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Trusting Software

It would be nice to trust software.

Gödel’s Incompleteness implies unconditional trust is
essentially impossible

Theorem provers (Lean etc.) tend to have a small kernel
(ideally 100s of lines), and the rest (tactics etc.) do not need
to be trusted, as an error there results in a “proof” that the
kernel rejects.

It is possible to produce programs (e.g. UK’s National Air
Traffic System) with 100Ks of lines, with formally proved
properties.

But the proof is constructed along with the program:
retrospectively proving such a program correct is probably
impossible (and the program is probably incorrect — see
[Cha22] for a well-tested 100-tweet program).

Also computer algebra programs are 10Ms of lines, going back 40
years or more.
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Trusting Instances of Software

So what’s plan B?

If we can’t prove the program correct, can we prove that this
instance is correct?

This isn’t as new an idea as I thought it was: [MMNS11].

A certifying algorithm is an algorithm that produces, with
each output, a certificate or witness (easy-to-verify proof)
that the particular output has not been compromised by
a bug. A user of a certifying algorithm inputs x , receives
the output y and the certificate w , and then checks, either
manually or by use of a program, that w proves that y is
a correct output for input x .

This is particularly relevant when y contains negative
assertions.
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Convex Optimisation [BFMA23]

DCP = Disciplined Convex Programming [GBY06].

Figure: Bidirectional Flow, from [FM24b]

Pre-DCP Generally done manually (symbolically).

DCP There is (generally unverified) symbolic translation.

! There are errors [FM24a]

Solver Numerical code, unverified.

DCP−1 Same software inverts

Pre-DCP−1 Manual

[BFMA23] have CvxLean, which implements the DCP, DCP−1

phases.
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CvxLean in Convex Optimisation, after [BFMA23]

1 It applies the dcp procedure to obtain a reduced problem,
prob.reduced, and a reduction red : Solution
prob.reduced → Solution prob.

2 It carries out the translation to floats, traversing each
expression and applying the registered translations.

3 It extracts the numerical data from the problem.
4 It writes an external file in the conic benchmark format.
5 It calls MOSEK and receives a status code, and a solution if

MOSEK succeeds. If it is infeasible or ill-posed, we stop.
6 Otherwise, it interprets the solution so that it matches the

shape of prob.reduced, expressed as Lean reals, resulting in
an approximate solution p to prob.reduced. It declares a
corresponding Solution to prob.reduced, using a placeholder
for the proofs of feasibility and optimality (trust the solver).

7 It then uses the reduction from prob to prod.reduced, again
reinterpreted in terms of floats, to compute an approximate
solution to prob

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 5 / 40



Convex Optimisation (III) [FM24b]

Figure: Bidirectional Flow, based on [FM24b]

So what about the transformation into DCP? This is not
(currently) algorithmic.

There are few restrictions to writing problems in [standard]
form as long as they are mathematically convex. This is
problematic from the point of view of automating their
analysis and transformation. [FM24b, p. 5]

Instead, a set of tactics is proposed.
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Convex Optimisation (Example) [FM24b, chapter 5]

There’s a difference between “convex” and “explicitly convex”

P :=

minimise x
subject to 0.001 < x

∧ 1√
x
< exp(x)︸ ︷︷ ︸

not convex
Because exp not concave

⇒ Q :=
minimise x

subject to 0.001 < x
∧ exp(−x) <

√
x︸ ︷︷ ︸

convex

Note that 0.001 < x justifies that 1√
x

is valid.

In general, we are given P and have to find a convex Q, which
historically has been done by hand.
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SAT solving, and verifying UNSAT

The quintessenial NP-complete problem [Coo66]: Given a Boolean
statement Φ(x1, . . . , xn) produce

either f : {xi} 7→ {T ,F} such that
Φ(f (x1), . . . , f (xn)) = T (a satisfying assignment)

or ⊥ indicating that no satisfying assignment exists.

The first can be verified easily enough: what about the second?
Since at least 2016, contestants in the annual SAT contests have
been required to produce proofs (occasionally 2PB! [Heu18]) in
DRAT format, which can be checked ([Heu23] says there are
subtleties to “easy” checking).
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Polynomial Factorisation

The base case is polynomials in Z[x ].

Problem (Factorisation)

Given f ∈ Z[x ], write f =
∏

fi where the fi are irreducible
elements of Z[x1, . . . , xn].

Verifying that f =
∏

fi is, at least relatively, easy. The hard part is
verifying that the fi are irreducible. The author knows of no
implementation of polynomial factorisation that produces any
evidence, let alone a proof, of this.

Problem (Factorisation in this style)

Given f ∈ Z[x1, . . . , xn], produce

either a proper factor g of f ,

or ⊥ indicating that no such g exists.

We may as well assume f is square-free .
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Algorithm

Then the basic algorithm goes back to [Zas69]: step M is a later
addition [Mus75], and the H’ variants are also later.

1 Choose a prime p (not dividing the leading coefficient of f )
such that f (mod p) is also square-free.

2 Factor f modulo p as
∏

f
(1)
i (mod p).

M Take five p and compare the factorisations.
3 If f can be shown to be irreducible from modulo p

factorisations, return f .
4 Let B be such that any factor of f has coefficients less than B

in magnitude, and n such that pn ≥ 2B.

5 Use Hensel’s Lemma to lift the factorisation to f =
∏

f
(n)
i

(mod pn)

H Starting with singletons and working up, take subsets of the

f
(n)
i , multiply them together and check whether, regarded as

polynomials over Z with coefficients in [−B,B], they divide f
— if they do, declare that they are irreducible factors of f .
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Algorithm Notes

H’ Use some alternative technique, originally [LLL82], but now
e.g. [ASZ00, HvHN11] to find the true factor corresponding

to f
(n)
1 , remove f

(n)
1 and the other f

(n)
i corresponding to this

factor, and repeat.

� In practice, there are a lot of optimisations, which would
greatly complicate a proof of correctness of an
implementation of this algorithm.

We found that, although the Hensel construction is basi-
cally neat and simple in theory, the fully optimised version
we finally used was as nasty a piece of code to write and
debug as any we have come across [MN81].

Since if f is irreducible modulo p, it is irreducible over the integers,
the factors produced from singletons in step 5 are easily proved to
be irreducible. Unfortunately, the chance that an irreducible
polynomial of degree n is irreducible modulo p is 1/n.
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Algorithm Notes

A factorisation algorithm could, even though no known
implementation does, relatively easily produce the required
information for a proof of irreducibility unless the recombination
step is required.

Note that verifying the Hensel lifting, the “nasty piece” from
[MN81] is easy: the factors just have to have the right
degrees from the factorisation of f (mod p) and multiply to
give f (mod pn).

� Building test cases for the various edge cases was extremely
difficult.

Step [H] is relatively easy to verify: this combination divides and
no smaller combination divides. The variants in [H’] are
interesting: I have not found an easy route.
If [H’] finds a factor that is a product of k p-adic factors, then we
can use [H] to verify this by checking that the 2k − 2 subsets do
not give factors.
But if [H’] says “irreducible”, I know no easy proof.

James Davenportmasjhd@bath.ac.uk Proving an Execution of an Algorithm Correct? 12 / 40



Further Reflections

M Take five p and compare the factorisations.

Not just “take the best”. Rather we look for incompatibilities, so if
a degree 4 factors as 3,1 modulo one prime and 2,2 modulo
another, it’s actually irreducible, and so on.

? What’s the best division of labour between the algebra system
and the theorem prover?

[Mus75] suggests taking five primes, though more recently [LP97]
show that, if the Galois group is Sn, seven is asymptotically right.
For any degree d , the probability that a random polynomial with
coefficients ≤ H has Galois group Sn tends to 1 as H tends to
infinity. [DS00] looks at other Galois groups.
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Integration

P is algebra professor, S is awkward student

P e−x2 has no integral.

S But in analysis the professor proved that every
continuous function has an integral.

P I meant that there was no formula for the integral.

S But in statistics the professor used erf(x) and
everything seemed OK.

P I meant that there was no elementary formula, in
terms of exp, log and the solution of polynomial
equations.

S How do you prove that?

P Differential Algebra!

S What’s that?

P A field K equipped with ′ : K → K such that
(a + b)′ = a′ + b′ and (ab)′ = a′b + ab′.
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Algebraic Theory of Integration [Rit48, Rit50]

Given f ∈ K = Q(x , θ1, . . . , θn) where x ′ = 1 and each θi is
elementary over Q(x , θ1, . . . , θi−1) (need decidable [Ric68])
produce

either F in some elementary extension L of K such that
F ′ = f (an elementary integral)

or ⊥ indicating that no such elementary integral exists.

The first can be verified: what about the second?

� The verification isn’t necessarily trivial: there are
issues of simplification of elementary functions.

� Because of branch cuts, F might not denote a
continuous function R → R, despite the student’s
memory of analysis [CDJW00].

The Heaviside function differentiates to 0, so it’s a
“constant” in terms of differentiable algebra.
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Liouville’s Principle [Lio35, Rit50]

Looking for any elementary might seem like “needle in a haystack”.

Theorem (Liouville’s Principle)

Let f be a expression from some expression field K . If f has an
elementary integral over K , it has an integral of the following form:∫

f = v0 +
n∑

i=1

ci log vi , (1)

where v0 belongs to K , the vi belong to K̂ , an extension of K by a
finite number of constants algebraic over constK , and the ci
belong to K̂ and are constant.

Alternatively

f = v ′0 +
n∑

i=1

ci
v ′i
vi
. (2)

Only a single bale of hay! Proof by equating coefficients in f = F ′.
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Risch’s idea [Ris69]

f , g ∈ Q(x , θ1, . . . , θn) where each θi is either

logarithmic θ′i =
u′i
ui

, ui ∈ Q(x , θ1, . . . , θi−1).

exponential θ′i = u′iθi , ui ∈ Q(x , θ1, . . . , θi−1).

Induct on n, that we can∫
Solve (or ⊥) f = v ′0 +

∑n
i=1 ci

v ′
i
vi

Risch o.d.e. Solve (or ⊥) y ′ + fy = g for y ∈ Q(x , θ1, . . . , θn).

In both cases, the algorithm is a fairly messy “comparison of
terms” argument, and the Risch o.d.e. for exponential θn was a
“similarly”, which wasn’t quite [Dav86].
The “mess” comes in showing that every case is covered, and that
the “bug fix” in [Dav86] is complete: each individual case is fairly
straightforward.
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Producing a proof of ⊥

1 Have a formal proof of Liouville’s Principle.

� I haven’t done this formally, but it doesn’t look outrageous:
it’s all algebra in [Rit48].

2 At each comparison of terms, spit this out in a form that a
theorem-prover can digest.

� Again, I haven’t done this, but I did have an implementation
in Axiom which produced a (very stylised) informal proof.

Note that I am not considering the case of θi algebraic. θ1
algebraic is in [Dav81] [for

∫
], [Dav84] [for o.d.e.], but there is

much more mathematics involved in finding the ci , vi or proving
they don’t exist. More general θi algebraic is treated in
[Bro90, Bro91], again more mathematics.
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Mathematics for a proof of ⊥ (algebraic case)

“Mathematics” may reduce to “is a divisor on an elliptic curve a
torsion divisor”, and ⊥ here is hard. In the special case where
C = Q and the algebraic curve is elliptic, [Dav81] relied on the
following theorem.

Theorem ([Maz77])

The torsion subgroup of the Mordell–Weil groups of an elliptic
curve E over the rationals is isomorphic to one of the following:

Z/mZ, m ≤ 10
Z/12Z,

(Z/2Z) × (Z/2νZ) ν ≤ 4
.

Hence the torsion of an element is one of 1, . . . , 10, 12.

This is a fairly deep theorem, but one that might be formally
provable by a specialist [Baa23]: see [BBCD23].
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Real Quantifier Elimination [Tar51, Sei54]

Let each Qi be one of the quantifiers ∀, ∃. Real Quantifier
Elimination problem is the following: given a statement

Φ0 := Q1x1,1, . . . , x1,k1 · · ·Qa+1xa+1,1, . . . , xa+1,ka+1Φ(yi , xi ,j), (3)

where Φ is a Boolean combination of equalities and inequalities
between real polynomials Pα(yi , xi ,j), produce a Boolean
combination Ψ of equalities and inequalities between polynomials
Qβ(yi ) which is equisatisfiable, i.e. Ψ is true if and only Φ0 is true.
If all the polynomials Qβ(yi ) in Ψ(yi ) have integer coefficients, we
call Ψ(yi ) a Tarski formula.

Proved decidable in 1950s

First feasible solution by [Col75] through Cylindrical Algebraic
Decomposition

! WebTarski relies on Collins’ 1970s Fortran translated into C
translated into WebAssembly
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Cylindrical Algebraic Decomposition [Col75]

Fix coordinates in Rn consistent with quantifier order.
Given a set of polynomials {pα} in Q[x1, . . . , xn], produce a finite
set of cells Ci ⊂ Rn which is:

Cylindrical ∀i , j , k ProjRk (Ci ),ProjRk (Cj) are equal or disjoint;

Algebraic Defined by polynomials in Q[x1, . . . , xn];

Decomposition disjoint and cover Rn;

Sampled each cell has a sample point si (cylindrical);

such that on each cell every pα is sign-invariant (+,−, 0).
Then the truth of Φ is invariant on a cell, and we can write down
Ψ as the union of those cells where Φ0 is true at the sample point.
Unfortunately QE is doubly exponential in n [DH88], so CAD’s
worst case must be, and in practice CAD nearly always is.
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Challenges with Cylindrical Algebraic Decomposition

CAD doesn’t care about the quantifiers (other than variable
order), in particular ∃x1, . . . , xnΦ (the SAT problem) isn’t
treated as a special case.
As formulated, it doesn’t care about the Boolean structure of
Φ.√
When it’s (p1 = 0) ∧ Φ′ we can do better [McC99].√
Even if this is only part of Φ, we can use an equality [EBD15].

If f , g , h have degree d , resy (resz(f , g), resz(f , h)) has degree
O(d4), even though there are only O(d3) common solutions
f (x , y , z) = g(x , y , z) = h(x , y , z).

! f (x , y , z1) = g(x , y , z1); f (x , y , z2) = h(x , y , z2). Note that
these points are relevant for cylindricity in the worst case, and
are used in [DH88].
Major improvements to CAD import more mathematics, up to
“Puiseux with parameters” [MPP19].
Despite attempts [CM10], there is no formal proof of
correctness of even basic Collins.
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Cylindrical Algebraic Coverings I [ADEK21a]

For purely existential problems ∃xk , . . . , xnΦ.
σi ,j ∈ {=, <,≤, >,≥}, but for exposition, assume all
σi ,j ∈ {<,>}.

1 Φ = (p1,1σ1,10 ∧ · · · ) ∨ (p2,1σ2,10 ∧ · · · ) ∨ · · ·
2 Commute ∃ and ∨ and treat each disjunct Φi separately

So we don’t care where p1,1 and p2,1 meet. Doesn’t change
asymptotics, but may well be useful in practice.

3 Choose a sample point (s1, . . . , s
(1)
n ).

4 If this satisfies Φi return SAT (and witness)

5 Otherwise ∃j : pi ,j(s1, . . . , s
(1)
n ) ̸σi ,j0. Remember j with

(s1, . . . , s
(1)
n ).

6 Compute largest interval In,1 = (l , u) such that
∀xn ∈ (l , u)pi ,j(s1, . . . , xn) ̸σi ,j0.

7 If In,1 ̸= R choose s
(2)
n /∈ I1. If (s1, . . . , s

(2)
n ) satisfies Φi return

SAT (and witness).
8 Repeat steps 5–7 until (s1, . . . , sn−1,R) is covered.
* Some intervals might be redundant, so prune
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Cylindrical Algebraic Coverings II [ADEK21a]

9 Each of In,i defines an oval in (s1, . . . , sn−2, x , y) space which
cover (s1, . . . , sn−1,R).

10 Compute largest interval In−1,1 = (l , u) such that
∀xn−1 ∈ (l , u) the In,i cover (s1, . . . , sn−2, xn−1,R).

11 If In−1,1 ̸= R choose a different value of sn−1, /∈ In−1,1.

12 Repeat steps 4–11 until (s1, . . . , sn−2,R) is covered.

13 Repeat, decreasing the dimension, until we’re covered the
whole of the x1-axis (or we get SAT).

Termination isn’t entirely obvious, but each cell we compute
contains at least one cell (the cell its sample point is in) from a
CAD for the same polynomials, and the CAD itself is finite.
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How might these be verifiable? [ADE+20, ADEK21b]

This is still work in progress, and there is more than one option

A. Verifying each (non-redundant) calculation in reverse
1 For each I (1) = (l1, r1) as an interval of R1 prove that it’s

covered because
2 For each I (2) = (l2, r2) covering the cylinder above I (1) prove

that I (1) × I (2) is covered because
3 . . .
4 For each I (n) = (ln, rn) covering the cylinder above

I (1) × I (2) × · · · prove that I (1) × I (2) × · · · × I (n) is covered by
the pj we remembered for that sample point.

B Reverse-engineering a rough “CAD”.
1 For each sample point (s1, . . . , sn) check that the

corresponding cuboid I (1) × I (2) × · · · I (n) is contained within
the pj σ̸j0 region.

2 Verify that these cuboids are arranged cylindrically, and are
complete.

Need Resultants and inequalities, but no topology.
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Thoughts

UNSAT, or its equivalent, can be a bigger challenge than
positive answers.

Completeness proofs of algorithms can be challenging.

But in some cases, we may not need the completeness proof.

(At least not in all cases).

This may require more book-keeping in the algorithm, to keep
the “hints” that drove us this way.

Possibly (e.g. algebraic integration) we may not be able to
prove UNSAT in all circumstances.

? is this still valuable?
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