The Sparsity Challenges

James Davenport & Jacques Carette

University of Bath, McMaster University
(both visiting Waterloo)

26 February 2010

Notation

For a polynomial f:
df is the degree of f
ts is the number of non-zero terms in f
|f| is the largest absolute value of a coefficient

tr/(df + 1) is a measure of the sparsity of a polynomial

Setting: Typical Textbooks

» Introduce sparse polynomial representations, and explain how
every realistic representation has to be sparse;

» Carefully explain good algorithms for adding and multiplying
sparse polynomials;
» Go on to discuss division, gcd, factorization etc.,

I while silently switching to dense thinking.

This is the sparsity challenge!

More precisely: the sparsity challenges

Each operation presents its own peculiarities
division with/without remainder, or a divisibility test only.
gcd or a test for relative primality
square-free decomposition or a test for square-freeness
factorization or a test for irreducibility
others e.g. polynomial decomposition — does
f(x) = g(h(x))?

but there are some common difficulties

The cyclotomic polynomials

®4(x) = [] Calx)/

. .y) 0 n not squarefree
where p is the Mobius function: X) .
(=1)* n has k prime factors

®, is surprising

dp(x)=xP 4 b x+1

dbe(x) = x> —x+1; dro(x) =x* —x34+x2—x+1
But ®1p5(x) = x® £ .. —2x#...2x7.. .1
Table: Large coefficients in @
lai| 2 3 4 5 6 7 8=9
first ®y 105 385 1365 1785 2805 3135 6545
o(k) 48 240 576 768 1280 1440 3840
i 14 23 25 27 59 359

first &, 10465 11305 17225 20615 26565 40755
o(k) 6336 6912 10752 12960 10560 17280

Challenge 1

Find useful bounds on the number of terms in non-cyclotomic
factors of sparse polynomials.

Note that Bremner has a trinomial which factors as two dense
degree 7 polynomials.

Is this as bad as it gets?

Co/ Py is difficult

» Factoring C, requires factoring n, but the output will be
lengthy
» Writing down just the degrees of the factors of C, still
requires factoring n
» Various results of Plaisted
Also x Asking for all decomposition of x™ means writing down all
factors of n

Cn/®y is difficult: Plaisted

Theorem (Plaisted)

It is NP-hard to determine whether two sparse polynomials (in the
standard encoding) have a non-trivial common divisor.

The basic device of the proofs is to encode the
NP-complete problem of 3-satisfiability so that a
formula W in n Boolean variables goes to a sparse
polynomial pp(W) which vanishes exactly at certain
Mth roots of unity corresponding to the satisfiable
assignments to the formula W, where M is the product
of the first n primes. [MR 85j:68043]

Challenge 2

Either

» find a class of problems for which the gcd problem is still
NP-complete even when cyclotomic factors are encoded as C,
(or ®y); or

» find an algorithm for the gcd of polynomials with no
cyclotomic factors, which is polynomial-time in the standard
encoding.

Cn/®x can be disguised

There are “scaled cyclotomics” such as
X105 _ 2105 _ 5105, (/)

A partial answer to the cyclotomics problem is to admit C, (or ®)
as elements in our output vocabulary.

Types of challenges

» The output may not be sparse

» ‘dumb’, e.g. quotient with remainder
» ‘degenerate’, where we have encoded a different problem

» ‘unknown’, where we expect sparsity most of the time
» The problem may be intrinsically hard — e.g. Plaisted
» We may just not know a good algorithm as in the case of gcd
of polynomials with no cyclotomic factors

Division: f/g

With remainder: very bad
» Naively O(d?t,) exponent comparisons
» Better O(drt, log dr) exponent comparisons
» Coefficient growth! Consider x19%°/(x — 10)

Exact use “early abort”: solves coefficient growth and in practice is
very effective

» In the standard model, dependence on dr is inevitable:

(x" =1)/(x = 1).

Challenge 3

Find an algorithm for exact division of f by g which is
polynomial-time in tf, tg and tr/,.

This plus challenge 1 (bounds on term count) would be a real
breakthrough

Exact Divisibility

Theorem (Plaisted)

The following problem is NP-hard: given an integer N and a set
{p1(x), ..., pk(x)} of sparse polynomials with integer coefficients,
to determine whether x\ — 1 divides Hj’le pj(x).

Again, the proof is based on 3-SAT. Note, however, that the
product may be dense, so we shouldn't quite give up hope here.

Challenge 4

Either

» find a class of problems for which the simple problem “does g
divide f7" is still NP-complete; or

» find an algorithm for the divisibility of polynomials which is
polynomial-time.
Failing this
» find an algorithm for the divisibility of cyclotomic-free
polynomials which is polynomial-time.

Again, there is scope for a major breakthrough here.

Greatest Common Divisor

Plaisted’s theorem shows that there are hard cases here.

Challenge 5

As a special case of Challenge 1 we can ask the following.
Find useful bounds on the number of terms in the greatest
common divisor of sparse polynomials.

Failing this, one might ask for such a bound for non-cyclotomic
factors.

Challenge 6

By analogy with Challenge 3, we can also pose the following.
Find an algorithm for computing gcd(f, g) which is
polynomial-time in tr, ty and tgeq(r g)-

Again, we might restrict ourselves to the non-cyclotomic case.

Square-free decomposition
We know this can be done by gcd, but in fact they are equivalent

Theorem (KarpinskiShparlinski1999)
Over Z and in the standard encoding, the two problems

1. deciding if a polynomial is square-free

2. deciding if two polynomials have a non-trivial g.c.d.
are equivalent under randomized polynomial-time reduction.

Hence, in the light of Theorem 1, determining square-freeness is
hard, at least when polynomials with cyclotomic factors are
involved.

A fortiori, computing the square-free decomposition is hard, at
least when cyclotomics are involved. This is certainly the case if we
want a full decomposition in the standard model, as the trivial
example of

PPl xP —x+1=(x—1>*(xP"14+... +1) (1)

shows.

Challenge 6a

Find a polynomial-time algorithm for the shape of the square-free
decomposition of a sparse polynomial.
We might also ask about the square-free decomposition of

cyclotomic-free polynomials.
Note, however, various results about polynomials which get sparser

when we square them

Perfect Powers

However, a positive result for the standard representation in this
area is provided by Giesbrecht & Roche, who give a Las Vegas
polynomial-time algorithm for determining whether a given sparse
f (not of the form x”, else the number of possibilities is potentially
vast) is h", and r itself.

One obvious question is whether h has to be sparse if f is. They
conjecture that it does: more precisely the following.

Conjecture (GiesbrechtRoche2008a)

For r,s € N and h € Z[z] with dy = s, then t,; < tpr + r for

1 <i < n, where tf = tmod x25)-

Assuming this conjecture, they can recover h in polynomial time.

Factorization

In the light of
» Cyclotomics

» Bremner's polynomials and the absence of an answer to
Challenge 1

we might be inclined to give up.
But there is some good news.

Lenstra’'s Theorem

There is a deterministic algorithm that, for some positive real
number c, has the following property: given an algebraic number
field K, a sparsely represented non-zero polynomial f € K[x] and a
positive integer d, the algorithm finds all monic irreducible factors
of f in K[x] of degree at most d, as well as their multiplicities, and
it spends time at most (/ + d)¢, where / denotes the length of the
input data (i.e. trlog(dr|f]))

Challenge 7

Understand the complexity of this result in practice.
In particular, we would like to know the value of ¢ in the special

case when K is Q.
Also, (I + d)€ is a very neat formulation, but the dependencies on

d and [are probably different in reality.

Polynomial Decomposition

i.e. is f(x) = g(h(x))? The case g(x) = x9 is that of perfect
powers. In general, we have two recent results

Theorem (Zannier2007)

If h is not of the form ax" + b, then dg < 2t¢(tr — 1)

Theorem (Zannier2008)

There exists a computable function B such that if g, h € C[x] are
non-constant polynomials with f(x) = g(h(x)), then t, < B(tf).
In other words, if f is of high degree, but has few terms, then g
cannot be of high degree (and therefore implicitly has
comparatively few terms) and h has few terms. However, these
bounds still allow for a surprising degree of cancellation in

F(x) = g(h(x)).

Some cancellation is certainly possible, though

Challenge 8

Understand the complexity of this result in practice.

