

SC²: Satisfiability Checking meets Symbolic Computation: www.sc-square.org

James Davenport
Hebron & Medlock Professor of Information Technology¹

University of Bath (U.K.)

4 August 2016

¹Thanks to John Abbott, Erika Ábrahám, Bernd Becker, Anna M. Bigatti, Martin Brain, Bruno Buchberger, Alessandro Cimatti, Matthew England, Pascal Fontaine, Stephen Forrest, Alberto Griggio, Daniel Kroening, Werner M. Seiler & Thomas Sturm; H2020-FETOPEN-2016-2017-CSA project 712689

Notation

We are trying in this project to bridge two communities, that of

- ① satisfiability checking (especially “satisfiability modulo theories”) and
- ② symbolic computation

The communities have their own technical terms, which we will distinguish as above

Satisfiability Checking

k -SAT: checking whether a conjunction of disjunctions with at most k literals is satisfiable.

- The 3-SAT problem is known to be NP-complete [Coo71]

But the *Satisfiability Checking* [BBH⁺09] community has developed SAT solvers which can successfully handle inputs with millions of Boolean variables

- SAT solvers are in use throughout industry
- I put my life in the hands of SAT-solver verified software several times a week
- SAT-solving contests [JLBRS12] have driven much progress
- “Watched Literals” [MMZ⁺01] is worth a factor of $(k - 2)$ in the inner loop

#SAT (counting solutions) is a different problem from SAT

SAT-modulo-theories (SMT) solvers

attempt to extend this pragmatic success to cases where the literals belong to some theory, rather than being independent Booleans: example — XOR-theory

XOR: \oplus is a primitive in cryptography and coding theory, but translates badly to the CNF format, so we can build this in as a “theory” [LJN12]

regard $a \oplus b$ as a new variable c : whenever c is asserted:

If a, b asserted declare \perp

If a, b negated declare \perp

If a, b consistent continue

If one of a, b is known, produce the appropriate value of the other as a lemma

SAT-modulo-theories (SMT) solvers

- Substantial progress has been made when the theory is “easy” [BSST09, KS08]
- But even quantifier-free (i.e. purely existential) SMT for theories of non-linear arithmetic/algebra, real or integer, is still in its infancy
- quantified (i.e. at least one alternation) SMT is currently a dream

“Despite substantial advances in verification technology, complexity issues with classical decision procedures are still a major obstacle for formal verification of real-world applications, e.g. in automotive and avionic industries.” [PQR09]

But isn't this standard computer algebra?

(at least over the reals)

- [Col75] solved quantifier elimination for the reals
- and computer algebra has made, and is making, a lot of progress since
- it's in several computer algebra systems
- and it's even possible to eliminate a quantifier on an Android 'phone [Eng14]
- Of course, it's expensive, but we know the problem is doubly-exponential [BD07]

Over the integers it's undecidable anyway, so what's the point?

But there's a fundamental difference

Computer Algebra Begins with the polynomials, solves them completely (Cylindrical Algebraic Decomposition), then considers the Boolean structure

With some more recent flexibility, e.g. equational constraints.

Hence we are essentially solving #SMT, rather than SMT

SMT Starts from the Boolean structure, and dips into the theory, adding and retracting theory clauses as required

There's also a question of strategy

Computer Algebra tends to have a fixed strategy

at least in terms of what is documented: the pre-processing steps before one gets into the algorithm are rarely described

Quite often follows a general algorithm even when there's some “low hanging fruit”

SAT tends to have lots of heuristics

SAT looks aggressively for low-hanging fruit [Spe15]

SAT Frequently restarts [HH10], with some underpinning theory [LSZ93]

Heuristics

In fact, there's a great deal of choice in CAD "algorithms".

Variable Order The most obvious one (also present in Gröbner bases, regular chains etc.)

Often Crucial, in theory [BD07] and in practice

Several heuristics suggested in the past: [HEW⁺15] shows that no one heuristic is best, and a machine learning meta-heuristic outperforms all heuristics

Equational constraints We can only apply one for each variable, so need to choose

No cheap heuristics: those available do all the projections then decide which one to lift

TTICAD "Truth Table Invariant CAD", i.e. trying to take account of the Boolean structure, has even more choices

Also No research in trying to make all the choices holistically.

Benchmarking, Problem Sets and Contests

Contests are a major factor in progress in SAT. For SMT:

Specification Various different questions: [WBD12] is just CAD problems, not SMT problems

Maintenance is a problem, see the PoSSo set of GB examples (only conserved in PDF of \LaTeX)

Language Not really a standard: we will extend the SMTLib standard — interested in volunteers/ interfaces; OpenDreamKit?; OpenMath; MathML-C;

but need a problem statement language as well as just formulae

Industry Not much current industrial use, so no industry problems, **vicious circle**

Hard Problems? Quite a challenge for SAT [Spe15]

Hard Problems

CAD is known to be doubly-exponential (in n , the number of variables)

[DH88] Describing a single (non-trivial) solution needs polynomials of degree $2^{2^{n/5+O(1)}}$

* So adding $\wedge 0 < x < 1$ makes describing a single solution doubly-exponentially more difficult

[BD07] The solutions are all rational, describable with $2^{O(n)}$ bits. But there are $2^{2^{O(n)}}$ of them, so SMT might be $2^{O(n)}$ but #SMT $2^{2^{O(n)}}$

But There is symmetry, and we don't have to count the solutions one-by-one, so what is #SMT here?

Interrelations

The polynomial theory and the Boolean theory interact

- $fg > 0 \Leftrightarrow (f > 0 \wedge g > 0) \vee (f < 0 \wedge g < 0)$
- ? What is the rôle of square-free bases etc. here?
- $x^2 + y^2 < 1 \Rightarrow -1 < x < 1$
- ? What is the rôle of such “smplifying” (in the sense of involving fewer variables) deductions?
- ?? Might a pre-processor add such deductions?
- Different “logical” variables might involve the same “theory” variables:
- ? What is the rôle of such connections?
- $x^2 - 5x + y^2 + 2y < 5 \Rightarrow x^2 - 5x < 6$
- ? What is the rôle of such “sums of squares” deductions?

Conclusions

We currently have two communities with different

Terminology Minor once you're aware of it

Approaches Logic-first versus (historically) polynomials-first

Also incremental versus batch

Attitudes Pragmatic contests versus worst-case complexity

Hence problem sets, contests, standards etc.

Industrial links Exist in both cases, (but currently not very well-known for either: SMT can point to SAT).

So We have a lot of work to do.

Bibliography I

- A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh.
Handbook of Satisfiability, volume 185 of *Frontiers in Artificial Intelligence and Applications*.
IOS Press, 2009.
- C. W. Brown and J. H. Davenport.
The complexity of quantifier elimination and cylindrical algebraic decomposition.
In *Proceedings ISSAC 2007*, pages 54–60. ACM, 2007.
- C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli.
Satisfiability modulo theories.
In *Handbook of Satisfiability*, volume 185 of *Frontiers in Artificial Intelligence and Applications*, chapter 26, pages 825–885. IOS Press, 2009.

Bibliography II

- G. E. Collins.
Quantifier elimination for real closed fields by cylindrical algebraic decomposition.
In *Automata Theory and Formal Languages*, volume 33 of *LNCS*, pages 134–183. Springer, 1975.
- S. A. Cook.
The complexity of theorem-proving procedures.
In *Proceedings STOC 1971*, pages 151–158. ACM, 1971.
- J. H. Davenport and J. Heintz.
Real quantifier elimination is doubly exponential.
J. Symbolic Computation, 5:29–35, 1988.

Bibliography III

- **M. England.**
Eliminating a quantifier with sage/qepcad on android.
Demonstration, 2014.
- **Z. Huang, M. England, D. Wilson, J. H. Davenport, and L. C. Paulson.**
A comparison of three heuristics to choose the variable ordering for cylindrical algebraic decomposition.
ACM Communications in Computer Algebra,
48(3/4):121–123, 2015.
- **S. Haim and M. Heule.**
Towards Ultra Rapid Restarts.
Technical Report Universities of New South Wales and Delft,
2010.

Bibliography IV

- M. Järvisalo, D. Le Berre, O. Roussel, and L. Simon.
The international SAT solver competitions.
AI Magazine, 33:89–92, 2012.
- D. Kroening and O. Strichman.
Decision Procedures: An Algorithmic Point of View.
Springer, 2008.
- T. Laitinen, T. Junttila, and I. Niemel.
Conflict-driven XOR-clause learning.
Theory and Applications of Satisfiability Testing-SAT 2012,
pages 383–396, 2012.
- M. Luby, A. Sinclair, and D. Zuckerman.
Optimal Speedup of Las Vegas algorithms.
Inf. Proc. Letters, 47:173–180, 1993.

Bibliography V

- M.W. Moskewicz, Madigan.C.F., Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an Efficient SAT Solver.
In *Proceedings 38th Design Automation Conference*, 2001.
- A. Platzer, J.-D. Quesel, and P. Rümmer.
Real world verification.
In *Proceedings CADE-22*, pages 485–501. ACM, 2009.
- I. Spence.
Weakening Cardinality Constraints Creates Harder Satisfiability Benchmarks.
J. Exp. Algorithms Article 1.4, 20, 2015.

Bibliography VI

- D.J. Wilson, R.J. Bradford, and J.H. Davenport.
A Repository for CAD Examples.
ACM Communications in Computer Algebra 3, 46:67–69,
2012.