
First steps towards Computational Polynomials in
Lean

James Davenport
masjhd@bath.ac.uk

University of Bath
Thanks to many colleagues at Dagshuhl 23401, CICM 2023 [Dav23], the

Hausdorff Institute for Mathematics, and elsewhere, for input
Partially supported by EPSRC grant EP/T015713, and Deutsche

Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy – EXC-2047/1 – 390685813.

16 September 2024
See https://arxiv.org/abs/2408.04564

James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean 1 / 21

https://arxiv.org/abs/2408.04564

Background

The proof assistant Lean has support for abstract polynomials, but
this is not necessarily the same as support for computations with
polynomials.
Lean is also a functional programming language, so it should be
possible to implement computational polynomials in Lean.
It turns out not to be as easy as the naive author thought.
We consider polynomials in commuting variables over a
commutative ring R.

James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean 2 / 21

Existing Support in Lean

• Univariate. See
https://leanprover-community.github.io/mathlib4_

docs/Mathlib/Algebra/Polynomial/Basic.html.

• Multivariate. See
https://leanprover-community.github.io/mathlib4_

docs/Mathlib/Algebra/MvPolynomial/Basic.html.

This “creates the type MvPolynomial σ R, which
mathematicians might denote R[Xi : i ∈ σ]”.

Note That σ might be infinite, whereas in the rest of the document,
by “multivariate” we mean “in a fixed set of variables”.

� Lean allows the Ring with one element, so that 1 = 0.
Currently, we accept this.

These are abstract mathematical objects, not data structures as
such.

James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean 3 / 21

https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Polynomial/Basic.html
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Polynomial/Basic.html
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/MvPolynomial/Basic.html
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/MvPolynomial/Basic.html

Dense or Sparse

This is a fundamental decision in computer algebra: x2 + 1 or
x2 + 0x + 1?
Like most general-purpose computer algebra systems, we have
opted for sparse, essentially representing

∑
aix

i as a list of pairs
(i , ai).
In this representation, adding a polynomial of m terms to one with
n terms requires ≤ m + n − 1 comparisons of exponents, which is
obvious and apparently non-controversial.
However, if f , g , h have l ,m, n terms respectively

(f + g) + h needs ≤ 2l + 2m + n − 2 such comparisons

f + (g + h) needs ≤ l + 2m + 2n − 2 such comparisons

Especially in Gröbner bases, one is often adding small polynomials
repeatedly to large ones.

James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean 4 / 21

Geobuckets [Yan98]

A polynomial is stored as an (unevaluated) sum of
polynomials, with the kth polynomial having at most ck terms
(typically c = 4) — hence geometrically increasing buckets.

If we add a regular polynomial with ℓ terms to a geobucket,
we add it to bucket k with ck−1 < ℓ ≤ ck , and if the result
has more than ck terms, we add that to bucket k + 1, and
cascade the overflow as necessary.

In the absence of cascading overflows, the cost of adding ℓ
terms is O(ℓ), irrespective of the size of the whole polynomial.

The amortised cost of the cascading adds is small.

We don’t currently intend to implement these, but it’s worth
remembering them.

James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean 5 / 21

Multivariate Polynomials I

Mathematically, R[x , y , z] is the same structure as R[x][y][z].
When it comes to computer representations, this leads to a major
choice.

• Distributed. This is R[x , y , z], and is the representation of
choice for Gröbner base algorithms. We will normally fix in
advance our set of variables, and a total order ≺ on the
monomials, which tells us whether xαyβzγ ≺ xα

′
yβ

′
zγ

′
. It is

necessary in Gröbner base theory, and helpful in
implementation, to assume that ≺ is compatible with
multiplication: xi ≺ xj ⇒ xi+k ≺ xj+k.
If we have k variables, then the obvious technique is to store
the term cxαyβzγ as (α, β, γ, c) (or possibly a record
structure.

However, since we often use total degree orders in Gröbner
base computation, the Axiom implementation1 actually stored
(α+ β + γ, α, β, γ, c), i.e. the total degree first.

1This is now also done in Maple: [MP14].
James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean 6 / 21

Multivariate Polynomials II

• Recursive. A typical representation for, say, x3 − 2x would be
(x , (3, 1), (1,−2)), i.e. a list starting with the variable, then
ordered pairs as in “Sparse”. In a typed language we might
have a record type [variable,list]. Hence
z2(y2 + 2) + (3y + 4) ∈ R[y][z] would be represented as

(z , (2, (y , (2, 1), (0, 2))), (0, (y , (1, 3), (0, 4)))). (1)

What about z2(y2 + 2) + (3x + 4) ∈ R[x][y][z]? There are
(at least) two options.

• Dense in variables. In this option it would be represented as

(z , (2, (y , (2, (x , (0, 1))), (0, (x , (0, 2))))),
(0, (y , (0, (x , (1, 3), (0, 4)))))).

(2)

• Sparse in variables. In this option it would be represented as

(z , (2, (y , (2, 1), (0, 2))), (0, (x , (1, 3), (0, 4)))). (3)

James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean 7 / 21

Multivariate Polynomials III

So “Sparse in variables” would seem easier, but the snag is that
we can meet two polynomials with different main variables,
and we need some way of deciding which is the ‘main’
variable, else we can end up with polynomials in y whose
coefficients are polynomials in x whose coefficients are
polynomials in y , which is not well-formed.

• Other. There are other options, with interesting
complexity-theoretic implications, but not used in mainstream
computer algebra: see [Dav22, §2.1.5].

Experience in Axiom, as in [DGT91], shows that it may be useful
to be able to talk about univariate polynomials in an unspecified
variable, i.e. just a list of (exponent,coefficient) pairs with no
variable specified.
Recursive is suited to algorithms such as g.c.d., factorisation,
integration etc., in fact almost everything except Gröbner bases.
Reduce, which is recursive, has a special distributed form for
Gröbner bases [GM88] .

James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean 8 / 21

Implementation (Distributed)

nvars is the number of variables and MvDegrees is the
nvars-tuple of degrees in these variables, with an ordering.

def addCore : List (MvDegrees nvars × R) → List (MvDegrees nvars × R)

→ List (MvDegrees nvars × R)

| [], yy => yy

| xx, [] => xx

| xx@((i, a) :: x), yy@((j, b) :: y) =>

if i < j then

(j, b) :: addCore xx y

else if j < i then

(i, a) :: addCore x yy

else -- check for a+b=0

(fun c => if c=0 then addCore x y

else (i, c) :: addCore x y) (a+b)

The notation xx@((i, a) :: x) means “call it xx, but also
deconstruct it into (i, a) as the head, and x as the tail.
Termination of this recursive definition is obvious.

James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean 9 / 21

Implementation (Snag 1)

Lean requires a well-typed recursive definition to terminate.
Any programmer would say that termination is obvious, as every
recursive call is on less (either less x or less y, or possibly both),
but the Lean type-checker doesn’t recognise this, as it says below

fail to show termination for

MvSparsePoly.addCore

with errors

argument #5 was not used for structural recursion

failed to eliminate recursive application

addCore xx y

argument #6 was not used for structural recursion

failed to eliminate recursive application

addCore x yy

structural recursion cannot be used

James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean10 / 21

Implementation (Answer to Snag 1)

[McK24]: “How weak of Lean, much easier in Agda” — but
actually not, on experimentation.
In both, the proof of termination is required in the type checker,
which isn’t the full theorem prover.
Solution:

termination_by xx yy =>

xx.length + yy.length

Note that this requires the xx@ syntax to state it.

James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean11 / 21

Implementation (Snag 2)

For this to work the polynomials must be sorted (with a
well-ordering WOrdering nvars).

Figure: Sorted addition of multivariate polynomials

Proof of this is still “work in progress”

James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean12 / 21

Outsourcing Polynomial Algebra

In many cases, such as gcd (my other talk) or Gröbner bases/ideal
membership [Buz24, Mac24], we can outsource the computation.

gcd h = gcd(f , g ,): ∃f ′ : f = f ′h; ∃g ′ : g = g ′h;
∃λ, µ : h = λf + µg

Ideal f ∈ ⟨f1, . . . , fk⟩: ∃λi : f =
∑

λi fi

. . . Other applications.

Get an (untrusted) algebra system to compute the cofactors ∃ and
the (trusted) prover just verifies the identity: 0 =

∑N
=1 µigi .

But (especially for ideal membership), the µi may be much larger
than the gi , and individual summands µigi larger still.

James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean13 / 21

“Recall” Heap Multiplication [Joh74] (from [MP09])

Put the terms fi of f into a heap by degree (O(#f) heapify), then
regard this as sorted by degree of fig , and extract the terms of fg :
after each extraction we update the heap (O(log#f)).

Note that next term will have collision f2g2 + f3g1

Total cost O(#f#g log#f) so choose #f ≤ #g .

James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean14 / 21

Heap Verification Algorithm

Build a [Joh74] heap for each µigi (using smaller of the two
as f , assume gi): cost

∑
#gi .

Build a heap of these, using deg(µigi) as our criterion: cost N.

Start extracting terms (which should all be 0 after we add all
the contributions). Rebalance the outer heap and the relevant
µigi heap.

Cost logN
∑N #µi#gi +

∑N #µi#gi log#gi comparisons/
coefficient operations.

Additional space cost: that of the heaps: N +
∑N #gi ,

irrespective of #µi .

James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean15 / 21

How to handle geobuckets µi here

1) Flatten the geobuckets first: cost O(
∑

#µi) but potentially a
lot of space.

2) If µi =
∑

j µi ,j have more [Joh74] heaps giµi ,j rather than a
single heap giµi . Increases N to N +

∑
log#µi .

3) Handle µi being a Geobucket, which may incur more space
consumption compared with moving down a pointer in a
list-based gi .

Topic for further reearch!

James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean16 / 21

Thank you, and jobs

Any questions?

Permanent (subject to probation) jobs at Bath:

ED11636 Lecturers in Computer Science — Jobs at Bath

https://www.bath.ac.uk/jobs/Vacancy.aspx?id=

25307&forced=1

we are particularly looking for individuals with research
interests in areas around formal mathematics and computer
assisted reasoning, including but not limited to:

proof assistants (e.g. Agda, Coq, Isabelle, Lean)

certified mathematical libraries

logical systems, proof theory and type theory

certified programming and program synthesis

automated reasoning

applications of AI and machine learning to formal mathematics

James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean17 / 21

https://www.bath.ac.uk/jobs/Vacancy.aspx?id=25307&forced=1
https://www.bath.ac.uk/jobs/Vacancy.aspx?id=25307&forced=1

Bibliography I

K. Buzzard.
We outsource the computation of witnesses to ideal
membership.
Personal Communication at Hausdorff Institute 19 June, 2024.

J.H. Davenport.
Computer Algebra.
To be published by C.U.P.:
http://staff.bath.ac.uk/masjhd/JHD-CA.pdf, 2022.

J.H. Davenport.
Proving an Execution of an Algorithm Correct?
In Catherine Dubois and Manfred Kerber, editors, Proceedings
CICM 2023, volume 14101 of Springer Lecture Notes in
Computer Science, pages 255–269, 2023.

James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean18 / 21

http://staff.bath.ac.uk/masjhd/JHD-CA.pdf

Bibliography II

J.H. Davenport, P. Gianni, and B.M. Trager.
Scratchpad’s View of Algebra II: A Categorical View of
Factorization.
In S.M. Watt, editor, Proceedings ISSAC 1991, pages 32–38,
1991.

R. Gebauer and H.M. Möller.
On an installation of Buchberger’s Algorithm.
J. Symbolic Comp., 6:275–286, 1988.

S.C. Johnson.
Sparse Polynomial Arithmetic.
In Proceedings EUROSAM 74, pages 63–71, 1974.

James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean19 / 21

Bibliography III

Heather Macbeth.
Algorithm and Abstraction in Formal Mathematics.
In Kevin Buzzard, Alicia Dickenstein, Bettina Eick, Anton
Leykin, and Yue Ren, editors, Mathematical Software — ICMS
2024, volume 14749 of Springer Lecture Notes in Computer
Science, pages 12–28. Springer, 2024.

J. McKinna.
Termination in Agda.
Personal Communication at Hausdorff Institute August, 2024.

M.B. Monagan and R. Pearce.
Parallel sparse polynomial multiplication using heaps.
In Proceedings ISSAC 2009, pages 263–270, 2009.

James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean20 / 21

Bibliography IV

M. Monagan and R. Pearce.
POLY : A new polynomial data structure for Maple 17.
In R. Feng, Ws. Lee, and Y. Sato, editors, Proceedings
Computer Mathematics ASCM2009 and ASCM2012, pages
325–348, 2014.

T. Yan.
The geobucket data structure for polynomials.
J. Symbolic Comp., 25:285–294, 1998.

James Davenportmasjhd@bath.ac.uk First steps towards Computational Polynomials in Lean21 / 21

