On the Brown–Davenport construction

*In memory of Joos Heintz, 27 October 1945–3 October 2024 1

James Davenport masjhd@bath.ac.uk

University of Bath

24 September 2025

¹Partially Supported by EPSRC under grant EP/T015713/1

Introduction: Quantifier Elimination

"Quantifier Elimination" is what it says: the problem of eliminating quantifiers, i.e. given a quantified expression (which we may as well assume is in prenex form), can we find an equivalent expression Ψ without quantifiers, i.e.

$$Q_{l}x_{l}Q_{l+1}x_{l+1}\cdots Q_{n}x_{n}\Phi(x_{1},\ldots,x_{n})\Leftrightarrow \Psi(x_{1},\ldots,x_{l-1}), \qquad (1)$$

where $Q_i \in \{ \forall, \exists \}$.

Some logics admit quantifier elimination, some do not.

Quantifier Elimination: Polynomials

Definition

An elementary (polynomial) constraint is a Boolean-valued function $p(x_1,...)\sigma 0$ where p is a polynomial $\in \mathbf{Q}[x_1,...,x_n]$ and $\sigma \in \{=, \neq, >, <, \leq, \geq\}$.

If Φ and Ψ are Boolean combinations of elementary polynomial constraints, then they define semi-algebraic sets in \mathbf{R}^n (resp. \mathbf{R}^{l-1}), and the assertion that (1) is possible is equivalent to asserting that the projection of a semi-algebraic set is semi-algebraic [Sei54]. In fact a constructive process for (1) had already been given in the 1930s but published in 1951 [Tar51].

Useful Notation

- d Maximum degree (in each variable)
- k Number of iterations of a construction
- *m* Number of polynomials
- n Number of variables

The Heintz Construction

In [Hei83] Joos Heintz showed a simple construction to build f(f(x)) from f(x) without using two (syntactic) copies of f. In other words, if $|\cdot|$ denotes formula length, we would normally expect |f(f(x))| = 2|f(x)| + O(1), whereas Heintz has |f(f(x))| = |f(x)| + O(1). Let $\Phi_i(y_i, x_i)$ be a formula defining $y_i = f_i(x_i)$. Then in order to build $f_k = f_{k-1}(f_{k-1})$ we consider

$$\Phi_{k}(x_{k}, y_{k}) :=
\exists z_{k} \forall x_{k-1} \forall y_{k-1} \begin{bmatrix} y_{k-1} = y_{k} \land x_{k-1} = z_{k} \\ \lor \\ y_{k-1} = z_{k} \land x_{k-1} = x_{k} \end{bmatrix}
\Rightarrow
\Phi_{k-1}(y_{k-1}, x_{k-1})$$
(2)

Expansion (Heintz)

If we move the \vee symbol outside, and flatten the $\forall x_{k-1} \forall y_{k-1}$, we get $\exists z_k \Phi_{k-1}(y_k, z_k) \land \Phi_{k-1}(z_k, x_k)$: $y_k = f(z_k) \land z_k = f(x_k)$.

Using The Heintz Construction

This construction was applied in [DH88] to show that real (polynomial) quantifier elimination (RQE) had a doubly-exponential (in the number of variables) worst case. Strictly speaking, this is a doubly-exponential bad case. But [Col75] showed that RQE had a doubly-exponential upper bound on the complexity, hence, to within the crudeness of "doubly exponential", this is a worst case example. This was done by starting with the real and imaginary parts of $x_1^4 = x_2$ and building the real and imaginary parts of $x_1^{2^{2^k}} = x_2$. Such a high degree polynomial has a doubly-exponential number of roots, defined by a polynomial of degree 2^{2^n} which shows the result.

The Brown–Davenport construction

Heintz was applied in [BD07] to a linear starting point:

$$y_0 = f_0(x_0) := \begin{cases} 2x_0 & \text{for } x_0 \le 1/2\\ 2 - 2x_0 & \text{for } x_0 > 1/2 \end{cases}$$
 (3)

We consider $y_k = \frac{1}{2} \land y_k = f_k(x_k)$, where f_k is defined by applying (2) to (4). Graphs of f_0 , f_1 and f_2 are shown in Figure 1.

The Brown–Davenport construction

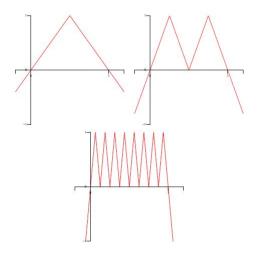


Figure 1: Plot of f_0 , as defined by (2), followed by plots of the functions f_1 and f_2 defined by the recursion (1).

The Brown–Davenport construction

Heintz was applied in [BD07] to a linear starting point:

$$y_0 = f_0(x_0) := \begin{cases} 2x_0 & \text{for } x_0 \le 1/2\\ 2 - 2x_0 & \text{for } x_0 > 1/2 \end{cases}$$
 (4)

We consider $y_k = \frac{1}{2} \land y_k = f_k(x_k)$, where f_k is defined by applying (2) to (4). Graphs of f_0 , f_1 and f_2 are shown in Figure 1. f^k has 2^{2^k} lines (since each line in the "outer" f_{k-1} is replaced by $2^{2^{k-1}}$ lines from the "inner" f_{k-1} .

Then x_0 has values $\frac{1}{4}$, $\frac{3}{4}$, x_1 has values $\frac{1}{8}$, $\frac{3}{8}$, $\frac{5}{8}$ and $\frac{7}{8}$, x_2 has values $\frac{i}{32}$ for $i=1,3,\ldots,31$ and so on.

An Apparent Conundrum (1)

Excluding the conditions $x \le 1/2$ and x > 1/2 from (4), which are there to ensure that f_0 (and hence all f_i) are functions, we see that f_0 has two equations $\underbrace{y_0 = 2x_0}_{L}$ and $\underbrace{y_0 = 2 - 2x_0}_{L}$ in the definition,

to which we add $y_k = \frac{1}{2}$ with k = 0. Then our solutions are

defined by $H_0 \wedge H_1$ and $H_0 \wedge H_2$.

 f_1 is obtained by adding (2) to (4) (and we change H_0 to be $y_1 = \frac{1}{2}$). Being explicit, the premise is

$$\underbrace{\left(\underbrace{y_0 = y_1}_{H_3} \land \underbrace{x_0 = z_1}_{H_4}\right)}_{C_A} \lor \underbrace{\left(\underbrace{y_0 = z_1}_{H_5} \land \underbrace{x_0 = x_1}_{H_6}\right)}_{C_B}, \tag{5}$$

seven equations in five variables. H_0 is always present, so are the solutions obtained from this and some subset of the other H_i ?

An Apparent Conundrum (2)

Can subsets of $\mathcal{O}(n)$ (to be precise, $\frac{4}{3}n+\frac{1}{3}$) equations really generate a doubly exponential number of solutions? We tabulate k, the number of variables n, the number of equations E including the $y_k=\frac{1}{2}$ equation, the number of ways of producing a point solution by intersecting a subset of the equations (allowing for $y_k=\frac{1}{2}$ being always there), and the number of actual solutions.

Table: Figures for [BD07]

k	n	E=# equations	$\begin{pmatrix} E-1 \\ n-1 \end{pmatrix}$	2^{2^k}
0	2	3	2	2
1	5	7	15	4
2	8	11	120	16
3	11	15	1001	256
4	14	19	8568	65536
5	17	23	74613	2^{32}

No, this doesn't work out!

The resolution (1)

Example

Consider the solution $y_1=\frac{1}{2}, x_1=\frac{1}{8}$ for the case k=1. If we first consider the first disjunct of the premise in (5), we have $H_0 \wedge H_3 \wedge H_4 \wedge H_1$, we have $y_1=\frac{1}{2}$: $y_0=y_1=\frac{1}{2}$; $x_0=z_1$ and $x_0=\frac{1}{4}$ (and therefore $z_1=\frac{1}{4}$). Then from the second disjunct, $H_5 \wedge H_6 \wedge H_1$, we have $y_0=z_1=\frac{1}{4}, x_1=x_0$ and $x_0=\frac{1}{8}$ (so $x_1=\frac{1}{8}$). We use H_1 twice here, with the uses coupled by z_1 occurring in both disjuncts. Replacing either or both of these with H_2 would give us the other three solutions.

The resolution (2)

We can now see what ignoring H_0 , i.e. just considering

$$(5) \Rightarrow (4),$$

would be, viz.

$$f_1(x_1) := \begin{cases} 4x_1 & \text{for } x_1 \le 1/4 & H_1^* := (H_1, H_1) \\ 2 - 4x_1 & \text{for } 1/4 < x_1 \le 1/2 & H_2^* := (H_1, H_3) \\ 4x_1 - 2 & \text{for } 1/2 < x_1 \le 3/4 & H_3^* := (H_3, H_1) \\ 4 - 4x_1 & \text{for } x_1 > 3/4 & H_4^* := (H_3, H_3) \end{cases}, (6)$$

where we have labelled each option with its origins in (4). This is indeed the graph for f_1 shown in Figure 1.

Then, when building the definition of f_2 (i.e. ignoring $y_2 = 1/2$), we are effectively applying the equivalent of (5) (with half-plane equation H_7, \ldots, H_{10}) to (6), we can consider $H_7 \wedge H_8 \wedge H_i^*$ for four values of i, and similarly $H_9 \wedge H_{10} \wedge H_i^*$ for four values of i, giving 16 values, as in Table 1. Note that $y_2 = \frac{1}{2}, x_2 = \frac{1}{32}$ uses H_1 four times (and each of H_3, \ldots, H_7 twice), and so on.

The resolution (3)

Hence the Heintz construction is doing much more than allowing us different choices of the H_i (which would be the $\begin{pmatrix} E-1\\n-1\end{pmatrix}$ column in Table 1): it is also allowing re-use of the H_i (as H_1 was re-used in Example 2), to the extent that the points defined are not simple intersections of the H_i .

Variants on the Heintz construction (1)

Consider the following variation on (2).

$$\Phi_{k}(x_{k}, y_{k}) := \begin{cases}
y_{k-1} = y_{k} \wedge x_{k-1} = z_{k} \\
\vee \\
y_{k-1} = z_{k} \wedge x_{k-1} = w_{k} \\
\vee \\
y_{k-1} = w_{k} \wedge x_{k-1} = x_{k}
\end{cases}$$

$$\Phi_{k-1}(y_{k-1}, x_{k-1})$$

$$(7)$$

If we move the \vee symbol outside, and flatten the $\forall x_{k-1} \forall y_{k-1}$, we get $\exists z_k, w_k \Phi_{k-1}(y_k, z_k) \land \Phi_{k-1}(z_k, w_k) \land \Phi_{k-1}(w_k, x_k)$. If we apply (7) to (4), still interpreting $\Phi_k(y_k, x_k)$ as $y_k = f_k(x_k)$, we see that $f_1 = f_0(f_0(f_0(x_0)))$ etc. $y_1 = \frac{1}{2} \land \Phi_1(y_1, x_1)$ gives us eight solutions at $x_i = \frac{i}{16}$ for $i \in \{1, 3, \dots, 15\}$. In general $y_k = \frac{k}{2} \land \Phi_k(y_k, x_k)$ will have 2^{3^k} solutions.

Variants on the Heintz construction (2, 3)

We can add a further variable v_k to the constuction in (7), and get $f_1 = f_0(f_0(f_0(x_0)))$, and similarly 16 solutions, and more generally 2^{4^k} solutions.

We can add a further variable u_k to the constuction in (7), and get $f_1 = f_0(f_0(f_0(f_0(x_0))))$, and similarly 32 solutions, and more generally 2^{5^k} solutions.

Summary of Heintz variants

Table: Figures for various constructions

	Mathod Alto		ernations	Variables	Solutions	Eff.		
			а	n	S	e		
[DH8	88, Theorem	2]	2k - 1	6k + 2	$2^{2^{k+1}}$	$\frac{1}{6}$		
[DH8	8, Theorem	2']	2k - 1	10k + 2	$2^{2^{2k+1}}$	$\begin{array}{c} \frac{1}{6} \\ \frac{1}{5} \end{array}$		
[BD07]		2k - 1	3k + 2	2^{2^k}	$\frac{1}{3}$			
	Variant 1		2k - 1	4k + 2	2^{3^k}	≈ 0.396		
	Variant 2		2k - 1	5k + 2	$2^{4^k} = 2^{2^{2k}}$	<u>2</u> 5		
	Variant 3		2k - 1	6k + 2	2^{5^k}	≈ 0.387		
e, the "efficiency" is defined as the limit of $\log_2 \log_2(s)/n$.								

Theorem 2' was about the limit of [DH88]. Similarly the second variant seems to be the limit of the [BD07] method.

Bounds

These are lower bounds. [Col75] gave an upper bound of e=2. The Lazard projection [MPP19, BM20] gives an unconditional upper bound of e=1 (whereas [McC85, Dav85], quoted in [DH88], were conditional on the system being "well-oriented"). The gap between upper e=1 and lower e=0.4 might not seem great, but it's in a double exponent, so corresponds to (more than) squaring the complexity.

Virtual Term Substitution [Wei88]

A direct method of quantifier elimination. Takes $\exists x_n \Phi(x_1, \dots, x_n)$, where Φ is a pure conjunction of elementary constraints. This covers all cases since we can transform $\forall x \Phi \Rightarrow \neg \exists x \neg \Phi$ and $\exists x \bigvee_i \Phi_i \Rightarrow \bigvee_i \exists x \Phi_i$. The degree of x in Φ is limited:

linear [Wei88]

quadratic [Wei97]

cubic [Koš16]

quartic Theoretically possible, but essentially unverifiable

For fixed x_1,\ldots,x_{n-1} , each constraint ϕ_i in Φ defines $\leq 1, \leq 2$ and ≤ 3 critical points. For example, if the constraint is $\lambda_i x_n + \mu_i = \geq 0$, the critical point is $x_n = c_i := -\mu_i/\lambda_i$ unless $\lambda = 0$.

Then ϕ_i is true when $x \ge c_i$ if $\lambda_i > 0$, and when $x \le c_i$ if $\lambda_i < 0$. If all the ϕ_i are of .this form, then Φ is feasible if all the c_i with $\lambda_i > 0$ are less than all the c_i with $\lambda_i < 0$ This leads to a (large) disjunction of possibilities on the λ_i and c_i , which are in x_1, \ldots, x_{n-1} .

Virtual Term Substitution [Wei88]

For higher degrees, we also need to know that the critical points are real.

For quadratic and cubic ϕ_i , the situation is similar, but more complicated in terms of the critical points if there is more than one for a ϕ_i .

The output is a large disjunction, which is not a problem for the case of $\exists y \exists x \Phi$ which becomes $\exists y \bigvee_i \Psi_i$ which is $\bigvee_i \exists y \Psi_i$. Bot $\forall y \exists x \Phi$ becomes $\forall y \bigvee_i \Psi_i$ which is $\neg \exists y \neg \bigvee_i \Psi_i = \neg \exists y \bigwedge_i \overline{\Psi_i}$ and we have a (potentially exponential) CNF to DNF transformation before we can apply the next VTS.

From a different point of view, this also emphasises the importance of alternations in the complexity.

Bibliography I

C.W. Brown and J.H. Davenport.

The Complexity of Quantifier Elimination and Cylindrical Algebraic Decomposition.

In C.W. Brown, editor, *Proceedings ISSAC 2007*, pages 54–60, 2007.

doi:10.1145/1277548.1277557.

C.W. Brown and S. McCallum.

Enhancements to Lazard's Method for Cylindrical Algebraic Decomposition.

In F. Boulier, M. England, T.M. Sadykov, and E.V. Vorozhtsov, editors, Computer Algebra in Scientific Computing CASC 2020, volume 12291 of Springer Lecture Notes in Computer Science, pages 129-149, 2020. doi:10.1007/978-3-030-60026-6_8.

Bibliography II

G.E. Collins.

Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition.

In H. Brakhage, editor, Proceedings 2nd. GI Conference Automata Theory & Formal Languages, volume 33 of Springer Lecture Notes in Computer Science, pages 134–183, 1975. doi:10.1007/3-540-07407-4_17.

J.H. Davenport.

Computer Algebra for Cylindrical Algebraic Decomposition. Technical Report TRITA-NA-8511 NADA KTH Stockholm (Reissued as Bath Computer Science Technical Report 88-10), 1985.

URL: http://staff.bath.ac.uk/masjhd/TRITA.pdf.

Bibliography III

J.H. Davenport and J. Heintz.

Real Quantifier Elimination is Doubly Exponential.

J. Symbolic Comp., 5:29–35, 1988. doi:10.1016/S0747-7171(88)80004-X.

J. Heintz.

Definability and Fast Quantifier Elimination in Algebraically Closed Fields

Theor. Comp. Sci., 24:239–277, 1983. doi:10.1016/0304-3975(83)90002-6.

M. Košta.

New concepts for real quantifier elimination by virtual substitution.

PhD thesis, Universität des Saarlandes, 2016.

Bibliography IV

S. McCallum.

An Improved Projection Operation for Cylindrical Algebraic Decomposition.

Technical Report 578, Computer Science University Wisconsin at Madison, 1985.

URL: https://minds.wisconsin.edu/bitstream/handle/ 1793/58594/TR578.pdf?sequence=1.

S. McCallum, A. Parusiński, and L. Paunescu. Validity proof of Lazard's method for CAD construction.

J. Symbolic Comp., 92:52-69, 2019. doi:10.1016/j.jsc.2017.12.002.

A. Seidenberg.

A new decision method for elementary algebra.

Ann. Math., 60:365-374, 1954.

Bibliography V

A. Tarski.

A Decision Method for Elementary Algebra and Geometry. 2nd ed., Univ. Cal. Press. Reprinted in Quantifier Elimination and Cylindrical Algebraic Decomposition (ed. B.F. Caviness & J.R. Johnson), Springer-Verlag, Wein-New York, 1998, pp. 24-84., 1951.

V. Weispfenning.

The Complexity of Linear Problems in Fields.

J. Symbolic Comp., 5:3–27, 1988.

V. Weispfenning.

Quantifier elimination for real algebra — the quadratic case and beyond.

AAECC, 8:85-101, 1997.