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Introduction: Quantifier Elimination

“Quantifier Elimination” is what it says: the problem of
eliminating quantifiers, i.e. given a quantified expression (which we
may as well assume is in prenex form), can we find an equivalent
expression W without quantifiers, i.e.

QX Qr1xi4+1 -+ Qnxn®(x1, ..., xn) © V(xy,...,x-1), (1)

where Q; € {V,3}.
Some logics admit quantifier elimination, some do not.
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Quantifier Elimination: Polynomials

Definition
An elementary (polynomial) constraint is a Boolean-valued
function p(xi,...)o0 where p is a polynomial € Q[xi, ..., x,] and

oe{=#><5>}

If ® and W are Boolean combinations of elementary polynomial
constraints, then they define semi-algebraic sets in R” (resp.
R'~1), and the assertion that (1) is possible is equivalent to
asserting that the projection of a semi-algebraic set is
semi-algebraic [Sei54]. In fact a constructive process for (1) had
already been given in the 1930s but published in 1951 [Tar51].
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Useful Notation

d Maximum degree (in each variable)
k Number of iterations of a construction
m Number of polynomials

n Number of variables
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The Heintz Construction

In [Hei83] Joos Heintz showed a simple construction to build
f(f(x)) from f(x) without using two (syntactic) copies of f.

In other words, if | - | denotes formula length, we would normally
expect |f(f(x))| = 2|f(x)| + O(1), whereas Heintz has

[f(f(x))] = |f(x)| + O(1). Let ®;(y;, x;) be a formula defining
yi = fi(x;). Then in order to build fx = fx_1(fxk—1) we consider

Dy (Xk, yi) =
Yk—1 = Yk N Xk—1 = Zk
. (2)
32, VX —1Vyr—1 Yk—1 = Zk N Xk—1 = Xk
=

Dp1(Vr—1, Xk—1)

Expansion (Heintz)

If we move the V symbol outside, and flatten the Vx,_1Vy,_1, we
get E|Zk¢k_1(yk, Zk) A ¢k_1(2k, Xk).' Yk = f(Zk) N\ Z = f(Xk).

James Davenportmas jhd@bath.ac.uk 5/25




Using The Heintz Construction

This construction was applied in [DH88] to show that real
(polynomial) quantifier elimination (RQE) had a
doubly-exponential (in the number of variables) worst case.
Strictly speaking, this is a doubly-exponential bad case. But
[Col75] showed that RQE had a doubly-exponential upper bound
on the complexity, hence, to within the crudeness of “doubly
exponential”, this is a worst case example. This was done by
starting with the real and imaginary parts of x; = x, and building

k
the real and imaginary parts of xl22 = x2. Such a high degree
polynomial has a doubly-exponential number of roots, defined by a
polynomial of degree 22 which shows the result.
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The Brown—Davenport construction

Heintz was applied in [BDO07] to a linear starting point:

_ . 2xg for xp < 1/2
Yo = fo(x0) = { 2—2x for xp > 1/2 (3)

We consider y, = % A yk = fe(xk), where fy is defined by applying
(2) to (4). Graphs of fy, f; and f, are shown in Figure 1.
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The Brown—Davenport construction

SiNETARTe

Figure 1: Plot of fy, as defined by (2), followed by

plots of the functions fi; and f2 defined by the recur-
sion (1).
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The Brown—Davenport construction

Heintz was applied in [BDO07] to a linear starting point:

_ . 2xpg  for xp <1/2
¥o = folxo) = { 2—2x for xg >1/2 *)

We consider y, = % A yk = fe(xk), where fy is defined by applying
(2) to (4). Graphs of fy, f; and f, are shown in Figure 1.

£k has 22° lines (since each line in the “outer” fi_; is replaced by
22" lines from the “inner” f_q.

Then X0 has values %, %, x1 has values %, %, % and %, x> has
values 55 for i =1,3,...,31 and so on.
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An Apparent Conundrum (1)

Excluding the conditions x < 1/2 and x > 1/2 from (4), which are
there to ensure that fy (and hence all ;) are functions, we see that
fo has two equations yp = 2xg and yp = 2 — 2xp in the definition,
—_— —_—
H1 H2

1
to which we add yy = 5 with k = 0. Then our solutions are

N——
H

0
defined by Hy A Hy and Hy A Hs.
fi is obtained by adding (2) to (4) (and we change Hp to be
y1 = %) Being explicit, the premise is

Yo=nAxo=2z1) | V|y=2z2Ax0=x |,
—— N—\— ——  N——
H3 H4 H5 H6

(5)

Ca Cp

seven equations in five variables. Hy is always present, so are the
solutions obtained from this and some subset of the other H;?
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An Apparent Conundrum (2)

Can subsets of O(n) (to be precise, 3n+ 3) equations really
generate a doubly exponential number of solutions? We tabulate
k, the number of variables n, the number of equations E including
the yx = % equation, the number of ways of producing a point
solution by intersecting a subset of the equations (allowing for

Vi = & being always there), and the number of actual solutions.

Table: Figures for [BDO07]

n E =# equations < E-1 > 22

k n—1

0 2 3 2 2
1 5 7 15 4
2 8 11 120 16
3 11 15 1001 256
4 14 19 8568 65536
5 17 23 74613 232

No, this doesn’t work out!
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The resolution (1)

Consider the solution y; = %,xl = % for the case k = 1. If we first
consider the first disjunct of the premise in (5), we have

Ho A H3 A Hq N\ Hy, we haveylzé: yo:y;l:%;xo:zl and

xo = 3 (and therefore z; = 1).

Then from the second disjunct, Hs A Hs A H1, we have
yO:zlz%, X1 = xg and X0:%(SOX1:%).

We use H; twice here, with the uses coupled by z; occuring in
both disjuncts. Replacing either or both of these with H, would
give us the other three solutions.

.
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The resolution (2)

We can now see what ignoring Hp, i.e. just considering
(5) = (4),

would be, viz.

4X1 for x1 < ]_/4 Hf = (Hl, Hl)

L 2 —4xq for 1/4<X1 §1/2 H; = (Hl,H3)
fl(Xl) T 4x1 — 2 for 1/2 <x1 < 3/4 H; = (H3, Hl) ’ (6)

4 — 4xy for x; > 3/4 H} := (H3, H3)

where we have labelled each option with its origins in (4). This is
indeed the graph for f; shown in Figure 1.

Then, when building the definition of £, (i.e. ignoring y» = 1/2),
we are effectively applying the equivalent of (5) (with half-plane
equation Hz, ..., Hig)) to (6), we can consider H; A Hg A H for
four values of /, and similarly Hg A Hig A H; for four values of i,
giving 16 values, as in Table 1. Note that y, = %,xz = % uses H;
four times (and each of Hs, ..., H7 twice), and so on.
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The resolution (3)

Hence the Heintz construction is doing much more than allowing

us different choices of the H; (which would be the ( 5:; )

column in Table 1): it is also allowing re-use of the H; (as H; was
re-used in Example 2), to the extent that the points defined are
not simple intersections of the H;.
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Variants on the Heintz construction (1)

Consider the following variation on (2).

Sr(xk, yi) =
Yk—1 = Yk N Xk—1 = Zk
V
Yk—1 = Zik \ Xk—1 = W (7)
Azp, wiVxk—1, yk—1 %
Yk—1 = Wk N Xk—1 = Xk
=
| Pr1(Yh—1,Xk—1) i

If we move the V symbol outside, and flatten the Vx,_1Vyx_1, we
get 3z, wiePp1(yk, zk) N Pr—1(zk, wi) A 1 (wi, Xk ).

If we apply (7) to (4), still interpreting ®,(yk, xk) as yk = fi(xk),
we see that fi = fo(fo(fo(x0)))) etc. y1 = 3 A ®1(y1, x1) gives us

eight solutions at x; = 15 for i € {1,3,...,15}. In general

Vi = g A Dy (yk, xx) will have 23" solutions.
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Variants on the Heintz construction (2, 3)

We can add a further variable v, to the constuction in (7), and get
fi = fo(fo(fo(fo(x0)))), and similarly 16 solutions, and more
generally 24 solutions.

We can add a further variable uy to the constuction in (7), and get
fi = fo(fo(fo(fo(fo(x0))))), and similarly 32 solutions, and more
generally 25° solutions.
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Summary of Heintz variants

Table: Figures for various constructions

Mathod  Alternations Variables  Solutions Eff.

a n S e

[DH88, Theorem 2] 2k —1 6k + 2 22" i
[DH88, Theorem 2'] 2k —1 10k + 2 2! L
[BDO7] 2k—1  3k+2 22 i
Variant 1 2k —1  4k+2 23 ~0.396
Variant 2 2k -1  Bk+2 2% =2 2
Variant 3 2k—1  6k+2 25~ 0.387

e, the “efficiency” is defined as the limit of log, log,(s)/n.

Theorem 2’ was about the limit of [DH88].
Similarly the second variant seems to be the limit of the [BDO07]
method.
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These are lower bounds.

[Col75] gave an upper bound of e = 2.

The Lazard projection [MPP19, BM20] gives an unconditional
upper bound of e = 1 (whereas [McC85, Dav85], quoted in
[DH88], were conditional on the system being “well-oriented" ).
The gap between upper e = 1 and lower e = 0.4 might not seem
great, but it's in a double exponent, so corresponds to (more than)
squaring the complexity.
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Virtual Term Substitution [Wei88]

A direct method of quantifier elimination. Takes 3x,®(xi, ..., Xp),
where ® is a pure conjunction of elementary constraints.
This covers all cases since we can transform Vx® = —3Jx—® and
Ix \; ®; =V, 3x®;. The degree of x in ® is limited:
linear [Wei88]
quadratic [Wei97]
cubic [Ko316]
quartic Theoretically possible, but essentially unverifiable
For fixed xi,...,Xx,_1, each constraint ¢; in ® defines <1, <2
and < 3 critical points. For example, if the constraint is
Aixn + pi == 0, the critical point is x, = ¢; := —pu;/A; unless
A=0.
Then ¢; is true when x > ¢; if A\; > 0, and when x < ¢; if A\; < 0.
If all the ¢; are of .this form, then ® is feasible if all the ¢; with
Ai > 0 are less than all the ¢; with A\; < 0 This leads to a (large)
disjunction of possibilities on the A; and ¢;, which are in
X1,y ey Xp_1.
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Virtual Term Substitution [Wei88]

For higher degrees, we also need to know that the critical points
are real.

For quadratic and cubic ¢;, the situation is similar, but more
complicated in terms of the critical points if there is more than one
for a ¢;.

The output is a large disjunction, which is not a problem for the
case of Jy3x® which becomes Jy \/; ¥; which is \/; Iy V;.

Bot Vy3x® becomes Vy \/; W; which is =3y—=\/; ¥; = =3Iy A, V;
and we have a (potentially exponential) CNF to DNF
transformation before we can apply the next VTS.

From a different point of view, this also emphasises the importance
of alternations in the complexity.
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