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Notation

d The maximum degree (in each variable separately) of the
input polynomials. d ≤ dn total degree.

l The maximum bit-length of the integer coefficients

m The number of (distinct) polynomials.

n The number of variables.

a The number of alternations of quantifiers. a ≤ n − 1.

c The number of equational constraints.

(M,D) At most M sets, each of combined degree ≤ D [McC84].

� This is the standard theory setting. Real problems tend to
involve rational functions, and rational, or even algebraic,
numbers. See [UDE22].

The complexity of QE (and hence CAD) is doubly exponential in n,
more precisely d2edm2em where ed and em depend non-trivially on n
(or on a). What are ed , em?
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Quantifier Elimination

Given a quantified statement in n = k + l variables

Q1x1 · · ·QkΦ(x1, . . . , xk , y1, . . . , yl), Qi ∈ {∃, ∀}

find an equivalent quantifier-free formula Ψ(y1, . . . , yl). Our
applications will be either C (with +,−,×,=, ̸=) or R (with
+,−,×,=, ̸=, >,≥, <,≤).
Note the absence of division: philosophical and practical issues
here [UDE22].
R implies C (take real and imaginary parts, and you get |z | and z
for free). C with z implies R.
Solved by [Tar51, Sei54], but indescribable complexity.
First plausible solution [Col75], via cylindrical algebraic
decomposition (CAD), constructed via projection/lifting.
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CAD Sign invariant for P

Decomposition: Rn =
⋃

i Ci and i ̸= j ⇒ Ci ∩ Cj = ∅
Cylindrical: If Pm is the projection onto the first m variables, then

either Pm(Ci ) = Pm(Cj) or Pm(Ci ) ∩ Pm(Cj) = ∅.
Also A sample point in each cell, arranged cylindrically.

In fact This is slightly stronger than we need: can relax to
“block-cylindrical”, where m has to be where
Qm ̸= Qm+1, i.e. the quantifiers alternate.

(Semi-)Algebraic The boundaries of each cell are semi-algebraic
functions, i.e. defined by polynomials and
=, ̸=, >,≥, <,≤.

N.B. This is the standard definition, but permits many
pathological examples that “no sane algorithm would
construct”. See [DLS20].

Sign invariant In each Ci every Pj ∈ P is positive, or negative, or
identically zero, so sample points suffice, and ∀xi
translates to “∀xi i-th coordinates of sample points”.
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Projection/Lifting for a property Z

Given Pv polynomials in v variables, construct a set Proj(Pv ) in
v − 1 variables such that a CAD of Rv−1 Z -invariant for Proj(Pv )
can be lifted to a CAD of Rv Z -invariant for Pv .

[Col75] Z is “sign”. Because a polynomial might vanish
identically on a cell, also take subresultants, so
em ≈ n log2 3.

[McC85] Z is “order”. Might fail if a polynomial vanishes
identically on a cell. But em ≈ n.

[Bro01] Z is “order”, but projection is cheaper.

[Laz94, MPP19] Z is “lex-least”, and (Lazard lifting) if a
polynomial vanishes identically, divide out the
obstruction. Again em ≈ n.

[BM20] Z is “lex-least”, but projection is cheaper.

Proj always involves discxv (pi ) and resxv (pi , pj), hence both
degree and number of polynomials squares with each projection.
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The problem with iterated resultants

Consider f1, f2, f3 ∈ Q[x , y , z ] of degree d in each variable.
Then resz(f1, f2) etc. have degree 2d2, and
R := resy (resz(f1, f2), resz(f1, f3)) has degree 8d4.
[And so ed ≈ n]
But (Bézout) f1 = f2 = f3 = 0 has ≤ 27d3 points (x , y , z).
The problem is that R has as roots

(true) x : ∃y∃zf1(x , y , z) = f2(x , y , z) = f3(x , y , z) = 0

(spurious) x : ∃y [∃z1f1(x , y , z1) = f2(x , y , z1) = 0] ∧
[∃z2f1(x , y , z2) = f3(x , y , z2) = 0].

In this case, a Gröbner base [EBD20], or even
gcd (R, resy (resz(f1, f2), resz(f2, f3))), will solve the problem. Goes
some way to explain [McC99a]’s observation that iterated
resultants tend to factor.
But in the general case, those “spurious” roots are where the
projected topology of V (fi ) changes.
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Equational Constraints

[Col98] What if our formula Φ is f = 0 ∧ Φ̂, where Φ̂ involves m − 1
polynomials gi?

[McC99b] Answers this: we only need O(m) resx(f , gi ), not O(m2)
resx(gi , gj), since

resx(gi , gj)|f=0 ∝ resy (resx(f , gi ), resx(f , gj)). (1)

Means that, after the x projection, we only have O(m)
polynomials not O(m2).

[McC01] Generalises to f1 = 0 ∧ · · · ∧ fc = 0 ∧ Φ̂.

+ Reduces em from n to n − c , nothing for ed .

[BDE+16] Generalises to where only part of the formula has equational
constraints: “truth-table invariant CAD”

[EBD20] Can use Gröbner bases, rather than just iterated resultants, to
reduce degree growth, ideally ed becomes n − c .

But All this is for the McCallum projection, i.e. well-oriented.
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Doesn’t Lazard projection/lifting eliminate “well-oriented”?

+ Yes, for straight cylindrical algebraic decomposition

But if f (x , y , z , . . .) vanishes identically on some surface
S(y , z , . . . ), the constant of proportionality in (1) is 0, and we
learn nothing about resx(gi , gj) from resx(f , xi ).

� “Nullification” has come back to bite us, but only nullification
of f , not the gi .

Call S the foot of the “curtain”: the “vertical” part of f = 0
[NDS20].

dim(S) The case dim(S) = 0 is tractable [Nai21] — see that thesis
for more details of dim(S) > 0.
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Graph Theory to the rescue?

Instead of considering degrees of the polynomials in F , consider
the graph G(F ) on {x1, . . . , xn} with an edge betwen (xi , xj) iff
there is a polynomial in F contaning both xi and xj .
Connectedness?

Gröbner If G(F ) is not connected, the problems are
independent, and [Buc79, Criterion 1] will treat them
as such.

CAD Essentially independent, but this is hard to describe:
we have “the outer product” of the two (or more)
CADs. We definitely need to project one component
at a time.

Problem

Recognise, and treat effectively, this case, also “nearly
disconnected” (see next)
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Graph Theory to the rescue continued

A graph G is chordal if every > 3-cycle has a chord. Equivalently,
every induced cycle has length 3. Every graph G has a chordal
completion G.
Minimum chordal completion is NP-complete [Yan81], but that
doesn’t really worry me: minimal will probably do.
If this is the complete graph, then graph theory doesn’t seem to
help us: the exciting case is when G is smaller.
An ordering ≻ on the vertices x1, . . . , xn is a perfect elimination
ordering (PEO) if ∀i xi and its neighbours xj : xj ≺ xi form a
clique. This, and chordality, can be found efficiently [RTL76].
Let n′ be the maximal length of a path from x1 to xn (as
reordered) in G following ≻.
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Graph Theory to the rescue continued

Non-trivial chordality has been exploited.

Regular Chains [Che20] shows how it can be exploited efficiently.

Gröbner Bases [CP16] consider “chordal elimination”. The
challenge here is that an S-polynomial can introduce
new edges in G.

Triangular Chordality preserving is proved in [MBL21].

CAD [LXZZ21] consider chordality, ordering xi in a perfect
elimination ordering, then essentially use the same
algorithm.

ed is now n′ rather than n (polynomials “drop through”
layers!).

� The quantifier structure may be incompatible with
the perfect elimination ordering.

What we currently lack is any view of how common in practice
these non-trivial chordal structures are, but they are related to
“nearly disconnected” G.
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But [DM22] in CASC 2022 (being digested)

[MBL21] proves that (sparse) triangular decomposition
following a PEO preserves chordal structure.
But when run in practice, they observe new edges.

Original Chordal Graph Graphs of triangular decompositions

?swap 2,3 Extra lines in red

There are four issues:

Simplifying a Polynomial Set with Its Binomials;
Simplifying a Polynomial System with Binomials;
Reducing Inequation Polynomials with a Polynomial in the TS;
Reducing a TS with a Polynomial in the TS.

? But is it safe to do these as a post-process?
James Davenport QE 12 / 36



CGB=Comprehensive Gröbner Bases (I) [Wei98, FIS15]

The key idea is this. We consider an “innermost block” in this
form:

∃x

 f1(y , x) = 0 ∧ · · · fr (y , x) = 0∧
p1(y , x) > 0 ∧ · · · ps(y , x) > 0∧
q1(y , x) ̸= 0 ∧ · · · qt(y , x) ̸= 0


where y represents the remaining variables, and
fi , pj , qk ∈ Q[y , x ] \Q[y ]. We introduce new variables z and w ,
with z ,w ≻ x , and consider the polynomials

{f1, . . . , fr , z21p1 − 1, . . . , z2s ps − 1︸ ︷︷ ︸
forcing positive

,w1q1 − 1, . . . ,wtqt − 1︸ ︷︷ ︸
forcing nonzero

}.

Let G = (Si ,Gi ) be a Comprehensive Gröbner System (with
parameters y) for this so that y space is partitioned by the Si . We
claim each Gi will be
{f ′1 , . . . , f ′r ′ , u1z21 − p′1, . . . , usz

2
s − p′s , v1w1 − q′1, . . . , vtwt − q′t}.

Our answer will be
∨

i Ψi (Si ,Gi ): next two slides explain Ψi .
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Gi zero-dimensional (z ,w irrelevant for dimension)

If Gi = (1) then we return false. Otherwise recall
Gi = {f ′1 , . . . , f ′r ′ , u1z21 −p′1, . . . , usz

2
s −p′s , v1w1−q′1, . . . , vtwt−q′t}.

Let I = ⟨f ′1 , . . . , f ′r ′⟩,

χ(x) =
∏

(e1,...,es)∈{0,1}s
χI
(p′1/u1)

e1 ,··· ,(p′s/us)es (x) = x2
sd +

2sd−1∑
0

aix
i .

The answer is Ψi := F(Si ) ∧ I2sd(ai ).
JHD: at least that’s my reconstruction. I can’t see where the wi

(the ̸= 0) terms come in. Also, the subscript of χI
..., the

characteristic polynomial of M I
..., is not a polynomial.
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∃ϕ: Gi > 0-dimensional (z ,w irrelevant for dimension)

u := maximal independent variables (x ,Gi ,≻). (B)
If u = x return SYNRAC(F(S) ∧ ∃xϕ) [Wei98]
x ′ := x \ u; ϕ1 := Free(ϕ, x ′); ϕ2 := NonFree(ϕ, x ′);
φ := ϕ1∧Recurse(Si ,∃x ′ϕ2) (1)(A)
JHD: I think this means φ now only contains u-variables
Let φ1 ∨ · · · ∨ φl be a disjunctive normal form of φ. (C)
for 1 ≤ j ≤ l do

φ
(1)
j := Free(φ, u); φ

(2)
j := NonFree(φj , u);

ψj := φ
(1)
j ∧Recurse(Si ,∃uϕ

(2)
j ) (2)(E)

Return Ψ := F(Si ) ∧ (ψ1 ∨ · · · ∨ ψl)
JHD: “Recurse” goes right back to the MainQE, note that call (1)
has pushed the u-variables into being parameters (I think) (D).
But somehow Si gets lost in these recursions: I hope I’ve added it
in the right place. Their Theorem 16 states that this does
terminate — far from obvious (F).
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CGB=Comprehensive Gröbner Bases (IV) [Wei98, FIS15]

A Recursing with S is, I think, my interpolation to make sense of
the recursions we’ll see later. S initially is R#y .

B There’s a lot of freedom here: ML?
C Note that our main recursion is on ϕ in conjunctive normmal

form (CNF), whereas here we convert to disjunctive normal
form (DNF) and implicitly back at the end of the block. Since
CNF↔DNF näıvely is exponential, this would provide an
exponential blowup at each ∃/∀ boundary, similar to [DH88].

D Therefore this recursion is on strictly fewer variables, since
dim > 0.

E Therefore this recursion is on strictly fewer variables, since

u ̸= x . φ
(1)
j is free of u by construction, and free of x ′ since it

comes from ϕ1, so actually belongs in an outer block. We
might ask why such things exist, but they could be generated
by the recursion.

F But the two previous notes are probably key.
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Complexity of CGB

I know no results on the complexity of Comprehensive Gröbner
Bases/Systems.
Since we are doing Gröbner Bases, we might hope for singly
exponential behaviour at each block, and hence ed = O(a) rather
than O(n), but worst-case Gröbner bases can be doubly
exponential [MR13]. If we get O(a) behaviour, though, this does
not depend on having a lot of equational constraints.
We are doing CNF/DNF conversions at each quantifier alternation,
as with VTS, so this could be expected to give us em = O(a)
rather than O(n).
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it’s not R/C: it’s quantifiers (and alternations)

[DH88, BD07] Are really about the combinatorial complexity of
quantifier alternations

Let Sk(xk , yk) be the statement xk = f (yk) and then define
recursively Sk−1(xk−1, yk−1) := xk−1 = f (f (yk−1)) :=

∃zk∀xk∀yk︸ ︷︷ ︸
Qk

(yk−1 = yk ∧ xk = zk︸ ︷︷ ︸
L1k

) ∨ (yk = zk ∧ xk−1 = xk)︸ ︷︷ ︸
L2k


︸ ︷︷ ︸

Lk

⇒ Sk(xk , yk).

We can transpose this to the complexes, and get zero-dimensional
QE examples in Cn with 22

O(n)
isolated point solutions, roots of an

irreducible polynomial of that degree [DH88]. Or can get that
many even though the equations are all linear and the solution set
is zero-dimensional [BD07].
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Two iterations of Heintz:

∃z1∀x1∀y1
[(
L11 ∨ L21

)
⇒ ∃z2∀x2∀y2

[(
L12 ∨ L22

)
⇒ Φ

]]
which becomes

∃z1∀x1∀y1∃z2∀x2∀y2
(
L11 ∨ L21

)
⇒

[(
L12 ∨ L22

)
⇒ Φ

]
.

The quantified part is then(
¬L11 ∧ ¬L21

)
∨
(
¬L12 ∧ ¬L22

)
∨ Φ.

We will get singly-exponential blow-up as we convert this to
Conjunctive Normal Form
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Other questions than QE: multistaionarity

Consider ([BDE+17]) a single semi-algebraic set defined by

f1(x1, . . . , xn−1, k1) = 0 ∧ f2(x1, . . . , xn−1, k1) = 0 ∧ · · ·
fn−1(x1, . . . , xn−1, k1) = 0 ∧ x1 > 0 ∧ · · · ∧ xn−1 > 0

and ask the question “How does the number of solutions vary with
k1?” The fi are multilinear (d = 1 but d = 2, 3, 4) and primitive,
and are pretty “generic”.
Of course, this doesn’t guarantee that all the iterated resultants in
[EBD15], or the Gröbner polynomials in [ED16], are primitive, but
in practice they are.
In practice can handle k1, k2 and looking at k1, k2, k3. But note we
want k1, . . . , k19 for the real biochemical application.
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Questions

1 Can we actually say anything about the complexity of GB
methods [EBD20]?

2 What happens when we have equational constraints that
don’t involve the first projection variable?

3 Can we actually say anything about the complexity of
CGB-based methods for QE?

4 Can CGB methods, which do QE, actually produce
block-cylindrical algebraic decompositions? If so, this would
be the first real construction here.

5 Chordality: understand [DM22].

6 Are there any “weak average case complexity” [AL17] results?
The examples of [BD07, DH88] seem very special.

7 Understand “which no sane algorithm would construct”.
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