
Unifying Math Ontologies: A Tale of Two
Standards

Differentiating between analysis and algebra

James Davenport & Michael Kohlhase

University of Bath (visiting Waterloo) &
Jacobs Universität Bremen

12 July 2009
Thanks to referees, and many in OpenMath and MathML

The views expressed, though, are our own

A thought

Whenever anyone says “you know what I mean”, you can
be pretty sure that he does not know what he means, for
if he did, he would tell you.
— H. Davenport (1907–1969)

OpenMath and MathML: A shared goal

OpenMath and MathML share the goal of representing
mathematics “as it is”, rather than “as it ought to be”. A relevant
example of the difference is given by [Kamareddine & Nederpelt,
2004], where the original text is

The function
√
|x | is not differentiable at 0 (1)

while its formalised equivalent is

¬(λx :R(
√
|x |) is differentiable at 0). (2)

The key features are the typing of x as being in R, and the
conversion of

√
|x | from an expression to a function.

OpenMath and MathML (2!): different approaches

OpenMath and MathML have rather different views of calculus:

what one learned in calculus/analysis about functions, which
we will write as Dεδ: the “differentiation of ε–δ analysis”
(similarly d

dεδx , and its inverse εδ

∫
);

what is taught in differential algebra about (expressions in)
differential fields, which we will write as DDA: the
“differentiation of differential algebra” (similarly d

dDAx , and its

inverse DA

∫
).

(2) is unashamedly the former, while (1) talks about a function,
but actually gives an expression.

OpenMath and MathML (2!): different approaches

OpenMath and MathML have rather different views of calculus:

what one learned in calculus/analysis about functions, which
we will write as Dεδ: the “differentiation of ε–δ analysis”
(similarly d

dεδx , and its inverse εδ

∫
);

what is taught in differential algebra about (expressions in)
differential fields, which we will write as DDA: the
“differentiation of differential algebra” (similarly d

dDAx , and its

inverse DA

∫
).

(2) is unashamedly the former, while (1) talks about a function,
but actually gives an expression.

OpenMath and MathML (2!): different approaches

OpenMath and MathML have rather different views of calculus:

what one learned in calculus/analysis about functions, which
we will write as Dεδ: the “differentiation of ε–δ analysis”
(similarly d

dεδx , and its inverse εδ

∫
);

what is taught in differential algebra about (expressions in)
differential fields, which we will write as DDA: the
“differentiation of differential algebra” (similarly d

dDAx , and its

inverse DA

∫
).

(2) is unashamedly the former, while (1) talks about a function,
but actually gives an expression.

OpenMath and MathML (2!): different approaches

OpenMath and MathML have rather different views of calculus:

what one learned in calculus/analysis about functions, which
we will write as Dεδ: the “differentiation of ε–δ analysis”
(similarly d

dεδx , and its inverse εδ

∫
);

what is taught in differential algebra about (expressions in)
differential fields, which we will write as DDA: the
“differentiation of differential algebra” (similarly d

dDAx , and its

inverse DA

∫
).

(2) is unashamedly the former, while (1) talks about a function,
but actually gives an expression.

OpenMath and MathML (2!): different approaches

OpenMath and MathML have rather different views of calculus:

what one learned in calculus/analysis about functions, which
we will write as Dεδ: the “differentiation of ε–δ analysis”
(similarly d

dεδx , and its inverse εδ

∫
);

what is taught in differential algebra about (expressions in)
differential fields, which we will write as DDA: the
“differentiation of differential algebra” (similarly d

dDAx , and its

inverse DA

∫
).

(2) is unashamedly the former, while (1) talks about a function,
but actually gives an expression.

This duality

shows up whenever one talks about variables: while

2x 6= 2y , (3)

(λx .2x) =, or at least ≡α, (λy .2y). (4)

So does
dx2

dx
=

dy2

dy
? (5)

The variables are clearly free in (3) and bound in (4). Any system
which attempted to force either interpretation on (5) would not
meet the goal stated above.

This duality

shows up whenever one talks about variables: while

2x 6= 2y , (3)

(λx .2x) =, or at least ≡α, (λy .2y). (4)

So does
dx2

dx
=

dy2

dy
? (5)

The variables are clearly free in (3) and bound in (4). Any system
which attempted to force either interpretation on (5) would not
meet the goal stated above.

This duality

shows up whenever one talks about variables: while

2x 6= 2y , (3)

(λx .2x) =, or at least ≡α, (λy .2y). (4)

So does
dx2

dx
=

dy2

dy
? (5)

The variables are clearly free in (3) and bound in (4).

Any system
which attempted to force either interpretation on (5) would not
meet the goal stated above.

This duality

shows up whenever one talks about variables: while

2x 6= 2y , (3)

(λx .2x) =, or at least ≡α, (λy .2y). (4)

So does
dx2

dx
=

dy2

dy
? (5)

The variables are clearly free in (3) and bound in (4). Any system
which attempted to force either interpretation on (5) would not
meet the goal stated above.

This paper

studies four areas (which in fact turn out to be inter-related):

1 constructions with bound variables;

2 the <condition> element of MathML;

3 the different handling of calculus-related operations in the two;

4 the “lifting” of n-ary operators, such as + to
∑

.

(We shan’t talk about the last in this presentation.)

This paper

studies four areas (which in fact turn out to be inter-related):

1 constructions with bound variables;

2 the <condition> element of MathML;

3 the different handling of calculus-related operations in the two;

4 the “lifting” of n-ary operators, such as + to
∑

.

(We shan’t talk about the last in this presentation.)

This paper

studies four areas (which in fact turn out to be inter-related):

1 constructions with bound variables;

2 the <condition> element of MathML;

3 the different handling of calculus-related operations in the two;

4 the “lifting” of n-ary operators, such as + to
∑

.

(We shan’t talk about the last in this presentation.)

This paper

studies four areas (which in fact turn out to be inter-related):

1 constructions with bound variables;

2 the <condition> element of MathML;

3 the different handling of calculus-related operations in the two;

4 the “lifting” of n-ary operators, such as + to
∑

.

(We shan’t talk about the last in this presentation.)

This paper

studies four areas (which in fact turn out to be inter-related):

1 constructions with bound variables;

2 the <condition> element of MathML;

3 the different handling of calculus-related operations in the two;

4 the “lifting” of n-ary operators, such as + to
∑

.

(We shan’t talk about the last in this presentation.)

This paper

studies four areas (which in fact turn out to be inter-related):

1 constructions with bound variables;

2 the <condition> element of MathML;

3 the different handling of calculus-related operations in the two;

4 the “lifting” of n-ary operators, such as + to
∑

.

(We shan’t talk about the last in this presentation.)

This paper

studies four areas (which in fact turn out to be inter-related):

1 constructions with bound variables;

2 the <condition> element of MathML;

3 the different handling of calculus-related operations in the two;

4 the “lifting” of n-ary operators, such as + to
∑

.

(We shan’t talk about the last in this presentation.)

MathML 2’s rules on <bvar>

It doesn’t really have any, but reverse engineering yields the
following rule.
Variables in bvar constructions ‘bind’ the corresponding variable
occurrences in the scope of the parent of the bvar. However, the
variable may (e.g. ∀) or may not (e.g. d

dx) be bound in the sense
of α-convertibility.
If there’s a <condition>, its variables are as bound as the others.

MathML 2’s rules on <bvar>

It doesn’t really have any, but reverse engineering yields the
following rule.

Variables in bvar constructions ‘bind’ the corresponding variable
occurrences in the scope of the parent of the bvar. However, the
variable may (e.g. ∀) or may not (e.g. d

dx) be bound in the sense
of α-convertibility.
If there’s a <condition>, its variables are as bound as the others.

MathML 2’s rules on <bvar>

It doesn’t really have any, but reverse engineering yields the
following rule.
Variables in bvar constructions ‘bind’ the corresponding variable
occurrences in the scope of the parent of the bvar. However, the
variable may (e.g. ∀) or may not (e.g. d

dx) be bound in the sense
of α-convertibility.

If there’s a <condition>, its variables are as bound as the others.

MathML 2’s rules on <bvar>

It doesn’t really have any, but reverse engineering yields the
following rule.
Variables in bvar constructions ‘bind’ the corresponding variable
occurrences in the scope of the parent of the bvar. However, the
variable may (e.g. ∀) or may not (e.g. d

dx) be bound in the sense
of α-convertibility.
If there’s a <condition>, its variables are as bound as the others.

λ-notation

To motivate the λ-notation, consider the everyday
mathematical expression ‘x − y’. This can be thought of
as defining either a function f of x or g of y . . . And
there is need for a notation that gives f and g different
names in some systematic way. In practice
mathematicians usually avoid this need by various ‘ad
hoc’ special notations, but these can get very clumsy
when higher-order functions are involved.
[Hindley & Seldin, 2008, p. 1]

MathML 3 introduces a formal bind to take the guessing out of
the MathML 2 ‘rule’ quoted above.

λ-notation

To motivate the λ-notation, consider the everyday
mathematical expression ‘x − y’. This can be thought of
as defining either a function f of x or g of y . . . And
there is need for a notation that gives f and g different
names in some systematic way. In practice
mathematicians usually avoid this need by various ‘ad
hoc’ special notations, but these can get very clumsy
when higher-order functions are involved.
[Hindley & Seldin, 2008, p. 1]

MathML 3 introduces a formal bind to take the guessing out of
the MathML 2 ‘rule’ quoted above.

λ-notation

To motivate the λ-notation, consider the everyday
mathematical expression ‘x − y’. This can be thought of
as defining either a function f of x or g of y . . . And
there is need for a notation that gives f and g different
names in some systematic way. In practice
mathematicians usually avoid this need by various ‘ad
hoc’ special notations, but these can get very clumsy
when higher-order functions are involved.
[Hindley & Seldin, 2008, p. 1]

MathML 3 introduces a formal bind to take the guessing out of
the MathML 2 ‘rule’ quoted above.

Some uses of condition are OK: e.g. ∀x ∈ Rp(x)

<apply>
<forall/>
<bvar><ci>x</ci></bvar>
<condition><apply><in/><ci>x</ci><reals/></apply></condition>

”p(x)”

</apply>

<OMBIND>
<OMA>
<OMS name="forallin" cd="quant3"/>
<OMS name="R" cd="setname1"/>

</OMA>
<OMBVAR> <OMV name="x"/> </OMBVAR>

”p(x)”

</OMBIND>

Some uses of condition are OK: e.g. ∀x ∈ Rp(x)

<apply>
<forall/>
<bvar><ci>x</ci></bvar>
<condition><apply><in/><ci>x</ci><reals/></apply></condition>

”p(x)”

</apply>

<OMBIND>
<OMA>
<OMS name="forallin" cd="quant3"/>
<OMS name="R" cd="setname1"/>

</OMA>
<OMBVAR> <OMV name="x"/> </OMBVAR>

”p(x)”

</OMBIND>

Some uses of condition are not: e.g.
∀x , y ∈ R : x − y 6= 0. 1

x−y ∈ R

<apply>
<forall/>
<bvar><ci>x</ci><ci>y</ci></bvar>
<condition>
<apply><and>

<apply><in/><ci>x</ci><reals/></apply>
<apply><in/><ci>y</ci><reals/></apply>
"x\ne y"
</apply>

</condition>
"\frac{1}{x-y}\in\R"

</apply>

∫ a

0 f (x)dx or
∫

x∈D f (x)dx or
∫

D f (x)dx?

<lowlimit> <cn>0</cn> </lowlimit>
<uplimit> <ci>a</ci> </uplimit>

<condition>
<apply><in/>

<ci>x</ci>
<ci>D</ci>

</apply>
</condition>

<domainofapplication>
<ci>D</ci>

</domainofapplication>

All equivalent in MathML 2.
OpenMath can’t easily model the second.

∫ a

0 f (x)dx or
∫

x∈D f (x)dx or
∫

D f (x)dx?

<lowlimit> <cn>0</cn> </lowlimit>
<uplimit> <ci>a</ci> </uplimit>

<condition>
<apply><in/>

<ci>x</ci>
<ci>D</ci>

</apply>
</condition>

<domainofapplication>
<ci>D</ci>

</domainofapplication>

All equivalent in MathML 2.
OpenMath can’t easily model the second.

∫ a

0 f (x)dx or
∫

x∈D f (x)dx or
∫

D f (x)dx?

<lowlimit> <cn>0</cn> </lowlimit>
<uplimit> <ci>a</ci> </uplimit>

<condition>
<apply><in/>

<ci>x</ci>
<ci>D</ci>

</apply>
</condition>

<domainofapplication>
<ci>D</ci>

</domainofapplication>

All equivalent in MathML 2.
OpenMath can’t easily model the second.

∫ a

0 f (x)dx or
∫

x∈D f (x)dx or
∫

D f (x)dx?

<lowlimit> <cn>0</cn> </lowlimit>
<uplimit> <ci>a</ci> </uplimit>

<condition>
<apply><in/>

<ci>x</ci>
<ci>D</ci>

</apply>
</condition>

<domainofapplication>
<ci>D</ci>

</domainofapplication>

All equivalent in MathML 2.

OpenMath can’t easily model the second.

∫ a

0 f (x)dx or
∫

x∈D f (x)dx or
∫

D f (x)dx?

<lowlimit> <cn>0</cn> </lowlimit>
<uplimit> <ci>a</ci> </uplimit>

<condition>
<apply><in/>

<ci>x</ci>
<ci>D</ci>

</apply>
</condition>

<domainofapplication>
<ci>D</ci>

</domainofapplication>

All equivalent in MathML 2.
OpenMath can’t easily model the second.

Is this a problem? consider multi-dimensional calculus

[Borwein & Erdelyi,1995, p. 189] has a real integral over a curve in
the complex plane,

1

2π

∫
|t|=R

∣∣∣∣ f (t)

tn+1

∣∣∣∣ |dt| (6)

[Apostol, 1967, p. 413, exercise 4] has an integral where we clearly
want to connect the variables in the integrand to the variables
defining the set: ∫ ∫ ∫

{
x2

a2
+ y2

b2 + z2

c2≤1
}
(

x2

a2
+

y2

b2
+

z2

c2

)
dxdydz (7)

Is this a problem? consider multi-dimensional calculus

[Borwein & Erdelyi,1995, p. 189] has a real integral over a curve in
the complex plane,

1

2π

∫
|t|=R

∣∣∣∣ f (t)

tn+1

∣∣∣∣ |dt| (6)

[Apostol, 1967, p. 413, exercise 4] has an integral where we clearly
want to connect the variables in the integrand to the variables
defining the set: ∫ ∫ ∫

{
x2

a2
+ y2

b2 + z2

c2≤1
}
(

x2

a2
+

y2

b2
+

z2

c2

)
dxdydz (7)

Is this a problem? consider multi-dimensional calculus

[Borwein & Erdelyi,1995, p. 189] has a real integral over a curve in
the complex plane,

1

2π

∫
|t|=R

∣∣∣∣ f (t)

tn+1

∣∣∣∣ |dt| (6)

[Apostol, 1967, p. 413, exercise 4] has an integral where we clearly
want to connect the variables in the integrand to the variables
defining the set: ∫ ∫ ∫

{
x2

a2
+ y2

b2 + z2

c2≤1
}
(

x2

a2
+

y2

b2
+

z2

c2

)
dxdydz (7)

Solution 1: like forallin

<OMBIND>
<OMA>
<OMS cd="calculus_new"

name="tripleintcond"/>
"\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\le1"

</OMA>
<OMBVAR>"x,y,z"</OMBVAR>
"\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}"

</OMBIND>

Forbidden since the binder is not in its own scope.

Solution 1: like forallin

<OMBIND>
<OMA>
<OMS cd="calculus_new"

name="tripleintcond"/>
"\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\le1"

</OMA>
<OMBVAR>"x,y,z"</OMBVAR>
"\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}"

</OMBIND>

Forbidden since the binder is not in its own scope.

Solution 2: bind them both

<OMBIND>
<OMS cd="calculus_new"

name="tripleintcond"/>
<OMBVAR>"x,y,z"</OMBVAR>
"\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\le1"
"\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}"

</OMBIND>

Forbidden since the binder is only allowed one argument.

Solution 2: bind them both

<OMBIND>
<OMS cd="calculus_new"

name="tripleintcond"/>
<OMBVAR>"x,y,z"</OMBVAR>
"\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\le1"
"\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}"

</OMBIND>

Forbidden since the binder is only allowed one argument.

Solution 3: bypass 2 artifically

<OMBIND>
<OMS cd="calculus_new"

name="tripleintcond"/>
<OMBVAR>"x,y,z"</OMBVAR>
<OMA>
<OMS cd="calculus_new"

name="tripleint_inner"/>
"\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\le1"
"\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}"

</OMA>
</OMBIND>

Legal, but unnatural.

Solution 3: bypass 2 artifically

<OMBIND>
<OMS cd="calculus_new"

name="tripleintcond"/>
<OMBVAR>"x,y,z"</OMBVAR>
<OMA>
<OMS cd="calculus_new"

name="tripleint_inner"/>
"\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\le1"
"\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}"

</OMA>
</OMBIND>

Legal, but unnatural.

Solution 4: bind separately

<OMA>
<OMS cd="calculus_new"

name="tripleintcond"/>
"\lambda{x,y,z}.\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\le1"
"\lambda{x,y,z}.\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}"

</OMA>

which is equivalent to

<OMA>
<OMS cd="calculus_new"

name="tripleintcond"/>
"\lambda{x,y,z}.\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\le1"
"\lambda{z,y,x}.\frac{z^2}{a^2}+\frac{y^2}{b^2}+\frac{x^2}{c^2}"

</OMA>

Solution 4: bind separately

<OMA>
<OMS cd="calculus_new"

name="tripleintcond"/>
"\lambda{x,y,z}.\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\le1"
"\lambda{x,y,z}.\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}"

</OMA>

which is equivalent to

<OMA>
<OMS cd="calculus_new"

name="tripleintcond"/>
"\lambda{x,y,z}.\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\le1"
"\lambda{z,y,x}.\frac{z^2}{a^2}+\frac{y^2}{b^2}+\frac{x^2}{c^2}"

</OMA>

Our proposal: legitimise 2

Solution 1 makes bound variables have an unusual, to say the
least, scope, and solution 4 is εδunnatural. The other two both
achieve the fundamental goal of making both the region and the
integrand subject to the same binding operation.

2: pro: Mathematically elegant; fits into both the XML and
binary encodings of OpenMath.

2: con: Requires a change to the abstract description of the
OpenMath standard.

3: pro: No change to the OpenMath standard.

3: con: Needs a new, mathematically meaningless, symbol
such as tripleint_inner for each symbol such as
tripleintcond.

Option 2 is our preferred route.

Our proposal: legitimise 2

Solution 1 makes bound variables have an unusual, to say the
least, scope,

and solution 4 is εδunnatural. The other two both
achieve the fundamental goal of making both the region and the
integrand subject to the same binding operation.

2: pro: Mathematically elegant; fits into both the XML and
binary encodings of OpenMath.

2: con: Requires a change to the abstract description of the
OpenMath standard.

3: pro: No change to the OpenMath standard.

3: con: Needs a new, mathematically meaningless, symbol
such as tripleint_inner for each symbol such as
tripleintcond.

Option 2 is our preferred route.

Our proposal: legitimise 2

Solution 1 makes bound variables have an unusual, to say the
least, scope, and solution 4 is εδunnatural.

The other two both
achieve the fundamental goal of making both the region and the
integrand subject to the same binding operation.

2: pro: Mathematically elegant; fits into both the XML and
binary encodings of OpenMath.

2: con: Requires a change to the abstract description of the
OpenMath standard.

3: pro: No change to the OpenMath standard.

3: con: Needs a new, mathematically meaningless, symbol
such as tripleint_inner for each symbol such as
tripleintcond.

Option 2 is our preferred route.

Our proposal: legitimise 2

Solution 1 makes bound variables have an unusual, to say the
least, scope, and solution 4 is εδunnatural. The other two both
achieve the fundamental goal of making both the region and the
integrand subject to the same binding operation.

2: pro: Mathematically elegant; fits into both the XML and
binary encodings of OpenMath.

2: con: Requires a change to the abstract description of the
OpenMath standard.

3: pro: No change to the OpenMath standard.

3: con: Needs a new, mathematically meaningless, symbol
such as tripleint_inner for each symbol such as
tripleintcond.

Option 2 is our preferred route.

Our proposal: legitimise 2

Solution 1 makes bound variables have an unusual, to say the
least, scope, and solution 4 is εδunnatural. The other two both
achieve the fundamental goal of making both the region and the
integrand subject to the same binding operation.

2: pro: Mathematically elegant; fits into both the XML and
binary encodings of OpenMath.

2: con: Requires a change to the abstract description of the
OpenMath standard.

3: pro: No change to the OpenMath standard.

3: con: Needs a new, mathematically meaningless, symbol
such as tripleint_inner for each symbol such as
tripleintcond.

Option 2 is our preferred route.

Our proposal: legitimise 2

Solution 1 makes bound variables have an unusual, to say the
least, scope, and solution 4 is εδunnatural. The other two both
achieve the fundamental goal of making both the region and the
integrand subject to the same binding operation.

2: pro: Mathematically elegant; fits into both the XML and
binary encodings of OpenMath.

2: con: Requires a change to the abstract description of the
OpenMath standard.

3: pro: No change to the OpenMath standard.

3: con: Needs a new, mathematically meaningless, symbol
such as tripleint_inner for each symbol such as
tripleintcond.

Option 2 is our preferred route.

Our proposal: legitimise 2

Solution 1 makes bound variables have an unusual, to say the
least, scope, and solution 4 is εδunnatural. The other two both
achieve the fundamental goal of making both the region and the
integrand subject to the same binding operation.

2: pro: Mathematically elegant; fits into both the XML and
binary encodings of OpenMath.

2: con: Requires a change to the abstract description of the
OpenMath standard.

3: pro: No change to the OpenMath standard.

3: con: Needs a new, mathematically meaningless, symbol
such as tripleint_inner for each symbol such as
tripleintcond.

Option 2 is our preferred route.

Our proposal: legitimise 2

Solution 1 makes bound variables have an unusual, to say the
least, scope, and solution 4 is εδunnatural. The other two both
achieve the fundamental goal of making both the region and the
integrand subject to the same binding operation.

2: pro: Mathematically elegant; fits into both the XML and
binary encodings of OpenMath.

2: con: Requires a change to the abstract description of the
OpenMath standard.

3: pro: No change to the OpenMath standard.

3: con: Needs a new, mathematically meaningless, symbol
such as tripleint_inner for each symbol such as
tripleintcond.

Option 2 is our preferred route.

Our proposal: legitimise 2

Solution 1 makes bound variables have an unusual, to say the
least, scope, and solution 4 is εδunnatural. The other two both
achieve the fundamental goal of making both the region and the
integrand subject to the same binding operation.

2: pro: Mathematically elegant; fits into both the XML and
binary encodings of OpenMath.

2: con: Requires a change to the abstract description of the
OpenMath standard.

3: pro: No change to the OpenMath standard.

3: con: Needs a new, mathematically meaningless, symbol
such as tripleint_inner for each symbol such as
tripleintcond.

Option 2 is our preferred route.

Our proposal: legitimise 2

Solution 1 makes bound variables have an unusual, to say the
least, scope, and solution 4 is εδunnatural. The other two both
achieve the fundamental goal of making both the region and the
integrand subject to the same binding operation.

2: pro: Mathematically elegant; fits into both the XML and
binary encodings of OpenMath.

2: con: Requires a change to the abstract description of the
OpenMath standard.

3: pro: No change to the OpenMath standard.

3: con: Needs a new, mathematically meaningless, symbol
such as tripleint_inner for each symbol such as
tripleintcond.

Option 2 is our preferred route.

Our proposal rescues other cases

∀x , y ∈ R : x − y 6= 0. 1
x−y ∈ R becomes

<OMBIND>
<OMA>
<OMS name="forallincond" cd="quant3"/>
<OMS name="R" cd="setname1">

</OMA>
<OMBVAR><OMV name="x"/><OMV name="y"/></OMBVAR>
"\frac{1}{x-y}\in\R"
"x-y\ne0"

</OMBIND>

Conclusions

1 OpenMath should support both styles of calculus

2 OpenMath should support a richer range of conditions, which
correspond to what normal mathematicians write

3 This is most naturally done by extending OMBIND

Conclusions

1 OpenMath should support both styles of calculus

2 OpenMath should support a richer range of conditions, which
correspond to what normal mathematicians write

3 This is most naturally done by extending OMBIND

Conclusions

1 OpenMath should support both styles of calculus

2 OpenMath should support a richer range of conditions, which
correspond to what normal mathematicians write

3 This is most naturally done by extending OMBIND

Conclusions

1 OpenMath should support both styles of calculus

2 OpenMath should support a richer range of conditions, which
correspond to what normal mathematicians write

3 This is most naturally done by extending OMBIND

