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Typically independent of the arithmetic.
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Traditional Classification of Problems

blunder (of the coding variety) This is the sort of error
traditionally addressed in “program verification”.
Typically independent of the arithmetic.

parallelism Issues of deadlocks or races occurring due to the
parallelism of an otherwise correct sequential
program. Again, arithmetic-independent.

numerical Do truncation and round-off errors, individually or
combined, mean that the program computes
approximations to the “true” answers which are out
of tolerance.
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Traditional Classification of Problems

How often are they considered?
Statistics from [CEQ5]

blunder (of the coding variety) This is the sort of error

(83%) traditionally addressed in “program verification”.
Typically independent of the arithmetic.

parallelism Issues of deadlocks or races occurring due to the

(13%) parallelism of an otherwise correct sequential
program. Again, arithmetic-independent.

numerical Do truncation and round-off errors, individually or

(3%) combined, mean that the program computes
approximations to the “true” answers which are out
of tolerance.
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Traditional Classification of Problems

How often are they considered?
Statistics from [CEQ5]

blunder (of the coding variety) This is the sort of error

(83%) traditionally addressed in “program verification”.
Typically independent of the arithmetic.

parallelism Issues of deadlocks or races occurring due to the

(13%) parallelism of an otherwise correct sequential
program. Again, arithmetic-independent.

numerical Do truncation and round-off errors, individually or

(3%) combined, mean that the program computes
approximations to the “true” answers which are out
of tolerance.

To this, | wish to add a fourth kind
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“The bug that dares not speak its name”
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“The bug that dares not speak its name”

manipulation A piece of algebra, which is “obviously correct”,

(0%!) turns out not to be correct when interpreted,
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“The bug that dares not speak its name”

manipulation A piece of algebra, which is “obviously correct”,

(0%!) turns out not to be correct when interpreted, not as
abstract algebra, but as the manipulation of
functions R - R or C — C.

Davenport Program Verification in the presence of complex numbers, functic



A note on complex numbers

Most of our examples involve complex numbers, and people say

real programs don't use complex numbers
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real programs don't use complex numbers

However

@ COMPLEX in Fortran Il was the first computer data type not
corresponding to a machine one
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A note on complex numbers

Most of our examples involve complex numbers, and people say

real programs don't use complex numbers

However

@ COMPLEX in Fortran Il was the first computer data type not
corresponding to a machine one

@ Even C99 introduced _Complex
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A note on complex numbers

Most of our examples involve complex numbers, and people say

real programs don't use complex numbers

However

@ COMPLEX in Fortran Il was the first computer data type not
corresponding to a machine one

@ Even C99 introduced _Complex

@ Many examples, notably in fluid mechanics.
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Kahan's example [Kah87]

Flow in a slotted strip, transformed by

5z +12

w = g(z) := 2arccosh (1 + 2;) — arccosh (3(Z+4)) (1)
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Kahan's example [Kah87]

Flow in a slotted strip, transformed by

5z +12

w = g(z) := 2arccosh (1 + 2;) — arccosh (3(Z+4)) (1)

Is this the same as

W;q(z) := 2arccosh (2(2 +3)4/ 27?;_:’4)> ? (2)
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Kahan's example [Kah87]

Flow in a slotted strip, transformed by

2 12
w = g(z) := 2arccosh (1 + 32) — arccosh (3?(22—:_4)) (1)

Is this the same as

W;q(z) := 2arccosh (2(2 +3) 27?;_:’4)> ? (2)
Or possibly
2
w=h(z) =2n (; “32232%1‘3; vz) )? 3)
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g — q might look OK
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But if we look closer

Definitely not OK
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But, in fact g = h
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But, in fact g = h

Most computer algebra systems (these days!) will refuse to
“simplify” g to q
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But, in fact g = h

Most computer algebra systems (these days!) will refuse to
“simplify” g to q
But will also refuse to simplify g to h.
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But, in fact g = h

Most computer algebra systems (these days!) will refuse to
“simplify” g to q

But will also refuse to simplify g to h.

Indeed Maple's coulditbe(g<>h); returns true, which ought to
indicate that there is a counter-example.
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But, in fact g = h

Most computer algebra systems (these days!) will refuse to
“simplify” g to q

But will also refuse to simplify g to h.

Indeed Maple's coulditbe(g<>h); returns true, which ought to
indicate that there is a counter-example.

g h) z+3 32 _ 5 ,3/2
P2 2 2y :
<\/z+4 z+4° ZiTr2vz 3 +4
2t VZT3 4/ \/Z+ VZ+8vVz+3 :
z+4 +4

z+3
f>ﬁf\ﬁ\/: )2 (212734 vE)”

z+4
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But, in fact g = h

Most computer algebra systems (these days!) will refuse to
“simplify” g to q

But will also refuse to simplify g to h.

Indeed Maple's coulditbe(g<>h); returns true, which ought to
indicate that there is a counter-example.

g h) z+3 32 _ 5 ,3/2
22 2 2y :
<\/z+4 z+4° ZiTr2vz 3 +4
2t VZT3 4/ \/Z+ VZ+8vVz+3 :
z+4 +4

z+3
f>ﬁf\ﬁ\/: )2 (212734 vE)”

z+4
and it's a bold person who would say “= 0"
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Challenges
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Challenges

Challenge (1)

Demonstrate automatically that g and q are not equal, by
producing a z at which they give different results.
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Challenges

Challenge (1)

Demonstrate automatically that g and q are not equal, by
producing a z at which they give different results.

The technology described in [BBDP07] will isolate the curve

2(_ _ . o
y==+ % as a potential obstacle (it is the branch cut

of g), but the geometry questions are too hard for a
fully-automated solution at the moment.
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Challenges

Challenge (1)

Demonstrate automatically that g and q are not equal, by
producing a z at which they give different results.

The technology described in [BBDP07] will isolate the curve
y==+ (X+3)22X(7;§X_9) as a potential obstacle (it is the branch cut

of g), but the geometry questions are too hard for a
fully-automated solution at the moment.

Challenge (2)

Demonstrate automatically that g and h are equal.
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Challenges

Challenge (1)

Demonstrate automatically that g and q are not equal, by
producing a z at which they give different results.

The technology described in [BBDP07] will isolate the curve

2(_ _ . o
y==+ % as a potential obstacle (it is the branch cut

of g), but the geometry questions are too hard for a
fully-automated solution at the moment.

Challenge (2)

Demonstrate automatically that g and h are equal.

Again, the technology in [BBDP07], implemented in a mixture of
Maple and QEPCAD, could in principle do this
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Joukowski (a)

Consider the Joukowski map [Hen74, pp. 294-298]:

f:zn—>;<z—|—i>. (4)

f is injective as a function from D := {z : |z| > 1}.
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Joukowski (a)

Consider the Joukowski map [Hen74, pp. 294-298]:

f:zn—>;<z—|—i>. (4)

f is injective as a function from D := {z : |z| > 1}.

This is also a function R2 — R2:

1 1 X 1 1 3%
fr : S (ST SV S A 5
R (%) <2X+2x2+y2’2y 2x2+y2> ®)
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Joukowski challenge (al)

Challenge (3)

Demonstrate automatically that fr is injective, i.e.

Vx1VxoVy1Vya <x12 +y2 > 1A +y3 > 1A
— A _ _)»
X1+ 2+y Xt 2-i—y AT € R v x22+y22>
= (1 =x Ay = ).
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Joukowski challenge (al)

Challenge (3)

Demonstrate automatically that fr is injective, i.e.

Vx1VxoVy1Vya <x12 +y2 > 1A +y3 > 1A
— A _ _)»
X1+ 2+y Xt 2-i—y AT € R v x22+y22>
= (1 =x Ay = ).

We have failed to do this automatically, but Brown can
reformulate manually then solve in QEPCAD (< 12 seconds)
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Joukowski challenge (al)

Challenge (3)

Demonstrate automatically that fr is injective, i.e.

Vx1VxoVy1Vya <x12 +y2 > 1A +y3 > 1A
— A _ _)»
X1+ 2+y Xt 2-i—y AT € R v x22+y22>
= (1 =x Ay = ).

We have failed to do this automatically, but Brown can
reformulate manually then solve in QEPCAD (< 12 seconds)

Challenge (4)

Automate these techniques and transforms.
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Joukowski challenge (a2)

So it's a bijection: what's the inverse?
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Joukowski challenge (a2)

So it's a bijection: what's the inverse?

Figure: Maple's solve on inverting Joukowski

> [solve(zeta = 1/2x(z+1/z), z)1;

(C+ V@ -1V -1

The only challenge might be the choice implicit in the & symbol:
which do we choose?
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Joukowski challenge (a2)

So it's a bijection: what's the inverse?

Figure: Maple's solve on inverting Joukowski

> [solve(zeta = 1/2x(z+1/z), z)1;

(C+ V@ -1V -1

The only challenge might be the choice implicit in the & symbol:
which do we choose? Unfortunately, the answer is “neither”, or at
least “neither, uniformly”.
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Joukowski challenge (a2 continued)

(<)

3(0) > 0

3¢) <0

() = 0AR(Q) > 1 (7)
() = 0AR() < -1




Joukowski challenge (a2 continued)

Y

N
T

[y

+

+

<0
() =0AR(C)>1
() =0AR(C) < -1

In fact, a better (at least, free of case distinctions) definition is

H(C) =C¢+VC—1V/C+ 1. (8)

2

NN
~
\Y

o

f(¢)=¢ (7)

[ay
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[ay
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Joukowski challenge (a2 continued)

Y

N
T

[y

+

+

V
o

<0
() =0AR(C)>1
() =0AR(C) < -1

In fact, a better (at least, free of case distinctions) definition is
h(Q) =+ V(-1V(+1. (8)

The techniques of [BBDPO07] are able to verify (8), in the sense of
showing that f(f(z)) — z is the zero function on {z : |z| > 1}.

BTN

f(¢)=¢ (7)

N

N
T

[

N
N
|
—_
SRR

[ay
—~

I
N
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Joukowski challenge (a2 continued)

Y

N
T

[y

+

+

<0
() =0AR(C)>1
() =0AR(C) < -1

In fact, a better (at least, free of case distinctions) definition is

H(C) =C¢+VC—1V/C+ 1. (8)

The techniques of [BBDPO07] are able to verify (8), in the sense of
showing that f(f(z)) — z is the zero function on {z : |z| > 1}.

&7
SN—r
V

o

f(¢)=¢ (7)

N

N
T

[

N
N
|
—_
SRR

—~~

I
N
=

Challenge (5)

Derive automatically, and demonstrate the validity of, either (7) or
(8). In terms of Maple, this would be . ..
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Joukowski challenge (a2 continued)

Figure: Bad: Maple's actual solve on inverting injective Joukowski

> [solve(zeta = 1/2*(z+1/z), z)] assuming abs(z) > 1

(C+ V-1V -1
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Joukowski challenge (a2 continued)

Figure: Bad: Maple's actual solve on inverting injective Joukowski

> [solve(zeta = 1/2*(z+1/z), z)] assuming abs(z) > 1

(C+ V-1V -1

Figure: Good: Ideal Maple solve on inverting injective Joukowski

> solve(zeta = 1/2%(z+1/z), z) assuming abs(z) > 1

(+vV(—1y(C+1
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Joukowski challenge (a2 continued)

Figure: Bad: Maple's actual solve on inverting injective Joukowski

> [solve(zeta = 1/2*(z+1/z), z)] assuming abs(z) > 1

(C+ V-1V -1

Figure: Good: Ideal Maple solve on inverting injective Joukowski

> solve(zeta = 1/2%(z+1/z), z) assuming abs(z) > 1

(+vV(—1y(C+1

As far as | can tell (supported by the documentation), Maple
ignores the “assuming” as it's on the codomain, not the domain.
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Joukowski (b) challenge

f is injective as a function from H := {z : Sz > 0}.
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Joukowski (b) challenge

Lemma

f is injective as a function from H := {z : Sz > 0}.

Challenge (6)

Demonstrate automatically the truth of

Vx1VxoVy1 Vo <y1 >0Ay > 0A
X — 29 _ _n _ _ _ 2
Mt TRt g N N x§+y3)

= (1= Ay = ).

(9)
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Joukowski (b) challenge

Lemma

f is injective as a function from H := {z : Sz > 0}.

Challenge (6)

Demonstrate automatically the truth of

Vx1VxoVy1 Vo <y1 >0Ay > 0A
X — 29 _ _n _ _ _ 2
Mt TRt g N N x§+y3)

= (1= Ay = ).

(9)

Brown's ideas probably apply here as well, but this is unproven
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Joukowski (b) challenge continued

So it's a bijection: what’s the inverse?
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Joukowski (b) challenge continued

So it's a bijection: what’s the inverse?
[Hen74, (5.1-13), p. 298] argues for

QO =C+ V(-1 (+1. (10)
—_—— N

arge(—n/2,7/2] arge(0,x]
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Joukowski (b) challenge continued

So it's a bijection: what’s the inverse?
[Hen74, (5.1-13), p. 298] argues for

QO =C+ V(-1 (+1. (10)
—_—— N

arge(—n/2,7/2] arge(0,x]

Challenge (7)

Find a way to represent functions such as /¢ + 1
——

arge(0,7]
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Alternative formulations

Fortunately this one is soluble in this case, we can write

Davenport Program Verification in the presence of complex numbers, functic



Alternative formulations

Fortunately this one is soluble in this case, we can write

VeFl=i y=C=1
N—— N—_——

arge(0,7] arge(—m/2,m/2]
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Alternative formulations

Fortunately this one is soluble in this case, we can write
V C + 1= V _C -1 )
N—— N——
arge(0,7] arge(—n/2,7/2]

so we have an inverse function

fa(¢) = (+V(—liv—(—1L (11)
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Alternative formulations

Fortunately this one is soluble in this case, we can write
V C + 1= V _C -1 )
N—— N——
arge(0,7] arge(—n/2,7/2]

so we have an inverse function

fa(¢) = (+V(—liv—(—1L (11)

Challenge (8)

Demonstrate automatically that this is an inverse to f on
{z: 3z > 0}.
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Why is this so hard? (1) — CAD
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Why is this so hard? (1) — CAD

The first truly algorithmic approach is ten years old ([BCD'02],
refined in [BBDPO7]), and has various difficulties.
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Why is this so hard? (1) — CAD

The first truly algorithmic approach is ten years old ([BCD'02],
refined in [BBDPO7]), and has various difficulties.

At its core is the use of Cylindrical Algebraic Decomposition of RV
to find the connected components of CN/2\ {branch cuts}. The

complexity of this is doubly exponential in N: upper bound of
d°?") and lower bounds of 22",
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Why is this so hard? (1) — CAD

The first truly algorithmic approach is ten years old ([BCD'02],
refined in [BBDPO7]), and has various difficulties.

At its core is the use of Cylindrical Algebraic Decomposition of RV
to find the connected components of CN/2\ {branch cuts}. The
complexity of this is doubly exponential in N: upper bound of
d°") and lower bounds of 22" ”°.

While better algorithms are in principle known (dO(Nm)), we do
not know of any accessible implementations.
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Why is this so hard? (1) — CAD

The first truly algorithmic approach is ten years old ([BCD'02],
refined in [BBDPO7]), and has various difficulties.

At its core is the use of Cylindrical Algebraic Decomposition of RV
to find the connected components of CN/2\ {branch cuts}. The
complexity of this is doubly exponential in N: upper bound of
d°") and lower bounds of 22" ”°.

While better algorithms are in principle known (dO(Nm)), we do
not know of any accessible implementations.

Furthermore, we are clearly limited to small values of N, at which
point looking at O(...) complexity is of limited use. We note that
the cross-over point between 2(N=1)/3 and Nv/N is at N = 21.
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Why is this so hard? (1) — CAD

The first truly algorithmic approach is ten years old ([BCD'02],
refined in [BBDPO7]), and has various difficulties.

At its core is the use of Cylindrical Algebraic Decomposition of RV
to find the connected components of CN/2\ {branch cuts}. The
complexity of this is doubly exponential in N: upper bound of
d°") and lower bounds of 22" ”°.

While better algorithms are in principle known (dO(Nm)), we do
not know of any accessible implementations.

Furthermore, we are clearly limited to small values of N, at which
point looking at O(...) complexity is of limited use. We note that
the cross-over point between 2(N=1)/3 and Nv/N is at N = 21.

A more detailed comparison is given in [Hon91]. Hence there is a
need for practical research on low-N Cylindrical Algebraic
Decomposition.
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Why is this so hard? (1) — CAD continued

While the fundamental branch cut of log is simple enough, being
{z=x+iyly =0A x <0}, actual branch cuts are messier. Part
of the branch cut of (2) is

2x3 + 21x2 4 72x + 2xy? + 5y? 4 81 = 0 A other conditions, (12)

whose solution accounts for the curious boundary of the bad region.
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Why is this so hard? (1) — CAD continued

While the fundamental branch cut of log is simple enough, being
{z=x+iyly =0A x <0}, actual branch cuts are messier. Part
of the branch cut of (2) is

2x3 + 21x2 4 72x + 2xy? + 5y? 4 81 = 0 A other conditions, (12)

whose solution accounts for the curious boundary of the bad region.
While there has been some progress in manipulating such images
of half-lines (described in Phisanbut’'s Bath PhD), there is almost
certainly more to be done.
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Why is this so hard? (2) — Injectivity

Lemmas 1, 2 are statements about complex functions of one
variable, so why do we need statements about four real variables to
prove them? There are three reasons.
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Why is this so hard? (2) — Injectivity

Lemmas 1, 2 are statements about complex functions of one
variable, so why do we need statements about four real variables to
prove them? There are three reasons.

@ The statements require the | - | or & functions, neither of
which are C analytic functions. Hence some recourse to R
(twice as many variables) seems inevitable (proof?)
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Why is this so hard? (2) — Injectivity

Lemmas 1, 2 are statements about complex functions of one
variable, so why do we need statements about four real variables to
prove them? There are three reasons.

@ The statements require the | - | or & functions, neither of
which are C analytic functions. Hence some recourse to R
(twice as many variables) seems inevitable (proof?)

@ Equations (6) and (9) are the direct translations of the basic
definition of injectivity. In practice, certainly if we were
looking at functions R — R, we would want to use the fact
that the function concerned was continuous.
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Why is this so hard? (2) — Injectivity

Lemmas 1, 2 are statements about complex functions of one
variable, so why do we need statements about four real variables to
prove them? There are three reasons.

@ The statements require the | - | or & functions, neither of
which are C analytic functions. Hence some recourse to R
(twice as many variables) seems inevitable (proof?)

@ Equations (6) and (9) are the direct translations of the basic
definition of injectivity. In practice, certainly if we were
looking at functions R — R, we would want to use the fact
that the function concerned was continuous.

Challenge (9)

Find a better formulation of injectivity questions RN — RV,
making use of the properties of the functions concerned (certainly
continuity, possibly rationality).
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Why is this so hard? (2) — Injectivity continued

© While these injectivity equations are statements from the
existential theory of the reals, and so the theoretically more
efficient algorithms quoted in [Hon91] are in principle
applicable, the more modern developments described in [PJ09]
do not seem to be directly applicable. However, we can
transform then into a disjunction of statements to each of
which the Weak Positivstellensatz [PJ09, Theorem 1] is
applicable.
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Why is this so hard? (2) — Injectivity continued

© While these injectivity equations are statements from the
existential theory of the reals, and so the theoretically more
efficient algorithms quoted in [Hon91] are in principle
applicable, the more modern developments described in [PJ09]
do not seem to be directly applicable. However, we can
transform then into a disjunction of statements to each of
which the Weak Positivstellensatz [PJ09, Theorem 1] is
applicable.

Challenge (10)

Solve these problems using the techniques of [PJ09],
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