

Experience with Heuristics, Benchmarks & Standards for Cylindrical Algebraic Decomposition

Matthew England & James Davenport

Matthew.England@coventry.ac.uk J.H.Davenport@bath.ac.uk
<http://www.sc-square.org>¹

Coventry University University of Bath

24 September 2016

¹SC²: H2020-FETOPEN-2016-2017-CSA project 712689

In the SC² motivational paper [Á15], the author identified the use of sophisticated heuristics as a technique that the Satisfiability Checking community excels in and from which it is likely the Symbolic Computation community could learn and prosper. That author was undoubtedly right here: not so much that heuristics are unknown in Symbolic Computation, as that the Symbolic Computation *literature* largely ignores heuristics, so that they are hidden secrets.

So the present authors thought they should open up.

The top-level commands of most computer algebra systems are often heuristics.

The speaker cut his teeth on making integration algorithmic: nevertheless

- Maple's definite integrator [Inc16] contains a list of eight methods, which are currently tried in a fixed order;
- A purely rule-based integrator [JR16] produces “better” (Size of integral (as an expression); Continuity; Real versus complex; Aesthetics) results than algorithms.

Cylindrical Algebraic Decomposition

A workhorse of Real {Nonlinear Arithmetic, Algebraic Geometry}
with numerous approaches for problems in n variables

Projection/Lifting [Col75, Eng13]

Regular Chains [CM14a]

But there are other approaches to Quantifier Elimination

Virtual Term Substitution [KSD16]

Comprehensive Gröbner Bases [FIS16]

Every approach has in fact many choices within it, which can affect both the running time *and* the actual answer: [BD07] shows the size of the answer can vary doubly-exponentially (in n).

Variable Order

The obvious one (within the constraints of the problem).

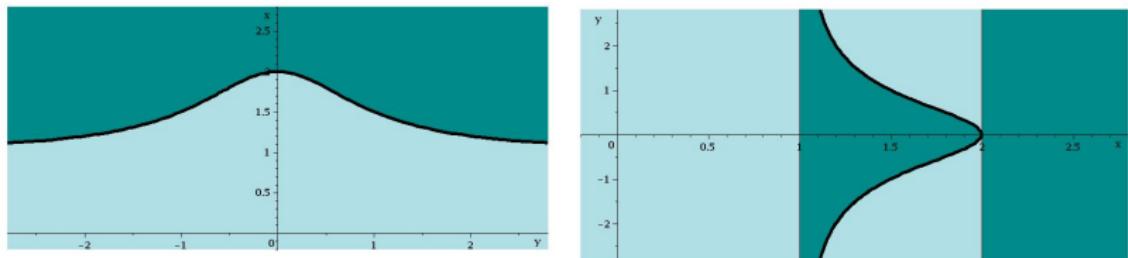


Figure: CADs under different variable orderings: 3 cells versus 11 cells

It's also the [BD07] doubly-exponential difference case

Various heuristics (somewhat documented! PL-CAD)

Brown [Bro04, Section 5.2]. Use the following criteria, starting with the first and breaking ties with rest:

- (1) Eliminate variable if lowest overall degree.
- (2) Eliminate variable if lowest (maximum) total degree in terms in which it occurs.
- (3) Eliminate variable if smallest number of terms contains it.

sotd [DSS04] For all admissible orderings, calculate the projection set and choose the one with smallest *sum of total degrees* for each of the monomials in each of the polynomials

greedy [DSS04] As above, but choose the first variable only, then the second ...

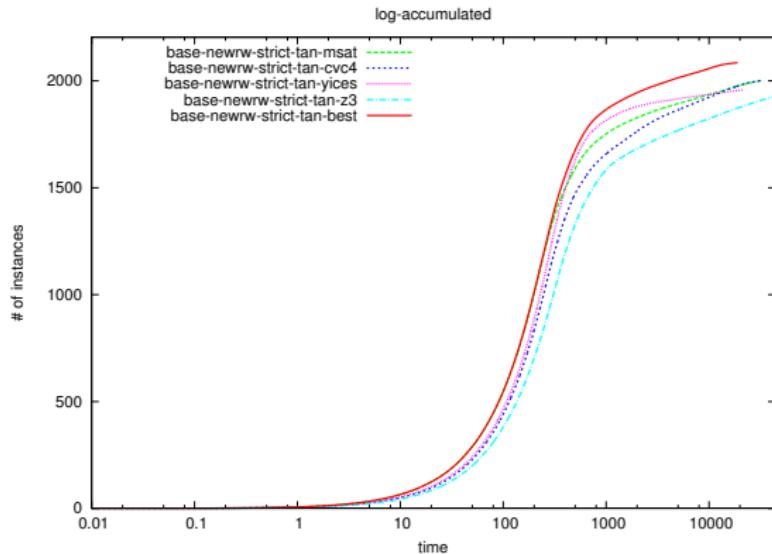
ndrr [BDEW13] construct the full projection set and choose the ordering whose set has the least *number of distinct real roots* of the univariate polynomials.

Various heuristics: so which is best (PL-CAD)

Compared in [HEW⁺14], across 7001 3-variable problems from NLSAT.

Brown Is the best heuristic most often
sotd makes the most savings

So what is the best definition of “best”? Survivor plots?



Other choices:

Which equational constraint to pick

- It does matter: [EBD15] shows $\times 16$ variation in cell count
- No cheap heuristic (as the polynomials are the same)
- sotd and ndrr both do reasonably, but these are expensive heuristics
- What's the metric/comparison?

Same problem for Truth-Table Invariant CAD

Brown As before

Triangular Similar

sotd You do the P/L projections, work out the variable order, then throw the projections away

ndrr ditto

New [EBDW14] Degrees as in Brown, tiebreak by calculating principal next-stage polynomials (and possibly refined tie-break)

On a small sample New+ is best

Incremental Algorithms

Both the time, and indeed the results, for such methods (e.g.

[CM14b] for CAD by regular chains (see [EBC⁺14])

[BK15] for constructing a single cell)

can easily be dependent on the *order* in which we present the polynomials. In general it is not obvious what heuristics to use here: lowest degree first seems obvious.

[EBC⁺14] suggested doing the complete complex projection for each order, then refining the one with lowest sotd (one could also consider ndrr): again expensive.

The same problem, four orders [EBC⁺14]

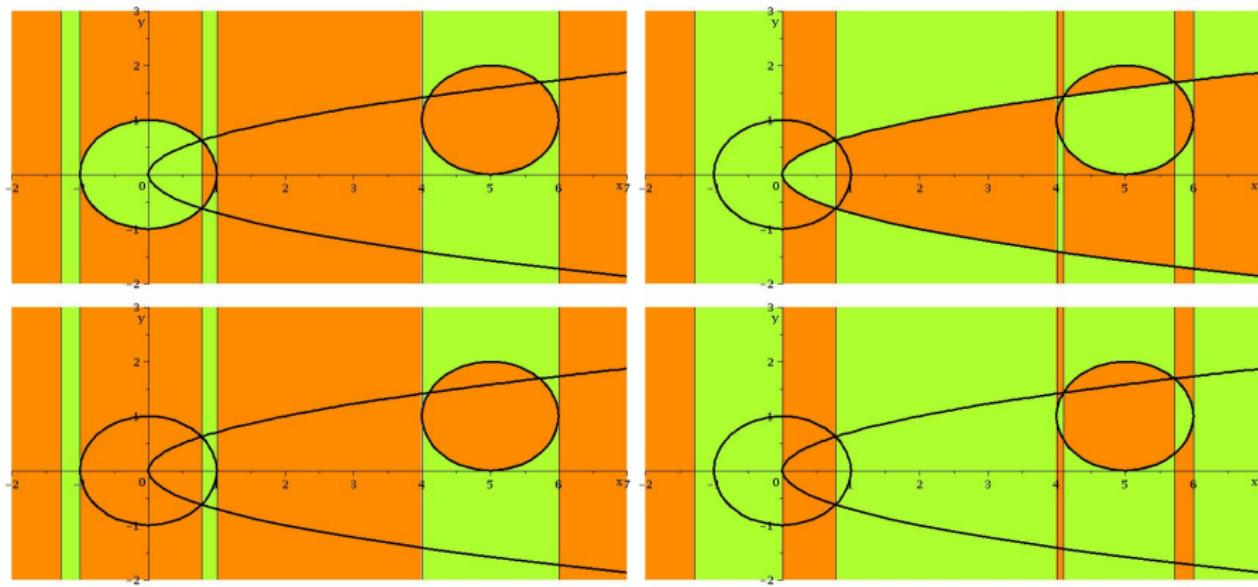


Figure: 37 81
25 45 cells

Two flavours: basic and enhanced (both work with n formula, simple cases shown)

- ① Replace $f_1 = 0 \wedge f_2 = 0 \wedge \dots$ by $\bigwedge_{f \in GB(f_1, f_2)} f = 0 \wedge \dots$ [BH91]

1991 10 examples: sped up 6, slowed 2 (one very slow GB), and 2 impossible

2012 GB was much faster, but similar conclusions

- ② Also, replace $\bigwedge_{f \in G} \wedge g < 0 \wedge \dots$ by $\bigwedge_{f \in G} \wedge \widehat{g} < 0 \wedge \dots$ where $g \rightarrow_G \widehat{g}$ [WBD12]

So when should we do it?

Machine Learning?

See [HEDP16] and Matthew England's talk tomorrow 10:10.
Note that we have been using Machine Learning as a
meta-heuristic: to decide which existing heuristic to apply.
But machine learning needs large benchmark sets, and these need
to have standard representation.

- **E. Ábrahám.**
Building Bridges between Symbolic Computation and Satisfiability Checking.
In D. Robertz, editor, *Proceedings ISSAC 2015*, pages 1–6, 2015.
- **C.W. Brown and J.H. Davenport.**
The Complexity of Quantifier Elimination and Cylindrical Algebraic Decomposition.
In C.W. Brown, editor, *Proceedings ISSAC 2007*, pages 54–60, 2007.
- **R.J. Bradford, J.H. Davenport, M. England, and D.J. Wilson.**
Optimising Problem Formulation for Cylindrical Algebraic Decomposition.
In J. Carette *et al.*, editor, *Proceedings CICM 2013*, pages 19–34, 2013.

- B. Buchberger and H. Hong.
Speeding-up Quantifier Elimination by Gröbner Bases.
Technical Report 91-06, 1991.
- C. Brown and M. Košta.
Constructing a single cell in cylindrical algebraic decomposition.
J. Symbolic Computation, 70:14–48, 2015.
- C.W. Brown.
Tutorial handout.
<http://www.cs.usna.edu/~wcbrown/research/ISSAC04/handout.pdf>, 2004.

C. Chen and M. Moreno Maza.

An Incremental Algorithm for Computing Cylindrical Algebraic Decompositions.

In Ruyong Feng, Wen-shin Lee, and Yosuke Sato, editors, *Computer Mathematics*, pages 199–221. Springer Berlin Heidelberg, 2014.

C. Chen and M. Moreno Maza.

An Incremental Algorithm for Computing Cylindrical Algebraic Decompositions.

In R. Feng, W.-S. Lee, and Y. Sato, editors, *Proceedings Computer Mathematics ASCM 2009 and 2012*, pages 199–221, 2014.

- G.E. Collins.
Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition.
In *Proceedings 2nd. GI Conference Automata Theory & Formal Languages*, pages 134–183, 1975.
- A. Dolzmann, A. Seidl, and Th. Sturm.
Efficient Projection Orders for CAD.
In J. Gutierrez, editor, *Proceedings ISSAC 2004*, pages 111–118, 2004.
- M. England, R. Bradford, C. Chen, J.H. Davenport, M.M. Maza, and D.J. Wilson.
Problem formulation for truth-table invariant cylindrical algebraic decomposition by incremental triangular decomposition.
In S.M. Watt *et al.*, editor, *Proceedings CICM 2014*, pages 45–60, 2014.

- M. England, R. Bradford, and J.H. Davenport.
Improving the Use of Equational Constraints in Cylindrical Algebraic Decomposition.
In D. Robertz, editor, *Proceedings ISSAC 2015*, pages 165–172, 2015.
- M. England, R. Bradford, J.H. Davenport, and D.J. Wilson.
Choosing a Variable Ordering for Truth-Table Invariant Cylindrical Algebraic Decomposition by Incremental Triangular Decomposition.
In *Proceedings ICMS 2014*, pages 450–457, 2014.
- M. England.
An Implementation of CAD in Maple Utilising McCallum Projection.
Technical Report 2013-02 Bath Computer Science, 2013.

- R. Fukasaku, H. Iwane, and Y. Sato.
On the Implementation of CGS Real QE.
In *Proceedings ICMS 2016*, pages 165–172, 2016.
- Z. Huang, M. England, J.H. Davenport, and L.C. Paulson.
Using Machine Learning to Decide When to Precondition
Cylindrical Algebraic Decomposition With Groebner Bases.
<https://arxiv.org/abs/1608.04219>, 2016.
- Z. Huang, M. England, D. Wilson, J.H. Davenport, L.C. Paulson, and J. Bridge.
Applying machine learning to the problem of choosing a
heuristic to select the variable ordering for cylindrical algebraic
decomposition.
In S.M.Watt *et al.*, editor, *Proceedings CICM 2014*, pages
92–107, 2014.

Maplesoft Inc.

A Discussion of the Practical Issues of Computing Integrals in Maple.

Presentation at ICMS 2016 (Berlin): see §3.8 <http://staff.bath.ac.uk/masjhd/Meetings/JHDatICMS2016.pdf>, 2016.

D.J. Jeffrey and A. Rich.

Recent Developments in the RUBI Integration Project.

Presentation at ICMS 2016 (Berlin): see §3.9 <http://staff.bath.ac.uk/masjhd/Meetings/JHDatICMS2016.pdf>, 2016.

M. Košta, T. Sturm, and A. Dolzmann.

Better answers to real questions.

J. Symbolic Comp., 74:255–275, 2016.

D.J. Wilson, R.J. Bradford, and J.H. Davenport.

Speeding up Cylindrical Algebraic Decomposition by Gröbner Bases.

In J. Jeuring *et al.*, editor, *Proceedings CICM 2012*, pages 279–293, 2012.