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Trusting Software

It would be nice to trust software.

Gödel’s Incompleteness implies unconditional trust is
essentially impossible

Theorem provers (Lean etc.) tend to have a small kernel
(ideally 100s of lines), and the rest (tactics etc.) do not need
to be trusted, as an error there results in a “proof” that the
kernel rejects.

It is possible to produce programs (e.g. UK’s National Air
Traffic System) with 100Ks of lines, with formally proved
properties.

But the proof is constructed along with the program:
retrospectively proving such a program correct is probably
impossible (and the program is probably incorrect — see
[Cha22] for a well-tested 100-tweet program).

Also computer algebra programs are 10Ms of lines, going back 40
years or more.

“Verify the Computer Algebra system” is probably impossible.
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Trusting Instances of Software

So what’s plan B?

If we can’t prove the program correct, can we prove that this
instance is correct?

This isn’t as new an idea as I thought it was: [MMNS11].

A certifying algorithm is an algorithm that produces, with
each output, a certificate or witness (easy-to-verify proof)
that the particular output has not been compromised by
a bug. A user of a certifying algorithm inputs x, receives
the output y and the certificate w, and then checks, either
manually or by use of a program, that w proves that y is
a correct output for input x.

This is particularly relevant when y contains negative
assertions.
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SAT solving, and verifying UNSAT

The quintessenial NP-complete problem [Coo66]:

Problem

Given a Boolean statement Φ(x1, . . . , xn) produce

either f : {xi} 7→ {T ,F} such that
Φ(f (x1), . . . , f (xn)) = T (a satisfying assignment)

or ⊥ indicating that no satisfying assignment exists.

The first can be verified easily enough: what about the second?
Since at least 2016, contestants in the annual SAT contests have
been required to produce proofs (occasionally 2PB! [Heu18]) in
DRAT format, which can be checked ([Heu23] says there are
subtleties to “easy” checking).
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Polynomial Factorisation

The base case is polynomials in Z[x ].

Problem (Factorisation)

Given f ∈ Z[x ], write f =
∏

fi where the fi are irreducible
elements of Z[x1, . . . , xn].

Verifying that f =
∏

fi is, at least relatively, easy. The hard part
(mentioned, but not addressed, in [BP99, §6.3]) is verifying that
the fi are irreducible.
The author knows of no implementation of polynomial
factorisation that produces any evidence, let alone a proof, of this.

Problem (Factorisation in the SAT style)

Given f ∈ Z[x1, . . . , xn], produce

either a proper factor g of f ,

or ⊥ indicating that no such g exists.
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Square-free and outsourcing

Texts and articles begin “We may as well assume f is square-free”,
i.e. that gcd(f , f ′) = 1 (or more accurately that it has degree 0).
This would involve implementing Euclid’s Algorithm in our theorem
prover and proving it correct.
Alternatively we could outsource this: the algebra system could
emit λ, µ such that λf + µf ′ has degree 0, and the theorem prover
could verify this.
There is an efficient algorithm for the verification: [Dav24, §IV.C].
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Factorisation Algorithm

The basic algorithm goes back to [Zas69]: step M is a later
addition [Mus75], and the H’ variants are also later.

1 Choose a prime p (not dividing the leading coefficient of f )
such that f (mod p) is also square-free.

2 Factor f modulo p as
∏

f
(1)
i (mod p): fi irreducible.

M Take five p and compare the factorisations.
3 If f can be shown to be irreducible from modulo p

factorisations, return f .
4 Let B be such that any factor of f has coefficients less than B

in magnitude, and n such that pn ≥ 2B. [Landau–Mignotte]

5 Use Hensel’s Lemma to lift the factorisation to f =
∏

f
(n)
i

(mod pn)

H Starting with singletons and working up, take subsets of the

f
(n)
i , multiply them together and check whether, regarded as

polynomials over Z with coefficients in [−B,B], they divide f
— if they do, declare that they are irreducible factors of f .
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Algorithm Notes

H’ Use some alternative technique, originally [LLL82], but now
e.g. [ASZ00, HvHN11] to find the true factor corresponding

to f
(n)
1 , remove f

(n)
1 and the other f

(n)
i corresponding to this

factor, and repeat.

� In practice, there are a lot of optimisations, which would
greatly complicate a proof of correctness of an
implementation of this algorithm.

We found that, although the Hensel construction is basi-
cally neat and simple in theory, the fully optimised version
we finally used was as nasty a piece of code to write and
debug as any we have come across [MN81].

Since if f is irreducible modulo p, it is irreducible over the integers,
the factors produced from singletons in step 7 are easily proved to
be irreducible. Unfortunately, the chance that an irreducible
polynomial of degree n is irreducible modulo p is 1/n.
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Algorithm Notes [Dav23]

A factorisation algorithm could, even though no known
implementation does, relatively easily produce the required
information for a proof of irreducibility unless the recombination
step is required.

Note that verifying the Hensel lifting, the “nasty piece” from
[MN81] is easy: the factors just have to have the right
degrees from the factorisation of f (mod p) and multiply to
give f (mod pn).

� Building test cases for the various edge cases was extremely
difficult.

Step [H] is relatively easy to verify: this combination divides and
no smaller combination divides. The variants in [H’] are
interesting: I have not found an easy route.
If [H’] finds a factor that is a product of k p-adic factors, then we
can use [H] to verify this by checking that the 2k − 2 subsets do
not give factors.
But if [H’] says “irreducible”, I know no easy proof.
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Further Reflections

M Take five p and compare the factorisations.

Not just “take the best”. Rather we look for incompatibilities, so if
a degree 4 factors as 3,1 modulo one prime and 2,2 modulo
another, it’s actually irreducible, and so on.

? What’s the best division of labour between the algebra system
and the theorem prover?

[Mus75] suggests taking five primes, though more recently [LP97]
show that, if the Galois group is Sn, seven is asymptotically right.
For any degree d , the probability that a random polynomial with
coefficients ≤ H has Galois group Sn tends to 1 as H tends to
infinity. [DS00] looks at other Galois groups.
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Special case: Irreducible f

It is clearly sufficient, even if not efficient, to proceed as follows.

1) Ask the algebra system for a factorisation

f =
k∏

i=1

fi . (1)

2) If k > 1 verify that this is a factorisation, i.e that (1) is true.

3) For i = 1 . . . k do:

3.1) Ask the algebra system for hints, essentially a certificate that
fi is irreducible;

3.2) Verify these hints.

The inefficiency comes from the fact that step 3.1 is recomputing
things, or variants of things, that were computed in step 1.
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Proving that f is irreducible modulo p

There are various routes: [Ber67], [Ber70] and [CZ81]: currently
experimenting with the last of these.

Theorem

A square-free polynomial f of degree d is irreducible modulo prime
p ̸= 2 if ∀i ∈ [1, ⌈d/2⌉], gcd(f , xp

i − x) = 1.

But we can’t directly use the “gcd = 1 verifying” trick above
directly, because we don’t want to compute the co-factors of
f , xp

i − x .
Rather, let f ∗ = xp

i − x (mod f ) computed by both theorem
prover and computer algebra system, by repeated squaring
(mod f ). Then the algebra system gives λ, µ such that
λf + µf ∗ = 1.
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A: The Simple Certificate

This consists of a prime p, and the assertion that f is irreducible
modulo p. This is wonderful if it works, but there two obstacles.
The first is that we may not find such a p easily: if the Galois
group of f is the symmetric group Sn, the probability of f being
irreducible modulo a prime p is 1/n.
The second is that such p may not even exist: [SD69] shows how
to construct f with no such p.
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B: The pre-Musser Certificate

This consists of a prime p, a number n, and a set of polynomials
fj ∈ Z[x ] together with the following assertions.

1 f =
∏

fj (mod pn).

2 Each fj , considered as a polynomial modulo p, is irreducible.

3 Any factor of f over Z must have coefficients < pn/2 in
absolute value. [Landau–Mignotte Bound]

4 No proper (nontrivial) subset {fk} ⊊ {fj} has the property
that

∏
k fk , considered as a polynomial in Z[x ] with

coefficients < pn/2 in absolute value, is a factor of f .
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C: The Simple post-Musser Certificate

This consists of a number k , a set of primes pi : i = 1 . . . k , and
some sets of polynomials {fi ,j : j = 1 . . . ni}i = 1 . . . k together
with the following assertions.

1 For every i , f =
∏

fi ,j (mod pi ).
2 Each fi ,j , considered as a polynomial modulo pi , is irreducible.
3 For each k : 0 < k < deg f there is an i such that the

factorisation f =
∏

fi ,j (mod pi ) is incompatible with a
factorisation of f as a degree k polynomial and a deg f − k
co-factor.

The classic example is when a degree 4 polynomial factors modulo
p1 as two irreducible quadratics and module p as a linear times an
irreducible cubic. Then the two quadratics rule out k = 1, 3 and p2
rules out k = 2.
But the Swinnerton-Dyer polynomials [SD69] are examples where
condition 3 may never be met. The simplest example is x4 + 1
which is irreducible, but factors as two quadratics, or more,
modulo every prime.
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D: Complex post-Musser Certificate

While initially researching this project, using FLINT [FLI23] as our
computer algebra system, [DBCC24] discovered that this can
generate a more complex proof of irreducibility. It consists of the
union of the data of the two previous certificates, and their
assertions, except that the last assertions of each are merged to
give

1 For each k : 0 < k < deg f for which there isn’t i such that
the factorisation f =

∏
fi ,j (mod pi ) is incompatible with a

factorisation of f as a degree k polynomial and a deg f − k
co-factor, all subsets {fℓ} ⊊ {fj} such that k =

∑
deg fℓ, have

the property that
∏

ℓ fℓ, considered as a polynomial in Z[x ]
with coefficients < pn/2 in absolute value, is not a factor of f .

In the case of a Swinnerton-Dyer polynomial, the Musser clause
doesn’t buy us anything, and we revert to checking all
combinations.
But there are polynomials in the FLINT test suite for which this
gives a significant improvement.
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Landau–Mignotte Bound I

We use || · || for the L2 norm of a polynomial.

Lemma ([Mig74])

Let P(X ) be a polynomial with complex coefficients and α be a
nonzero complex number. Then

||(X + α)P(X )|| = |α|||(X + α−1)P(X )||.

[Mig74] uses the notation a−1 = am+1 = 0, and writes

P(X ) =
m∑

k=0

akX
k ,

Q(X ) = (X + α)P(X ) =
m+1∑
k=0

(ak−1 + αak)X k

R(X ) = (X + α−1)P(x) =
m+1∑
k=0

(ak−1 + α−1ak)X k

James Davenportmasjhd@bath.ac.uk Towards Verified Polynomial Factorisation 17 / 30



Landau–Mignotte Bound II

||Q||2 =
m+1∑
k=0

|ak−1 + αak |2 =
m+1∑
k=0

(ak−1 + αak)(ak−1 + αak)

which expands to

m+1∑
k=0

(
|ak−1|2 + αakak−1 + αak−1ak + |α2||ak |2

)
. (2)

This is accomplished in Lean by the following code.
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Landau–Mignotte Bound III

Figure: Mignotte Lemma 1a in Lean
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Landau–Mignotte Bound IV

m+1∑
k=0

(
|ak−1|2 + αakak−1 + αak−1ak + |α2||ak |2

)
. (2)

[Mig74] then says “Expanding |a|2||R||2 yields the same sum”.
However, if we expand |a|2||R||2 naively as above, we actually get

m+1∑
k=0

(
|α2||ak−1|2 + αakak−1 + αak−1ak + |ak |2

)
. (3)

In general (2) and (3) are different: the |α|2 multiplies different
terms. And indeed, for any k the index-k summands in (2) and (3)
do differ. However, it is legitimate to re-express (2) as:

m+1∑
k=0

(
|ak−1|2

)
+

m+1∑
k=0

(αakak−1 + αak−1ak) +
m+1∑
k=0

(
|α2||ak |2

)
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Landau–Mignotte Bound V

and then as

||P||2 +
m+1∑
k=0

(αakak−1 + αak−1ak) + |α2|||P||2. (4)

A similar operation on (3) gives (5) :

|α2|||P||2 +
m+1∑
k=0

(αakak−1 + αak−1ak) + ||P||2, (5)

and now the equality between (4) and (5) is obvious to humans
This “similarly” took days to solve, and the “obvious” currently
isn’t to Lean.
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Current State

Landau–Mignotte Still trying to complete the proof in Lean.

Polynomials (as programs rather than abstract objects) Working
on their implementation.

Z and Z/pZ relationship Trying to work out best route.

Outsourcing Is done elsewhere [Mac24, ?] and my other talk.
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Thank you, and jobs

Any questions?

Permanent (subject to probation) jobs at Bath:

ED11636 Lecturers in Computer Science — Jobs at Bath

https://www.bath.ac.uk/jobs/Vacancy.aspx?id=

25307&forced=1

we are particularly looking for individuals with research
interests in areas around formal mathematics and computer
assisted reasoning, including but not limited to:

proof assistants (e.g. Agda, Coq, Isabelle, Lean)

certified mathematical libraries

logical systems, proof theory and type theory

certified programming and program synthesis

automated reasoning

applications of AI and machine learning to formal mathematics
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