
Why is quantifier elimination doubly exponential?

James Davenport

University of Bath and DEWCAD group [BDE+21]
https://matthewengland.coventry.domains/dewcad/index.html

(supported by EPSRC under EP/T015713)

James Davenport QE 1 / 36

https://matthewengland.coventry.domains/dewcad/index.html

Notation

d The maximum degree (in each variable separately) of the
input polynomials. d ≤ dn total degree.

l The maximum bit-length of the integer coefficients

m The number of (distinct) polynomials.

n The number of variables.

a The number of alternations of quantifiers. a ≤ n − 1.

c The number of equational constraints.

(M,D) At most M sets, each of combined degree ≤ D [McC84].

� This is the standard theory setting. Real problems tend to
involve rational functions, and rational, or even algebraic,
numbers. See [UDE22].

The complexity of QE (and hence CAD) is doubly exponential in n,
more precisely d2edm2em where ed and em depend non-trivially on n
(or on a). What are ed , em?

James Davenport QE 2 / 36

Quantifier Elimination

Given a quantified statement in n = k + l variables

Q1x1 · · ·QkΦ(x1, . . . , xk , y1, . . . , yl), Qi ∈ {∃, ∀}

find an equivalent quantifier-free formula Ψ(y1, . . . , yl). Our
applications will be either C (with +,−,×,=, ̸=) or R (with
+,−,×,=, ̸=, >,≥, <,≤).
Note the absence of division: philosophical and practical issues
here [UDE22].
R implies C (take real and imaginary parts, and you get |z | and z
for free). C with z implies R.
Solved by [Tar51, Sei54], but indescribable complexity.
First plausible solution [Col75], via cylindrical algebraic
decomposition (CAD), constructed via projection/lifting.

James Davenport QE 3 / 36

CAD Sign invariant for P

Decomposition: Rn =
⋃

i Ci and i ̸= j ⇒ Ci ∩ Cj = ∅
Cylindrical: If Pm is the projection onto the first m variables, then

either Pm(Ci) = Pm(Cj) or Pm(Ci) ∩ Pm(Cj) = ∅.
Also A sample point in each cell, arranged cylindrically.

In fact This is slightly stronger than we need: can relax to
“block-cylindrical”, where m has to be where
Qm ̸= Qm+1, i.e. the quantifiers alternate.

(Semi-)Algebraic The boundaries of each cell are semi-algebraic
functions, i.e. defined by polynomials and
=, ̸=, >,≥, <,≤.

N.B. This is the standard definition, but permits many
pathological examples that “no sane algorithm would
construct”. See [DLS20].

Sign invariant In each Ci every Pj ∈ P is positive, or negative, or
identically zero, so sample points suffice, and ∀xi
translates to “∀xi i-th coordinates of sample points”.

James Davenport QE 4 / 36

Projection/Lifting for a property Z

Given Pv polynomials in v variables, construct a set Proj(Pv) in
v − 1 variables such that a CAD of Rv−1 Z -invariant for Proj(Pv)
can be lifted to a CAD of Rv Z -invariant for Pv .

[Col75] Z is “sign”. Because a polynomial might vanish
identically on a cell, also take subresultants, so
em ≈ n log2 3.

[McC85] Z is “order”. Might fail if a polynomial vanishes
identically on a cell. But em ≈ n.

[Bro01] Z is “order”, but projection is cheaper.

[Laz94, MPP19] Z is “lex-least”, and (Lazard lifting) if a
polynomial vanishes identically, divide out the
obstruction. Again em ≈ n.

[BM20] Z is “lex-least”, but projection is cheaper.

Proj always involves discxv (pi) and resxv (pi , pj), hence both
degree and number of polynomials squares with each projection.

James Davenport QE 5 / 36

The problem with iterated resultants

Consider f1, f2, f3 ∈ Q[x , y , z] of degree d in each variable.
Then resz(f1, f2) etc. have degree 2d2, and
R := resy (resz(f1, f2), resz(f1, f3)) has degree 8d4.
[And so ed ≈ n]
But (Bézout) f1 = f2 = f3 = 0 has ≤ 27d3 points (x , y , z).
The problem is that R has as roots

(true) x : ∃y∃zf1(x , y , z) = f2(x , y , z) = f3(x , y , z) = 0

(spurious) x : ∃y [∃z1f1(x , y , z1) = f2(x , y , z1) = 0] ∧
[∃z2f1(x , y , z2) = f3(x , y , z2) = 0].

In this case, a Gröbner base [EBD20], or even
gcd (R, resy (resz(f1, f2), resz(f2, f3))), will solve the problem. Goes
some way to explain [McC99a]’s observation that iterated
resultants tend to factor.
But in the general case, those “spurious” roots are where the
projected topology of V (fi) changes.

James Davenport QE 6 / 36

Equational Constraints

[Col98] What if our formula Φ is f = 0 ∧ Φ̂, where Φ̂ involves m − 1
polynomials gi?

[McC99b] Answers this: we only need O(m) resx(f , gi), not O(m2)
resx(gi , gj), since

resx(gi , gj)|f=0 ∝ resy (resx(f , gi), resx(f , gj)). (1)

Means that, after the x projection, we only have O(m)
polynomials not O(m2).

[McC01] Generalises to f1 = 0 ∧ · · · ∧ fc = 0 ∧ Φ̂.

+ Reduces em from n to n − c , nothing for ed .

[BDE+16] Generalises to where only part of the formula has equational
constraints: “truth-table invariant CAD”

[EBD20] Can use Gröbner bases, rather than just iterated resultants, to
reduce degree growth, ideally ed becomes n − c .

But All this is for the McCallum projection, i.e. well-oriented.

James Davenport QE 7 / 36

Doesn’t Lazard projection/lifting eliminate “well-oriented”?

+ Yes, for straight cylindrical algebraic decomposition

But if f (x , y , z , . . .) vanishes identically on some surface
S(y , z , . . .), the constant of proportionality in (1) is 0, and we
learn nothing about resx(gi , gj) from resx(f , xi).

� “Nullification” has come back to bite us, but only nullification
of f , not the gi .

Call S the foot of the “curtain”: the “vertical” part of f = 0
[NDS20].

dim(S) The case dim(S) = 0 is tractable [Nai21] — see that thesis
for more details of dim(S) > 0.

James Davenport QE 8 / 36

Graph Theory to the rescue?

Instead of considering degrees of the polynomials in F , consider
the graph G(F) on {x1, . . . , xn} with an edge betwen (xi , xj) iff
there is a polynomial in F contaning both xi and xj .
Connectedness?

Gröbner If G(F) is not connected, the problems are
independent, and [Buc79, Criterion 1] will treat them
as such.

CAD Essentially independent, but this is hard to describe:
we have “the outer product” of the two (or more)
CADs. We definitely need to project one component
at a time.

Problem

Recognise, and treat effectively, this case, also “nearly
disconnected” (see next)

James Davenport QE 9 / 36

Graph Theory to the rescue continued

A graph G is chordal if every > 3-cycle has a chord. Equivalently,
every induced cycle has length 3. Every graph G has a chordal
completion G.
Minimum chordal completion is NP-complete [Yan81], but that
doesn’t really worry me: minimal will probably do.
If this is the complete graph, then graph theory doesn’t seem to
help us: the exciting case is when G is smaller.
An ordering ≻ on the vertices x1, . . . , xn is a perfect elimination
ordering (PEO) if ∀i xi and its neighbours xj : xj ≺ xi form a
clique. This, and chordality, can be found efficiently [RTL76].
Let n′ be the maximal length of a path from x1 to xn (as
reordered) in G following ≻.

James Davenport QE 10 / 36

Graph Theory to the rescue continued

Non-trivial chordality has been exploited.

Regular Chains [Che20] shows how it can be exploited efficiently.

Gröbner Bases [CP16] consider “chordal elimination”. The
challenge here is that an S-polynomial can introduce
new edges in G.

Triangular Chordality preserving is proved in [MBL21].

CAD [LXZZ21] consider chordality, ordering xi in a perfect
elimination ordering, then essentially use the same
algorithm.

ed is now n′ rather than n (polynomials “drop through”
layers!).

� The quantifier structure may be incompatible with
the perfect elimination ordering.

What we currently lack is any view of how common in practice
these non-trivial chordal structures are, but they are related to
“nearly disconnected” G.

James Davenport QE 11 / 36

But [DM22] in CASC 2022 (being digested)

[MBL21] proves that (sparse) triangular decomposition
following a PEO preserves chordal structure.
But when run in practice, they observe new edges.

Original Chordal Graph Graphs of triangular decompositions

?swap 2,3 Extra lines in red

There are four issues:

Simplifying a Polynomial Set with Its Binomials;
Simplifying a Polynomial System with Binomials;
Reducing Inequation Polynomials with a Polynomial in the TS;
Reducing a TS with a Polynomial in the TS.

? But is it safe to do these as a post-process?
James Davenport QE 12 / 36

CGB=Comprehensive Gröbner Bases (I) [Wei98, FIS15]

The key idea is this. We consider an “innermost block” in this
form:

∃x

 f1(y , x) = 0 ∧ · · · fr (y , x) = 0∧
p1(y , x) > 0 ∧ · · · ps(y , x) > 0∧
q1(y , x) ̸= 0 ∧ · · · qt(y , x) ̸= 0


where y represents the remaining variables, and
fi , pj , qk ∈ Q[y , x] \Q[y]. We introduce new variables z and w ,
with z ,w ≻ x , and consider the polynomials

{f1, . . . , fr , z21p1 − 1, . . . , z2s ps − 1︸ ︷︷ ︸
forcing positive

,w1q1 − 1, . . . ,wtqt − 1︸ ︷︷ ︸
forcing nonzero

}.

Let G = (Si ,Gi) be a Comprehensive Gröbner System (with
parameters y) for this so that y space is partitioned by the Si . We
claim each Gi will be
{f ′1 , . . . , f ′r ′ , u1z21 − p′1, . . . , usz

2
s − p′s , v1w1 − q′1, . . . , vtwt − q′t}.

Our answer will be
∨

i Ψi (Si ,Gi): next two slides explain Ψi .

James Davenport QE 13 / 36

Gi zero-dimensional (z ,w irrelevant for dimension)

If Gi = (1) then we return false. Otherwise recall
Gi = {f ′1 , . . . , f ′r ′ , u1z21 −p′1, . . . , usz

2
s −p′s , v1w1−q′1, . . . , vtwt−q′t}.

Let I = ⟨f ′1 , . . . , f ′r ′⟩,

χ(x) =
∏

(e1,...,es)∈{0,1}s
χI
(p′1/u1)

e1 ,··· ,(p′s/us)es (x) = x2
sd +

2sd−1∑
0

aix
i .

The answer is Ψi := F(Si) ∧ I2sd(ai).
JHD: at least that’s my reconstruction. I can’t see where the wi

(the ̸= 0) terms come in. Also, the subscript of χI
..., the

characteristic polynomial of M I
..., is not a polynomial.

James Davenport QE 14 / 36

∃ϕ: Gi > 0-dimensional (z ,w irrelevant for dimension)

u := maximal independent variables (x ,Gi ,≻). (B)
If u = x return SYNRAC(F(S) ∧ ∃xϕ) [Wei98]
x ′ := x \ u; ϕ1 := Free(ϕ, x ′); ϕ2 := NonFree(ϕ, x ′);
φ := ϕ1∧Recurse(Si ,∃x ′ϕ2) (1)(A)
JHD: I think this means φ now only contains u-variables
Let φ1 ∨ · · · ∨ φl be a disjunctive normal form of φ. (C)
for 1 ≤ j ≤ l do

φ
(1)
j := Free(φ, u); φ

(2)
j := NonFree(φj , u);

ψj := φ
(1)
j ∧Recurse(Si ,∃uϕ

(2)
j) (2)(E)

Return Ψ := F(Si) ∧ (ψ1 ∨ · · · ∨ ψl)
JHD: “Recurse” goes right back to the MainQE, note that call (1)
has pushed the u-variables into being parameters (I think) (D).
But somehow Si gets lost in these recursions: I hope I’ve added it
in the right place. Their Theorem 16 states that this does
terminate — far from obvious (F).

James Davenport QE 15 / 36

CGB=Comprehensive Gröbner Bases (IV) [Wei98, FIS15]

A Recursing with S is, I think, my interpolation to make sense of
the recursions we’ll see later. S initially is R#y .

B There’s a lot of freedom here: ML?
C Note that our main recursion is on ϕ in conjunctive normmal

form (CNF), whereas here we convert to disjunctive normal
form (DNF) and implicitly back at the end of the block. Since
CNF↔DNF näıvely is exponential, this would provide an
exponential blowup at each ∃/∀ boundary, similar to [DH88].

D Therefore this recursion is on strictly fewer variables, since
dim > 0.

E Therefore this recursion is on strictly fewer variables, since

u ̸= x . φ
(1)
j is free of u by construction, and free of x ′ since it

comes from ϕ1, so actually belongs in an outer block. We
might ask why such things exist, but they could be generated
by the recursion.

F But the two previous notes are probably key.

James Davenport QE 16 / 36

Complexity of CGB

I know no results on the complexity of Comprehensive Gröbner
Bases/Systems.
Since we are doing Gröbner Bases, we might hope for singly
exponential behaviour at each block, and hence ed = O(a) rather
than O(n), but worst-case Gröbner bases can be doubly
exponential [MR13]. If we get O(a) behaviour, though, this does
not depend on having a lot of equational constraints.
We are doing CNF/DNF conversions at each quantifier alternation,
as with VTS, so this could be expected to give us em = O(a)
rather than O(n).

James Davenport QE 17 / 36

it’s not R/C: it’s quantifiers (and alternations)

[DH88, BD07] Are really about the combinatorial complexity of
quantifier alternations

Let Sk(xk , yk) be the statement xk = f (yk) and then define
recursively Sk−1(xk−1, yk−1) := xk−1 = f (f (yk−1)) :=

∃zk∀xk∀yk︸ ︷︷ ︸
Qk

(yk−1 = yk ∧ xk = zk︸ ︷︷ ︸
L1k

) ∨ (yk = zk ∧ xk−1 = xk)︸ ︷︷ ︸
L2k


︸ ︷︷ ︸

Lk

⇒ Sk(xk , yk).

We can transpose this to the complexes, and get zero-dimensional
QE examples in Cn with 22

O(n)
isolated point solutions, roots of an

irreducible polynomial of that degree [DH88]. Or can get that
many even though the equations are all linear and the solution set
is zero-dimensional [BD07].

James Davenport QE 18 / 36

Two iterations of Heintz:

∃z1∀x1∀y1
[(
L11 ∨ L21

)
⇒ ∃z2∀x2∀y2

[(
L12 ∨ L22

)
⇒ Φ

]]
which becomes

∃z1∀x1∀y1∃z2∀x2∀y2
(
L11 ∨ L21

)
⇒

[(
L12 ∨ L22

)
⇒ Φ

]
.

The quantified part is then(
¬L11 ∧ ¬L21

)
∨
(
¬L12 ∧ ¬L22

)
∨ Φ.

We will get singly-exponential blow-up as we convert this to
Conjunctive Normal Form

James Davenport QE 19 / 36

Other questions than QE: multistaionarity

Consider ([BDE+17]) a single semi-algebraic set defined by

f1(x1, . . . , xn−1, k1) = 0 ∧ f2(x1, . . . , xn−1, k1) = 0 ∧ · · ·
fn−1(x1, . . . , xn−1, k1) = 0 ∧ x1 > 0 ∧ · · · ∧ xn−1 > 0

and ask the question “How does the number of solutions vary with
k1?” The fi are multilinear (d = 1 but d = 2, 3, 4) and primitive,
and are pretty “generic”.
Of course, this doesn’t guarantee that all the iterated resultants in
[EBD15], or the Gröbner polynomials in [ED16], are primitive, but
in practice they are.
In practice can handle k1, k2 and looking at k1, k2, k3. But note we
want k1, . . . , k19 for the real biochemical application.

James Davenport QE 20 / 36

Questions

1 Can we actually say anything about the complexity of GB
methods [EBD20]?

2 What happens when we have equational constraints that
don’t involve the first projection variable?

3 Can we actually say anything about the complexity of
CGB-based methods for QE?

4 Can CGB methods, which do QE, actually produce
block-cylindrical algebraic decompositions? If so, this would
be the first real construction here.

5 Chordality: understand [DM22].

6 Are there any “weak average case complexity” [AL17] results?
The examples of [BD07, DH88] seem very special.

7 Understand “which no sane algorithm would construct”.

James Davenport QE 21 / 36

Bibliography
I

D. Amelunxen and M. Lotz.
Average-case complexity without the black swans.
J. Complexity, 41:82–101, 2017.

A.M. Bigatti, J. Carette, J.H. Davenport, M. Joswig, and
T. de Wolff, editors.
Mathematical Software — ICMS 2020, volume 12097 of
Springer Lecture Notes in Computer Science. Springer, 2020.

C.W. Brown and J.H. Davenport.
The Complexity of Quantifier Elimination and Cylindrical
Algebraic Decomposition.
In C.W. Brown, editor, Proceedings ISSAC 2007, pages 54–60,
2007.

James Davenport QE 22 / 36

Bibliography
II

R.J. Bradford, J.H. Davenport, M. England, S. McCallum, and
D.J. Wilson.
Truth table invariant cylindrical algebraic decomposition.
J. Symbolic Comp., 76:1–35, 2016.

R.J. Bradford, J.H. Davenport, M. England, H. Errami,
V. Gerdt, D. Grigoriev, C. Hoyt, M. Kosta, O. Radulescu,
T. Sturm, and A. Weber.
A Case Study on the Parametric Occurrence of Multiple
Steady States.
https://arxiv.org/abs/1704.08997, 2017.

James Davenport QE 23 / 36

https://arxiv.org/abs/1704.08997

Bibliography
III

R.J. Bradford, J.H. Davenport, M. England,
A. Sadeghimanesh, and A. Uncu.
The DEWCAD Project: Pushing Back the Doubly Exponential
Wall of Cylindrical Algebraic Decomposition.
ACM Comm. Computer Algebra, 55(3):107–111, 2021.

C.W. Brown and S. McCallum.
Enhancements to Lazard’s Method for Cylindrical Algebraic
Decomposition.
Computer Algebra in Scientific Computing. CASC 2020, pages
129–149, 2020.

C.W. Brown.
Improved Projection for Cylindrical Algebraic Decomposition.
J. Symbolic Comp., 32:447–465, 2001.

James Davenport QE 24 / 36

Bibliography
IV

B. Buchberger.
A Criterion for Detecting Unnecessary Reductions in the
Construction of Groebner Bases.
In Proceedings EUROSAM 79, pages 3–21, 1979.

Changbo Chen.
Chordality Preserving Incremental Triangular Decomposition
and Its Implementation.
In Bigatti et al. [BCD+20], pages 27–38.

G.E. Collins.
Quantifier Elimination for Real Closed Fields by Cylindrical
Algebraic Decomposition.
In Proceedings 2nd. GI Conference Automata Theory &
Formal Languages, pages 134–183, 1975.

James Davenport QE 25 / 36

Bibliography
V

G.E. Collins.
Quantifier elimination by cylindrical algebraic decomposition
— twenty years of progess.
In B.F. Caviness and J.R. Johnson, editors, Quantifier
Elimination and Cylindrical Algebraic Decomposition, pages
8–23. Springer Verlag, Wien, 1998.

D. Cifuentes and P. Parrilo.
Exploiting chordal structure in polynomial ideals: A Grobner
bases approach.
SIAM Journal on Discrete Mathematics, 30:1534–1570, 2016.

J.H. Davenport and J. Heintz.
Real Quantifier Elimination is Doubly Exponential.
J. Symbolic Comp., 5:29–35, 1988.

James Davenport QE 26 / 36

Bibliography
VI

J.H. Davenport, A.F. Locatelli, and G.K. Sankaran.
Regular cylindrical algebraic decomposition.
J. LMS., 101:43–59, 2020.

Mingyu Dong and Chenqi Mou.
Analyses and Implementations of Chordality-Preserving
Top-Down Algorithms for Triangular Decomposition.
In François Boulier, Matthew England, Timur M. Sadykov,
and Evgenii V. Vorozhtsov, editors, Computer Algebra in
Scientific Computing CASC 2022, volume 13366 of Lecture
Notes in Computer Science, pages 124–142, 2022.

James Davenport QE 27 / 36

Bibliography
VII

M. England, R. Bradford, and J.H. Davenport.
Improving the Use of Equational Constraints in Cylindrical
Algebraic Decomposition.
In D. Robertz, editor, Proceedings ISSAC 2015, pages
165–172, 2015.

M. England, R.J. Bradford, and J.H. Davenport.
Cylindrical Algebraic Decomposition with Equational
Constraints.
In J.H. Davenport, M. England, A. Griggio, T. Sturm, and
C. Tinelli, editors, Symbolic Computation and Satisfiability
Checking: special issue of Journal of Symbolic Computation,
volume 100, pages 38–71. 2020.

James Davenport QE 28 / 36

Bibliography
VIII

M. England and J.H. Davenport.
The Complexity of Cylindrical Algebraic Decomposition with
Respect to Polynomial Degree.
In V.P. Gerdt, W. Koepf, W.M. Seiler, and E.V. Vorozhtsov,
editors, Proceedings CASC 2016, volume 9890 of Springer
Lecture Notes in Computer Science, pages 172–192. Springer,
2016.

R. Fukasaku, H. Iwane, and Y. Sato.
Real Quantifier Elimination by Computation of Comprehensive
Gröbner Systems.
In D. Robertz, editor, Proceedings ISSAC 2015, pages
173–180, 2015.

James Davenport QE 29 / 36

Bibliography
IX

D. Lazard.
An Improved Projection Operator for Cylindrical Algebraic
Decomposition.
In C.L. Bajaj, editor, Proceedings Algebraic Geometry and its
Applications: Collections of Papers from Shreeram
S. Abhyankar’s 60th Birthday Conference, pages 467–476,
1994.

H. Li, B. Xia, H. Zhang, and T. Zheng.
Choosing the Variable Ordering for Cylindrical Algebraic
Decomposition via Exploiting Chordal Structure.
ISSAC ’21: Proceedings of the 2021 International Symposium
on Symbolic and Algebraic Computation, pages 281–288,
2021.

James Davenport QE 30 / 36

Bibliography
X

C. Mou, Y. Bai, and J. Lai.
Chordal Graphs in Triangular Decomposition in Top-Down
Style.
Journal of Symbolic Computation, 102:108–131, 2021.

S. McCallum.
An Improved Projection Operation for Cylindrical Algebraic
Decomposition.
PhD thesis, University of Wisconsin-Madison Computer
Science, 1984.

S. McCallum.
An Improved Projection Operation for Cylindrical Algebraic
Decomposition.
Technical Report 578, Computer Science University Wisconsin
at Madison, 1985.

James Davenport QE 31 / 36

Bibliography
XI

S. McCallum.
Factors of iterated resultants and discriminants.
J. Symbolic Comp., 27:367–385, 1999.

S. McCallum.
On Projection in CAD-Based Quantifier Elimination with
Equational Constraints.
In S. Dooley, editor, Proceedings ISSAC ’99, pages 145–149,
1999.

S. McCallum.
On Propagation of Equational Constraints in CAD-Based
Quantifier Elimination.
In B. Mourrain, editor, Proceedings ISSAC 2001, pages
223–230, 2001.

James Davenport QE 32 / 36

Bibliography
XII

S. McCallum, A. Parusiński, and L. Paunescu.
Validity proof of Lazard’s method for CAD construction.
J. Symbolic Comp., 92:52–69, 2019.

E.W. Mayr and S. Ritscher.
Dimension-dependent bounds for Gröbner bases of polynomial
ideals.
J. Symbolic Comp., 49:78–94, 2013.

A.S. Nair.
Curtains in Cylindrical Algebraic Decomposition.
PhD thesis, University of Bath, 2021.

James Davenport QE 33 / 36

Bibliography
XIII

A.S. Nair, J.H. Davenport, and G.K. Sankaran.
Curtains in CAD: Why Are They a Problem and How Do We
Fix Them?
In Bigatti et al. [BCD+20], pages 17–26.

Donald J Rose, R Endre Tarjan, and George S Lueker.
Algorithmic aspects of vertex elimination on graphs.
SIAM Journal on computing, 5(2):266–283, 1976.

A. Seidenberg.
A new decision method for elementary algebra.
Ann. Math., 60:365–374, 1954.

James Davenport QE 34 / 36

Bibliography
XIV

A. Tarski.
A Decision Method for Elementary Algebra and Geometry.
2nd ed., Univ. Cal. Press. Reprinted in Quantifier Elimination
and Cylindrical Algebraic Decomposition (ed. B.F. Caviness &
J.R. Johnson), Springer-Verlag, Wein-New York, 1998, pp.
24–84., 1951.

A.K. Uncu, J.H. Davenport, and M. England.
SMT-Solving Combinatorial Inequalities.
To appear in Proc. SCSC 2022, 2022.

V. Weispfenning.
A New Approach to Quantifier Elimination for Real Algebra.
In B.F. Caviness and J.R. Johnson, editors, Quantifier
Elimination and Cylindrical Algebraic Decomposition, pages
376–392. Springer-Verlag, 1998.

James Davenport QE 35 / 36

Bibliography
XV

Mihalis Yannakakis.
Computing the minimum fill-in is NP-complete.
SIAM Journal on Algebraic Discrete Methods, 2(1):77–79,
1981.

James Davenport QE 36 / 36

