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In the SC? motivational paper [A15], the author identified the use
of sophisticated heuristics as a technique that the Satisfiability
Checking community excels in and from which it is likely the
Symbolic Computation community could learn and prosper.

That author was undoubtedly right here: not so much that
heuristics are unknown in Symbolic Computation, as that the
Symbolic Computation literature largely ignores heuristics, so that
they are hidden secrets.

So the present authors thought they should open up.
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Reality of systems (as opposed to literature)

The top-level commands of most computer algebra systems are

often heuristics.
The speaker cut his teeth on making integration algorithmic:

nevertheless
e Maple's definite integrator [Inc16] contains a list of eight
methods, which are currently tried in a fixed order;
@ A purely rule-based integrator [JR16] produces “better” (Size
of integral (as an expression); Continuity; Real versus
complex; Aesthetics) results than algorithms.
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Cylindrical Algebraic Decomposition

A workhorse of Real {Nonlinear Arithmetic, Algebraic Geometry}
with numerous approaches for problems in n variables

Projection/Lifting [Col75, Engl3]
Regular Chains [CM14a]
But there are other approaches to Quantifier Elimination
Virtual Term Substitution [KSD16]
Comprehensive Grobner Bases [FIS16]

Every approach has in fact many choices within it, which can
affect both the running time and the actual answer: [BDO07] shows
the size of the answer can vary doubly-exponentially (in n).
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Variable Order

The obvious one (within the constraints of the problem).

Figure: CADs under different variable orderings: 3 cells versus 11 cells

It's also the [BDO7] doubly-exponential difference case
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Various heuristics (somewhat documented! PL-CAD)

Brown [Bro04, Section 5.2]. Use the following criteria,
starting with the first and breaking ties with rest:
(1) Eliminate variable if lowest overall degree.
(2) Eliminate variable if lowest (maximum) total
degree in terms in which it occurs.
(3) Eliminate variable if smallest number of terms
contains it.
sotd [DSS04] For all admissible orderings, calculate the
projection set and choose the one with smallest sum
of total degrees for each of the monomials in each of
the polynomials
greedy [DSS04] As above, but choose the first variable only,
then the second ...
ndrr [BDEW13] construct the full projection set and
choose the ordering whose set has the least number
of distinct real roots of the univariate polynomials.
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Various heuristics: so which is best (PL-CAD)

Compared in [HEW™14], across 7001 3-variable problems from
NLSAT.

Brown Is the best heuristic most often
sotd makes the most savings

So what is the best definition of “best”? Survivor plots?
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Other choices:

Which equational constraint to pick

@ It does matter: [EBD15] shows x16 variation in cell count
@ No cheap heuristic (as the polynomials are the same)

@ sotd and ndrr both do reasonably, but these are expensive
heuristics

e What's the metric/comparison?

Same problem for Truth-Table Invariant CAD
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Various heuristics (documented) RC-CAD

Brown As before
Triangular Simlar

sotd You do the P/L projections, work out the variable
order, then throw the projections away

ndrr ditto

New [EBDW14] Degrees as in Brown, tiebreak by
calculating principal next-stage polynomials (and
possibly refined tie-break)

On a small sample New is best
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Incremental Algorithms

Both the tme, and indeed the results, for such methods (e.g.

[CM14b] for CAD by regular chains (see [EBCT14])

[BK15] for constructing a single cell)

can easily be dependent on the order in which we present the
polynomials. In general it is not obvious what heuristics to use
here: lowest degree first seems obvious.
[EBC*14] suggested doing the complete complex projection for
each order, then refining the one with lowest sotd (one could also
consider ndrr): again expensive.
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The same problem, four orders [EBC*14]
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Grobner preconditioning for CAD

Two flavours: basic and enhanced (both work with n formula,
simple cases shown)
@ Replace i =0AH=0A---by [\ f=0A--- [BHO]
feGB(f1,f)
1991 10 examples: sped up 6, slowed 2 (one very slow GB), and 2
impossible
2012 GB was much faster, but similar conclusions

@ Also, replace /\/\g<0/\-~ by /\/\§<0/\--- where

feG feG
g —¢ g [WBD12]

So when should we do it?
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Machine Learning?

See [HEDP16] and Matthew England’s talk tomorrow 10:10.
Note that we have been using Machine Learning as a
meta-heuristic: to decide which existing heuristic to apply.

But machine learning needs large benchmark sets, and these need
to have standard representation.
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Speeding-up Quantifier Elimination by Grobner Bases.
Technical Report 91-06, 1991.
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In D. Robertz, editor, Proceedings ISSAC 2015, pages
165-172, 2015.
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Choosing a Variable Ordering for Truth-Table Invariant
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[d R. Fukasaku, H. lwane, and Y. Sato.
On the Implementation of CGS Real QE.
In Proceedings ICMS 2016, pages 165—172, 2016.

[§ Z. Huang, M. England, J.H. Davenport, and L.C. Paulson.
Using Machine Learning to Decide When to Precondition
Cylindrical Algebraic Decomposition With Groebner Bases.
https://arxiv.org/abs/1608.04219, 2016.

@ Z. Huang, M. England, D. Wilson, J.H. Davenport, L.C.
Paulson, and J. Bridge.
Applying machine learning to the problem of choosing a
heuristic to select the variable ordering for cylindrical algebraic
decomposition.
In S.M.Watt et al., editor, Proceedings CICM 2014, pages
92-107, 2014.

Matthew England & James Davenport Heuristics, Benchmarks & Standards


https://arxiv.org/abs/1608.04219

@ Maplesoft Inc.
A Discussion of the Practical Issues of Computing Integrals in
Maple.
Presentation at ICMS 2016 (Berlin): see §3.8 http://staff.
bath.ac.uk/masjhd/Meetings/JHDatICMS2016.pdf, 2016

[d D.J. Jeffrey and A. Rich.
Recent Developments in the RUBI Integration Project.
Presentation at ICMS 2016 (Berlin): see §3.9 http://staff.
bath.ac.uk/masjhd/Meetings/JHDatICMS2016.pdf, 2016.

@ M. Ko&ta, T. Sturm, and A. Dolzmann.
Better answers to real questions.
J. Symbolic Comp., 74:255-275, 2016.

Matthew England & James Davenport Heuristics, Benchmarks & Standards


http://staff.bath.ac.uk/masjhd/Meetings/JHDatICMS2016.pdf
http://staff.bath.ac.uk/masjhd/Meetings/JHDatICMS2016.pdf
http://staff.bath.ac.uk/masjhd/Meetings/JHDatICMS2016.pdf
http://staff.bath.ac.uk/masjhd/Meetings/JHDatICMS2016.pdf

[ D.J. Wilson, R.J. Bradford, and J.H. Davenport.
Speeding up Cylindrical Algebraic Decomposition by Grobner
Bases.
In J. Jeuring et al., editor, Proceedings CICM 2012, pages

279-293, 2012.
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