
On the Brown–Davenport construction
*In memory of Joos Heintz, 27 October 1945–3 October 2024

1

James Davenport
masjhd@bath.ac.uk

University of Bath

24 September 2025

1Partially Supported by EPSRC under grant EP/T015713/1
James Davenportmasjhd@bath.ac.uk

On the Brown–Davenport construction
*In memory of Joos Heintz, 27 October 1945–3 October 2024

1 / 25



Introduction: Quantifier Elimination

“Quantifier Elimination” is what it says: the problem of
eliminating quantifiers, i.e. given a quantified expression (which we
may as well assume is in prenex form), can we find an equivalent
expression Ψ without quantifiers, i.e.

QlxlQl+1xl+1 · · ·QnxnΦ(x1, . . . , xn) ⇔ Ψ(x1, . . . , xl−1), (1)

where Qi ∈ {∀,∃}.
Some logics admit quantifier elimination, some do not.
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Quantifier Elimination: Polynomials

Definition

An elementary (polynomial) constraint is a Boolean-valued
function p(x1, . . .)σ0 where p is a polynomial ∈ Q[x1, . . . , xn] and
σ ∈ {=, ̸=, >,<,≤,≥}.

If Φ and Ψ are Boolean combinations of elementary polynomial
constraints, then they define semi-algebraic sets in Rn (resp.
Rl−1), and the assertion that (1) is possible is equivalent to
asserting that the projection of a semi-algebraic set is
semi-algebraic [Sei54]. In fact a constructive process for (1) had
already been given in the 1930s but published in 1951 [Tar51].
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Useful Notation

d Maximum degree (in each variable)

k Number of iterations of a construction

m Number of polynomials

n Number of variables
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The Heintz Construction

In [Hei83] Joos Heintz showed a simple construction to build
f (f (x)) from f (x) without using two (syntactic) copies of f .
In other words, if | · | denotes formula length, we would normally
expect |f (f (x))| = 2|f (x)|+ O(1), whereas Heintz has
|f (f (x))| = |f (x)|+ O(1). Let Φi (yi , xi ) be a formula defining
yi = fi (xi ). Then in order to build fk = fk−1(fk−1) we consider

Φk(xk , yk) :=

∃zk∀xk−1∀yk−1


 yk−1 = yk ∧ xk−1 = zk

∨
yk−1 = zk ∧ xk−1 = xk


⇒

Φk−1(yk−1, xk−1)

 (2)

Expansion (Heintz)

If we move the ∨ symbol outside, and flatten the ∀xk−1∀yk−1, we
get ∃zkΦk−1(yk , zk) ∧ Φk−1(zk , xk): yk = f (zk) ∧ zk = f (xk).
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Using The Heintz Construction

This construction was applied in [DH88] to show that real
(polynomial) quantifier elimination (RQE) had a
doubly-exponential (in the number of variables) worst case.
Strictly speaking, this is a doubly-exponential bad case. But
[Col75] showed that RQE had a doubly-exponential upper bound
on the complexity, hence, to within the crudeness of “doubly
exponential”, this is a worst case example. This was done by
starting with the real and imaginary parts of x41 = x2 and building

the real and imaginary parts of x2
2k

1 = x2. Such a high degree
polynomial has a doubly-exponential number of roots, defined by a
polynomial of degree 22

n
which shows the result.
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The Brown–Davenport construction

Heintz was applied in [BD07] to a linear starting point:

y0 = f0(x0) :=

{
2x0 for x0 ≤ 1/2

2− 2x0 for x0 > 1/2
(3)

We consider yk = 1
2 ∧ yk = fk(xk), where fk is defined by applying

(2) to (4). Graphs of f0, f1 and f2 are shown in Figure 1.

f k has 22
k
lines (since each line in the “outer” fk−1 is replaced by

22
k−1

lines from the “inner” fk−1.
Then x0 has values 1

4 ,
3
4 , x1 has values 1

8 ,
3
8 ,

5
8 and 7

8 , x2 has
values i

32 for i = 1, 3, . . . , 31 and so on.
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The Brown–Davenport construction
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An Apparent Conundrum (1)

Excluding the conditions x ≤ 1/2 and x > 1/2 from (4), which are
there to ensure that f0 (and hence all fi ) are functions, we see that
f0 has two equations y0 = 2x0︸ ︷︷ ︸

H1

and y0 = 2− 2x0︸ ︷︷ ︸
H2

in the definition,

to which we add yk =
1

2︸ ︷︷ ︸
H0

with k = 0. Then our solutions are

defined by H0 ∧ H1 and H0 ∧ H2.
f1 is obtained by adding (2) to (4) (and we change H0 to be
y1 =

1
2). Being explicit, the premise isy0 = y1︸ ︷︷ ︸

H3

∧ x0 = z1︸ ︷︷ ︸
H4

)


︸ ︷︷ ︸

CA

∨

y0 = z1︸ ︷︷ ︸
H5

∧ x0 = x1︸ ︷︷ ︸
H6


︸ ︷︷ ︸

CB

,
(5)

seven equations in five variables. H0 is always present, so are the
solutions obtained from this and some subset of the other Hi?
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An Apparent Conundrum (2)

Can subsets of O(n) (to be precise, 4
3n + 1

3) equations really
generate a doubly exponential number of solutions? We tabulate
k, the number of variables n, the number of equations E including
the yk = 1

2 equation, the number of ways of producing a point
solution by intersecting a subset of the equations (allowing for
yk = 1

2 being always there), and the number of actual solutions.

Table: Figures for [BD07]

k n E =# equations

(
E − 1
n − 1

)
22

k

0 2 3 2 2
1 5 7 15 4
2 8 11 120 16
3 11 15 1001 256
4 14 19 8568 65536
5 17 23 74613 232

No, this doesn’t work out!
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The resolution (1)

Example

Consider the solution y1 =
1
2 , x1 =

1
8 for the case k = 1. If we first

consider the first disjunct of the premise in (5), we have
H0 ∧ H3 ∧ H4 ∧ H1, we have y1 =

1
2 : y0 = y1 =

1
2 ; x0 = z1 and

x0 =
1
4 (and therefore z1 =

1
4).

Then from the second disjunct, H5 ∧ H6 ∧ H1, we have
y0 = z1 =

1
4 , x1 = x0 and x0 =

1
8 (so x1 =

1
8).

We use H1 twice here, with the uses coupled by z1 occuring in
both disjuncts. Replacing either or both of these with H2 would
give us the other three solutions.
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The resolution (2)

We can now see what ignoring H0, i.e. just considering

(5) ⇒ (4),

would be, viz.

f1(x1) :=


4x1 for x1 ≤ 1/4 H∗

1 := (H1,H1)
2− 4x1 for 1/4 < x1 ≤ 1/2 H∗

2 := (H1,H3)
4x1 − 2 for 1/2 < x1 ≤ 3/4 H∗

3 := (H3,H1)
4− 4x1 for x1 > 3/4 H∗

4 := (H3,H3)

, (6)

where we have labelled each option with its origins in (4). This is
indeed the graph for f1 shown in Figure 1.
Then, when building the definition of f2 (i.e. ignoring y2 = 1/2),
we are effectively applying the equivalent of (5) (with half-plane
equation H7, . . . ,H10)) to (6), we can consider H7 ∧ H8 ∧ H∗

i for
four values of i , and similarly H9 ∧ H10 ∧ H∗

i for four values of i ,
giving 16 values, as in Table 1. Note that y2 =

1
2 , x2 =

1
32 uses H1

four times (and each of H3, . . . ,H7 twice), and so on.
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The resolution (3)

Hence the Heintz construction is doing much more than allowing

us different choices of the Hi (which would be the

(
E − 1
n − 1

)
column in Table 1): it is also allowing re-use of the Hi (as H1 was
re-used in Example 2), to the extent that the points defined are
not simple intersections of the Hi .
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Variants on the Heintz construction (1)

Consider the following variation on (2).

Φk(xk , yk) :=

∃zk ,wk∀xk−1, yk−1




yk−1 = yk ∧ xk−1 = zk

∨
yk−1 = zk ∧ xk−1 = wk

∨
yk−1 = wk ∧ xk−1 = xk


⇒

Φk−1(yk−1, xk−1)


(7)

If we move the ∨ symbol outside, and flatten the ∀xk−1∀yk−1, we
get ∃zk ,wkΦk−1(yk , zk) ∧ Φk−1(zk ,wk) ∧ Φk−1(wk , xk).
If we apply (7) to (4), still interpreting Φk(yk , xk) as yk = fk(xk),
we see that f1 = f0(f0(f0(x0)))) etc. y1 =

1
2 ∧ Φ1(y1, x1) gives us

eight solutions at xi =
i
16 for i ∈ {1, 3, . . . , 15}. In general

yk = k
2 ∧ Φk(yk , xk) will have 23

k
solutions.
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Variants on the Heintz construction (2, 3)

We can add a further variable vk to the constuction in (7), and get
f1 = f0(f0(f0(f0(x0)))), and similarly 16 solutions, and more

generally 24
k
solutions.

We can add a further variable uk to the constuction in (7), and get
f1 = f0(f0(f0(f0(f0(x0))))), and similarly 32 solutions, and more

generally 25
k
solutions.
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Summary of Heintz variants

Table: Figures for various constructions

Mathod Alternations Variables Solutions Eff.
a n s e

[DH88, Theorem 2] 2k − 1 6k + 2 22
k+1 1

6

[DH88, Theorem 2’] 2k − 1 10k + 2 22
2k+1 1

5

[BD07] 2k − 1 3k + 2 22
k 1

3

Variant 1 2k − 1 4k + 2 23
k ≈ 0.396

Variant 2 2k − 1 5k + 2 24
k
= 22

2k 2
5

Variant 3 2k − 1 6k + 2 25
k ≈ 0.387

e, the “efficiency” is defined as the limit of log2 log2(s)/n.

Theorem 2’ was about the limit of [DH88].
Similarly the second variant seems to be the limit of the [BD07]
method.
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Bounds

These are lower bounds.
[Col75] gave an upper bound of e = 2.
The Lazard projection [MPP19, BM20] gives an unconditional
upper bound of e = 1 (whereas [McC85, Dav85], quoted in
[DH88], were conditional on the system being “well-oriented”).
The gap between upper e = 1 and lower e = 0.4 might not seem
great, but it’s in a double exponent, so corresponds to (more than)
squaring the complexity.
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Virtual Term Substitution [Wei88]

A direct method of quantifier elimination. Takes ∃xnΦ(x1, . . . , xn),
where Φ is a pure conjunction of elementary constraints.
This covers all cases since we can transform ∀xΦ ⇒ ¬∃x¬Φ and
∃x

∨
i Φi ⇒

∨
i ∃xΦi . The degree of x in Φ is limited:

linear [Wei88]

quadratic [Wei97]

cubic [Koš16]

quartic Theoretically possible, but essentially unverifiable

For fixed x1, . . . , xn−1, each constraint ϕi in Φ defines ≤ 1, ≤ 2
and ≤ 3 critical points. For example, if the constraint is
λixn + µi =≥ 0, the critical point is xn = ci := −µi/λi unless
λ = 0.
Then ϕi is true when x ≥ ci if λi > 0, and when x ≤ ci if λi < 0.
If all the ϕi are of .this form, then Φ is feasible if all the ci with
λi > 0 are less than all the ci with λi < 0 This leads to a (large)
disjunction of possibilities on the λi and ci , which are in
x1, . . . , xn−1.
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Virtual Term Substitution [Wei88]

For higher degrees, we also need to know that the critical points
are real.
For quadratic and cubic ϕi , the situation is similar, but more
complicated in terms of the critical points if there is more than one
for a ϕi .
The output is a large disjunction, which is not a problem for the
case of ∃y∃xΦ which becomes ∃y

∨
i Ψi which is

∨
i ∃yΨi .

Bot ∀y∃xΦ becomes ∀y
∨

i Ψi which is ¬∃y¬
∨

i Ψi = ¬∃y
∧

i Ψi

and we have a (potentially exponential) CNF to DNF
transformation before we can apply the next VTS.
From a different point of view, this also emphasises the importance
of alternations in the complexity.
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