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Notation

We are trying in this project to bridge two communities, that of

1 satisfiability checking (especially “satisfiability modulo
theories”) and

2 symbolic computation

The communities have their own technical terms, which we will
distinguish as above



Satisfiability Checking

k-SAT: checking whether a conjunction of disjunctions with at
most k literals is satisfiable.

The 3-SAT problem is known to be NP-complete [Coo71]

But the Satisfiability Checking [BBH+09] community has
developed SAT solvers which can successfully handle inputs
with millions of Boolean variables

SAT solvers are in use throughout industry

I put my life in the hands of SAT-solver verified software
several times a week

SAT-solving contests [JLBRS12] have driven much progress

“Watched Literals” [MMZ+01] is worth a factor of (k − 2) in
the inner loop

#SAT (counting solutions) is a different problem from SAT



SAT-modulo-theories (SMT) solvers

attempt to extend this pragmatic success to cases where the
literals belong to some theory, rather than being independent
Booleans: example — XOR-theory

XOR: ⊕ is a primitive in cryptography and coding theory, but
translates badly to the CNF format, so we can build
this in as a “theory” [LJN12]

regard a⊕ b as a new variable c : whenever c is asserted:

If a, b asserted declare ⊥
If a, b negated declare ⊥
If a, b consistent continue

If one of a, b is known, produce the appropriate value of the other
as a lemma



SAT-modulo-theories (SMT) solvers

Substantial progress has been made when the theory is “easy”
[BSST09, KS08]

But even quantifier-free (i.e. purely existential) SMT for

theories of non-linear arithmetic/algebra, real or integer, is
still in its infancy

quantified (i.e. at least one alternation) SMT is currently a
dream

“Despite substantial advances in verification technology,
complexity issues with classical decision procedures are still a major
obstacle for formal verification of real-world applications, e.g. in
automotive and avionic industries.” [PQR09]



But isn’t this standard computer algebra?

(at least over the reals)

[Col75] solved quantifier elimination for the reals

and computer algebra has made, and is making, a lot of
progress since

it’s in several computer algebra systems

and it’s even possible to eliminate a quantifier on an Android
’phone [Eng14]

Of course, it’s expensive, but we know the problem is
doubly-exponential [BD07]

Over the integers it’s undecidable anyway, so what’s the point?



But there’s a fundamental difference

Computer Algebra Begins with the polynomials, solves them
completely (Cylindrical Algebraic Decomposition),
then considers the Boolean structure

With some more recent flexibility, e.g. equational
constraints.

Hence we are essentially solving #SMT, rather than SMT

SMT Starts from the Boolean structure, and dips into the
theory, adding and retracting theory clauses as
required



There’s also a question of strategy

Computer Algebra tends to have a fixed strategy

at least in terms of what is documented: the pre-processing
steps before one gets into the algorithm are rarely
described

Quite often follows a general algorithm even when there’s some
“low hanging fruit”

SAT tends to have lots of heuristics

SAT looks aggressively for low-hanging fruit [Spe15]

SAT Frequently restarts [HH10], with some underpinning
theory [LSZ93]



Heuristics

In fact,there’s a great deal of choice in CAD “algorithms”.

Variable Order The most obvious one (also present in Gröbner
bases, regular chains etc.)

Often Crucial, in theory [BD07] and in practice
Several heuristics suggested in the past: [HEW+15] shows

that no one heuristic is best, and a machine learning
meta-heuristic outperforms all heuristics

Equational constraints We can only apply one for each variable, so
need to choose

No cheap heuristics: those available do all the projections then
decide which one to lift

TTICAD “Truth Table Invariant CAD”, i.e. trying to take
account of the Boolean structure, has even more
choices

Also No research in trying to make all the choices
holistically.



Benchmarking, Problem Sets and Contests

Contests are a major factor in progress in SAT. For SMT:

Specification Various different questions: [WBD12] is just CAD
problems, not SMT problems

Maintenance is a problem, see the PoSSo set of GB examples
(only conserved in PDF of LATEX)

Language Not really a standard: we will extend the SMTLib
standard — interested in volunteers/ interfaces;
OpenDreamKit?; OpenMath; MathML-C;

but need a problem statement language as well as just
formulae

Industry Not much current industrial use, so no industry
problems, vicious circle

Hard Problems? Quite a challenge for SAT [Spe15]



Hard Problems

CAD is known to be doubly-exponential (in n, the number of
variables)

[DH88] Describing a single (non-trivial) solution needs

polynomials of degree 22
n/5+O(1)

* So adding ∧0 < x < 1 makes describing a single
solution doubly-exponentially more difficult

[BD07] The solutions are all rational, describable with 2O(n)

bits. But there are 22
O(n)

of them, so SMT might be
2O(n) but #SMT 22

O(n)

But There is symmetry, and we don’t have to count the
solutions one-by-one, so what is #SMT here?



Interrelations

The polynomial theory and the Boolean theory interact

fg > 0⇔ (f > 0 ∧ g > 0) ∨ (f < 0 ∧ g < 0)

? What is the rôle of square-free bases etc. here?

x2 + y2 < 1⇒ −1 < x < 1

? What is the rôle of such “smplifying” (in the sense of
involving fewer variables) deductions?

?? Might a pre-processor add such deductions?

Different “logical” variables might involve the same “theory”
variables:

? What is the rôle of such connections?

x2 − 5x + y2 + 2y < 5⇒ x2 − 5x < 6

? What is the rôle of such “sums of squares” deductions?



Conclusions

We currently have two communities with different

Terminology Minor once you’re aware of it

Approaches Logic-first versus (historically) polynomials-first

Also incremental versus batch

Attitudes Pragmatic contests versus worst-case complexity

Hence problem sets, contests, standards etc.

Industrial links Exist in both cases, (but currently not very
well-known for either: SMT can point to SAT).

So We have a lot of work to do.
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