∑
i=1

cini;

q

r
=
(
q̂

r̂

)′
+

k∑
i=1

ci(v′i − niη
′vi)

vi
.

The second equation integrates formally to give:∫
q

r
=
q̂

r̂
+

k∑
i=1

ci(log vi − niη).

In the first equation we write p =
∑n

i=−mAiθ
i and p̂ =

∑n′
i=−m′ Biθ

i,
where the Ai and Bi belong to K. Since θ is transcendental, we can deduce

Computer Algebra 199

that the coefficients of each power of θ in the two parts must be equal.
This implies that n = n′ and m = m′. Since the derivative of Biθ

i is
(B′

i + iη′Bi)θi, we find that, for i 6= 0, Aiθ
i = (B′

i + iη′Bi)θi, which implies
that all these latter terms have integrals. Since the rational part also has
an integral, the remaining term, that is A0, must also have an integral.

5.1.5.2 The generalised polynomial part
We have just proved that, for i 6= 0,∫

Aiθ
i = Biθ

i,

where Bi belongs to k and satisfies the differential equationB′
i+iη

′Bi = Ai.
By hypothesis, we have an algorithm which solves this problem in K, either
determining Bi, or proving that no Bi in K satisfies this equation (see
section 5.2.1.1 for the details).

A0 belongs to K, and therefore its integral can be determined by the
algorithm of integration in K. It must be noted that we have to subtract
η
∑k

i=1 cini from this integral to find the integral of f , for this sum was
added in the process of decomposition.

5.1.5.3 The rational and logarithmic part
The last equations in the proof of the decomposition lemma imply that

q

r
=
(
q̂

r̂

)′
+

k∑
i=1

ci(v′i − niη
′vi)

vi
.

In fact, Hermite’s method holds in this case as it does for rational and loga-
rithmic functions, since θ does not divide the denominator r, and therefore
the square-free decomposition r =

∏n
i=1 r

i
i works, and moreover each ri and

its derivative are relatively prime.
We can therefore return to the case where r has no multiple factors.

Previously, that indicated that the integral was a sum of logarithms, but
here it implies that ∫

q

r
=

k∑
i=1

ci(log vi − niη).

The method we shall use for finding the ci and the vi is similar to that used
for rational functions of x, but it requires some technical modifications.
As before, we can suppose that the vi are square-free polynomials, and
relatively prime. The analogue of equation (3′) is

q

r
=

n∑
i=1

ci(v′i − niη
′vi)

vi
. (6)

200 Formal integration and differential equations

There cannot be any cancellation in this sum, and this means that the
vi must be precisely the factors of r, that is r =

∏n
i=1 vi. We write

ui =
∏

j 6=i vj . Then we can differentiate the product of the vi, in order
to determine that r′ =

∑
v′iui. If we clear denominators in (6), we find

q =
∑
ci(v′i − niη

′vi)ui.

vk = gcd(0, vk)

= gcd
(
q −

∑
ci(v′i − niη

′vi)ui, vk

)
= gcd (q − ck(v′k − nkη

′vk)uk, vk)

for all the other ui are divisible by vk

= gcd
(
q − ck

∑
(v′i − niη

′vi)ui, vk

)
for the same reason

= gcd
(
q − ck(r′ − η′r

∑
ni), vk

)
.

If l 6= k, we find, as we do for rational functions,

gcd
(
q − ck(r′ − η′r

∑
ni), vl

)
= 1.

With the help of these two calculations, we determine

gcd
(
q − ck(r′ − η′r

∑
ni), r

)
= vk.

This formula uses
∑
ni, but this is only the degree of r, which we can

call N . Thus, if we know ck we can calculate vk. Moreover, the ck are
precisely those values of y for which gcd(q − y(r′ − Nη′r), r) 6= 1. But
these values can be calculated using the concept of the resultant (see the
Appendix). Resθ(q − y(r′ − Nη′r), r) is a polynomial in y, which cancels
if and only if the g.c.d. is non-trivial. Therefore it suffices to calculate this
polynomial (which can be done without any algebraic extension), to find its
roots (which may indeed require some algebraic extensions), and, for each
of its roots ck, to determine vk = gcd(q − ck(r′ −Nη′r), r). As in the case
of logarithmic functions, it is possible that this polynomial has some non-
constant roots, which would imply that f has no elementary integral.

5.1.6 Integration of mixed functions
It is possible that there are functions which are not purely logarithmic or
purely exponential. But the hypotheses on K we have stated enable us
to integrate mixed functions, by considering the function as a member of

Computer Algebra 201

K(θ), where K is a field of functions and θ is a logarithm or an exponential.
For example, let us consider the function

−ex log2 x+ log x
(

2(ex + 1)
x

)
+ ex + e2x

1 + 2ex + e2x .

The problem. This function belongs to the field of functions Q(x, ex, log x).
Therefore we can write K = Q(x, ex), θ = log x and apply the theory of
section 5.1.4 “Integration of logarithmic functions”. As an element of K(θ),
this function is a polynomial in θ:

θ2
(−ex

1 + 2ex + e2x

)
+ θ

(
2

x(1 + ex)

)
+

ex

1 + ex
.

Following the method of section 5.1.4.1 “Integration of logarithmic func-
tions — the polynomial part”, we must integrate the coefficient of the
leading power of θ, that is −ex/(1 + ex)2. This integration takes place in
K.

Sub-problem 1. This integration takes place in the field L(φ), where
φ = ex and L = Q(x). The function to be integrated is a proper
rational function, and, moreover, φ does not divide the denomina-
tor. Therefore the theory of section 5.1.5.3 “Integration of exponential
functions — the rational and logarithmic part” applies. Square-free de-
composition is quite easy, and we only have to apply Hermite’s method
to q/r2 where q = −φ and r = 1+φ. We find that r′ = φ (the symbol ′

always denotes differentiation with respect to x). The Bezout identity
has to be applied to r and r′, which is quite easy in the present case:

(1)r + (−1)r′ = 1.

By substituting these values in Hermite’s method, we find an integral
of −q(−1)/(1 + φ), and a remainder which cancels completely. Thus
the solution of this sub-problem is −φ/(1 + φ).
In the original problem, this gives us a term of the integral, that is

−θ2ex/(1 + ex). But the derivative of this term gives us also terms in
θ1. The coefficient of θ1 to be integrated, according to formula (5) of
section 5.1.4.2 “The polynomial part”, is given by A1 − 2θ′B2, where A1 is
the original coefficient and B2 is the solution of the sub-problem 1. This
calculation gives

2
x(1 + ex)

− 2
x

−ex

1 + ex
=

2
x
.

202 Formal integration and differential equations

The integral of this function ought to give the coefficient of θ in the integral
(and, possibly, determine the constant of integration in the previous sub-
problem).

Sub-problem 2. In theory this integration takes place in the field L(φ),
where φ = ex and L = Q(x), but in reality it is quite easy to see that
the answer is 2 logx.
In general, the integrals given by the sub-problems must belong to K,

but, as we have seen, they may be allowed to contain θ. That is the case
here, for the integral is 2θ. This implies that the choice of the constant of
integration in the last sub-problem was bad, and that it must be increased
by 2/2 = 1. So, the present state of this problem is that we have integrated
the coefficients of θ2 and of θ1, and we have found the integral to be θ2(1−
ex/(1 + ex)), which simplifies into θ2/(1 + ex). We still have to integrate
the coefficient of θ0, that is ex/(1 + ex).

Sub-problem 3. This integration takes place in the field L(φ), where
φ = ex and L = Q(x). The function to be integrated is not a proper
rational function, and has to be rewritten in the form 1 − 1/(1 + ex).
Integration of 1 gives x (plus a constant of integration, which is the
integration constant of the problem). The other part is a proper ratio-
nal function q/r, where q = −1 and r = 1+ ex. r is not divisible by ex

and has no multiple factors, therefore its integral must be a sum of log-
arithms. By the theory of section 5.1.5.3 “Integration of exponential
functions — the rational and logarithmic part”, we have to calculate

Resφ(q − y(r′ −Nη′r), r),

where N = 1 (the degree of r), and η = x. This simplifies into
Resφ(−1+y, 1 + φ), that is −1+y. This polynomial has a root, y = 1,
which is indeed a constant. Therefore the integral of the rational part
is log(1 + ex) − x. The −x cancels with the x of the other part, and
we have log(1 + ex).
Thus the solution of the problem is

log2 x

(
1

1 + ex

)
+ log(1 + ex).

This apparently rather complicated method for breaking down an integral
into a series of nested, but simple, problems is actually very general. It
gives the following result.

Theorem [Risch, 1969]. Let K = C(x, θ1, θ2, . . . , θn) be a field of func-
tions, where C is a field of constants and each θi is a logarithm or an

Computer Algebra 203

exponential of an element of C(x, θ1, θ2, . . . , θi−1), and is transcendental
over C(x, θ1, θ2, . . . , θi−1). Morevover, the field of constants of K must be
C. Then there is an algorithm which, given an element f of K, either gives
an elementary function over K which is the integral of f , or proves that f
has no elementary integral over K.

The proof is by induction on n (n = 0 being the integration of rational
functions), using the theory of sections 5.1.4 “Integration of logarithmic
functions” and 5.1.5 “Integration of exponential functions”. This theorem
applies also to trigonometric functions (and their inverses), for they can be
expressed as exponentials (or as logarithms).

5.1.7 Integration of algebraic functions

This is quite a difficult problem, which has interested many great math-
ematicians, and which is studied in “Algebraic geometry”. After several
advances in this subject, it was possible to give an answer [Davenport,
1981] to this problem, that is an algorithm which, given an algebraic func-
tion f over Q(x), either gives a function elementary over Q(x) which is its
intgeral, or it proves that there is no such function.

This algorithm is fairly complicated and Davenport has only pro-
grammed that part of it where f is defined by square roots and where
the geometrical problems are not too complicated*. More recently, Trager
[1985] has given other methods which appear to be more efficient, but they
have not yet been programmed. In fact, this problem is still at the frontier
of our mathematical knowledge and of the power of our Computer Algebra
systems. This algorithm can be used, instead of the integration of rational
functions, as a starting point for the induction in Risch’s theorem. This
gives the following result.

Theorem [Davenport, 1984a]. Let K = C(x, y, θ1, θ2, . . . , θn) be a field
of functions, where C is a field of constants, and y is algebraic over C(x) and
each θi is a logarithm or an exponential of an element of C(x, y, θ1, θ2, . . . ,
θi−1), and is transcendental over C(x, y, θ1, θ2, . . . , θi−1). Moreover, the
field of constants of K must be C. Then there is an algorithm which, given
an element f of K, either gives an elementary function over K which is the
integral of f , or proves that f has no elementary integral over K.

It is important to note that this theorem does not allow algebraic
extensions which depend on logarithmic or exponential functions. This

* More precisely, though somewhat technically, the algebraic function
must be defined over an algebraic curve of genus at most 1 if there are
logarithmic parts to be calculated.

204 Formal integration and differential equations

problem was unsolved when the first edition of this book was published,
but has now been solved by Bronstein [1990].

5.1.8 Integration of non-elementary functions
We have quoted Liouville’s definition of the word “elementary”, and have
outlined a theory for integrating these functions, where the integrals too
have to be elementary. What happens if we remove this restriction? Firstly,
we can no longer use Liouville’s principle. Recently Singer, Saunders and
Caviness [1981, 1985] have generalised this principle, but the generalisation
is quite complicated and only applies to a fairly restricted class of functions,
even though this class is wider than the elementary functions. In fact,
a finite number of functions of type E or L are allowed in addition to
logarithms and exponentials.

Definition. A function is of type E over a field K if it is of the form∫
u′G(exp(R(u))), where u ∈ K and G and R are rational functions with

constant coefficients. A function is of type L over a field K if it is of the
form

∫
u′H(log(S(u))), where u ∈ K and H and S are rational functions

with constant coefficients, such that the degree of the numerator of H is at
most the degree of the denominator of H plus one.

For example, the function erf x is of type E over C(x), with u = x and the
rational functions G(y) =

√
2/πy and R(y) = −y2. Similarly,

erf log x =
∫

(
√

2/π/x)exp(− log2 x)

is of type E over C(x, log x). The function Ei(x) =
∫
ex/x is not of type

E over C(x), because the necessary function G(y), say y/x, does not have
constant coefficients. The function Li(x) =

∫
1/ logx is of type L over

C(x), with u = x, H(y) = 1/y and S(y) = y. The function Ei(x) is of type
L over C(x, ex), since it can be written in the form Li(ex).

To integrate in Computer Algebra requires more than Liouville’s prin-
ciple — it needs an algorithm too. There are now algorithms which gen-
eralise Risch’s theorem by allowing only the same class of functions, but a
larger class of integrals, that is functions which are “elementary with erf”
or “elementary with Li (and Ei)” [Cherry, 1983, 1985; Cherry and Caviness,
1984]. But this is currently a subject of intensive study and new algorithms
may be found.

5.2 ALGEBRAIC SOLUTIONS OF O.D.E.S

The problem of integration can be considered as solving the simplest dif-
ferential equation: y′ = f . In this section we state some facts about the

Computer Algebra 205

behaviour of formal solutions of some linear differential equations. The
remarks made in the previous section about the difference between formal
solutions and numerical solutions still apply in this case, as do the remarks
about the difference between the heuristic and the algorithmic approaches.

5.2.1 First order equations
Here we consider the equation y′ + fy = g. The previous sub-section,
on the integration of exponential functions, has already introduced the
problem of finding an algorithm which, given f and g belonging to a class
A of functions, either finds a function y belonging to a given class B of
functions, or proves that there is no element of B which satisfies the given
equation. For the sake of simplicity, we shall consider the case when B is
always the class of functions elementary over A.

There is a fairly well-known method for solving equations of this kind:
we substitute y = ze−

∫
f . This gives

g = y′ + fy

= z′e−
∫

f − zfe−
∫

f + fze−
∫

f

= z′e−
∫

f .

Thus z′ = ge
∫

f , and

y = e−
∫

f
∫
ge
∫

f . (1)

In general, this method is not algorithmically satisfactory for finding y,
since the algorithm of integration described in the last section reformulates
this integral as the differential equation we started with.

5.2.1.1 Risch’s problem
So we have to find a direct method for solving these equations. Risch [1969]
found one for the case when A is a field of rational functions, or an extension
(by a transcendental logarithm or by a transcendental exponential) of a field
over which this problem can be solved. Here we give the algorithm for the
case of rational functions: for the other cases the principles are similar but
the details are much more complicated. The solution given here is, grosso
modo, that of Risch [1969]: there is another one by Davenport [1985c].

The problem can be stated as follows: given two rational functions f
and g, find the rational function y such that y′+fy = g, or prove that there
is none. f satisfies the condition that exp(

∫
f) is not a rational function,

that is that f is not constant, and its integral is not a sum of logarithms
with rational coefficients. The problem is solved in two stages: reducing it
to a purely polynomial problem, and solving that problem.

206 Formal integration and differential equations

Let p be an irreducible polynomial. Let α be the largest integer such
that pα divides the denominator of y, which we can write as pα ‖ den(y).
Let β and γ be such that pβ ‖ den(f) and pγ ‖ den(g). So we can calculate
the powers of p which divide the terms of the equation to be solved:

y′︸︷︷︸
α+1

+ fy︸︷︷︸
α+β

= g︸︷︷︸
γ

.

there are three possibilities.
(1) β > 1. In this case the terms in pα+β and pγ have to cancel, that is

we must have α = γ − β.
(2) β < 1 (in other words, β = 0). In this case the terms in pα+1 and pγ

must cancel, that is, we must have α = γ − 1.
(3) β = 1. In this case, it is possible that the terms on the left-hand

side cancel and that the power of p which divides the denominator of
y′+fy is less than α+1. If there is no cancellation, the result is indeed
α = γ − 1 = γ − β. So let us suppose that there is a cancellation. We
express f and y in partial fractions with respect to p: f = F/pβ+f̂ and
y = Y/pα + ŷ, where the powers of p which divide the denominators of
f̂ and ŷ are at most β − 1 = 0 and α− 1.

y′ + fy =
−αp′Y
pα+1

+
Y ′

pα
+

FY

pα+1
+
f̂Y

pα
+
F ŷ

p
+ f̂ ŷ.

For there to be a cancellation in this equation, p must divide −αp′Y +
FY . But p is irreducible and Y is of degree less than that of p, therefore
p and Y are relatively prime. This implies that p divides αp′−F . But
p′ and F are of degree less than that of p, and the only polynomial
of degree less than that of p and divisible by p is zero. Therefore
α = F/p′.

We have proved the following result:

Lemma [Risch, 1969]. α ≤ max(min(γ − 1, γ− β), F/p′), where the last
term only holds when β = 1, and when it gives rise to a positive integer.

In fact, it is not necessary to factorise the denominators into irreducible
polynomials. It is enough to find square-free polynomials pi, relatively
prime in pairs, and non-negative integers βi and γi such that den(f) =∏
p

βi
i and den(g) =

∏
p

γi
i . When β = 1, we have, in theory, to factorise p

completely, but it is enough to find the integral roots of Resx(F −yp′, p), by
an argument similar to Trager’s algorithm for calculating the logarithmic
part of the integral of a rational function.

We have, therefore, been able to bound the denominator of y by D =∏
p

αi
i , so that y = Y/D with Y polynomial. So it is possible to suppress

Computer Algebra 207

the denominators in our equation, and to find an equation RY ′ + SY = T .
Let α, β, γ and δ be the degress of Y , R, S and T . There are three
possibilities*.
(1) β − 1 > γ. In this case, the terms of degree α+ β − 1 must cancel out

the terms of degree δ, therefore α = δ + 1 − β.
(2) β − 1 < γ. In this case, the terms of degree α+ γ must cancel out the

terms of degree δ, therefore α = δ − γ.
(3) β − 1 = γ. In this case, the terms of degree α+ β − 1 on the left may

cancel. If not, the previous analysis still holds, and α = δ + 1 − β. To
analyse the cancellation, we write Y =

∑α
i=0 yix

i, R =
∑β

i=0 rix
i and

S =
∑γ

i=0 six
i. The coefficients of the terms of degree α + β − 1 are

αrβyα and sγyα. The cancellation is equivalent to α = −sγ/rβ .
We have proved the following result:

Lemma [Risch, 1969]. α ≤ max(min(δ − γ, δ + 1 − β),−sγ/rβ), where
the last term is included only when β = γ + 1, and only when it gives rise
to a positive integer.

Determining the coefficients yi of Y is a problem of linear algebra. In
fact, the system of equations is triangular, and is easily solved.

5.2.1.2 A theorem of Davenport
Nevertheless, the transformation of the differential equation into equation
(1) gives a very interesting result.

Theorem [Davenport, 1985a]. Let A be a class of functions, containing
f and g, and let us suppose that the equation y′+fy = g has an elementary
solution over A. Then:

either e
∫

f is algebraic over A, and in this case the theory of integration
ought to be able to determine y;

or y belongs to A.

Proof. If e
∫

f is not algebraic over A, then this function is transcendental
over A. We put B = A(

∫
f). Either e

∫
f is algebraic over B, or it is

transcendental over B. The only way in which e
∫

f can be algebraic over
B is for

∫
f to be a sum of logarithms with rational coefficients. But in

this case, e
∫

f is algebraic over A .

* The reader may notice that this analysis is very similar to the analysis
of the denominator. This similarity is not the result of pure chance —
in fact the amount by which the degree of Y is greater than that of D
is the multiplicity of x̂ in the denominator of y, after carrying out the
transformation x̂ = 1/x. Davenport [1984a, b] analyses this point.

208 Formal integration and differential equations

The only other possibility to be considered is that e
∫

f is transcenden-
tal over B. We supposed y elementary over A, and a fortiori, y elementary
over B. Now the quotient of two elementary functions is an elementary
function, and thus

ye
∫

f =
∫
ge
∫

f

is elementary over B. But the decomposition lemma for integrals of ex-
ponential functions implies that this integral has the form he

∫
f , where h

belongs to B. Then y ∈ B, and y is the solution to a problem of Risch: in
fact to Risch’s problem for the original equation y′ + fy = g. But f and g
belong to A, and therefore the solution of Risch’s problem belongs to the
same class.

In fact, this theorem asserts that there are only two ways of calculating
an elementary solution of a first order differential equation: either we find
a solution to the homogeneous problem, or we find a solution in the same
class as the coefficients. Moreover, it suffices to look for the homogeneous
algebraic solutions over the class defined by the coefficients.

5.2.2 Second order equations

Every first order equation has, as we have seen, a solution which can be
expressed in terms of integrals and of exponentials, and the interesting
problem about these equations is to determine whether or not the solution
is elementary. For second order equations, it is no longer obvious (or true)
that every solution can be expressed in terms of integrals and of exponen-
tials. To be able to state exact theorems, we need a precise definition of
this concept.

Definition. Let K be a field of functions. The function θ is a Liouvillian
generator over K if it is:
(a) algebraic over K, that is if θ satisfies a polynomial equation with co-

efficients in K;
(b) θ is an exponential over K, that is if there is an η in K such that

θ′ = η′θ, which is an algebraic way of saying that θ = exp η;
(c) θ is an integral over K, that is if there is an η in K such that θ′ = η,

which is an algebraic way of saying that θ =
∫
η.

Definition. Let K be a field of functions. An over-field K(θ1, . . . , θn) of
K is called a field of Liouvillian functions over K if each θi is a Liouvil-
lian generator over K. A function is Liouvillian over K if it belongs to a
Liouvillian field of functions over K.

If we omit K, we imply C(x): the field of the rational functions.

Computer Algebra 209

This definition is more general than the definition of “elementary”,
for every logarithm is an integral. As we have already said, this includes
the trigonometrical functions. We use the notation K(liou) for the class of
Liouvillian functions over K.

Theorem [Kovacic 1977, 1986]. There is an algorithm which, given a
second order linear differential equation, y′′ + ay′ + by = 0 with a and b
rational functions in x,

either finds two Liouvillian solutions such that each solution is a linear
combination with constant coefficients of these solutions,

or proves that there is no Liouvillian solution (except zero).

This theorem and the resulting algorithm are quite complicated, and
we cannot give all the details here. It is known that the transformation
z = e

∫
a/2y reduces this equation to z′′ + (b− a2/4 − a′/2)z = 0. Kovacic

has proved that this equation can be solved in four different ways.

(1) There is a solution of the form e
∫

f , where f is a rational function. In
this case, the differential operator factorises, and we get a first order
equation, the solutions of which are always Liouvillian.

(2) The first case is not satisfied, but there is a solution of the form e
∫

f ,
where f satisfies a quadratic equation with rational functions as coef-
ficients. In this case, the differential operator factorises and we get a
first order equation, the solutions of which are always Liouvillian.

(3) The first two cases are not satisfied, but there is a non-zero Liouvillian
solution. In this case, every solution is an algebraic function.

(4) The non-zero solutions are not Liouvillian.

An example of the use of Kovacic’s algorithm is the equation

y′′ =
4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 5x+ 1

4x4
y,

for which one solution is

y = e

−3
2

log x+ log(x2 − 1) +
1
2
x2 − 1 − 1/x

= x−3/2(x2 − 1)ex2/2−x−1/x.

Kovacic’s method proves also that Bessel’s equation, which can be written
as

y′′ =
(

4n2 − 1
4x2

− 1
)
y,

210 Formal integration and differential equations

only has elementary solutions when 2n is an odd integer, and finds solutions
when n meets this requirement. This algorithm has been implemented in
MACSYMA, and seems to work quite well [Saunders, 1981].

In the case of second degree equations, the same methods which we
used for first degree equations can be used for solving equations with a
non-zero right-hand side (see Davenport [1985a]), but in fact the results
are much more general, and will be dealt with in the next section.

5.2.3 General order equations

The situation for general order equations is, in theory, as well understood
as for second order equations, even if the practical details of the algorithms
are not as clear.

5.2.3.1 Homogeneous equations

We shall first consider generalisations of Kovacic’s algorithm.

Theorem [Singer, 1981]. There is an algorithm which, given a linear
differential equation of any order, the coefficients of which are rational or
algebraic functions:

either finds a Liouvillian solution;
or proves that there is none.

If this algorithm finds a Liouvillian solution, the differential operator
(which can be supposed of order n) factorises into an operator of order one,
for which the solution found is a solution, and an operator of order n− 1,
the coefficients of which are likewise rational or algebraic functions. We
can apply the algorithm recursively to the latter to find all the Liouvillian
solutions.

This algorithm is more general than that of Kovacic for second order
equations, not only because of the generalisation of order, but also because
it allows algebraic functions as coefficients. However, no-one has imple-
mented this algorithm and it seems to be quite complicated and lengthy.
Singer and Ulmer [1992] have found a Kovacic-like algorithm for the case
of third-order equations.

Singer [1985] has also found an algorithm like the previous one, but it
looks for solutions which can be expressed in terms of solutions for second
order equations and Liouvillian functions. Here again the algorithm seems
quite lengthy.

5.2.3.2 Inhomogeneous equations

Here we look at generalisations of Davenport’s theorem stated for linear
first order equations. There are essentially three possibilities:
(1) There is an elementary solution;

Computer Algebra 211

(2) There is a Liouvillian solution, which is not elementary;
(3) There is no Liouvillian solution.

The following theorem lets us distinguish between the first case and the
other two by looking for.algebraic solutions to the homogeneous equation.

Theorem 1 [Singer and Davenport, 1985; Davenport and Singer,
1986]. Let A be a class of functions containing the coefficients of a differ-
ential linear operator L, let g be an element of A, and let us suppose that
the equation L(y) = g has an elementary solution over A. Then:

either L(y) = 0 has an algebraic solution over A;

or y belongs to A .

This theorem is a corollary of the following result, which lets us distin-
guish between the first two cases and the last one, by looking for Liouvillian
solutions (of a special kind) over A.

Theorem 2 [Singer and Davenport, 1985; Davenport and Singer,
1986]. Let A be a class of functions, which contains the coefficients of a
differential linear operator L, let g be an element of A, and let us suppose
that the equation L(y) = g has a Liouvillian solution over A. Then:

case 1) either L(y) = 0 has a solution e
∫

z with z algebraic over A;

case 2) or y belongs to A .

Moreover, there is an algorithm for the case when A is a field of alge-
braic functions, which decides on the case in theorem 2, and which reduces
the problem of theorem 1 to a problem in algebraic geometry. This algo-
rithm is based on Singer’s algorithm (or Kovacic’s, as the case may be)
for homogeneous equations. But this is quite a new subject, and there are
many problems still to be solved and algorithms to be implemented and
improved.

Solutions in finite form to a differential equation are very useful, if there
are any. But there are no such solutions to most differential equations in
physics. That is why the following section is important, for we study a
method for determining solutions in series to these equations.

212 Formal integration and differential equations

5.3 ASYMPTOTIC SOLUTIONS OF O.D.E.S

5.3.1 Motivation and history

The aim of this part of the book is to describe some recent develop-
ments* in the algorithmic methods needed for the “solution” of linear dif-
ferential equations. Note that here “solution” means “solution in series”.
We shall only consider equations of the form:

an(x)(y)(n) + an−1(x)(y)(n−1) + · · · + a0(x)y = 0 (1)

where it is always supposed that the ai are polynomials with complex co-
efficients (we shall discuss this hypothesis later), with no common factor.

Of course, differential equations such as (1) have been the subject of
innumerable studies. Ever since the first papers by Gauss in 1812 and those
of Kummer (1834), most great mathematicians have worked on solutions
to these equations in C. We must mention the papers of Riemann (1857),
Weierstrass (1856), Cauchy (1835–1840), before passing on to the funda-
mental work of Fuchs (1865), Frobenius (1873), Poincaré (1881), Birkhoff
(1909), to name only the most important ones. Today these studies have
been taken up again by P. Deligne (1976), B. Malgrange (1980) and J.P.
Ramis (1981) from the theoretical standpoint.

Why this interest in equations such as (1) ?

There are many answers:
1) obvious theoretical interest,
2) enormous practical interest — we quote just a few applications of linear

differential equations —
solution by separation of variables of problems with partial derivatives
solution of eigenvalue problems (Sturm-Liouville problems),
generation of numerous special functions etc....

What can we hope to contribute to such a branch of mathematics?

* This research is directed by J. Della Dora in the Computer Algebra
group of the Laboratory LMC at Grenoble, with the help of A. Barka-
tou, C. Dicrescenzo, A. Hilali, F. Richard-Jung, E. Tournier, A. Wazner,
H. Zejli-Najid. The work is carried out in close collaboration with D. Du-
val, currently at the University of Limoges, with the University of Stras-
bourg (J.P. Ramis, J. Thoman), and with the Fourier Institute in Grenoble
(B. Malgrange).

Computer Algebra 213

Firstly, to be able for the first time to generate without error the
algebraic solutions to these equations. The result is extremely important in
its own right as we shall show later, for it enables us to deal with theoretical
problems previously inaccessible. A second application, which we shall not
consider here, is to provide a “generator” of special functions (numerical
values, precise index characterisitics . . .). This second set of problems alone
requires an enormous amount of work, reviewing all that has already been
done in this field. Finally, we have to consider that this subject is a test
case — if software for solving algebraically ordinary differential equations
were found, it would open the door to work on software for solving partial
differential equations. The future is rich in problems.

5.3.2 Classification of singularities
Let us consider an equation such as (1). The singularities of the solutions of
this equation are localised at the zeros of an(x) = 0, or possibly at infinity.

By a translation such as x→ x−α we can reduce the problem, for zeros
at a finite distance, to a singularity at the origin (the substitution x→ 1/x
similarly reduces the singularity at infinity to one at zero). Classically, we
suppose that (1) has a singularity at zero.

This way of proceeding is in fact erroneous. For we know that, away
from the singularities, the solutions are analytic functions and therefore
very regular. Now, choosing a root of a polynomial leads, whatever numer-
ical method is used (Newton, . . .), to an approximation to this root and,
by a numerical translation, we shall place ourselves at a regular point, and
therefore we shall lose all our information about the singularity. We cannot
proceed thus.

We outline briefly a way of getting out of this problem (a way which
of course requires great changes of attitude by the calculator). First of all
for the sake of simplicity we can suppose that the coefficients of an are
rational numbers (therefore an belongs to Q[x]) and furthermore that they
are integers.

Here the roots α of an are not determined by numerical values (which
would of course be only approximations in most cases), but simply by the
computational rule “an(α) = 0”, which is true for all the roots of an. Then
performing the translation x→ x−α has a very precise meaning, which we
illustrate by an example. The new operator we obtain has its coefficients
in (Q[x]/an)[y].

When we look at the differential operator

L(y) = (x2 + 2)y′′ + y

we see that its coefficients belong to Z[x]. Let α denote a root of x2 + 2;
α therefore satisfies α2 = −2 and that is the only information we can use.

214 Formal integration and differential equations

Let us perform the translation

z = x− α

then
z2 = x2 − 2α ∗ x+ α2

= x2 − 2α ∗ x− 2

= x2 − 2α(z + α) − 2

= x2 − 2α ∗ z + 2

therefore x2 + 2 = z2 + 2αz and the equation becomes

(z2 + 2α ∗ z)y′′ + y = L(y),

that is:
z(z + 2α)y′′ + y = L(y).

We have indeed performed a translation which reduces the singularity to
zero. It is worth noting that there is no need to repeat this calculation for
the other root.

We can therefore suppose from now on that the origin is a root of an,
that is an(0) = 0. We have already supposed that the ai have no common
factor, therefore there is at least one index j such that aj(0) differs from 0.

To classify the singularities, we need another concept, that of
Newton’s polygon of a differential operator.

We give an example to explain this.
Let the operator be

L = x5∂4 + x3∂3 + 2x3∂2 + ∂ + 1,

where we write ∂ =
d

dx
.

If xi∂j is a differential monomial belonging to L, we associate to it the
point in Z2:

(j, i− j).

Therefore we ought to consider the points in Z2:

(4, 1); (3, 0); (2, 1); (1,−1); (0, 0).

Computer Algebra 215

S will denote the set of points of Z2 associated with the monomials of L.
Then, for a point (a, b) thus found, we consider the quadrant :

Qt(a, b) = {(x, y) ∈ R2;x <= a; y >= b}.

We define

QT =
⋃

(a,b)∈S

Qt(a, b).

Newton’s polygon is the frontier of the convex hull of QT .

216 Formal integration and differential equations

Then we can state Fuchs’ characterisation:

We shall say that 0 is a regular singularity for L if the Newton polygon
of L has a single slope and if this slope is zero. Otherwise we shall say that
the singularity is irregular.

Note that in the classic development [Ince, 1956], other criteria are used
to define the nature of the singularities. Our definition has the advantage
of greater simplicity. It is easy to see that if 0 is a regular singularity, we
can write L in canonical form

L = xnR0(x)∂n + xn−1R1(x)∂n−1 + ...+Rn(x)

where R0(0) is non-zero and the Ri are polynomials.

5.3.3 A program for solving o.d.e.s at a regular singularity

We shall explain this case in more detail, since it is simpler than the
general case and illustrates some of the difficulties encountered. The ap-
proach outlined here follows a classic algorithm of Frobenius (other algo-
rithms are possible).

(1) We look at the action of L on a symbolic power xλ, and see that

L(xλ) = xλf(x, λ)

where

f(x, λ) =
m∑

j=0

fj(λ)xj (1)

Computer Algebra 217

with fj a polynomial in the variable λ, and m a function of the degrees of
R0, . . . , Rn.

(2) We can look formally for solutions of the form

xλ
+∞∑
j=0

gjx
j with g0 6= 0.

The linearity of L lets us write

L(xλ
+∞∑
j=0

gjx
j) =

+∞∑
j=0

gjL(xλ+j).

(3) Using (1) it is easily seen that

L(xλ
+∞∑
j=0

gjx
j) = xλ

+∞∑
j=0

gj

(k∑
i=0

fi(λ+ j)xi
)
,

and therefore xλ
∑
gjx

j will be a solution of L if and only if the following
infinite system is satisfied:

f0(λ) 0
f1(λ) f0(λ+ 1) 0

...
...

. . .
...

. . .

fk(λ) fk−1(λ+ 1) . . . f0(λ + k)
. . .

0
.




g0
g1
...
gk
...

 = 0.

This infinite system can be broken down into two parts:
— the initial conditions part

f0(λ)g0 = 0
f1(λ)g0 + f0(λ+ 1)g1 = 0
f2(λ)g0 + f1(λ+ 1)g1 + f0(λ+ 2)g2 = 0
.........................

.........................

.........................

f(k−1)(λ)g0 + · · · · · · + f0(λ+ k − 1)gk−1 = 0

— the other part is in fact a linear recurrence equation

218 Formal integration and differential equations

fk(λ+ n)gn + + f0(λ+ k + n)gn+k = 0 for n ≥ 0.

We see that the gi can be expressed algebraically as rational fractions in λ,
say for example:

g1 =
−f1(λ)

f0(λ+ 1)g0
.

It is important to note here that the gi will be obtained by exact calcula-
tions.

The only difficulty is the first equation:

f0(λ)g0 = 0.

Since g0 cannot be set equal to zero, the only solution is to choose λ such
that f0(λ) = 0 , but here we come up against a problem we have already
encountered, made worse by the difficulty which arises from the fact that
f0 is an element of (Q[x]/(an))[y], and we have therefore to make a further
extension, and work in

(Q[x]/(an)[y]).

We shall not go any deeper into this delicate question, but shall conclude
with the remark that certain denominators of the gi can be zero. The
Frobenius program can deal with the second difficulty mentioned, thanks
to the work of Dicrescenzo and Duval [1985].

5.3.4 The general structure of the program

The program DESIR, presented in detail by Tournier [1987], is made up of
the following basic modules:

FROBENIUS, which we have just outlined, lets us deal with the case of
regular singularities.

NEWTON which lets us deal with the case of irregular singularities.
We state here the basic idea of the method, starting from the following

simple example: let the differential operator of order n = 2 be

L = x2δ + θ(x) , θ ∈ k[x], θ(0) 6= 0

We construct the Newton polygon associated with L:

Computer Algebra 219

We see that in this case the Newton polygon has a slope λ = 1. It is
well known that we can find n linearly independent algebraic solutions:
u1, u2,un of L(u) = 0 which are written

ui = eQi(x)v(x),

where Qi(x) is a polynomial in x(−1/qi), with qi ∈ Z. In our example, the
solutions will therefore be of the form:

u = e(a/xλ)v(x) with λ = 1.

With the operator L and with the slope λ = 1 we associate a new operator
La obtained by the change of variable

u = e
a
x v(x),

which gives

L(e
a
x v(x)) = x2(− a

x2
e

a
x v(x) + e

a
x δv(x)) + θ(x)e

a
x v(x)

= e
a
x (x2δ + (θ(x) − a))v(x),

therefore we make the operator La = x2δ + (θ(x) − a) correspond to L.

The term of La corresponding to the point s0 of the polygon is the
polynomial P (a) = θ(0) − a. We call the equation P (a) = 0 the charac-
teristic equation of La. Therefore if we give a the value of the root of the
characteristic equation, say:

a = θ(0)

220 Formal integration and differential equations

the point s0 disappears, and the Newton polygon becomes:

That is a Newton polygon which characterises a regular singularity whose
solutions we know how to determine by the Frobenius method.

Therefore the general solution will be of the form:

e(a
∗/xλ)Ψ(x),

where Ψ(x) is a solution given by the Frobenius algorithm, and a∗ is a root
of the characteristic equation.

The example given here is that of the simple generic case, that is the
case where a∗ is a simple root of the characteristic equation, and where we
get a zero slope after just one change of variable.

A complete account would have to consider the nature of the roots
(simple, multiple, differing from one another by an integer) of the char-
acteristic equation. For a detailed study of these various cases, we refer
the reader to Tournier [1987], and to section 5.3.5, where we give several
examples of DESIR.

The other modules
Associated with the two FROBENIUS and NEWTON modules which

deal with differential equations, is a module which treats the case of differ-
ential systems [Hilali, 1987]:

Ẋ = AX

where A is meromorphic at the origin.

There are also four fundamental modules, viz :

Computer Algebra 221

1) an arithmetical module which makes it possible to manipulate the var-
ious algebraic extensions required [Dicrescenzo and Duval, 1984, 1985],
[Duval, 1987];

2) a module for numerical resummation, which makes it possible to cal-
culate special functions [Ramis and Thomann, 1980];

3) a module for graphical visualisation [Richard, 1988];

4) a module for treating linear difference equations [Della Dora and Tour-
nier, 1984, 1986], [Tournier, 1987].

These researches have enabled the production of the DESIR software,
of which we present various examples in the following section.

5.3.5 Some examples treated by “DESIR”

DESIR is a program developed under the REDUCE system. The examples
given below have been implemented on an IBM RS/6000. In these examples
there are:

- the call which is made by the command : desir();

- the interactive dialogue for introducing data;

- printing solutions of the differential equation with the number of terms
required;

- verification of the correctness of this solution by putting it back into
the given equation, the answer is then an expression, all of whose terms
are of degree higher than that of the solution.

5.3.5.1 Examples with Bessel’s equation

1: load desir;
loading ...

DESIR : solutions formelles d’equations differentielles
lineaires homogenes au voisinage de zero, point
singulier regulier ou irregulier, ou point regulier

Version 3.1 - Mai 1991
Appel par desir();

222 Formal integration and differential equations

2: on time;

Time: 300 ms

3: desir();

ATTENTION : chaque donnee doit etre suivie de ; ou de $

L’ equation est de la forme

a(0)(x)d~0 + a(1)(x)d~1 + + a(n)(x)d~n = 0

ordre de l’equation ?
3: 2;

Donner les coefficients a(j)(x), j = 0..n
3: x**2;x;x**2;

2
a(0) = X

a(1) = X

2
a(2) = X

correction ? (oui; / non;)
3: non;

transformation ? (oui;/non;)
3: non;

nombre de termes desires pour la solution ?
3: 10;

LES 2 SOLUTIONS CALCULEES SONT LES SUIVANTES

==============

SOLUTION No 1

==============

1 10 1 8 1 6 1 4 1 2
- (----------*X - --------*X + ------*X - ----*X + ---*X - 1)

14745600 147456 2304 64 4

Computer Algebra 223

==============

SOLUTION No 2

==============

1 10 1 8 1 6
- (----------*LOG(X)*X - --------*LOG(X)*X + ------*LOG(X)*X -

14745600 147456 2304

1 4 1 2 137 10
----*LOG(X)*X + ---*LOG(X)*X - LOG(X) - -----------*X +

64 4 884736000

25 8 11 6 3 4 1 2
---------*X - -------*X + -----*X - ---*X)
1769472 13824 128 4

Time: 1670 ms

4: solvalide(first ws,1,10);

La solution numero 1 est

10 8 6 4 2
X - 100*X + 6400*X - 230400*X + 3686400*X - 14745600

--
14745600

La partie reguliere du reste est de l’ordre de x**(11)

Si on reporte cette solution dans l’equation, le terme

significatif du reste est :

12
X

- ----------
14745600

Time: 390 ms

5.3.5.2 Another example

1: load desir;
loading ...

DESIR : solutions formelles d’equations differentielles
lineaires homogenes au voisinage de zero, point
singulier regulier ou irregulier, ou point regulier

224 Formal integration and differential equations

Version 3.1 - Mai 1991
Appel par desir();

2: on time;

Time: 270 ms

3: desir();

ATTENTION : chaque donnee doit etre suivie de ; ou de $

***** INTRODUCTION DES DONNEES *****

L’ equation est de la forme

a(0)(x)d~0 + a(1)(x)d~1 + + a(n)(x)d~n = 0

ordre de l’equation ?
3: 4;

Donner les coefficients a(j)(x), j = 0..n
3: x+1; 2*x**2*(x+1); x**4; 5*x**7/2; x**10;

a(0) = X + 1

2
a(1) = 2*X *(X + 1)

4
a(2) = X

7
5*X

a(3) = ------
2

10
a(4) = X

correction ? (oui; / non;)
3: non;

transformation ? (oui;/non;)
3: non;

nombre de termes desires pour la solution ?
3: 5;

Computer Algebra 225

LES 4 SOLUTIONS CALCULEES SONT LES SUIVANTES

==============

SOLUTION No 1

==============

(SQRT(X)*SQRT(6) + 1)/X -4 1348195877 -1 2
- E *X *(------------*SQRT(X)*SQRT(6) *X +

3072

1330595 -1 173 -1
---------*SQRT(X)*SQRT(6) *X + -----*SQRT(X)*SQRT(6) -

96 2

174069763 2 9173
-----------*X - ------*X - 1)

4608 16

==============

SOLUTION No 2

==============

(- SQRT(X)*SQRT(6) + 1)/X -4 1348195877 -1 2
E *X *(------------*SQRT(X)*SQRT(6) *X +

3072

1330595 -1 173 -1
---------*SQRT(X)*SQRT(6) *X + -----*SQRT(X)*SQRT(6) +

96 2

174069763 2 9173
-----------*X + ------*X + 1)

4608 16

==============

SOLUTION No 3

==============

226 Formal integration and differential equations

2
13/27 (- 32*X + 3)/(12*X) 14 3275412370921168749152 5

X *E *X *(------------------------*X +
12709329141645

90412648939865456 4 10833178373456 3 353835104 2
-------------------*X + ----------------*X + -----------*X +

10460353203 43046721 59049

25336
-------*X + 1)
243

==============

SOLUTION No 4

==============

2
1/54 (2*X + 3)/(3*X) 10 4550251662719798533 5

- X *E *X *(---------------------*X -
1626794130130560

863316799848061 4 48578095525 3 7318955 2 1333
-----------------*X + -------------*X - ---------*X + ------*X
1338925209984 344373768 236196 243

- 1)

Time: 431780 ms plus GC time: 6350 ms
4: solvalide(first ws,1,2);

La solution numero 1 est - (

(SQRT(X)*SQRT(6) + 1)/X 2
E *(4044587631*SQRT(X)*X + 127737120*SQRT(X

2
)*X + 797184*SQRT(X) - 348139526*SQRT(6)*X - 5283648*SQRT(6)*X

4
- 9216*SQRT(6)))/(9216*SQRT(6)*X)

5
La partie reguliere du reste est de l’ordre de x**(- ---)

2
Si on reporte cette solution dans l’equation, le terme
significatif du reste est :

Computer Algebra 227

135986861435 (SQRT(X)*SQRT(6) + 1)/X
--------------*SQRT(X)*E

12288

SQRT(6)

(SQRT(X)*SQRT(6) + 1)/X 3
- (E *X*(3275045050305*SQRT(X)*SQRT(6)*X +

2
4209434611080*SQRT(X)*SQRT(6)*X - 466934674845*SQRT(X)*SQRT(6

4
)*X - 1053600588472*SQRT(X)*SQRT(6) + 3822135311295*X +

3 2
14323961393910*X + 5789417431041*X - 4240522163934*X -

1631842337220))/(147456*SQRT(X)*SQRT(6))

Time: 162220 ms plus GC time: 5690 ms

228 Formal integration and differential equations

Appendix. Algebraic
background

A.1 SQUARE-FREE DECOMPOSITION
In this section we consider a polynomial p of R[x], where R is an integral
ring of zero characteristic* (for example, the ring Z of integers). It is
possible that p has multiple factors, that is that there is a polynomial q
such that q2 divides p (perhaps that q3 or a higher power divides p, but in
this case it is still true that q2 divides p).

Obviously, we can find all the multiple factors by doing a complete
factorisation of p, but there is a very much simpler way, which we now
describe. It suffices to consider monic p, that is with 1 as leading coefficient.
Suppose that p is factorised into a product of linear factors:

p =
n∏

i=1

(x − ai)
ni ,

where the ai can be algebraic quantities over R (but we only do this fac-
torisation for the proof).

The derivative of p, which is calculated purely algebraically starting
from the coefficients of p, is then

p′ =
n∑

i=1

(
ni(x− ai)

ni−1
n∏

j=1
i6=j

(x− aj)
nj

)
,

* We make this hypothesis in order to exclude the case of xp + 1 over
the field with p elements: this polynomial is irreducible but its derivative
is zero. This and similar cases are not very difficult to handle — see, for
example, Appendix 3 of Davenport [1981].

229

230 Appendix. Algebraic background

It is obvious that, for every i, (x− ai)
ni−1 divides p and p′. Moreover, every

polynomial which divides p is a product of the (x− ai), to a power less than
or equal to ni. Therefore the g.c.d. of p and p′ is almost determined: it
is the product of the (x − ai), to a power which is ni − 1 or ni. But this
power cannot be ni, for (x− ai)

ni divides all the terms of p′ except one,
and cannot therefore divide p′. So we have proved that

gcd(p, p′) =
n∏

i=1

(x− ai)
ni−1

,

Thus, p/ gcd(p, p′) =
∏n

i=1 (x− ai). For the sake of brevity let us call
this object q. Then

gcd(q, gcd(p, p′)) =
n∏

i=1
ni>1

(x− ai),

from which we deduce

q

gcd(q, gcd(p, p′))
=

n∏
i=1

ni=1

(x− ai).

The lefthand side of this equation is the product of all the non-multiple
factors of p, and we have shown how to calculate it using only the operations
of derivation, (exact) division and g.c.d. These operations do not make us
leave R[x], which implies that this product can be calculated in R[x], and
by a fairly efficient method.

In addition, we have calculated as an intermediary result gcd(p, p′),
which has the same factors as the multiple factors of p, but with their
powers reduced by one. If the same calculation we have just applied to
p is applied to gcd(p, p′), we are calculating all the factors of gcd(p, p′) of
multiplicity one, that is the factors of p of multiplicity two. And similarly
for the factors of multiplicity three,

That is, by quite simple calculations in R[x], we can break down p in
the form

∏
pi

i, where pi is the product of all the factors of p of multiplicity
i. In this decomposition of p, each pi is itself without multiple factors, and
the pi are relatively prime. This decomposition is called the square-free
decomposition of p (also called “quadrat-frei”).

The method we have shown may seem so effective that no improve-
ment is possible but Yun [1976, 1977] has found a cunning variation, which
shows that, asymptotically, the cost of calculating a square-free decompo-
sition of p is of the same order of magnitude as the cost of calculating the

Computer Algebra 231

gcd(p, p′). We see that all these calculations are based on the possibility
of our being able to calculate the derivative of p. Calculating a square-free
decomposition of an integer is very much more complicated — it is almost
as expensive as factorising it.

A.2 THE EXTENDED EUCLIDEAN ALGORITHM

According to Euclid (see the historical notes in Knuth [1973]), we can cal-
culate the g.c.d. of two integers q and r by the following method:

if |q| < |r| then t := q;
q := r;
r := t;

while r 6= 0
do t := remainder(q, r);

q := r;
r := t;

return q;

(where we have used indentation to indicate the structure of the program,
rather than begin . . . end, and the function “remainder” calculates the
remainder from the division q/r). In fact, the same algorithm holds for the
polynomials in one variable over a field — it suffices to replace the meaning
“absolute value” of the signs | | by the meaning “degree”.

This algorithm can do more than the simple calculation of the g.c.d.
At each stage, the values of the symbols q and r are linear combinations of
the initial values. Thus, if we follow these linear combinations at each stage,
we can determine not only the g.c.d., but also its representation as a linear
combination of the data. Therefore we can rewrite Euclid’s algorithm as
follows, where the brackets [. . .] are used to indicate pairs of numbers and
Q and R are the pairs which give the representation of the present values
of q and r in terms of the initial values.

The assignment to T may seem obscure, but the definition of remainder
gives t the value q − bq/rcr, where bq/rc is the quotient of q over r.

The first value this algorithm returns is the g.c.d. of q and r (say p),
and the second is a pair [a, b] such that p = aq + br. This equality is
called Bezout’s identity, and the algorithm we have just explained which
calculated it is called the extended Euclidean algorithm.

We said that Euclid’s algorithm applies equally to polynomials in one
variable. The same is true of the extended Euclidean algorithm. But there
is a little snag here. Let us suppose that q and r are two polynomials with
integer coefficients. Euclid’s algorithm calculates their g.c.d., which is also a
polynomial with integer coefficients, but it is possible that the intermediary

232 Appendix. Algebraic background

Extended Euclidean Algorithm
if |q| < |r| then t := q;

q := r;
r := t;
Q := [0, 1];
R := [1, 0];

else Q := [1, 0];
R := [0, 1];

while r 6= 0
do t := remainder(q, r);

T := Q− bq/rcR;
q := r;
r := t;
Q := R;
R := T ;

return q and Q;

values are polynomials with rational coefficients. For example, if q = x2−1
and r = 2x2 + 4x + 2, then the quotient bq/rc is 1/2. After this division,
our variables have the following values:

q : 2x2 + 4x+ 2
Q : [0, 1]

r : −2x− 2
R : [1,−1/2].

The remainder from the second division is zero, and we get the g.c.d. −2x−
2, which can be expressed as

1(x2 − 1) − 1
2
(2x2 + 4x+ 2).

Perhaps it is more natural to make the g.c.d. monic, which then gives us
as g.c.d. x+ 1, which is expressible as

−1
2

(x2 − 1) +
1
4
(2x2 + 4x+ 2).

A.3 PARTIAL FRACTIONS

Two fractions (of numbers or of polynomials in one variable) can be added:

a

p
+
b

q
=
aq/ gcd(p, q) + bp/ gcd(p, q)

lcm(p, q)
.

Computer Algebra 233

Is it possible to transform a fraction in the other direction, that is, can we
rewrite c/pq in the form (a/p) + (b/q)? Such a decomposition of c/pq is
called a decomposition into partial fractions.

This is only possible if p and q are relatively prime, for otherwise
the denominator of (a/p) + (b/q) would be lcm(p, q), which differs from
pq. If p and q are relatively prime, the g.c.d. is 1. By the theorem of the
preceding paragraph, there are two (computable!) integers (or polynomials,
depending on the case) P and Q with Pp+Qq = 1. Then

c

pq
=
c(Pp+Qq)

pq
=
cQq

pq
+
cPp

pq
=
cQ

p
+
cP

q
,

and we have arrived at the desired form.
In practice, c/pq is often a proper fraction, that is the absolute value

(if it is a question of numbers, the degree if it is a question of polynomials)
of c is less than that of pq. In that case, we want the partial fractions to be
proper, which is not generally guaranteed by our method. But it suffices
to replace cQ by the remainder after division of it by p, and cP by the
remainder after its division by q.

This procedure obviously extends to the case of a more complicated
denominator, always with the proviso that all the factors are relatively
prime. It suffices to take out the factors successively, for example,

c

p1p2 . . . pn
=
a1

p1
+

b1
p2 . . . pn

=
a1

p1
+
a2

p2
+

b2
p3 . . . pn

= · · ·
=
a1

p1
+
a2

p2
+ · · · + an

pn
.

In fact, there are more efficient methods than this, which separate the pi

in a more balanced fashion [Abdali et al., 1977].

A.4 THE RESULTANT
It quite often happens that we have to consider whether two polynomials,
which are usually relatively prime, can have a common factor in certain
special cases. The basic algebraic tool for solving this problem is called
the resultant. In this section we shall define this object and we shall give
some properties of it. We take the case of two polynomials f and g in one
variable x and with coefficients in a ring R.

We write f =
∑n

i=0 aix
i and g =

∑m
i=0 bix

i.

234 Appendix. Algebraic background

Definition. The Sylvester matrix of f and g is the matrix



an an−1 . . . a1 a0 0 0 . . . 0
0 an an−1 . . . a1 a0 0 . . . 0
...

. . .
. . .

.
. . .

. . .
. . .

...
0 . . . 0 an an−1 . . . a1 a0 0
0 . . . 0 0 an an−1 . . . a1 a0

bm bm−1 . . . b1 b0 0 0 . . . 0
0 bm bm−1 . . . b1 b0 0 . . . 0
...

. . .
. . .

.
. . .

. . .
. . .

...
0 . . . 0 bm bm−1 . . . b1 b0 0
0 . . . 0 0 bm bm−1 . . . b1 b0



where there are m lines constructed with the ai, n lines constructed with
the bi.

Definition. The resultant of f and g, written Res(f, g), or Resx(f, g) if
there has to be a variable, is the determinant of this matrix.

Well-known properties of determinants imply that the resultant belongs
to R, and that Res(f, g) and Res(g, f) are equal, to within a sign. We
must note that, although the resultant is defined by a determinant, this
is not the best way of calculating it. Because of the special structure of
the Sylvester matrix, we can consider Euclid’s algorithm as Gaussian elim-
ination in this matrix (hence the connection betwen the resultant and the
g.c.d.). One can also consider the sub-resultant method as an application of
the Sylvester identity (described in section 2.8.2 “Bareiss’s algorithm”) to
this elimination. It is not very difficult to adapt advanced methods (such as
the method of sub-resultants described in section 2.3.3, or the modular and
p-adic methods described in chapter 4) to the calculation of the resultant.
Collins [1971] and Loos [1982] discuss this problem. We now give a version
of Euclid’s algorithm for calculating the resultant. We denote by lc(p) the
leading coefficient of the polynomial p(x),by degree(p) its degree, and by
remainder(p, q) the remainder from the division of p(x) by q(x). We give
the algorithm in a recursive form.

Computer Algebra 235

Algorithm resultant;
Input f, g;
Output r;
n := degree(f);
m := degree(g);
if n > m then r := (−1)nmresultant(g, f)

else an := lc(f);
if n = 0 then r := am

n

else h := remainder (g, f);
if h = 0 then r := 0

else p := degree(h);
r := am−p

n resultant(f, h);
return r;

We write h =
∑p

i=0 cix
i and ci = 0 for i > p. This algorithm does

indeed give the resultant of f and g for, when n ≤ m and n 6= 0, the
polynomials xig − xih (for 0 ≤ i < n) are linear combinations of the xjf
(for 0 ≤ j < m), and therefore we are not changing the determinant of the
Sylvester matrix of f and g by replacing bi by ci for 0 ≤ i < m. Now this

new matrix has the form
(
A ∗
0 B

)
where A is a triangular matrix with

determinant am−p
n and B is the Sylvester matrix of f and h. From this

algorithm we immediately get

Proposition 1. Res(f, g) = 0 if and only if f and g have a factor in
common.

It is now easy to prove the following propositions:

Proposition 2. If the αi are the roots of f , then

Res(f, g) = am
n

n∏
i=1

g(αi).

Proposition 3. If the βi are the roots of g, then

Res(f, g) = (−1)mnbnm

m∏
i=1

f(βi).

Proposition 4. Res(f, g) = am
n b

n
m

∏n
i=1

∏m
j=1 (αi − βj).

236 Appendix. Algebraic background

Proof. [Duval, 1987]. We write the right hand sides of the three
propositions as

R2(f, g) =am
n

n∏
i=1

g(αi),

R3(f, g) =(−1)mnbnm

m∏
i=1

f(βi),

R4(f, g) =am
n b

n
m

n∏
i=1

m∏
j=1

(αi − βj).

It is clear that R2(f, g) and R3(f, g) are equal to R4(f, g). The three propo-
sitions are proved simultaneously, by induction on the integer Min(n,m).
If f and g are swapped, their resultant is multiplied by (−1)nm, and gives
R4(f, g). We can therefore suppose that n ≤ m. Moreover R2(f, g) is equal
to am

n when n = 0, as is the resultant of f and g, and R4(f, g) is zero
when n > 0 and h = 0, as is the resultant. It only remains to consider
the case when m ≥ n > 0 and h 6= 0. But then R2(f, g) = am−p

n R2(f, h)
for g(αi) = h(αi) for each root αi of f , and the algorithm shows that
Res(f, g) = am−p

n Res(f, h), from which we get the desired result.

Definition. The discriminant of f , Disc(f) or Discx(f), is

a2n−2
n

n∏
i=1

n∏
j=1
j 6=i

(αi − αj).

Proposition 5. Res(f, f ′) = an Disc(f). Moreover Disc(f) ∈ R.

Whichever way they are calculated, the resultants are often quite large.
For example, if the ai and bi are integers, bounded by A and B respectively,
the resultant is less than (n+ 1)m/2(m+ 1)n/2AmBn, but it is very often of
this order of magnitude. Similarly, if the ai and bi are polynomials of degree
α and β respectively, the degree of the resultant is bounded bymα+nβ. An
example of this swell is the use of resultants to calculate primitive elements
— see section 2.6.4.

A.5 CHINESE REMAINDER THEOREM
In this section we shall treat algorithmically this well-known theorem.
There are two cases in which we shall use this theorem: that of integers
and that of polynomials. Of course, these cases can be regrouped in a more
abstract setting (Euclidean domains), but we leave this generality to the
pure mathematicians. We shall deal first of all with the case of integers,
and then (more briefly) with that of polynomials.

Computer Algebra 237

A.5.1 Case of integers

It is simpler to deal first with the case where the two moduli are relatively
prime, and then to go on to the general case.

Chinese remainder theorem (first case). Let M and N be two rela-
tively prime integers. For every pair (a, b) of integers, there is an integer
c such that x ≡ a (mod M) and x ≡ b (mod N) if and only if x ≡ c
(mod MN).

Proof. By the theory of section A.2, there are two integers f and g such
that fM + gN = 1 (here we are making the hypothesis that M and N are
relatively prime). Let c = a+ (b− a)fM .

If x ≡ c (mod MN), then x ≡ c (mod M). But c ≡ a (mod M),
and therefore x ≡ a (mod M). Moreover,

c = a+ (b− a)fM = a+ (b− a)(1 − gN) ≡ a+ (b− a) (mod N) = b,

and therefore x ≡ c (mod MN) implies x ≡ b (mod N).
In the other direction, let us suppose that x ≡ a (mod M) and that

x ≡ b (mod N). We have shown that c ≡ a (mod M) and c ≡ b
(mod N), therefore we must have x ≡ c (mod M) and (mod N). But
the statement that x ≡ c (mod M) is equivalent to asserting that “M
divides x−c”. Similarly N divides x−c, and therefore MN divides it. But
this is equivalent to “x ≡ c (mod MN)”.

Corollary. Let N1, . . . , Nn be integers, pairwise relatively prime. For ev-
ery set a1, . . . , an of integers there is an integer c such that, for every i,
x ≡ ai (mod Ni) if and only if x ≡ c (mod

∏n
i=1Ni).

The same methods can be applied to the case when M and N are not
relatively prime. Although this generalisation is rarely used, we present it
here, because it is often misunderstood.

(Generalised) Chinese remainder theorem. Let M and N be two
integers. For every pair (a, b) of integers:

either a 6≡ b (mod gcd(M,N)), in that case it is impossible to satisfy
the equations x ≡ a (mod M) and x ≡ b (mod N);
there is an integer c such that x ≡ a (mod M) and x ≡ b
(mod N) if and only if x ≡ c (mod lcm(M,N)).

Proof. The first case, a 6≡ b (mod gcd(M,N)), is quite simple. If x ≡ a
(mod M), then x ≡ a (mod gcd(M,N)). Similarly, if x ≡ b (mod N),
then x ≡ b (mod gcd(M,N)). But these two equations are contradictory.

In the other case, we factorise M and N into products of prime num-
bers: M =

∏
i∈P p

mi

i and N =
∏

i∈P p
ni

i . We now divide the set P of

238 Appendix. Algebraic background

indices into two parts*:

Q = {i : mi < ni};
R = {i : mi ≥ ni}.

Let M̂ =
∏

i∈R p
mi

i and N̂ =
∏

i∈Q p
ni

i , such that

M̂N̂ =
∏
i∈P

p
max(mi,ni)
i = lcm(M,N).

This theorem (the case when the moduli are relatively prime) can be applied
to the equations x ≡ a (mod M̂) and x ≡ b (mod N̂), in order to deduce
that there is a c such that this system is equivalent to the equation x ≡ c
(mod M̂N̂).

We have to prove that this equation implies, not only that x ≡ a
(mod M̂), but also that x ≡ a (mod M) (and the same for N). Let us
therefore suppose that x ≡ c (mod M̂N̂) is satisfied. This implies that
x ≡ b (mod N̂), and therefore the same equation modulo all the factors
of N̂ , in particular modulo M̌ =

∏
i∈Q p

mi

i (we recall that mi < ni for
i ∈ Q). M̌ is also a factor of M , and therefore divides gcd(M,N). Since
a ≡ b (mod gcd(M,N)), we deduce that a ≡ b (mod M̌). We already
know that x ≡ b (mod M̌), and therefore x ≡ a (mod M̌). From this
and from x ≡ a (mod M̂), we deduce x ≡ a (mod M̂M̌). But

M̂M̌ =
∏
i∈R

pmi

i

∏
i∈Q

pmi

i = M,

and therefore the equation modulo M which has to be satisfied really is
satisfied. The same is true for N , and therefore the theorem is proved.

A.5.2 Case of polynomials

In this section we repeat the theory discussed in the last section, for the
case of polynomials in one variable (say x) with coefficients belonging to a
field K. For the sake of simplicity, we suppose that each modulus is a monic
polynomial. The process of calculating the remainder of a polynomial with
respect to a monic polynomial is very simple if the polynomial is of degree
one (that is if it is of the form x−A): the remainder is simply the value of
the polynomial at the point A.

* The distinction between < and ≥ is not very important, provided the
two sets are disjoint and contain every element of P .

Computer Algebra 239

Chinese remainder theorem (first case). Let M and N be two rela-
tively prime monic polynomials. For every pair (a, b) of polynomials there
is a polynomial c such that X ≡ a (mod M) and X ≡ b (mod N) if and
only if X ≡ c (mod MN).

Proof. The theory of section A.2 holds also for the present case, and
therefore the proof follows the same lines without any changes. There
are two polynomials f and g such that fM + gN = 1, and we put c =
a+ (b− a)fM .

Corollary. Let N1, . . . , Nn be polynomials relatively prime in pairs. For
every set a1, . . . , an of polynomials, there is one polynomial c such that
X ≡ ai (mod Ni) if and only if X ≡ c (mod

∏n
i=1Ni).

Chinese remainder theorem (generalised). LetM andN be two poly-
nomials. For every pair (a, b) of the polynomials:

either a 6≡ b (mod gcd(M,N)), in such a case it is impossible to satisfy
the equations X ≡ a (mod M) and X ≡ b (mod N);
there is a polynomial c such that X ≡ a (mod M) and X ≡ b
(mod N) if and only if X ≡ c (mod lcm(M,N)).

In the case when all the polynomials are linear, these methods are
equivalent to the Lagrange interpolation, which determines the polynomial
p which has the values a1, . . . , an at the points N1, . . . , Nn, that is modulo
the polynomials (x−N1), . . . , (x−Nn).

As we are using this case in modular calculation, it is useful to prove
that this algorithm is especially simple. Let us suppose that a is a poly-
nomial over K, and b a value belonging to K, and that the equations to
be solved are X ≡ a (mod M) and X ≡ b (mod x − v) (with M and
x− v relatively prime, that is Mx=v 6= 0). Let V be an element of K such
that the remainder from dividing VM by x− v is 1, that is V = (Mx=v)−1.
Then the solution is

X ≡ Z = a+MV (b− ax=v) (mod M(x− v)).

It is clear that Z ≡ a (mod M), and the choice of V ensures that Z ≡ b
(mod x− v).

If, in addition, M is of the form
∏

(x − vi), V has the special value∏
(v − vi)−1, and can be calculated in K.

A.6 SYLVESTER’S IDENTITY

Sylvester’s identity is fundamental for the method of fraction-free elimi-
nation for matrices, due to Bareiss and described in section 2.8.2. This

240 Appendix. Algebraic background

identity can be stated as

a
(k)
i,j =

1

a
(k−2)
k−1,k−1

∣∣∣∣∣ a
(k−1)
k,k a

(k−1)
k,j

a
(k−1)
i,k a

(k−1)
i,j

∣∣∣∣∣ ,
where a(k)

i,j is the determinant

∣∣∣∣∣∣∣∣∣
a1,1 a1,2 . . . a1,k a1,j

a2,1 a2,2 . . . a2,k a2,j

.
ak,1 ak,2 . . . ak,k ak,j

ai,1 ai,2 . . . ai,k ai,j

∣∣∣∣∣∣∣∣∣ .
To motivate this identity, let us first consider the fraction-free calculation
of the determinant

∆ =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ .
Fraction-free elimination of d and g gives us the equation

∆a2 =

∣∣∣∣∣∣
a b c
0 ae− bd af − cd
0 ah− bg ai− cg

∣∣∣∣∣∣ ,
which we can also write as

∆a2 =

∣∣∣∣∣∣∣∣∣
a b c

0
∣∣∣∣ a b
d e

∣∣∣∣ ∣∣∣∣ a c
d f

∣∣∣∣
0
∣∣∣∣ a b
g h

∣∣∣∣ ∣∣∣∣ a c
g i

∣∣∣∣

∣∣∣∣∣∣∣∣∣ .

The elimination of
∣∣∣∣ a b
g h

∣∣∣∣ gives us

∆a2

∣∣∣∣ a b
d e

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣∣

a b c

0
∣∣∣∣ a b
d e

∣∣∣∣ ∣∣∣∣ a c
d f

∣∣∣∣
0 0

∣∣∣∣∣∣∣∣
∣∣∣∣ a b
d e

∣∣∣∣ ∣∣∣∣ a c
d f

∣∣∣∣∣∣∣∣ a b
g h

∣∣∣∣ ∣∣∣∣ a c
g i

∣∣∣∣
∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Computer Algebra 241

Since this last matrix is triangular, we can deduce that

∆a2

∣∣∣∣ a b
d e

∣∣∣∣ = a

∣∣∣∣ a b
d e

∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣ a b
d e

∣∣∣∣ ∣∣∣∣ a c
d f

∣∣∣∣∣∣∣∣ a b
g h

∣∣∣∣ ∣∣∣∣ a c
g i

∣∣∣∣
∣∣∣∣∣∣∣∣ ,

and so that

∆a =

∣∣∣∣∣∣∣∣
∣∣∣∣ a b
d e

∣∣∣∣ ∣∣∣∣ a c
d f

∣∣∣∣∣∣∣∣ a b
g h

∣∣∣∣ ∣∣∣∣ a c
g i

∣∣∣∣
∣∣∣∣∣∣∣∣ .

As ∆ and the right-hand side are polynomials in a . . . i, the right-hand side
must be divisible by a. As the reader can easily imagine, this analysis has
a two-fold generalisation: firstly, we can show that any element of a matrix
after two elimination steps is divisible by a, and secondly, we can show that
after k steps, every element is divisble by the principal determinant of size
k − 1. A more formal proof of the generalised Sylvester identity was given
by Bareiss [1968]. Let M be a square matrix of size n, with generic entries
ai,j . Write a block decomposition of this after the kth row and column, as

M =
(
A B
C D

)
, where A is a square matrix of size k. As the entries are

generic, A cannot be singular, so we can write

M =
(
A B
C D

)
=
(
A 0
C I

)(
I A−1B
0 D − CA−1B

)
.

Taking determinants of both sides, we find

|M | = |A||D − CA−1B|. (1)

Multiplying this equation by |A|n−k−1 gives

|M ||A|n−k−1 = ||A|(D − CA−1B)| (2)

since the matrix (D−CA−1B) has dimension n−k. Recall that we defined

a
(k)
ij =

∣∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1k a1j

a21 a22 · · · a2k a2j

...
...

...
...

...
ak1 ak2 · · · akk akj

ai1 ai2 · · · aik aij

∣∣∣∣∣∣∣∣∣∣
,

242 Appendix. Algebraic background

which is the matrix A to which we have added the ith row and jth column
of M . Applying the identity (2) to this determinant rather than to M , we
find that

a
(k)
ij = |A|

(
aij −

k∑
r=1

k∑
s=1

air(A−1)rsasj

)
.

The right-hand side of this is the i, jth element of the determinant in (2),
hence we deduce that

|M ||A|n−k−1 = |a(k)
ij | :

Sylvester’s identity.

A.7 TERMINATION OF BUCHBERGER’S ALGORITHM
In this section we will show, using the algebraic properties of ideals, why
Buchberger’s algorithm (section 3.1.4) terminates. First, we will give the
algorithm, assuming, for simplicity, that all polynomial coefficients come
from a field.

Algorithm Buchberger’s, näıve version;
Input B = {g1, . . . , gk};

B is the basis of an ideal I;
Output G = {g1, . . . , gn};

G is a standard basis of the same ideal;
n := k
G := B
P := {(i, j) : 1 ≤ i < j ≤ k};

P is a set of pairs of integers
while P is non-empty

do Choose (i, j) ∈ P ;
Q := S(gi, gj);
P := P \ {(i, j)};
Reduce Q with respect to G;
if Q 6= 0 then (*)

P := P ∪ {(i, n+ 1) : 1 ≤ i ≤ n};
gn+1 := Q;
G := G ∪ {Q};
n := n+ 1;

return G;

The problem of showing termination reduces to the problem of showing
that the lines following the then marked (*) can only be executed a finite
number of times, since every other calculation is finite as long as P stays
finite.

Computer Algebra 243

We establish the following notation.
T : if Q is a polynomial, T (Q) is the leading monomial of Q. For a set E of

polynomials, T (E) is the set of leading monomials of the polynomials
in E.

I : for a set E of polynomials, I(E) is the ideal generated by the polyno-
mials of the set E.

In this notation, the fact that Buchberger’s algorithm is correct is due to
Theorem 5 of section 3.1.4 (a basis G is a standard basis if, and only if, every
S-polynomial S(f, g) reduces to zero with respect to G, for all f, g ∈ G)
and the fact that I(G) does not change, because Q is a linear combination
of polynomials from the set G.

Now let us consider I(T (G)). Every monomial of every polynomial in
this ideal is divisble by (at least) one member of T (G), because I(T (G)) is
an ideal generated by monomials. But, after line (*), T (Q) is not divisible
by any monomial of T (G), because Q is reduced with respect to G. So
T (Q) 6∈ I(T (G)). Hence I(T (G ∪ {Q})) % (T (G)): in other words, every
time we execute the line (*), the ideal I(T (G)) increases strictly. But it
is impossible (by the Hilbert Basis Theorem) to have an infinite sequence
of strictly increasing ideals. So, the lines after (*) can only be executed a
finite number of times, which is what we had to show.

244 Appendix. Algebraic background

Annex. REDUCE: a
Computer Algebra
system

R.1 INTRODUCTION
Over the last twenty years substantial progress has been made through-
out the field of Computer Algebra, and many software systems have been
produced (see also Chapter 1).

Among the major Computer Algebra systems in service today, we have
chosen to give here a detailed exposition of REDUCE. Why REDUCE,
when it can be argued that the most complete system today is MACSYMA?
Firstly, REDUCE occupies a privileged position: it is, and has been for a
long time, the most widely distributed system, and is installed in well over
1000 sites, on a wide spectrum of computers*. Secondly, its PASCAL-like
syntax makes it easy to learn and simple to use.

This system is the brain-child of A.C. Hearn, and the first version ap-
peared in 1967. It has continued to develop with the far-flung collaboration
of its community of “advanced” users, who have contributed many modules
and facilities to the system, and will surely continue to do so. The book by
MacCallum & Wright [1991] describes more applications and examples of
REDUCE than this annex can reasonably contain.

The principal possibilities which this system offers are:
- Integer and rational “arbitrary precision” arithmetic
- Transparently integrated machine and “arbitrary precision” floating-

point arithmetic

* To obtain the latest state of REDUCE distribution, send an elec-
tronic mail message containing the line send info-package to the address
reduce-netlib@rand.org. A file giving the most up-to-date state will
be returned to the sender. In particular, this file describes a portable C
implementation of REDUCE.

245

246 Annex. REDUCE: a Computer Algebra system

- Polynomial algebra in one or several variables
- g.c.d. computations
- factorisation of polynomials with integer coefficients

- Matrix algebra, with polynomial or symbolic coefficients
- Determinant calculations
- Inverse computation
- Solution of systems of linear equations

- Calculus
- Differentiation
- Integration
- Limits
- Laplace transforms

- Manipulation of expressions
- Simplification
- Substitution

- Solution of equations and systems of equations (using Gröbner bases
where applicable — see section 3.1)

REDUCE was, from its beginning, conceived of as an interactive system.
A “program” is therefore a series of free-standing commands, each of which
is interpreted and evaluated by the system in the order in which the com-
mands are entered, with the result being displayed before the next com-
mand is entered. These commands may, of course, be function calls, loops,
conditional statements etc.

R.1.1 Examples of interactive use

REDUCE commands end with “;” or “$”: in the second case, the result is
not printed. Failing to terminate a command is a common error for näıve
users. REDUCE prompts for input by typing “1:” for the first input, and
so on. The user’s input follows this prompt in all the examples below*.
These numbers can be used to refer to the results of previous computations
— see the ws function later.

REDUCE 3.4, 15-Jul-91 ...

1: (x+y+z)**2;

2 2 2
X + 2*X*Y + 2*X*Z + Y + 2*Y*Z + Z

2: df((x+y)**3,x,2);

* In future examples, we shall omit the opening and closing stages of the
dialogue. Note that the version number and date may change from time to
time. Earlier versions may not support all the facilities described here.

Computer Algebra 247

6*(X + Y)

3: int(e**a*x,x);

A 2
E *X

2

4: int(x*e**(a*x)/((a*x)**2+2*a*x+1),x);

A*X
E

2
A *(A*X + 1)

5: for i:=1:40 product i;

815915283247897734345611269596115894272000000000

6: matrix m;

7: m:=mat((a,b),(b,c))$

8: 1/m;

[C - B]
[---------- ----------]
[2 2]
[A*C - B A*C - B]
[]
[- B A]
[---------- ----------]
[2 2]
[A*C - B A*C - B]

9: det(m);

2
A*C - B

10: bye;

Quitting

These few examples illustrate the “algebraic” mode of REDUCE. There
is another mode, “symbolic”, which allows one to execute arbitrary LISP
instructions directly. These modes correspond to the two data types “alge-
braic expression” and “S-expression of LISP”.

The REDUCE system is itself written in LISP, and can be seen as a
hierarchy:

248 Annex. REDUCE: a Computer Algebra system

REDUCE algebraic mode

RLISP infix symbolic mode

LISP prefix symbolic mode

It is possible to communicate between the various modes. But RE-
DUCE is essentially designed to work in algebraic mode, and symbolic
mode calculation requires a good knowledge of LISP and of the internal
structure of REDUCE. Hence, in this annex, we will restrict ourselves to
algebraic mode. RLISP is described by Davenport & Tournier [1983].

R.2 SYNTAX OF REDUCE

We concentrate on the syntactic elements of REDUCE in this section, and
pass later to the various algebraic facilities offered.

R.2.1 Syntactic elements

A REDUCE program is, as we have already said, a sequence of simple state-
ments evaluated in order. These statements can be declarations, commands
or expressions. These expressions are composed of numbers, variables, op-
erators, strings (delimited by "), reserved words and delimiters. While this
syntactic structure is common to most high-level languages, we should note
the following differences.
• The numbers

The integers of REDUCE are “infinite precision”, and numbers which
are not exact integers are normally represented as the quotient of two
integers. It is possible to use floating-point numbers of any precision:
with REDUCE using machine floating-point numbers or software “ar-
bitrary precision” as appropriate.

• The variables
Each variable has a name and a type. The name must not be that of
a reserved word, i.e. a keyword of the language. Most variables can
take the default type, which is SCALAR. Such variables can be given
any algebraic expression as value. In the absence of any such value,
they have themselves as value. The reserved “variables” are:

E – the base of the natural logarithms;
I – the square root of −1 (but it can also be used as a loop

counter);
INFINITY – used in limiting etc. as a special value;

NIL – a synonym of zero;
PI – the circular constant π;
T – a synonym for “true”.

Computer Algebra 249

• The operators
These come in two types:

– prefix
A number of prefix operators with special properties are incor-
porated in the system: a detailed list is given in section R.3.1.
The user can also add new operators, with similar properties (see
R.2.3.4).

– infix
The built-in infix operators are: WHERE := OR AND NOT NEQ =
>= > < <= . + - * / **, and the user can also add new ones
(see Section R.2.3.4). In addition, EQ MEMBER and MEMQ are infix
operators, though not valid in algebraic mode.

R.2.2 Expressions

Since REDUCE is a Computer Algebra system, its whole purpose is the
manipulation of expressions.

R.2.2.1 Different types of expressions

The various kinds of expression possible in REDUCE are:
• scalar expressions (i.e. those with algebraic values), computed with +,
-, *, / and ** (it is often possible to use ^ instead of **);

• equational expressions, such as A+B=C, which can be used as arguments
to functions like SOLVE and SUB (the substitution function);

• integer expressions, similar to those of other languages;
• boolean expressions.

These last have the (fairly standard) syntax rules:
<expression> <relational operator> <expression>
<boolean function>(<arguments>)
<boolean expression> <logical operator> <boolean expression>
We should note that operators like AND and OR are lazy, in the sense that
they do not evaluate their second argument if the first arguments suffices
to determine the result (false for AND, true for OR). The boolean functions
built-in are:

EVENP(U) determines if U (which must be an integer expression) is even;
FIXP(U) determines if U is an integer;

FREEOF(U,V) determines if the expression U does not contain the kernel* V;
NUMBERP(U) determines if U is a number;
ORDP(U,V) determines if the kernel U is ordered before the kernel V;

* A kernel is a simple variable, or an instance of an operator for which
no substitution has been defined, e.g. sin(a). See also the discussion at
the beginning of Section 7 of Chapter 2.

250 Annex. REDUCE: a Computer Algebra system

PRIMEP(U) determines if an integer is a prime or not.

If an algebraic expression occurs in a boolean context, 0 is interpreted as
false, and all other values as true.

R.2.2.2 Simplification of expressions

As has already been mentioned (see Moses [1971] and Chapter 2), this is
a major problem of Computer Algebra. Some operations (e.g. collection
of common terms) are always performed. Others are controlled by various
switches, which can be set by the statement* ON <switch-name>, and unset
via OFF <switch-name>. There any many such switches — those which
control the simplification of expressions are:

EXP causes expressions to be expanded during evaluation, and is on by
default (turning it off can prevent canonical forms, as the following
example shows
1: off exp;

2: a:=(x+1)**2;

2
A := (X + 1)

3: b:=x**2+2*x+1;

2
B := X + 2*X + 1

4: if (a=b) then 1 else 0;

0

and is therefore not recommended for beginners);

EZGCD causes such greatest common divisor calculations as are done (see
the next two switches) to be done using a p-adic algorithm, as
described in section 4.2.4.1.

GCD causes the system to cancel greatest common divisors during the
calculation of rational expressions (this switch is off by default,
and should be set on if the user wishes to be sure of having canon-
ical forms during rational evaluations, as we see below:

* Several switch names can be given in a single statement, separated by
commas.

Computer Algebra 251

1: (x**2-1)/(x-1)**2;

2
X - 1

2
X - 2*X + 1

2: on gcd;

3: (x**2-1)/(x-1)**2;

X + 1

X - 1

however, simple factors are often spotted even when GCD is not
set);

LCM causes the system to compute true least common multiples when
combining fractions, even when GCD is off, thus providing most of
the power of GCD, and is normally on;

MCD causes the system to place the sum of rational expressions over a
common denominator, and is on by default — turning it off can
prevent the system from having canonical, or even normal, forms,
as the following example shows:

1: 1/(x-1)-1/(x+1)-2/(x**2-1);

0

2: off mcd;

3: 1/(x-1)-1/(x+1)-2/(x**2-1);

2 -1 -1 -1
- (2*(X - 1) + (X + 1) - (X - 1))

and again changing this switch is not recommended for beginners.
ROUNDED causes the system to perform calculations in “arbitrary precision”

floating point (which may be machine floating point if that is ac-
curate enough). The number of decimal digits to be used is set by
the PRECISION function, as the following example shows:

1: on rounded;

2: precision 40;

12

3: 1/3;

252 Annex. REDUCE: a Computer Algebra system

0.333 33333 33333 33333 33333 33333 33333 33333 33

4: print!-precision 5;

5: ws;

0.33333

6: ws-0.33333;

0.0000033333

The PRECISION function returns the previous setting of the pre-
cision. The PRINT!-PRECISION operator controls the accuracy
to which the numbers are printed — full precision is used un-
less PRINT!-PRECISION has been invoked. The ROUNDED switch,
introduced with REDUCE 3.4, replaces the previous FLOAT and
BIGFLOAT switches.

Rounded mode ought not to be used by default, since it causes loss
of canonical forms, incorrect computations of greatest common
divisors, etc. (see section 2.5 “Representations of fractions”). The
following example illustrates some of these problems.

1: on rounded;

2: e^50*(x+1/e)^100-(sqrt(e)*x+1/sqrt(e))^100;

100
- 5222957056.0*X + 1.92969152631E-34

3: gcd((x^2-1/9)^5,(x^2+(2/3)*x+1/9)^5);

1

Calculation 2: should have returned 0, and 3: should have given
(x+1/3)5. Nevertheless, ROUNDED is far more accurate than FLOAT
was, and the first example given in the first edition no longer
causes problems.

R.2.2.3 List expressions

A list* is a sequence of expressions (which may themselves be lists). Lists
print as the elements themselves, surrounded by braces, as in the following
examples:

* This feature was introduced into REDUCE with version 3.3.

Computer Algebra 253

1: l:={a,{b,c},2};

L := {A,{B,C},2}

2: second l;

{B,C}

Parts of a list can be selected with the operators FIRST, SECOND, THIRD and
REST. A new element can be added to the front of a list with the infix oper-
ator “.” (equivalent to LISP’s CONS function). There are also the functions
APPEND (which takes precisely two arguments) and REVERSE, which reverses
the top level of a list, as below:

3: reverse l;

{1,{B,C},A}

The operator LENGTH returns the length of a list.

4: length l;

3

R.2.3 Declarations

R.2.3.1 Plain variables

As we have already said, a variable which has not been declared is of type
SCALAR, and has itself as value. Variables can be explicitly declared inside
blocks, to be either of type SCALAR or of type INTEGER. Both declarations
give the variable a new binding, extending throughout that block and hiding
any other (or global) binding, as is normal for block-structured languages.
They also initialise the variable to zero. Hence the example in the box (note
that the prompt appears on every line of a multi-line command) works as
in most other block-structured languages.

The difference between the two is that INTEGER variables can only take
integer values. They can therefore be handled more efficiently than general
variables, since +, for example, can be directly interpreted (or compiled)
as the function PLUS of LISP, rather than as the addition of arbitrary RE-
DUCE expressions.

It is possible to state that variables depend on one another, for the
purposes of differentiation, linear operators etc. Such dependencies are in-
troduced via the DEPEND declaration, as in

254 Annex. REDUCE: a Computer Algebra system

Example of block structuring

1: begin
1: scalar a;
1: a:=1;
1: begin
1: scalar a;
1: a:=x;
1: write a;
1: end;
1: write a;
1: end;

X

1

depend a,x,y;
which states that a depends on both the variables x and y. Dependencies
can be removed by the NODEPEND declaration, so that, after
nodepend a,y;
a depends only on x. It should be noted that dependence is a global prop-
erty, not subject to block-structuring.

R.2.3.2 Asymptotic declarations

As as mentioned in section 2.9.1 “Taylor series: simple method”, it is often
useful to be able to cause automatic truncation of terms with more than a
certain weight, which we can think of as a kind of “smallness”. There are
two commands in REDUCE to do this:
• WEIGHT, whose arguments are a comma-separated list of equations
<kernel>=<explicit positive integer>, which say that the kernel is
to be regarded as having that particular weight (the integer has to be
an explicitly quoted integral number, or a FOR loop index whose value
is such a number;

• WTLEVEL, whose argument must be an explicit positive integer (if no
WTLEVEL command has been issued, this defaults to 2), and which
indicates the smallest integer at which monomials of that total weight
are truncated (or never even computed).

There is an important implementation point which must be raised: in the
current versions of REDUCE, a variable with a weight may not be used as
a kernel (e.g. in SUB or in future WEIGHT statements). This “weightedness”
property of a variable can be cleared (as will many others!) by use of the
CLEAR statement.

Computer Algebra 255

R.2.3.3 Array declarations
Arrays (which are always arrays of objects of type SCALAR) are declared
with the ARRAY statement, as in
array v(10),u(2,4);
which declares a one-dimensional array with eleven elements (numbered
from 0 to 10) and a two-dimensional array with fifteen elements (the first
index ranges from 0 to 2, the second from 0 to 4). The elements of an array
are set to zero by a declaration.

Array declarations can appear anywhere in a program, but are global
in scope. An array can be redeclared, in which case all the previous values
are lost, and all elements are reset to zero.

It should be noted that, as arrays are global in scope, there is no way
of passing an array as a parameter to a procedure. Users who have been
troubled by this in the past should consider whether their programs are not
better viewed in terms of lists (see above).

R.2.3.4 Operator declarations

• Prefix operators
These are declared via the OPERATOR declaration, as in operator f,g;.
Such a declaration permits their use as “arbitrary functions”, as in the
expression f(1)+g(a,b). In interactive mode, the user is prompted
whenever an unknown function is encountered, to see whether it should
be declared as an operator in this sense.

• Infix operators
These are declared with the INFIX declaration, but must also be given
a parsing precedence with the PRECEDENCE statement. For example,
1: infix cross;

2: precedence cross,/;

declares CROSS to be an infix operator, whose precedence is just greater
than that of / (and therefore less than that of **), as the following ex-
ample shows:
3: a**b cross c/d;

B
A CROSS C

D

• Linear operators
Operators can be declared to be linear (as functions of their first argu-
ment) with respect to the second argument, by means of the LINEAR
declaration. For example, we could begin the introduction of Laplace

256 Annex. REDUCE: a Computer Algebra system

transforms* by stating
1: operator laplace;

2: linear laplace;

3: laplace(1+a/s+2/s**2,s);

1 1
2*LAPLACE(----,S) + LAPLACE(---,S)*A + LAPLACE(1,S)

2 S
S

The handling of linear operators is affected by the DEPEND declarations
(vid. sup.) in force at the time that laplace (or any linear operator)
is used.

• Symmetry and operators
Operators can also be declared to be symmetric or anti-symmetric via
the corresponding declarations SYMMETRIC and ANTISYMMETRIC. These
cause the arguments to be arranged in REDUCE’s internal order. The
operator εi,j,k could be introduced via
1: operator eps;

2: antisymmetric eps;

after which the following simplifications take place
3: eps(1,2,1);

0

4: eps(3,2,1);

EPS(3,2,1)

5: eps(1,2,3);

- EPS(3,2,1)

• Non-commutative operators
As has been mentioned in Chapter 2 (Section 2.8), REDUCE lets one
declare that certain operators are non-commutative, via the NONCOM
declaration. For example

* In fact, the REDUCE network library of additional code contains a
Laplace transform package.

Computer Algebra 257

1: operator u;

2: noncom u;

3: u(a)*u(b)-u(b)*u(a);

U(A)*U(B) - U(B)*U(A)

R.2.3.5 Procedure declarations

The syntax is
[<type>] PROCEDURE <name> [<parameters>]; <instruction>
where <type> is one of ALGEBRAIC, SYMBOLIC or INTEGER;
<parameters> ::= (<name> [, <name>]*)
and the body is a single instruction (which may well be a block: see later).
In algebraic mode the default type is ALGEBRAIC, and may be omitted: if
the entire body contains only integer calculations, then an integer proce-
dure is more efficient, as in
6: integer procedure factorial n;
6: if n=0 then 1 else n*factorial(n-1);

FACTORIAL

R.2.4 Commands

REDUCE does not really have the strong distinction between “statements”
and “expressions” that is found in languages like PASCAL. Most “state-
ments” are really expressions, and yield a value which can be further ma-
nipulated (as in ALGOL 68). We will describe them as statements, but
shall mention also the value.

R.2.4.1 Assignment

<lhs> := <expression>;
where lhs can be a simple variable, an array element or an instance of an
operator*, as in
1: sec(0);

SEC(0)

2: sec(0):=1;

SEC(0) := 1

* In particular, see the discussion of PART in Section R.3.2.2.

258 Annex. REDUCE: a Computer Algebra system

3: sec(0);

1

The value returned is that of the expression, thus authorising
a:=b:=x+y;

R.2.4.2 Instruction group
Several instructions can be collected into one via the group construct:
<< [<statement>]* <expression> >>
whose value is that of the last expression. Note the difference between
<< a:=x; b:=y >>
whose value is Y, and
<< a:=x; b:=y; >>
whose value is 0, that of the (null) expression at the end.

R.2.4.3 Conditional statement

IF <boolean expression> THEN <expression>

IF <boolean expression> THEN <expression> ELSE <expression>
The value obtained is that of the branch executed (or 0 if absent). Note
that
if x<y then 1; else 0;
is illegal, since the ; has terminated the conditional command. The desired
effect would have been achieved by
if x<y then 1 else 0;

R.2.4.4 Iteration statement
The FOR statement allows iteration over number ranges or lists:
FOR <var> := <start> STEP <incr> UNTIL <end> <action> <expr>
for numeric ranges, and
FOR EACH <var> IN <list> <action> <expr>
for lists. The construction STEP 1 UNTIL can be replaced by “:”.

The various forms of action allowed are: DO, PRODUCT, SUM, COLLECT
and JOIN. DO causes the expr to be evaluated and the result discarded: the
value of the whole loop is then 0. SUM causes all the values to be added
and returned as the value of the loop, similarly PRODUCT causes them to be
multiplied. COLLECT causes FOR to return a list containing all the values of
expr. JOIN also causes FOR to return a list, consisting of all the values of
exp (which must always be a list) spliced together (like APPEND in LISP).

REDUCE also allows
WHILE <boolean expression> DO <statement>

Computer Algebra 259

and its variant
REPEAT <statement> UNTIL <boolean expression>
The value is always zero.

R.2.4.5 Blocks
The syntax is quite simple:
BEGIN [<declaration>]* <statement>* END
However, various points must be noted. The only declarations which obey
the block-structure rules are simple variable declarations (see R.2.3.1): all
others are global in scope. In particular, it is not possible to declare pro-
cedures within blocks. The value of a block is zero unless a RETURN <ex-
pression> has been executed, in which case the value of the expression
becomes the value of the block.

It is also possible to have labels within blocks, introduced by the syn-
tax <label>: before a statement. Labels can be any identifier (but not
numbers). These labels can be used in GO TO (or GOTO) statements, pro-
vided that the GO TO is inside the same block as the label, and not inside
any other blocks. In other words, GO TO cannot be used to leave or enter a
block.

R.2.4.6 Local value assignment
The WHERE operator allows for local value assignment. It is syntactically an
infix operator of lowest precedence. In
<expr> WHERE <var1>=<expr1>, <var2=expr2>;
<expr1> and <expr2> are evaluated, and then <expr> is evaluated, with
each instance of <var1> being replaced by its value <expr1>, and each
instance of <var2> being replaced by its value <expr2>. These values are
not examined for other instances of <var1> and <var2>: in other words,
the substitutions are being done in parallel. WHERE can also be used in
conjunction with rule sets — see section R.3.3.3.

R.3 BUILT-IN FACILITIES
In the previous section we have discussed the syntax of REDUCE: here we
describe the major algebraic facilities incorporated into REDUCE at the
time this translation was prepared. Nevertheless, the definitive reference
for this subject has to be the manual for the version of REDUCE available.

R.3.1 Prefix operators

R.3.1.1 Numeric operators
REDUCE understands the operators MIN and MAX, applied to an arbitrary
number of numeric expressions. There is also ABS, which calculates the

260 Annex. REDUCE: a Computer Algebra system

absolute value, CEILING, which calculates the least integer greater than or
equal to the argument, FLOOR, which calculates the greatest integer less
than or equal to the argument, and ROUND, which calculates the nearest
integer to the argument, with halves being rounded away from zero. All
these operators return symbolic (unevaluated) results if the arguments are
not numeric.

R.3.1.2 Mathematical operators
REDUCE has already defined the prefix operators COS, SIN, TAN, COT, ASIN,
ACOS, ATAN, SQRT, EXP, LOG, SINH, COSH, TANH, ASINH, ACOSH, ATANH, ERF,
DILOG and EXPINT. A few simplification rules are already known, and the
user can define more with the LET statement (described in section R.3.3.2).
The switch setting on rounded; causes instances of most of these operators
with numeric arguments to be evaluated in floating point (provided that
the numval switch is set, which it is by default).

R.3.1.3 Differentiation
The operator DF performs differentiation. The first argument is the expres-
sion to be differentiated: subsequent expressions can be kernels (in which
case they are the “variables” with respect to which differentiation is to be
performed) or numbers (indicating how often the previous differentiation is
to be performed). So df(a,x,2,y); calculates

∂3a

∂x2∂y
.

This takes account of dependencies (see the DEPEND statement in section
2.3.1), and any new rules introduced via LET.
1: operator f,g,h;

2: for all x,y let
2: df(f(x,y),x)=g(x,y),
2: df(f(x,y),y)=x*h(x,y);

3: df(f(a,b),a)*df(f(a,b),b);

G(A,B)*H(A,B)*A

R.3.1.4 Integration
The integration operator in REDUCE is INT, whose first argument is the
integrand, and whose second is the variable of integration. The algorithm
used is the “parallel” or Risch-Norman-Fitch method [Davenport, 1982].
We give a couple of examples (times are calculated on a SUN 4/20, other-
wise known as the Sun SLC).

Computer Algebra 261

1: int(1/(1-x**4),x);

- LOG(X - 1) + LOG(X + 1) + 2*ATAN(X)
--

4

Time: 51 ms

2: int(x**3*sin(x**2),x);

2 2 2
SIN(X) - COS(X)*X

2

Time: 85 ms

3: int(1/(a*e**(m*x)+b*e**(-m*x)),x);

M*X
E *A

SQRT(B)*SQRT(A)*ATAN(-----------------)
SQRT(B)*SQRT(A)

A*B*M

Time: 221 ms

R.3.1.5 Factorisation

REDUCE can factorise polynomials with integer coefficients, in one or sev-
eral variables. There are two possible syntaxes:
FACTORIZE(<expression>)
which returns a list of all the factors (the first may be a numeric content),
and
FACTORIZE(<expression>,<prime>)
which uses the given prime as a “hint” to the modular reduction process
(see Chapter 4 for details of the algorithm used). Repeated factors appear
the appropriate number of times in the list. The control option on ifac-
tor; will also cause integer contents to be factorised as products of primes.
It is also possible to factorise univariate polynomials over the integers mod-
ulo a prime, and to get a description of the steps taken by the algorithm
— see the manual for the details, and Moore and Norman [1981] for the
tracing technique used.

R.3.1.6 Resultants

REDUCE can compute the resultant of two expressions. The syntax is

262 Annex. REDUCE: a Computer Algebra system

RESULTANT(<expression>,<expression>,<kernel>)
where the third argument is the “indeterminate” to be eliminated.

R.3.1.7 Solution of systems of equations
The operator SOLVE can be used to solve a single polynomial equation, a
system of linear equations, or a system of polynomial equations, in which
cases it uses a Gröbner-base method — see section 3.1. The syntax is:
SOLVE(<expression>,<variable>);
where <expression> is either a single expression or a list of expressions,
and <variable> is either a single variable, or a list of variables, represent-
ing the “unknowns” for which the system must be solved. If the second
argument is omitted, then the expression(s) (which may be equation(s))
are solved for all the distinct kernels appearing.

1: solve(x**3+x**2+4=0,x);

- SQRT(7)*I + 1
{X=------------------,

2

SQRT(7)*I + 1
X=---------------,

2

X=-2}

2: solve({x-3*y=2, x-y=1}, {x,y});

1 - 1
{{X=---,Y=------}}

2 2

3: solve {a+b+c+d, a*b+b*c+c*d+d*a, a*b*c+b*c*d+c*d*a+d*a*b,
a*b*c*d-1};

Unknowns: {D,C,B,A}

{{A=ARBCOMPLEX(2),

1
B=---,

A

C= - A,

- 1
D=------},

A

Computer Algebra 263

{A=ARBCOMPLEX(1),

- 1
B=------,

A

C= - A,

1
D=---}}

A

In the last case there are two one-dimensional families of solutions, and
REDUCE has allocated ARBCOMPLEX(1) and ARBCOMPLEX(2) to be the pa-
rameters of these families. There are various options that can be given —
the reader should consult the REDUCE manual for the details.

R.3.2 Manipulation of expressions
First we should mention the concept of current result, which is denoted WS.
This has, as its value, the last computed result. It is possible to access
other results by using the notation WS <number>, which returns the result
of the computation indexed by <number>.

R.3.2.1 Output of expressions
We have already mentioned that following statements with “$” rather than
“;” prevents the result from being printed. Conversely, it is possible to
cause a result to be printed with the WRITE statement. This takes a list of
expressions, separated by commas, and prints the results.

The format of the output can be changed in many ways. The order
in which the variables are printed can be changed by means of the ORDER
statement.
order x,y,z;
orders x ahead of y ahead of z ahead of all other variables or kernels, in any
future printing. The default order depends on the LISP system on which
REDUCE is implemented.
1: p:=(x+y-z)**2;

2 2 2
P := X + 2*X*Y - 2*X*Z + Y - 2*Y*Z + Z

2: order z,y,x;

3: p;

2 2 2
Z - 2*Z*Y - 2*Z*X + Y + 2*Y*X + X

264 Annex. REDUCE: a Computer Algebra system

The FACTOR statement is similar, but causes all terms involving any
particular power of the given kernels to be printed with that power factored
out. For example, we can continue the previous example by:
4: factor z;

5: p;

2 2 2
Z - (2*Z)*(Y + X) + Y + 2*Y*X + X

The command REMFAC is used to cancel the effect of FACTOR declarations.
There are also many switches which control the output format of ex-

pressions. It should be noted that these do not affect the internal form,
unlike switches such as MCD. They do, however, affect the result of the PART
operator, since that returns parts of the expression as it would be printed.
ALLFAC – prints simple multiplicative factors as such, and is normally on.

DIV – searches the denominator of rational expressions for simple fac-
tors, which are then divided into the numerator. This is off by
default.

INTSTR – prints the arguments to operators in the same form as they
would be printed at top level. For example:
1: 2*x+2*y;

2*(X + Y)

2: cos ws;

COS(2*X + 2*Y)

3: on intstr;

4: ws;

COS(2*(X + Y))

LIST – prints each term in a sum on a separate line (good for using up
paper!). This is normally off.

RAT – is useful with FACTOR, and prints the denominator with each
factored term (after cancellation if posible). It is normally off.

RATPRI – prints fractions in the form A
B if A and B each fit on one line.

This is on by default.
REVPRI – prints in ascending order, rather than descending order. It is

normally off.
NAT – invokes the “natural” or mathematical style of printing. It is

normally on, but can be turned off to force printing in an output
style which is compatible with the input syntax.

Computer Algebra 265

FORT – causes expressions to be printed in FORTRAN-compatible for-
mat. There are several control parameters associated with this
option — see the manual for the details.

It is often useful to be able to see the overall “structure” of a complex
expression, or to see shared subparts as such. The STRUCTR statement dis-
plays this internal structure. For example,
1: (1+f^(log(x)*log log x))^5;

5*LOG(LOG(X))*LOG(X) 4*LOG(LOG(X))*LOG(X)
F + 5*F

3*LOG(LOG(X))*LOG(X) 2*LOG(LOG(X))*LOG(X)
+ 10*F + 10*F

LOG(LOG(X))*LOG(X)
+ 5*F + 1

2: structr ws;

5 4 3 2
ANS1 + 5*ANS1 + 10*ANS1 + 10*ANS1 + 5*ANS1 + 1

where

LOG(LOG(X))*LOG(X)
ANS1 := F

This command can also be used with the FORT option, as in
3: on fort;

4: structr ws;
ANS1=F**(LOG(LOG(X))*LOG(X))
ANS=ANS1**5+5.*ANS1**4+10.*ANS1**3+10.*ANS1**2+5.*

. ANS1+1.

Again, the manual should be consulted for the various options and addi-
tional possibilities.

R.3.2.2 Parts of expressions

The operator COEFF returns a list of the coefficients of a polynomial with
respect to a named kernel.
1: coeff(x**3+(x-y)**2-1,x);

2
{Y - 1, - 2*Y,1,1}

It is possible to find just the n-th coefficient, by means of the operator
COEFFN. This is more efficient than computing the whole list and then ex-
tracting one member.
2: coeffn((x+y)**3-2*x**2,x,2);

3*Y - 2

266 Annex. REDUCE: a Computer Algebra system

Various parts of rational functions and polynomials can be extracted
with various operators:

NUM – extracts the numerator of a rational function;
DEN – extracts the denominator of a rational function;
DEG – extracts the degree of a polynomial with respect to a particular

kernel;
LCOF – extracts the leading coefficient with respect to a particular ker-

nel;
LTERM – extracts the leading term (coefficient times variable raised to the

highest power) with respect to a particular kernel;
REDUCT – extracts the reductum (all except the leading term) with respect

to a particular kernel;
MAINVAR – extracts the main variable of a polynomial.

For the operators DEG, LCOF and LTERM, if the polynomial does not
contain the kernel given, then zero is returned, whereas REDUCT returns the
polynomial unchanged*. So a polynomial p is always equal to LTERM(p, k)+
REDUCT(p, k), whether or not it depends on k.

The operator PART selects part of an expression. It works with respect
to the printed form of the expression (bearing in mind all the switch settings
described in the previous section on the output format). The syntax is
PART(<expression>[,<integer>]*).
The expression is notionally printed (in accordance with the printing control
flags described in R.3.2.1), and then each <integer> n in turn is used to
select the n-th argument of the current top-level operator in the expression.
Negative integers select the |n|-th element from the end.
1: x:=a+b+c*d+e+f;

X := A + B + C*D + E + F

2: part(x,2);

B

3: part(x,-2);

E

4: part(x,3,1);

C

5: part(x,0);

PLUS

* This is a change in version 3.4 from previous versions.

Computer Algebra 267

If we use PART on the left-hand side of an assignment statement, then the
value of the assignment is the result of replacing the original part referred
to by the right-hand side.
6: part(x,2):=g*h;

A + G*H + C*D + E + F

7: x;

A + B + C*D + E + F

The reader can see that the original expression is not changed.

R.3.3 Substitution

There are two kinds of substitution possible in REDUCE: local substitution
commands, which take place in the command or expression being evaluated
and global substitution commands, which affect all future calculations un-
til they are cancelled. Either kind can be performed with explicitly-given
substitutions, or via a rule list*, which is a list of expressions of the form
<expression> => <expression>
or
<expression> => <expression> when <boolean expression>
where the <expression>s may contain ordinary variables, which mean
themselves, or variables preceded by ~, which stand for any expression
that may be substituted for them (subject to any conditions imposed by
the <boolean expression>s. So the rule
{sin(~n*pi) => 0 when fixp n}

would affect sin(3*pi) but not sin(3*q), since ~n can be replaced by
anything satisfying the fixp predicate, but pi stands for itself. In fact,
only the first occurrence of a free variable need be preceded by ~. Rule lists
can be assigned to variables, as in
trigreduce := {cos(~x)*cos(~y) => (cos(x+y)+cos(x-y))/2,

cos(~x)*sin(~y) => (sin(x+y)-sin(x-y))/2,
sin(~x)*sin(~y) => (cos(x-y)-cos(x+y))/2,
cos(~x)**2 => (1+cos(2*x))/2,
sin(~x)**2 => (1-cos(2*x))/2};

which produces a set of rules with much the same effect as MACSYMA’s
trigreduce function.

R.3.3.1 Local substitution

This can be performed by the SUB operator, whose syntax is
SUB([<kernel>=<expressions>,]*<expressions>)
which yields the result of evaluating the last expression, and then replacing
in parallel each kernel appearing as the left-hand side of an equation by the

* Rule lists are a new feature of REDUCE 3.4.

268 Annex. REDUCE: a Computer Algebra system

corresponding right-hand side. For example
1: sub(x=x+1, y=cos(u), x*y+u*sin(x));

SIN(X + 1)*U + COS(U)*X + COS(U)

2: z:=a*(x-y)**2+2*b*x+log(y);

2 2
Z := LOG(Y) + A*X - 2*A*X*Y + A*Y + 2*B*X

3: zp:=sub(x=y, y=u+1, z);

2 2
ZP := LOG(U + 1) + A*U - 2*A*U*Y + 2*A*U + A*Y - 2*A*Y + A +

2*B*Y

4: % But z is not altered
4: z;

2 2
LOG(Y) + A*X - 2*A*X*Y + A*Y + 2*B*X

A related operator is the infix operator WHERE, which has the syntax
<expression> WHERE <rule>[,<rule>]*
where a <rule> can be a single equation
<kernel> = <expression>
or a single rule, or a named rule set. In algebraic mode, WHERE provides
more functionality than SUB, and should probably now be used instead of
SUB. An example of using the trigreduce rules defined earlier is
3: (cos a + sin b)^3;

3 2 2 3
COS(A) + 3*COS(A) *SIN(B) + 3*COS(A)*SIN(B) + SIN(B)

4: ws where trigreduce;

(- 3*COS(A - 2*B) - 3*COS(A + 2*B) + COS(3*A) + 9*COS(A)

- 3*SIN(2*A - B) + 3*SIN(2*A + B) - SIN(3*B) + 9*SIN(B))/4

R.3.3.2 Global substitution

These substitutions, introduced by LET statements, take place in all ex-
pressions containing the left-hand side of the substitution rule, from the
moment when the rule is introduced until it is superceded, or cancelled via
the CLEAR command.

Computer Algebra 269

1: operator f,g;

2: let g(x)=x**2,
2: f(x,y)=x*cos(y);

3: df(g(u),u); %our rule only affected g(x)

DF(G(U),U)

4: f(x,y);

COS(Y)*X

5: f(a,b); %our rule only affected f(x,y)

F(A,B)

If we wish to substitute for expressions containing arbitrary variables, rather
than particular named variables, then we must preface the LET statement
by FOR ALL preludes.
6: for all x,y let f(x,y)=log(x)-y;

7: f(a,b);

LOG(A) - B

The formal syntax is
[FOR ALL <var>[,<var>]*] LET <rule>[,<rule>]*
where a rule is defined as
<lhs>=<expression>
Various kinds of lhs are possible: the simplest being a kernel. In this case,
the kernel is always replaced by the right-hand side. If the lhs is of the
form a**n (where n is an explicit integer)*, then the rule applies to all
powers of a of exponent at least n. If the lhs is of the form a*b (where
a and b are kernels or powers of kernels or products of powers of kernels),
then a*b will be replaced, but not a or b separately. If the lhs is of the
form a+b (where a and b are kernels or powers of kernels or products of
powers of kernels), then a+b will be replaced, and the first of a and b in
REDUCE’s ordering (say a) will be implicitly treated as (a+b)-b, and the
a+b replaced.

It is also possible to place conditions, by means of SUCH THAT clauses,
on the variables involved in a FOR ALL prelude, as in

* One has to be more careful with other forms of exponents. For example,
the rule let a**b=0; causes a**(2*b); to simplify to 0, since the internal
form is essentially (ab)2, while a**(b*d); is not simplified, since its internal
form is essentially abd.

270 Annex. REDUCE: a Computer Algebra system

1: operator laplace,factorial;

2: for all x,n such that fixp n and n>0 let
2: laplace(x**n,x)=factorial(n)*t**(-n-1);

3: laplace(y**2,y);

FACTORIAL(2)

3
T

4: laplace(y**(-2),y);

1
LAPLACE(----,Y)

2
Y

A rule can be cleared with the CLEAR command. To clear a rule en-
tered with a prelude, it is necessary to use the same prelude, with the
same variable names. We have already seen that CLEAR also clears WEIGHT
declarations, and in fact it resets many other properties.

Rule sets can also be used globally, using the LETRULES statement to
declare that a particular rule set is to be used from now on, as in
letrules trigreduce;
These can be cancelled by the CLEARRULES statement.

Unlike SUB and WHERE, LET rules are applied repeatedly until no fur-
ther substitutions are possible. While this is often useful (e.g. in linearising
trigonometric functions — see Section 2.7 in Chapter 2 and the trigreduce
list), it does mean that one should not reference the left-hand side of a rule
in the right-hand side.
1: let x=x+1;

2: x;

***** Simplification recursion too deep

3: let y=z;

4: y;

Z

5: let z=y;

6: y;
***** Binding stack overflow, restarting...

Computer Algebra 271

R.4 MATRIX ALGEBRA

The MATRIX declaration lets one declare that variables will take matrix val-
ues, instead of the ordinary scalar ones. Matrices can be entered via the
MAT operator, as in
1: matrix m;

2: m:=mat((a,b),(c,d));

[A B]
M := []

[C D]

REDUCE can compute the inverses of matrices, their determinants, trans-
poses and traces, as in
3: m**(-1);

[D - B]
[----------- -----------]
[A*D - B*C A*D - B*C]
[]
[- C A]
[----------- -----------]
[A*D - B*C A*D - B*C]

4: det(m);

A*D - B*C

5: tp(m);

[A C]
[]
[B D]

6: trace m;

A + D

R.5 IRENA

IRENA, the Interface between REduce and NAg, is a separate package,
available from the Numerical Algorithms Group Ltd.*, which interfaces
the interactive symbolic facilities of REDUCE with the batch numerical
facilities of the NAG Fortran Library. Full details are contained in the
IRENA documentation, and the rationale behind IRENA is presented by
Dewar [1989] and Dewar and Richardson [1990].

To give a flavour of the capabilities of IRENA, suppose that we wish
to calculate the integral

∫ 1

0
4

1+x2 dx. In this case, we could integrate it

* Wilkinson House, Jordan Hill Road, Oxford, England, OX2 8DR.

272 Annex. REDUCE: a Computer Algebra system

symbolically, and substitute the end-points, since we can assure ourselves
that there is no singularity in the region of integration. However, this is
certainly not always possible, while the NAG library contains many excel-
lent numerical integration routines, the use of which generally requires the
writing of a complete Fortran programme. D01AJF is a suitable routine for
this application. With IRENA, we can call for this program to be written
and run interactively for us.
1: d01ajf(f(x)=4/(1+x^2),range=[0:1]);

For an index to the following list, type ‘@0;’. The values of its
entries may be accessed by their names or by typing ‘@1;’, ‘@2;’ etc

{INTEGRAL,ABSOLUTE_ERROR_ESTIMATE,INTERVALS,A_LIST,B_LIST,E_LIST,

R_LIST}

The result is a list of all the REDUCE variables which have been given
values by this call. We can inspect them, to determine the results, error
conditions, and so on.
2: @1;

3.14159265359

3: @2;

1.74563730979E-14

For a more complicated example, consider solving the boundary value
problem in the interval [0, 10] of

y′1 = y2

y′2 = y3

y′3 = −y1y3 − 2(1 − y2
2) ∗ ε,

where ε is a continuation parameter, subject to the boundary conditions

y1(0) = 0
y2(0) = 0

y2(10) − 1 = 0.

D02RAF is an appropriate routine, but calling it directly requires the speci-
fication of subroutines to calculate
• the differential equations fi;
• the boundary conditions gi;
• the Jacobian of the differential equations ∂fi

∂yj
;

Computer Algebra 273

• the Jacobian of the boundary conditions ∂gi

∂yj
;

• the Jacobian of the differential equations with respect to the continu-
ation parameter ∂fi

∂ε ;
• the Jacobian of the boundary conditions with respect to the continu-

ation parameter ∂gi

∂ε ;
Including these subroutine parameters, D02RAF will need 24 parameters.
IRENA can call it as follows:

1: d02raf(range=[0:10],
1: fcn1(x,y1,y2,y3,eps)= y2,
1: fcn2(x,y1,y2,y3,eps)= y3,
1: fcn3(x,y1,y2,y3,eps)= - y1*y3 - 2*(1 - y2*y2)*eps,
1: gbeg1(yl1,yl2,yl3,eps)= yl1,
1: gbeg2(yl1,yl2,yl3,eps)= yl2,
1: gend1(yr1,yr2,yr3,eps)= yr2 - 1)$

For an index to the following list, type ‘@0;’. The values of its
entries may be accessed by their names or by typing ‘@1;’, ‘@2;’ etc

{SIZE_OF_MESH_USED,MESH,SOLUTION,ABSOLUTE_ERROR_ESTIMATES,DELEPS}

2: print!-precision 5;

12

3: @1;

33

4: tp solution;

[0.0 0.0 1.6872]
[]
[0.0032142 0.10155 1.5626]
[]
[0.012532 0.19536 1.4398]
..
[8.8776 1 - 0.0000000067002]
[]
[9.5026 1 0.0000000035386]

We see that IRENA has produced a 33-point mesh, and we have given
part of the solution (using REDUCE’s tp operator to get the transpose of
the solution so that it is legible) and using the print!-precision feature
of REDUCE to print only digits which may be significant A detailed ex-
amination of ABSOLUTE ERROR ESTIMATES would be needed to know more
about the accuracy.

It would also be possibel to use IRENA in its “prompting” mode,
where the user need only type d02raf(); and IRENA will prompt for the
necessary values (beginning, in this case, with the number of differential

274 Annex. REDUCE: a Computer Algebra system

equations, and then asking for the functions, the number of initial boundary
conditions, and so on).

R.6 CONCLUSION

REDUCE is a powerful Computer Algebra system available on many ma-
chines, from the IBM PC to the largest main-frames, but the elementary
facilities are easy to use. Full details (and many options and variations that
we have not had the space to present here) are contained in the manual.

Bibliography

This book has only given a brief outline of Computer Algebra. Before
giving a list of all the work referred to in this book, we shall mention
several books and periodicals of general interest, which may add to the
reader’s knowledge of this subject. The mathematics and algorithms for
treating integers and dense polynomials have been very carefully dealt with
by Knuth [1981]. The collection edited by Buchberger et al. [1982] and
Mignotte’s book [1992] describe several mathematical aspects of Computer
Algebra, and state many of the proofs we have omitted. These two books
are essential for those who want to create their own system. Various uses
of computer algebra are presented in the collection edited by Cohen [1993].

Several articles on Computer Algebra and its applications have ap-
peared in the proceedings of conferences on Computer Algebra. The con-
ferences in North America are organised by SIGSAM (the Special Interest
Group on Symbolic and Algebraic Computation of the Association for Com-
puting Machinery) and their proceedings are published by the ACM, with
the title SYMSAC, such as SYMSAC 76 (Yorktown Heights), SYMSAC
81 (Snowbird), SYMSAC 86 (Waterloo) and SYMSAC 98 (Portland), and
more recently with the title ISSAC, such as ISSAC 90 (Tokyo), ISSAC 91
(Bonn) and ISSAC 92 (Berkeley). The proceedings of the European con-
ferences have been published since 1979 by Springer-Verlag in their series
Lecture Notes in Computer Science: The table below gives the details.

For each system of Computer Algebra the best reference book for the
user is, of course, its manual. But these manuals are often quite long,
and it is hard to get an overall view of the possibilities and limitations
of these systems. Thus, the Journal of Symbolic Computation (published
by Academic Press) contains descriptions of systems, presentations of new
applications of Computer Algebra, as well as research articles in this field.

275

276 Bibliography

Conference Place LNCS

EUROSAM 79 Marseilles 72
EUROCAM 82 Marseilles 144
EUROCAL 83 Kingston-on-Thames 162
EUROSAM 84 Cambridge 174
EUROCAL 85 Linz 203 and 204
EUROCAL 87 Leipzig 378

ISSAC 88 Rome 358

The other journal of particular interest to students of Computer Alge-
bra is Communications in Computer Algebra (formerly the SIGSAM Bul-
letin), published by SIGSAM, which we have already mentioned. It is a
comparatively informal journal, which contains, as well as refereed and
timely scientific articles, problems, announcements of conferences, research
reports, new versions of systems etc.

In France, there is a Computer Algebra community (GRECO, PRC,
. . .), which organises a conference every year. The proceedings are pub-
lished along with other interesting articles in the review CALSYF, edited
by M. Mignotte at the University of Strasbourg. With this one can follow
French work in this field.

[Abbott,1988] Abbott,J.A., Factorisation of Polynomials over Algebraic
Number Fields. Ph.D. Thesis, University of Bath, 1988.

[Abbott et al., 1985] Abbott,J.A., Bradford,R.J. & Davenport,J.H., A Re-
mark on Factorisation. SIGSAM Bulletin 19 (1985) 2, pp. 31–33,
37.

[Abbott et al., 1987] Abbott,J.A., Bradford,R.J. & Davenport,J.H., A Re-
mark on Sparse Polynomial Multiplication. Privately circulated
1987, reprinted as Bath Computer Science Technical Report 92-67.

[Abdali et al., 1977] Abdali,S.K., Caviness,B.F. & Pridor,A., Modular Poly-
nomial Arithmetic in Partial Fraction Decomposition. Proc. 1977
MACSYMA Users’ Conference, NASA publication CP–2012, Na-
tional Technical Information Service, Springfield, Virginia., pp.
253–261.

[Aho et al., 1974] Aho,A.V., Hopcroft,J.E. & Ullman,J.D., The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974. MR 54
(1977) #1706.

[Allen, 1978] Allen,J.R., The Anatomy of LISP. McGraw-Hill, New York,
1978.

[Arnon, 1985] Arnon,D.S., On Mechanical Quantifier Elimination for Ele-

Computer Algebra 277

mentary Algebra and Geometry: Solution of a Nontrivial Problem.
Proc. EUROCAL 85, Vol. 2 [Springer Lecture Notes in Computer
Science Vol. 204, Springer-Verlag, 1985] pp. 270–271.

[Arnon & Smith, 1983] Arnon,D.S. & Smith,S.F., Towards Mechani-
cal Solution of the Kahan Ellipse Problem I. Proc. EUROCAL
83 [Springer Lecture Notes in Computer Science 162, Springer-
Verlag, Berlin, Heidelberg, New York, 1983], pp. 36–44.

[Arnon et al., 1984a] Arnon,D.S, Collins,G.E. & McCallum,S., Cylindrical
Algebraic Decomposition I: The Basic Algorithm. SIAM J. Comp.
13 (1984) pp. 865–877.

[Arnon et al., 1984b] Arnon,D.S, Collins,G.E. & McCallum,S., Cylindri-
cal Algebraic Decomposition I: An Adjacency Algorithm for the
Plane. SIAM J. Comp. 13 (1984) pp. 878–889.

[Ax, 1971] Ax,J., On Schanuel’s Conjectures. Ann. Math. 93 (1971) pp.
252–268.

[Backelin & Fröberg, 1991] Backelin,J. & Fröberg,R., How we proved that
there are exactly 924 cyclic 7–roots. Proc. ISSAC 1991 (ACM,
New York) pp. 103–111.

[Bareiss, 1968] Bareiss,E.H., Sylvester’s Identity and Multistep Integer-
preserving Gaussian Elimination. Math. Comp. 22 (1968) pp.
565–578. Zbl. 187,97.

[Bateman & Danielopoulos, 1981] Bateman,S.O.,Jr., & Danielopoulos,S.D.,
Computerised Analytic Solutions of Second Order Differential
Equations. Computer J. 24 (1981) pp. 180–183. Zbl. 456.68043.
MR 82m:68075.

[Becker & Weispfeninng, 1993] Becker,T. & Weispfenning,V. (with H. Kre-
del), Groebner Bases. A Computational Approach to Commuta-
tive Algebra. Springer Verlag, Graduate Texts in Mathematics
141, 1993.

[Berlekamp, 1967] Berlekamp,E.R., Factoring Polynomials over Finite
Fields. Bell System Tech. J. 46 (1967) pp. 1853–1859.

[Borodin et al., 1985] Borodin,A., Fagin,R., Hopcroft,J.E. & Tompa,M.,
Decreasing the Nesting Depth of an Expression Involving Square
Roots. J. Symbolic Comp. 1 (1985), pp. 169–188.

[Brent, 1970] Brent,R.P., Algorithms for Matrix Multiplication. Report CS
157, Computer Science Department, Stanford University, March
1970. (The results are described by Knuth [1981], p. 482.)

[Bronstein, 1987] Bronstein,M., Integration of Elementary Functions.
Ph.D. Thesis, Univ. California Berkeley, 17 April 1987.

278 Bibliography

[Bronstein, 1990] Bronstein,M., Integration of Elementary Functions. J.
Symbolic Comp. 9 (1990), pp. 117–173.

[Brown, 1969] Brown,W.S., Rational Exponential Expressions and a Con-
jecture concerning π and e. Amer. Math. Monthly 76 (1969) pp.
28–34.

[Brown, 1971] Brown,W.S., On Euclid’s Algorithm and the Computation
of Polynomial Greatest Common Divisors. J. ACM 18 (1971) pp.
478–504. MR 46 (1973) #6570.

[Buchberger, 1970] Buchberger,B., Ein algorithmisches Kriterium für die
Lösbarkeit eines algebraischen Gleichungssystems. Aequationes
Mathematicæ 4 (1970) pp. 374–383. (An algorithmic criterion for
the solubility of an algebraic system of equations.)

[Buchberger, 1976a] Buchberger,B., Theoretical Basis for the Reduction
of Polynomials to Canonical Forms. SIGSAM Bulletin 39 (Aug.
1976) pp. 19–29.

[Buchberger, 1976b] Buchberger,B., Some Properties of Gröbner-Bases for
Polynomial Ideals. SIGSAM Bulletin 40 (Nov. 1976) pp. 19–24.

[Buchberger, 1979] Buchberger,B., A Criterion for Detecting Unnecessary
Reductions in the Construction of Groebner Bases. Proceedings
of the 1979 European Symposium on Symbolic and Algebraic
Computation [Springer Lecture Notes in Computer Science 72,
Springer-Verlag, Berlin, Heidelberg, New York, 1979], pp. 3–21.
Zbl. 417.68029. MR 82e:14004.

[Buchberger, 1981] Buchberger,B., H-Bases and Gröbner-Bases for Polyno-
mial Ideals. CAMP-Linz publication 81–2.0, University of Linz,
Feb. 1981.

[Buchberger, 1983] Buchberger,B., A Note on the Complexity of Computing
Gröbner-Bases. Proc. EUROCAL 83 [Springer Lecture Notes in
Computer Science 162, Springer-Verlag, Berlin, Heidelberg, New
York, 1983], pp. 137–145.

[Buchberger, 1985] Buchberger,B., A Survey on the Method of Groebner
bases for Solving Problems in Connection with Systems of Multi-
variate Polynomials. Proc. 2nd RIKEN Symposium Symbolic &
Algebraic Computation (ed. N. Inada & T. Soma), World Scien-
tific Publ., 1985, pp. 69–83.

[Buchberger et al., 1982] Buchberger,B., Collins,G.E. & Loos,R. (editors),
Symbolic & Algebraic Computation. Computing Supplementum
4, Springer-Verlag, Wien, New York, 1982.

Computer Algebra 279

[Capelli, 1901] Capelli,A., Sulla riduttibilita della funzione xn−A in campo
qualunque di rationalità. Math. Ann. 54 (1901) pp. 602–603. (On
the reducibility of the function xn −A in some rational field.)

[Cauchy, 1829] Cauchy,A.-L., Exercises de Mathématiques Quatrième
Année. De Bure Frères, Paris, 1829. Œuvres, Sér. II, Vol. IX,
Gauthier-Villars, Paris, 1891.

[Char et al., 1985] Char,B.W., Geddes,K.O., Gonnet,G.H., Watt,S.M.,
Maple user’s guide. Watcom Publications, Waterloo 1985.

[Chazy, 1953] Chazy, J., Mécanique céleste. Presses Universitaires de
France, 1953.

[Cherry, 1983] Cherry,G.W., Algorithms for Integrating Elementary Func-
tions in Terms of Logarithmic Integrals and Error Functions.
Ph.D. Thesis, Univ. Delaware, August 1983.

[Cherry, 1985] Cherry,G.W., Integration in Finite Terms with Special Func-
tions: the Error Function. J. Symbolic Comp. 1 (1985) pp. 283–
302.

[Cherry & Caviness, 1984] Cherry,G.W. & Caviness,B.F., Integration in
Finite Terms with Special Functions: A Progress Report. Proc.
EUROSAM 84 [Springer Lecture Notes in Computer Science 174,
Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984], pp.
351–359.

[Chou & Collins, 1982] Chou,T.-W.J. & Collins,G.E., Algorithms for the so-
lution of systems of linear Diophantine equations. SIAM J. Comp.
11 (1982) pp. 687–708. Zbl. 498.65022. MR 84e:10020.

[Cohen, 1993] Cohen,A.M. (ed.), Computer Algebra in Industry: Problem
Solving in Practice. Wiley, 1993.

[Collins, 1971] Collins,G.E., The Calculation of Multivariate Polynomial
Resultants. J. ACM 18 (1971) pp. 515–532.

[Collins,1975] Collins,G.E., Quantifier Elimination for Real Closed Fields
by Cylindrical Algebraic Decomposition. Proc. 2nd GI Conf. Au-
tomata Theory and Formal Languages (Springer Lecture Notes in
Computer Science 33), pp. 134–183. MR 55 (1977) #771.

[Collins & Loos, 1982] Collins,G.E. & Loos,R., Real Zeros of Polynomials.
Symbolic & Algebraic Computation (Computing Supplementum
4) (ed. B. Buchberger, G.E. Collins & R. Loos) Springer-Verlag,
Wien, New York, 1982, pp. 83–94.

[Coppersmith & Davenport, 1985] Coppersmith,D. & Davenport,J.H., An
Application of Factoring. J. Symbolic Comp. 1 (1985) pp. 241–
243.

280 Bibliography

[Coppersmith & Davenport, 1991] Coppersmith,D. & Davenport,J.H., Poly-
nomials whose Powers are Sparse. Acta Arithmetica 58 (1991) pp.
79–87.

[Coppersmith & Winograd, 1982] Coppersmith,D. & Winograd,S., On the
Asymptotic Complexity of Matrix Multiplication. SIAM J. Comp.
11 (1982) pp. 472–492. Zbl. 486.68030. MR 83j:68047b.

[Coppersmith & Winograd, 1990] Coppersmith,D. & Winograd,S., Matrix
Multiplication via Arithmetic Progressions. J. Symbolic Comp. 9
(1990) pp. 251–280. An extended abstract appeared in Proc. 19th
ACM Symp. on Theory of Computing (STOC 1987), pp. 1–6.

[Coppersmith et al., 1986] Coppersmith,D., Odlyzko,A.M. & Schroeppel,R.,
Discrete Logarithms in GF (p). Algorithmica 1 (1986) pp. 1–15.

[Coste & Roy, 1988] Coste,M. & Roy,M.F., Thom’s Lemma, the Coding of
Real Algebraic Numbers and the Computation of the Topology of
Semi-Algebraic Sets. J. Symbolic Comp. 5 (1988) pp. 121–129.
Also Algorithms in Real Algebraic Geometry (ed. D.S. Arnon and
B. Buchberger), Academic Press, London, 1988.

[Cox et al., 1992] Cox,D., Little,J. & O’Shea,D., Ideals, Varieties and Al-
gorithms: an introduction of Computational Algebraic Geometry
and Commutative Algebra. Springer Verlag, 1992.

[Coxeter, 1961] Coxeter,H.S.M., Introduction to Geometry. Wiley, New
York, 1961.

[Czapor et al., 1992] Czapor,S.R., Geddes,K.O. & Labahn,G., Algorithms
for Computer Algebra. Kluwer Academic Publishers, 1992.

[Davenport, 1981] Davenport,J.H., On the Integration of Algebraic Func-
tions. Springer Lecture Notes in Computer Science 102, Springer-
Verlag, Berlin, Heidelberg, New York, 1981. Zbl. 471.14009. MR
84k:14024.

[Davenport,1982] Davenport,J.H., On the Parallel Risch Algorithm (I).
Proc. EUROCAM ’82 [Springer Lecture Notes in Computer Sci-
ence 144, Springer-Verlag, Berlin, Heidelberg, New York, 1982],
pp. 144–157. MR 84b:12033.

[Davenport, 1984a] Davenport,J.H., Intégration algorithmique des fonctions
élémentairement transcendantes sur une courbe algébrique. An-
nales de l’Institut Fourier 34 (1984) pp. 271–276. Zbl. 506.34002.

[Davenport, 1984b] Davenport,J.H., y′ + fy = g. Proc. EUROSAM
84 [Springer Lecture Notes in Computer Science 174, Springer-
Verlag, Berlin, Heidelberg, New York, Tokyo, 1984], pp. 341–350.

Computer Algebra 281

[Davenport, 1985a] Davenport,J.H., Closed Form Solutions of Ordinary Dif-
ferential Equations. Proc. 2nd RIKEN Symposium Symbolic &
Algebraic Computation (ed. N. Inada & T. Soma), World Scien-
tific Publ., 1985, pp. 183–195.

[Davenport, 1985b] Davenport,J.H., Computer Algebra for Cylindrical Al-
gebraic Decomposition. TRITA–NA–8511, NADA, KTH, Stock-
holm, Sept. 1985.

[Davenport, 1985c] Davenport,J.H., On the Risch Differential Equation
Problem. SIAM J. Comp. 15 (1986) pp. 903–918.

[Davenport, 1986] Davenport,J.H., On a “Piano Movers” Problem. SIG-
SAM Bulletin 20 (1986) 1&2 pp. 15–17.

[Davenport & Heintz, 1987] Davenport,J.H. & Heintz,J., Real Quantifier
Elimination is Doubly Exponential. J. Symbolic Comp. 5 (1988)
pp. 29–35.

[Davenport & Mignotte, 1990] Davenport,J.H. & Mignotte,M., On Finding
the Largest Root of a Polynomial. Modélisation Mathématique et
Analyse Numérique 24 (1990) pp. 693–696.

[Davenport & Singer, 1986] Davenport,J.H. & Singer,M.F. Elementary and
Liouvillian Solutions of Linear Differential Equations. J. Symbolic
Comp. 2 (1986) pp. 237–260.

[Davenport & Trager, 1990] Davenport,J.H. & Trager,B.M., Scratchpad’s
View of Algebra I: Basic Commutative Algebra. Proc. DISCO ’90
(Springer Lecture Notes in Computer Science Vol. 429, ed. A. Mi-
ola) pp. 40–54.

[Delaunay, 1860] Delaunay, Ch., Théorie du mouvement de la lune. Extract
from the Comptes Rendus de l’Académie des Sciences, Vol. LI.

[Della Dora & Tournier, 1981] Della Dora,J. & Tournier,E., Formal Solu-
tions of Differential Equations in the Neighbourhood of Singular
Points (Regular and Irregular). Proceedings of the 1981 ACM
Symposium on Symbolic and Algebraic Computation, ACM Inc.,
New York, 1981, pp. 25–29.

[Della Dora & Tournier, 1984] Della Dora,J. & Tournier,E., Homogeneous
Linear Differential Equations (Frobenius-Boole Method). Proc.
EUROSAM 84 [Springer Lecture Notes in Computer Science 174,
Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984], pp.
1–12.

[Della Dora & Tournier, 1986] Della Dora,J. & Tournier,E., Formal solutions
of linear difference equationsmethod of Pincherle-Ramis. Proc.
SYMSAC 86 (ACM, New York, 1986) pp. 192–196.

282 Bibliography

[Della Dora et al., 1982] Della Dora,J., Dicrescenzo,C. & Tournier,E., An
Algorithm to Obtain Formal Solutions of a Linear Homogeneous
Differential Equation at an Irregular Singular Point. Proc. EU-
ROCAM 82 [Springer Lecture Notes in Computer Science 144,
Springer-Verlag, Berlin, Heidelberg, New York, 1982], pp. 273–
280. MR 84c:65094.

[Della Dora et al., 1985] Della Dora,J., Dicrescenzo,C. & Duval,D., About
a new Method for Computing in Algebraic Number Fields. Proc.
EUROCAL 85, Vol. 2 [Springer Lecture Notes in Computer Sci-
ence 204, Springer-Verlag,Berlin, Heidelberg, New York, Tokyo,
1985], pp. 289–290.

[Dewar, 1989] Dewar,M.C., IRENA — An Integrated Symbolic and Nu-
meric Computation Environment. Proc. ISSAC ’89 (ed. G.H.
Gonnet), ACM, New York, 1989, pp. 171–179.

[Dewar & Richardson, 1990] Dewar,M.C. & Richardson,M.G., Reconciling
Symbolic and Numeric Computation in a Practical Setting. Proc.
DISCO ’90 (Springer Lecture Notes in Computer Science Vol. 429,
ed. A. Miola) 195–204.

[Dicrescenzo & Duval, 1984] Dicrescenzo,C. & Duval,D., Computations on
Curves. Proc. EUROSAM 84 [Springer Lecture Notes in Com-
puter Science 174, Springer-Verlag, Berlin, Heidelberg, New York,
Tokyo, 1984], pp. 100–107.

[Dicrescenzo & Duval, 1985] Dicrescenzo,C. & Duval,D., Algebraic Compu-
tation on Algebraic Numbers. Computers and Computing (ed. P.
Chenin, C. Dicrescenzo, F. Robert), Masson and Wiley, 1985, pp.
54–61.

[Dicrescenzo & Duval, 1988] Dicrescenzo,C. & Duval,D., Algebraic Exten-
sions and Algebraic Closure in SCRATCHPAD II. Proc. ISSAC
88 (Springer Lecture Notes in Computer Science 358, Springer-
Verlag, Berlin-Heidelberg-New York-Tokyo, 1989,) pp. 440–446.

[Dodgson, 1866] Dodgson,C.L., Condensation of determinants, being a new
and brief method for computing their algebraic value. Proc. Roy.
Soc. Ser. A 15(1866) pp. 150–155.

[Dubreuil, 1963] Dubreuil,P., Algèbre. Gauthier-Villars, Paris, 1963.

[Duval, 1987] Duval, D., Diverses questions relatives au calcul formel avec
des nombres algébriques. Thèse d’État de l’Université de Greno-
ble, Avril 1987.

[Ehrhard, 1986] Ehrhard,T., Personal communication, March 1986.

Computer Algebra 283

[Faugère et al., 1993] Faugère,J.C., Gianni,P., Lazard,D. & Mora,T., Effi-
cient Computation of Zero-Dimensional Gröbner Bases by Change
of Ordering. J. Symbolic Comp. 16(1993) pp. 329–344.

[Fitch, 1974] Fitch,J.P., CAMAL Users’ Manual. University of Cambridge
Computer Laboratory, 1974.

[Fitch, 1985] Fitch,J.P., Solving Algebraic Problems with REDUCE. J.
Symbolic Comp. 1 (1985), pp. 211–227.

[Gaal 1972] Gaal,L., Classical Galois theory. Chelsea, 1972.
[Gebauer & Kredel, 1984] Gebauer,P. & Kredel,H., Note on “Solution of

a General System of Equations”. SIGSAM Bulletin 18 (1984) 3,
pp. 5–6.

[Gianni, 1989] Gianni,P., Properties of Gröbner bases under specializations.
Proc. EUROCAL 87 (Springer Lecture Notes in Computer Sci-
ence 378, Springer-Verlag, Berlin-Heidelberg-etc., 1989), pp. 293–
297.

[Giusti, 1984] Giusti,M., Some Effectivity Problems in Polynomial Ideal
Theory. Proc. EUROSAM 84 [Springer Lecture Notes in Com-
puter Science 174, Springer-Verlag, Berlin, Heidelberg, New York,
Tokyo, 1984], pp. 159–171.

[Gregory & Krishnamurthy, 1984] Gregory,R.T. & Krishnamurthy,E.V.,
Methods and Applications of Error-free Computation. Springer-
Verlag, New York, 1984. CR 8504–0270.

[Griesmer et al., 1975] Griesmer,J.H., Jenks,R.D. & Yun,D.Y.Y., SCRAT-
CHPAD User’s Manual. IBM Research Publication RA70, June
1975.

[Hadamard, 1893] Hadamard,J., Résolution d’une Question Relative aux
Déterminants. Bull. des Sci. Math. (2) 17 (1893) pp. 240–246.
Œuvres, CNRS, Paris, 1968, Vol. I, pp. 239–245.

[Hearn, 1987] Hearn,A.C., REDUCE-3 User’s Manual, version 3.3, Rand
Corporation Publication CP78 (7/87), 1987.

[Heindel,1971] Heindel,L.E., Integer Arithmetic Algorithm for Polynomial
Real Zero Determination. J. ACM 18 (1971) pp. 535–548.

[Hermite, 1872] Hermite,C., Sur l’intégration des fractions rationelles. Nou-
velles Annales de Mathématiques, 2 Sér., 11 (1872) pp. 145–148.
Ann. Scientifiques de l’Ecole Normale Supérieure, 2 Sér., 1 (1872)
pp. 215–218.

[Hilali, 1982] Hilali,A., Contribution à l’étude de points singuliers des
systèmes différentiels linéaires. Thèse de troisième cycle, IMAG,
Grenoble, 1982.

284 Bibliography

[Hilali, 1983] Hilali,A., Characterization of a Linear Differential System
with a Regular Singularity. Proc. EUROCAL 83 [Springer Lec-
ture Notes in Computer Science 162, Springer-Verlag, Berlin, Hei-
delberg, New York, 1983], pp. 68–77.

[Hilali, 1987] Hilali,A., Solutions formelles de systèmes différentiels linéaires
au voisinage de points singuliers. Thèse d’État, Université I de
Grenoble, June 1987.

[Horowitz, 1969] Horowitz,E., Algorithm for Symbolic Integration of Ra-
tional Functions. Ph.D. Thesis, Univ. of Wisconsin, November
1969.

[Horowitz, 1971] Horowitz,E., Algorithms for Partial Fraction Decomposi-
tion and Rational Function Integration. Proc. Second Symposium
on Symbolic and Algebraic Manipulation, ACM Inc., 1971, pp.
441–457.

[Ince, 1953] Ince,F.L., Ordinary Differential Equations. Dover Publications,
1953.

[Jenks, 1984] Jenks,R.D., A Primer: 11 Keys to New SCRATCHPAD. Proc.
EUROSAM 84 [Springer Lecture Notes in Computer Science 174,
Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1984], pp.
123–147.

[Jenks & Sutor, 1992] Jenks,R.D. & Sutor,R.S., AXIOM: The Scientific
Computation System. Springer–Verlag, New York, 1992.

[Johnson, 1974] Johnson,S.C., Sparse Polynomial Arithmetic. Proc EU-
ROSAM 74 (SIGSAM Bulletin Vol. 8, No. 3, Aug. 1974, pp. 63–
71).

[Kahrimanian, 1953] Kahrimanian,H.G., Analytic differentiation by a dig-
ital computer. M.A. Thesis, Temple U., Philadelphia, Pennsylva-
nia, May 1953.

[Kalkbrener, 1989] Kalkbrener,M., Solving systems of algebraic equations
by using Gröbner bases. Proc. EUROCAL 87 (Springer Lec-
ture Notes in Computer Science 378, Springer-Verlag, Berlin-
Heidelberg-etc., 1989), pp. 282–292.

[Kaltofen et al., 1981] Kaltofen,E., Musser,D.R. & Saunders,B.D., A Gener-
alized Class of Polynomials that are Hard to Factor. Proceedings
of the 1981 ACM Symposium on Symbolic and Algebraic Compu-
tation, ACM Inc., New York, 1981, pp. 188–194. Zbl. 477.68041.

[Kaltofen et al., 1983] Kaltofen,E., Musser,D.R. & Saunders,B.D., A Gen-
eralized Class of Polynomials that are Hard to Factor. SIAM J.
Comp. 12 (1983) pp. 473–483. CR 8504-0367 (Vol. 25 (1985) p.
235). MR 85a:12001.

Computer Algebra 285

[Knuth, 1969] Knuth,D.E., The Art of Computer Programming, Vol. II,
Semi-numerical Algorithms, Addison-Wesley, 1969.

[Knuth, 1973] Knuth,D.E., The Art of Computer Programming, Vol. I,
Fundamental Algorithms, 2nd Edn., Addison-Wesley, 1973.

[Knuth, 1981] Knuth,D.E., The Art of Computer Programming, Vol. II,
Semi-numerical Algorithms, 2nd Edn., Addison-Wesley, 1981. MR
83i:68003.

[Kovacic, 1977] Kovacic,J.J., An Algorithm for solving Second Order Linear
Homogeneous Differential Equations. Preprint, Brooklyn College,
City University of New York.

[Kovacic, 1986] Kovacic,J.J., An Algorithm for solving Second Order Linear
Homogeneous Differential Equations. J. Symbolic Comp. 2 (1986)
pp. 3–43.

[Krishnamurthy, 1985] Krishnamurthy,E.V., Error-free Polynomial Matrix
Computations. Springer-Verlag, New York, 1985.

[Landau, 1905] Landau,E., Sur Quelques Théorèmes de M. Petrovitch Re-
latifs aux Zéros des Fonctions Analytiques. Bull. Soc. Math.
France 33 (1905) pp. 251–261.

[Landau, 1992a] Landau,S., A Note on “Zippel Denesting”. J. Symbolic
Comp. 13 (1992), pp. 41–45.

[Landau, 1992a] Landau,S., Simplification of Nested Radicals. SIAM J.
Comp. 21 (1992) pp. 85–110.

[Lang, 1965] Lang,S., Algebra. Addison-Wesley, Reading, Mass., 1959.

[Lauer, 1982] Lauer,M., Computing by Homomorphic Images. Symbolic
& Algebraic Computation (Computing Supplementum 4) (ed. B.
Buchberger, G.E. Collins & R. Loos) Springer-Verlag, Wien, New
York, 1982, pp. 139–168.

[Lauer, 1983] Lauer,M., Generalized p-adic Constructions. SIAM J. Comp.
12 (1983) pp. 395–410. Zbl. 513.68035.

[Lazard, 1983] Lazard,D., Gröbner Bases, Gaussian Elimination and Res-
olution of Systems of Algebraic Equations. Proc. EUROCAL
83 [Springer Lecture Notes in Computer Science 162, Springer-
Verlag, Berlin, Heidelberg, New York, 1983], pp. 146–157.

[Lazard, 1988] Lazard,D., Quantifier Elimination: Optimal Solution for 2
Classical Examples. J. Symbolic Comp., 5 1988 pp. 261–266.

[Lazard, 1992] Lazard,D., Solving Zero-dimensional Algebraic Systems. J.
Symbolic Comp. 13 (1992) pp. 117–131.

286 Bibliography

[Lenstra et al., 1982] Lenstra,A.K., Lenstra,H.W.,Jr. & Lovász,L., Factoring
Polynomials with Rational Coefficients. Math. Ann. 261 (1982)
pp. 515–534. Zbl. 488.12001. MR 84a:12002.

[Lipson, 1976] Lipson,J.D., Newton’s Method: a great Algebraic Algorithm.
Proceedings of the 1976 ACM Symposium on Symbolic and Al-
gebraic Computation, ACM Inc., New York, 1976, pp. 260–270.
Zbl. 454.65035.

[Loos, 1982] Loos,R., Generalized Polynomial Remainder Sequences. Sym-
bolic & Algebraic Computation (Computing Supplementum 4)
(ed. B. Buchberger, G.E. Collins & R. Loos), Springer-Verlag,
Wien, New York, 1982, pp. 115–137.

[McCallum, 1985a] McCallum,S., An Improved Projection Algorithm for
Cylindrical Algebraic Decomposition. Computer Science Tech.
Report 548, Univ. Wisconsin at Madison, 1985.

[McCallum, 1985b] McCallum,S., An Improved Projection Algorithm for
Cylindrical Algebraic Decomposition. Proc. EUROCAL 85, Vol.
2 [Springer Lecture Notes in Computer Science 204, Springer-
Verlag, Berlin, Heidelberg, New York, Tokyo, 1985], pp. 277–278.

[MacCallum & Wright, 1991] MacCallum,M.A.H. & Wright,F.J., Algebraic
Computing with Reduce. Proc. First Brazilian School on Com-
puter Algebra (ed. M.J. Reboucas & W.L. Roque) Oxford Uni-
versity Press 1991.

[McCarthy et al., 1965] McCarthy,J., Abrahams,P.W., Edwards,W., Hart,
T.P. & Levin,M., The LISP 1.5 Programmers Manual. M.I.T.
Press, 1965.

[Macmillan & Davenport, 1984] Macmillan,R.J. & Davenport,J.H., Factor-
ing Medium-Sized Integers. Computer J. 27 (1984) pp. 83–84.

[Marti et al., 1978] Marti,J.B., Hearn,A.C., Griss,M.L. & Griss,C., The
Standard LISP Report. Report UCP-60, University of Utah, Jan.
1978. SIGSAM Bulletin 14 (1980), 1, pp. 23–43.

[Mauny, 1985] Mauny,M., Thèse de troisième cycle, Paris VII, Sept. 1985.
[Mayr & Mayer, 1982] Mayr,E. & Mayer,A., The Complexity of the Word

Problem for Commutative Semi-groups and Polynomial Ideals.
Adv. in Math. 46 (1982) pp. 305–329.

[Mignotte, 1974] Mignotte,M., An Inequality about Factors of Polynomials.
Math. Comp. 28 (1974) pp. 1153–1157. Zbl. 299.12101.

[Mignotte, 1981] Mignotte,M., Some Inequalities About Univariate Polyno-
mials. Proceedings of the 1981 ACM Symposium on Symbolic and
Algebraic Computation, ACM Inc., New York, 1981, pp. 195–199.
Zbl. 477.68037.

Computer Algebra 287

[Mignotte, 1982] Mignotte,M., Some Useful Bounds. Symbolic & Algebraic
Computation (Computing Supplementum 4) (ed. B. Buchberger,
G.E. Collins & R. Loos), Springer-Verlag, Wien, New York, 1982,
pp. 259–263. Zbl. 498.12019.

[Mignotte, 1986] Mignotte,M., Computer versus Paper and Pencil. CAL-
SYF 4, pp. 63–69.

[Mignotte, 1992] Mignotte,M., Mathematics for Computer Algebra. Sprin-
ger-Verlag, Berlin-Heidelberg, 1992. Translation of Mathéma-
tiques pour le Calcul Formel (PUF, Paris, 1989).

[Möller & Mora, 1984] Möller,H.M. & Mora,T., Upper and Lower Bounds
for the Degree of Groebner Bases. Proc. EUROSAM 84 [Springer
Lecture Notes in Computer Science 174, Springer-Verlag, Berlin,
Heidelberg, New York, Tokyo, 1984], pp. 172–183.

[Moore & Norman, 1981] Moore,P.M.A. & Norman,A.C., Implementing a
Polynomial Factorization and GCD Package. Proceedings of the
1981 ACM Symposium on Symbolic and Algebraic Computation,
ACM Inc., New York, 1981, pp. 109–116.

[Moses, 1966] Moses,J., Solution of a System of Polynomial Equations by
Elimination. Comm. ACM 9 (1966) pp. 634–637.

[Moses, 1967] Moses,J., Symbolic Integration. Ph.D. Thesis & Project MAC
TR–47, M.I.T., 1967.

[Moses, 1971a] Moses,J., Algebraic Simplification — A Guide for the Per-
plexed. Comm. ACM 14 (1971) pp. 527–537.

[Moses, 1971b] Moses,J., Symbolic Integration, the stormy decade. Comm.
ACM 14 (1971) pp. 548–560.

[Musser, 1978] Musser,D.R., On the Efficiency of a Polynomial Irreducibil-
ity Test. J. ACM 25 (1978) pp. 271–282. MR 80m:68040.

[Najid-Zejli, 1984] Najid-Zejli,H., Computation in Radical Extensions.
Proc. EUROSAM 84 [Springer Lecture Notes in Computer Sci-
ence 174, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo,
1984], pp. 115–122.

[Najid-Zejli, 1985] Najid-Zejli,H., Extensions algébriques: cas général et cas
des radicaux. Thèse de troisième cycle, IMAG, Grenoble, 25.6.85.

[Nolan, 1953] Nolan,J., Analytic differentiation on a digital computer. M.A.
Thesis, Math. Dept., M.I.T., Cambridge, Massachusetts, May
1953.

[Norman, 1975] Norman,A.C., Computing with Formal Power Series. ACM
Transactions on Mathematical Software 1 (1975) pp. 346–356.
Zbl. 315.65044.

288 Bibliography

[Norman, 1982] Norman,A.C., The Development of a Vector-based Algebra
System. Proc. EUROCAM 82 [Springer Lecture Notes in Com-
puter Science 144, Springer-Verlag, Berlin, Heidelberg, New York,
1982], pp. 237–248.

[Norman & Davenport, 1979] Norman,A.C., & Davenport,J.H., Symbolic
Integration — the Dust Settles? Proceedings of the 1979 European
Symposium on Symbolic and Algebraic Computation [Springer
Lecture Notes in Computer Science 72, Springer-Verlag, Berlin,
Heidelberg, New York 1979], pp. 398–407. Zbl. 399.68056. MR
82b:68031.

[Norman & Moore, 1977] Norman,A.C., & Moore,P.M.A., Implementing the
new Risch Integration Algorithm. Proc. Symp. advanced comput-
ing methods in theoretical physics, Marseilles, 1977, pp. 99–110.

[Ostrowski, 1946] Ostrowski,A.M., Sur l’intégrabilité élémentaire de quel-
ques classes d’expressions. Comm. Math. Helvet. 18 (1946) pp.
283–308.

[Pearce & Hicks, 1981] Pearce,P.D. & Hicks,R.J., The Optimization of User
Programs for an Algebraic Manipulation System. Proceedings of
the 1981 ACM Symposium on Symbolic and Algebraic Computa-
tion, ACM Inc., New York, 1981, pp. 131–136.

[Pearce & Hicks, 1982] Pearce,P.D. & Hicks,R.J., The Application of Al-
gebraic Optimisation Techniques to Algebraic Mode Programs for
REDUCE. SIGSAM Bulletin 15 (1981/2) 4, pp. 15–22.

[Pearce & Hicks, 1983] Pearce,P.D. & Hicks,R.J., Data Structures and Exe-
cution Times of Algebraic Mode Programs for REDUCE. SIGSAM
Bulletin 17 (1983) 1, pp. 31–37.

[Probst & Alagar, 1982] Probst,D. & Alagar,V.S., An Adaptive Hybrid
Algorithm for Multiplying Dense Polynomials. Proc. EUROCAM
82 [Springer Lecture Notes in Computer Science 144, Springer-
Verlag, Berlin, Heidelberg, New York, 1982], pp. 16–23.

[Puiseux, 1850] Puiseux,M.V., Recherches sur les fonctions algébriques. J.
Math. Pures et Appliquées 15 (1850) pp. 365-480.

[Ramanujan, 1927] Ramanujan,S., Problems and Solutions. In Collected
Works (ed. G.H. Hardy, P.V. Secha Ayar, & B.M. Wilson), C.U.P.,
1927.

[Ramis & Thomann, 1980] Ramis,J.P. & Thomann,J., Remarques sur
l’utilisation numérique des séries de factorielles. Séminaire
d’analyse numérique, Strasbourg No. 364, 1980.

[Ramis & Thomann, 1981] Ramis,J.P. & Thomann,J., Some Comments
about the Numerical Utilization of Factorial Series Methods in

Computer Algebra 289

the Study of Critical Phenomena. Springer-Verlag, Berlin, Hei-
delberg, New York, 1981.

[Richard, 1988] Richard,F., Représentations graphiques de solutions d’équa-
tions différentielles dans le champ complexe. Thèse de doctorat
de l’Université de Strasbourg, septembre 1988.

[Richards & Whitby-Strevens, 1979] Richards,M. & Whitby-Strevens,C.,
BCPL, The Language and its Compiler. C.U.P., 1979. Zbl.
467.68004.

[Richardson, 1968] Richardson,D., Some Unsolvable Problems Involving El-
ementary Functions of a Real Variable. J. Symbolic Logic 33
(1968), pp. 511–520.

[Risch, 1969] Risch,R.H., The Problem of Integration in Finite Terms.
Trans. A.M.S. 139 (1969) pp. 167–189. Zbl. 184,67. MR 38 (1969)
#5759.

[Risch, 1979] Risch,R.H., Algebraic Properties of the Elementary Func-
tions of Analysis. Amer. J. Math. 101 (1979) pp. 743–759. MR
81b:12029.

[Rosenlicht, 1976] Rosenlicht,M., On Liouville’s Theory of Elementary
Functions. Pacific J. Math 65 (1976), pp. 485–492.

[Rothstein, 1976] Rothstein,M., Aspects of Symbolic Integration and Sim-
plification of Exponential and Primitive Functions. Ph.D. Thesis,
Univ. of Wisconsin, Madison, 1976. (Xerox University Microfilms
77–8809.)

[Sasaki & Murao, 1981] Sasaki,T. & Murao,H., Efficient Gaussian Elimi-
nation Method for Symbolic Determinants and Linear Systems.
Proceedings of the 1981 ACM Symposium on Symbolic and Al-
gebraic Computation, ACM Inc., New York, 1981, pp. 155–159.
Zbl. 486.68023.

[Sasaki & Murao, 1982] Sasaki,T. & Murao,H., Efficient Gaussian Elimi-
nation Method for Symbolic Determinants and Linear Systems.
ACM Transactions on Mathematical Software 8 (1982) pp. 277–
289. Zbl. 491.65014. CR 40, 106 (Vol. 24 (1983) p. 103).

[Saunders, 1981] Saunders,B.D., An Implementation of Kovacic’s Algorithm
for Solving Second Order Linear Homogeneous Differential Equa-
tions. Proceedings of the 1981 ACM Symposium on Symbolic and
Algebraic Computation, ACM Inc., New York, 1981, pp. 105–108.
Zbl. 486.68023.

[Schwartz & Sharir, 1983a] Schwartz,J.T. & Sharir,M., On the “Piano
Movers” Problem II. General Techniques for Computing Topo-

290 Bibliography

logical Properties of Real Algebraic Manifolds. Advances Appl.
Math. 4 (1983) pp. 298–351.

[Schwartz & Sharir, 1983b] Schwartz,J.T. & Sharir,M., On the “Piano
Movers” Problem II. Coordinating the Motion of Several Indepen-
dent Bodies: The Special Case of Circular Bodies Moving Amidst
Polygonal Barriers. Int. J. Robot. Res. 2 (1983) pp. 46–75.

[Singer, 1981] Singer,M.F., Liouvillian Solutions of n-th Order Homoge-
neous Linear Differential Equations. Amer. J. Math. 103 (1981)
pp. 661–682. Zbl. 477.12016. MR 82i:12008.

[Singer, 1985] Singer,M.F., Solving Homogeneous Linear Differential Equa-
tions in Terms of Second Order Linear Differential Equations.
Amer. J. Math. 107 (1985) pp. 663–696.

[Singer & Davenport, 1985] Singer,M.F. & Davenport,J.H., Elementary and
Liouvillian Solutions of Linear Differential Equations. Proc. EU-
ROCAL 85, Vol. 2 [Springer Lecture Notes in Computer Science
204, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985],
pp. 595–596.

[Singer & Ulmer, 1992] Singer,M.F. & Ulmer,F., Liouvillian Solutions of
Third Order Linear Differential Equations: New Bounds and Nec-
essary Conditions. Proc. ISSAC 92 (ed. P.S. Wang) pp. 57-62.

[Singer et al., 1981] Singer,M.F., Saunders,B.D. & Caviness,B.F., An Ex-
tension of Liouville’s Theorem on Integration in Finite Terms.
Proceedings of the 1981 ACM Symposium on Symbolic and Alge-
braic Computation, ACM Inc., New York, 1981, pp. 23–24. Zbl.
482.12008.

[Singer et al., 1985] Singer,M.F., Saunders,B.D. & Caviness,B.F., An Exten-
sion of Liouville’s Theorem on Integration in Finite Terms. SIAM
J. Comp. 14 (1985) pp. 966–990.

[Slagle, 1961] Slagle,J., A Heuristic Program that Solves Symbolic Integra-
tion Problems in Freshman Calculus. Ph.D. Dissertation, Harvard
U., Cambridge, Mass. May 1961.

[Smit, 1981] Smit,J., A Cancellation Free Algorithm, with Factoring Ca-
pabilities, for the Efficient Solution of Large Sparse Sets of Equa-
tions. Proceedings of the 1981 ACM Symposium on Symbolic and
Algebraic Computation, ACM Inc., New York, 1981, pp. 146–154.

[Stewart, 1989] Stewart,I.N., Galois Theory (2nd. edition). Chapman &
Hall, 1989.

[Strassen, 1969] Strassen,V., Gaussian Elimination is not Optimal. Numer.
Math. 13 (1969) pp. 354–356.

Computer Algebra 291

[Tarski, 1951] Tarski,A., A Decision Method for Elementary Algebra and
Geometry. 2nd ed., Univ. California Press, Berkeley, 1951. MR
10 #499.

[Tournier, 1987] Tournier,E., Solutions formelles d’équations différentielles:
Le logiciel de calcul formel DESIR. Thèse d’État, Université I de
Grenoble, April 1987.

[Trager, 1976] Trager,B.M., Algebraic Factoring and Rational Function In-
tegration. Proceedings of the 1976 ACM Symposium on Symbolic
and Algebraic Computation, ACM Inc., New York, 1976, pp. 219–
226. Zbl. 498.12005.

[Trager, 1985] Trager,B.M., On the Integration of Algebraic Functions.
Ph.D. Thesis, Dept. of Electrical Engineering & Computer Sci-
ence, M.I.T., August 1985.

[Viry, 1982] Viry,G., Factorisation des polynômes à plusieurs variables.
RAIRO Inform. Théor. 12 (1979) pp. 209–223.

[van der Waerden, 1949] van der Waerden,B.L., Modern Algebra. Frederick
Ungar, New York, 1949.

[Wang, 1978] Wang,P.S., An Improved Multivariable Polynomial Factoris-
ing Algorithm. Math. Comp. 32 (1978) pp. 1215–1231. Zbl.
388.10035. MR 58 (1979) #27887b.

[Wang, 1980] Wang,P.S., The EEZ-GCD Algorithm. SIGSAM Bulletin 14
(1980) 2 pp. 50–60. Zbl. 445.68026.

[Wang, 1981] Wang,P.S., A p-adic Algorithm for Univariate Partial Frac-
tions. Proceedings of the 1981 ACM Symposium on Symbolic and
Algebraic Computation, ACM Inc., New York, 1981, pp. 212–217.
Zbl. 486.68026

[Wang,1983] Wang,P.S., Early Detection of True Factors in Univariate
Polynomial Factorization. Proc. EUROCAL 83 [Springer Lecture
Notes in Computer Science 162, Springer-Verlag, Berlin, Heidel-
berg, New York, 1983], pp. 225–235.

[Wang et al., 1982] Wang,P.S., Guy,M.J.T. & Davenport,J.H., p-adic Re-
construction of Rational Numbers. SIGSAM Bulletin 16 (1982)
pp. 2–3.

[Wasow, 1965] Wasow,W., Asymptotic Methods for Ordinary Differential
Equations. Kreiger Publ. Co., New York, 1965.

[Watanabe, 1976] Watanabe,S., Formula Manipulation Solving Linear
ODEs II. Publ. RIMS Kyoto Univ. 11 (1976) pp. 297–337.

[Watanabe, 1981] Watanabe,S., A Technique for Solving Ordinary Differ-
ential Equations Using Riemann’s p-functions. Proceedings of the

292 Bibliography

1981 ACM Symposium on Symbolic and Algebraic Computation,
ACM Inc., New York, 1981, pp. 36–43. Zbl. 493.34002.

[Wilkinson, 1959] Wilkinson,J.H., The Evaluation of the Zeros of Ill-
conditioned Polynomials. Num. Math. 1 (1959) pp. 150–166, 167–
180.

[Winograd, 1968] Winograd,S., A New Algorithm for Inner Product. IEEE
Trans. Computers C-17 (1968) pp. 693–694.

[Winston & Horn, 1981] Winston,P.H. & Horn,B.K.P., LISP. Addison-
Wesley, 1981. (The 2nd ed., 1984, is written for Common LISP.)

[Wunderlicht, 1979] Wunderlicht,M.C., A Running-Time Analysis of Brill-
hart’s Continued Fraction Factoring Algorithm. In: Number The-
ory Carbondale 1979 (ed. M.B. Nathanson) [Springer Lecture
Notes in Mathematics 751, Springer-Verlag, Berlin, Heidelberg,
New York, 1979], pp. 328–342.

[Yun, 1974] Yun,D.Y.Y., The Hensel Lemma in Algebraic Manipulation.
Ph.D. Thesis & Project MAC TR–138, M.I.T., 1974. [reprinted
Garland Publishing Co., New York, 1980].

[Yun, 1976] Yun,D.Y.Y., On Square-free Decomposition Algorithms. Pro-
ceedings of the 1976 ACM Symposium on Symbolic and Alge-
braic Computation, ACM Inc., New York, 1976, pp. 26–35. Zbl.
498.13006.

[Yun, 1977] Yun,D.Y.Y., On the Equivalence of Polynomial Gcd and
Squarefree Factorization Algorithms. Proc. 1977 MACSYMA
Users’ Conference NASA publication CP–2012, National Techni-
cal Information Service, Springfield, Virginia, pp. 65–70.

[Zassenhaus, 1969] Zassenhaus,H., On Hensel Factorization.J. Number The-
ory 1 (1969) pp. 291-311. MR 39 (1970) #4120.

[Zippel, 1979] Zippel,R.E., Probabilistic Algorithms for Sparse Polynomi-
als. Proceedings of the 1979 European Symposium on Symbolic
and Algebraic Computation [Springer Lecture Notes in Computer
Science 72, Springer-Verlag, Berlin, Heidelberg, New York 1979],
pp. 216–226.

[Zippel, 1985] Zippel,R.E., Simplification of Expressions Involving Radicals.
J. Symbolic Comp. 1 (1985), pp. 189–210.

Index

ABS 259.
ACOS 260.
ACOSH 260.
addition of fractions 78.

of polynomials 81.
algebraic 91, 128.
ALGEBRAIC 257.
algebraic integers 56.
algorithm of Berlekamp 161.

Buchberger 117, 242.
Euclid 124, 150.

extended 92, 149, 167, 231.
Hensel 168, 171.
Zassenhaus 165.

ALLFAC 264.
allroots 28.
ANTISYMMETRIC 256.
APPEND 253.
ARRAY 255.
ASIN 260.
ASINH 260.
Assignment 257.
ATAN 260.
ATANH 260.
Ax–Schanuel Conjecture 100.
AXIOM 2, 42, 70, 72, 73.

bad reduction 145, 153.
zeros 176.

Bareiss, method of 103.
base of an integer 76.
BEGIN 259.
Berlekamp, algorithm of 161.
Bezout’s identity 231.
bignum 76.
Blocks 259.
boolean expressions 249.
bound of Hadamard 158.
Buchberger, algorithm of

117, 242.
criterion of 119.

CAMAL 79, 110.
canonical 79.
Cauchy, Inequality of 125–126.
CEILING 260.
characteristic polynomial 22.
Chinese remainder theorem

237–239.
Church-Rosser property 113.
CLEAR 254, 268–270.
COEFF 265.
COEFFN 265.
COLLECT 258.

293

294 Index

combinatorial explosion 166,
178.

Common LISP 291.
completely reduced 113.
component, semi-algebraic 129.
composed 39.
composition 32.
CONS 253.
content 150.
COS 260.
COSH 260.
COT 260.
Cramer, method of 102–104.
criterion of Buchberger 119.
current result 263.
cylindrical decomposition 131.

Davenport’s theorem 203, 207.
Decomposition Lemma 192, 197.
decomposition 130.

cylindrical 131.
square-free 229.

DEG 266.
DEN 266.
denominator 89.
denominators, common 251.
dense 81, 100.
DEPEND 253, 256, 260.
dependency 253.
DERIVE 2, 70.
DESIR 218.
determinant 22, 25, 101, 158.
DF 260.
differentiation 28–32.
DILOG 260.
discriminant 134, 236.
distributed 88.
DIV 264.
division 76.
DO 258.

elementary 191.
elimination of quantifiers 135.
ellipse problem 137.
ELSE 258.
END 259.
equational expressions 249.
equivalent 112.
ERF 260.
Euclid, algorithm of 124, 150.

extended algorithm of 92,
149, 167, 231.

Euclidean sequences 85.
EVENP 249.
EXP 250, 260.
expansion of expressions 250.
EXPINT 260.
exponential 99, 196.
extended Euclidean algorithm

92, 149, 167, 231.
EZGCD 250.

FACTOR 264.
factorisation 4, 34.

of integers 77.
of polynomials 161.

FACTORIZE 261.
Fermat, little theorem of 162.
FIRST 253.
FIXP 249.
floating-point numbers 7, 78.
FLOOR 260.
FOR 258.
FOR ALL 269.
Formal differentiation 183.

integration 183.
FORT 265.
Fourier, series of 109.
Fredholm equation 46.
FREEOF 249.
FROBENIUS 218.

Computer Algebra 295

g.c.d. 13.
of polynomials 75, 78, 83–90,

102, 151–154, 179.
Gauss, elimination of 102–105.

Lemma of 151, 161.
GCD 250.
generalised polynomial 197.
generator of an ideal 112.
Gianni 116.
good reduction 145, 153.
GOTO 259.
greatest common divisors

see g.c.d.
Gröbner basis 113.
group of instructions 258.

Hadamard, bound of 158.
Hearn 245.
Hensel, Lemma of 167.

linear algorithm of 168.
quadratic algorithm of

169–171.
Hermite, method of 187.
Hilbert matrix 19.

Irreducibility theorem 176.
Horowitz, method of 188.

ideal 112.
IF 258.
inequalities 122.
Inequality of Cauchy 125, 126.

Knuth 126.
Landau-Mignotte 142.

INFIX 255.
INT 260.
INTEGER 253, 257.
integer expressions 249.
integration 43.

problem 184.
intermediate expression swell 75.
INTSTR 264.
inverse of a matrix 158.
IRENA 271.

isolation of a root 123.

JOIN 258.

Kalkbrener 116.
kernel 97, 249.
Knuth, Inequality of 126.
Kovacic’s theorem 209.

Landau-Mignotte Inequality 142.
Laplace transform 43.
lattice 89.
lazy 249.

evaluation 109.
LCM 251.
LCOF 266.
leading coefficient 177.
least common multiples 251.
Lemma Decomposition 192, 197.

Gauss’s 151, 161.
Hensel’s 167.

LENGTH 253.
LET 260, 268.
lexicographic 87.
LINEAR 255.
linear equations 160.
Liouville’s Principle 191.
Liouvillian 208.
LISP 1–3, 40, 70.
LIST 264.
LOG 260.
logarithm 100, 192.
LTERM 266.

MACSYMA 1–73, 80, 88, 100,
161, 210, 266.

MAINVAR 266.
map 38.
MAPLE 2, 70.
MAT 271.
MATHEMATICA 2, 70–71.

296 Index

matrix 18–27.
Hilbert 19.
inverse of 158.
Sylvester’s 234.

MAX 259.
MCD 251.
Méchain’s formula 8.
memory space 82.
method, Bareiss’ 103.

Cramer’s 102–104.
Hermite’s 187
Horowitz’s 188
Norman’s 108.
Ostrogradski’s 188.
Ostrowski’s 196.

MIN 259.
Modular Calculation, Principle

of 159.
g.c.d. 145, 154.

Mora, example of 120.
motion planning 137.
multiplication of fractions 78.

polynomials 81.
muMATH 1, 70.
Musser, criterion of 173.

NAT 264.
nested radical 92.
NEWTON 218.
Newton, iteration of 169.
NODEPEND 254.
non-commutative variables 100.
NONCOM 100, 256.
norm 94.
normal 79.
Norman, method of 108.
NUM 266.
NUMBERP 249.
numerator 89.

OPERATOR 255.
order 86.
ORDER 263.

ordered 249.
ORDP 249.
Ostrogradski, method of 188.
Ostrowski’s method 196.

p-adic numbers 170.
p.r.s. 85.
parasitic factors 176.

solutions 121.
PART 266–267.
partial fractions 159, 232.
planning, robot motion 137.
polynomial remainder sequences

85.
PRECEDENCE 255.
precision 7, 106.
PRECISION 251.
PRIMEP 250.
primitive 150.

element 95.
part 150.
sequences 85.

Principle of Modular Calculation
159.

probabilistic 161.
PROCEDURE 257.
PRODUCT 258.
Puiseux, series 107–109

quantifiers, elimination of 135.

radcan 36.
radical 91.
RAT 264.
ratdenomdivide 36.
ratexpand 36.
rational functions 88.

numbers 77.
RATPRI 264.
recursive 11, 88.
REDUCE 1, 42, 70, 80-89,

97–100, 106, 109, 139,
245–274.

Computer Algebra 297

reduced 112.
basis 114.

REDUCT 266.
reduction 113, 145.
remainder theorem, Chinese 239.
REMFAC 264.
repeated elimination 121.
representation 79.
REST 253.
resultant 14, 96, 121, 134, 144,

157, 234, 261.
RETURN 259.
REVERSE 253.
REVPRI 264.
rewrite rules 98.
Risch’s problem 205.

theorem 202.
RLISP 70.
robot motion planning 137.
robotics 137.
root, isolated 123.
ROUND 260.
ROUNDED 251.
rounded 260.
rule list 267.

S-polynomial 117.
SCALAR 248, 253.
SCRATCHPAD 2, 71

see AXIOM.
SECOND 253.
semi-algebraic component 129.

variety 129.
sequence, Sturm 124

sub-resultant polynomial 85.
series 105.

Fourier 109.
Puiseux 107.
Taylor 28, 105.

SHARE 4.
simplification 28, 36, 39, 79,

184, 250.

SIN 260.
Singer’s theorem 210.
SINH 260.
SOLVE 262.
sparse 81, 104, 160, 181.
SQRT 260.
square-free decomposition 229.
standard basis 113.
STRUCTR 265.
Structure, theorem of 99.
Sturm sequence 124.

Theorem of 125.
SUB 267.
sub-resultant 85.

Theorem 86.
substitution 29, 84, 267.
successive approximation 106.
SUCH THAT 269.
SUM 258.
Sylvester, identity of 103.

matrix 234.
SYMBOLIC 257.
SYMMETRIC 256.

TAN 260.
TANH 260.
Taylor series 28, 105.
THEN 258.
Theorem, Chinese remainder

237–239.
Davenport’s 203,207.
Fermat, little 162.
Gianni-Kalkbrener 116.
Hilbert irreducibility 176.
Kovacic’s 209.
Risch’s 202.
Singer’s 210.
Structure 99.
Sturm’s 125.
Sub-resultant 86.

THIRD 253.
total degree 87.

298 Index

Transcendental functions 97.
transform of Laplace 43.

unlimited accuracy 3.
UNTIL 259.

variation 125.
variety, semi-algebraic 129.

WEIGHT 106, 254, 270.

WHERE 259, 268.
WHILE 259.
Wilkinson, polynomial of 126.
WRITE 263.
WS 263.
WTLEVEL 106, 254.

Zassenhaus, Algorithm of 165.
zero-dimensional 115.

