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The (Bourbakist) Theory

In principle, (pure) mathematics is clear about “function”.

On dit qu’un graphe F est un graphe fonctionnel si, pour
tout x, il existe au plus un objet correspondant à x par F
(I, p. 40). On dit qu’une correspondance f = (F ,A,B)
est une fonction si son graphe F est un graphe fonction-
nel, et si son ensemble de départ A est égal à son ensemble
de définition pr1 F [pr1 is “projection on the first compo-
nent”]. [Bourbaki, Ensembles]

So for Bourbaki a function includes the definition of the domain
and codomain, and is total and single-valued. We will write
(F ,A,B)B for such a function definition.
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Notation

P(A) denotes the power set of the set A.
For a function f , we write graph(f ) for
{(x , f (x)) : x ∈ Domain(f )} and graph(f )T for
{(f (x), x) : x ∈ Domain(f )}.

Convention (Generally undocumented)

Where an underspecified object, such as
√
x, occurs more than

once in a formula, the same value, or interpretation, is meant at
each occurrence.

For example,
√
x · 1√

x
= 1 for non-zero x , even though one might

think that one root might be positive and the other negative. More
seriously, in the formula for the roots of a cubic x3 + bx + c ,

1

6

3

√
−108 c + 12

√
12 b3 + 81 c2 − 2b

3
√
−108 c + 12

√
12 b3 + 81 c2

,

the two occurrences of
√
12 b3 + 81 c2 are meant to have the same

value, similarly
3
√
−108 c + 12

√
12 b3 + 81 c2.
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Examples of statements [Dav10]

As statements about equality1 of functions, we consider these:

√
z − 1

√
z + 1

?
=
√

z2 − 1. (1)

√
1− z

√
1 + z

?
=
√

1− z2. (2)

log z1 + log z2
?
= log z1z2. (3)

arctan x + arctan y
?
=arctan

(
x + y

1− xy

)
. (4)

(1) is valid for ℜ(z) > 0, also for ℜ(z) = 0, ℑ(z) > 0.

(2) is valid everywhere, despite the resemblance to (1).

(3) is valid with −π < arg(z1) + arg(z2) ≤ π.

(4) is valid, even for real x , y , only when xy < 1.
1At least at the moment, this is to be considered as extensional, i.e. do the

l.h.s. and r.h.s. give the same results for the same inputs?
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(4) is curious: arctan is nice

(as a real-valued function, at least).

arctan x + arctan y
?
=arctan

(
x + y

1− xy

)
. (4)

On R, −π
2 < arctan < π

2 , so the l.h.s. of (4) is in (all of) (−π, π)
whereas the r.h.s. is only in (−π

2 , π2 ), so (4) can’t be an equality.

In fact there is a “branch cut at infinity”, since
limx→+∞ arctan x = π

2 , whereas limx→−∞ arctan x = −π
2 and

xy = 1 therefore falls on this cut of the right-hand side of (4).

This is also the branch cut that many symbolic integrators (used
to) fall over.
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Setting

Various basic facts

A 1:1 function f has an inverse function f −1

� defined on Codomain(f ) = Domain(f −1).

A 1:1 continuous function f has a continuous inverse function.

A 1:1 differentiable function f has a differentiable inverse
function.

� except when f ′ = 0.

Similarly a 1:1 analytic function f has an analytic inverse
function (except when f ′ = 0).

But all this depends on 1:1, and in general the inverse of a
continuous etc. function is multivalued.
One way to see lack of 1:1 is via winding numbers.
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Multi-valued functions, e.g. [Car58]

Traditionally written with initial capitals.

sin−1(0) = 0

Sin−1(0) = {0 + kπ : k ∈ Z}
cos−1(1) = 0

Cos−1(1) = {0 + 2kπ : k ∈ Z}
sin−1(12) =

π
6

Sin−1(12) = {π
6 + 2kπ : k ∈ Z} ∪ {5π

6 + 2kπ : k ∈ Z}
2Sin−1(0) = {0 + 2kπ : k ∈ Z}, but
Sin−1(0) + Sin−1(0) = {0 + kπ : k ∈ Z}

And Sin−1(0)− Sin−1(0) = {0 + kπ : k ∈ Z}
� Sin−1(12) + Sin−1(12) = {2π

6 , 6π6 , 10π6 }+ {2kπ : k ∈ Z}, so
1
2

(
Sin−1(12) + Sin−1(12)

)
∋ 3π

6 , whose sin is not 1
2 .
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Possible solutions

Deal in multi-valued functions. This is difficult (as we have
seen), but intellectually honest.

Use the Riemann surface formalism to underpin the
multvalued thinking

Choose a suitable domain on which f is single-valued, so we
can talk about f −1

� But this f −1, on this domain, might not be the same as
someone else’s f −1 on their domain, or on the intersection.

− In particular, not necessarily the same as a software
implementation/table.

Use a standard definition, which defines a principal domain D,
and admits that, as z leaves D, then f −1(f (z)) will
(probably) have a discontinuity, or “branch cut”

� “The nice thing about standards is that there are so many to
choose from”. Where applicable,we use [AS64, printing ≥ 9],
with behaviour on the branch cut defined by [Kah87].

James Davenport masjhd@bath.ac.uk Branch Cuts and Formal Methods? 8 / 23



The branch view: [Cartan1973]

p. 32 “The mapping y 7→ e iy induces an isomorphism ϕ of
the quotient group R/2πZ on the group U. The
inverse isomorphism ϕ−1 of U on R/πZ associates
with any complex number u such that |u| = 1, a real
number which is defined up to the addition of an
integral multiple of 2π; this class of numbers is called
the argument of u and is denoted by arg u.” In our
notation this is

(
graph(ϕ)T ,U,R/2πZ

)
B.

p. 33 “We define

log t = log |t|+ i arg t, (5)

which is a complex number defined only up to
addition of an integral multiple of 2πi .” In our
notation this is ((5),C,C/2πiZ)B.
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p. 33 “For any complex numbers t and t ′ both ̸= 0 and for
any values of log t, log t ′ and log tt ′, we have

log tt ′ = log t + log t ′ (mod 2πi).” (6)

p. 33 “So far, we have not defined log t as a function in
the proper sense of the word”.

p. 61 “log z has a branch in any simply connected open set
which does not contain 0.”

So any given branch would be (G ,D, I )B, where D is a simply
connected open set which does not contain 0, G is a graph
obtained from one element of the graph (i.e. a pair (z , log(z)) for
some z ∈ D) by analytic continuation, and I is the relevant image
set.
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Branch Cuts of Elementary Functions [Kah87]

exp / ln exp(z + 2πi) = exp(z). These days the principal domain is
generally chosen as π < ℑ(z) ≤ π, which translates to a
branch cut for ln along the negative real axis, so that
ln(−1 + ϵi) ≈ iπ + ϵ), but ln(−1− ϵi) ≈ −iπ − ϵ).

tan / atan tan(z + π) = tan(z). Principal domain is −π
2 < ℜ(z) ≤ π

2 .
This translates into a branch cut for atan on
{0 + iy : |y | > 1}.

cot / acot cot(z + π) = cot(z). Today the principal domain is
0 ≤ ℜ(z) < π. This translates into a branch cut for acot on
{0 + iy : |y | < 1}.

cos / acos cos(z + π) = cos(z) = − cos(z). The principal domain is
0 ≤ ℜ(z) < π. This translates into a branch cut for acos on
{x + 0i : |x | > 1}.

Similarly sec etc. and the hyperbolics sinh etc.
� False sense of simplicity
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Towards an algorithm (I)

√
z − 1

√
z + 1

?
=
√

z2 − 1. (1)

√
1− z

√
1 + z

?
=
√

1− z2. (2)

(2) is correct but (1) is only partially correct. How can we

distinguish? The branch cut of
√

is the negative real axis. Regard

C(z) as R(x , y). Then the branch cuts of (1) are
√
z − 1 x < 1, y = 0

√
z + 1 x < −1, y = 0√
z2 − 1 2xy = 0; x2 − y2 − 1 < 0.

[{−1 < x < 1, y = 0} ∪ {x = 0, y free}]
These define semi-algebraic (polynomial equations and inequalities)
sets in R2, so partition R2 into a finite number of cells (found by
Cylindrical Algebraic Decomposition), and analyse each cell Ci

(which comes with a sample point si ) separately.

James Davenport masjhd@bath.ac.uk Branch Cuts and Formal Methods? 12 / 23



Towards an algorithm (II)

Q1,. . . ,Q4 are the four quadrants of the Argand diagram

(Q1 = {x ≥ 0, y ≥ 0} etc.): the branch cut for
√

means that
√
Q2 ⊂ Q1 and

√
Q3 ⊂ Q4

x > 0 (and not y − 0, x < 1)Typical point z = 2, and (1)

becomes
√
1
√
3
?
=
√
3: correct.

x < 0; y > 0 Typical point z = −1 + i and (1) becomes√
−2 + i︸ ︷︷ ︸
Q2︸ ︷︷ ︸

Q1

√
i︸︷︷︸
Q2︸ ︷︷ ︸

Q1

?
=

√√√√(−1 + i)2 − 1︸ ︷︷ ︸
Q3︸ ︷︷ ︸

Q4

, false

x < 0; y < 0 Typical point z = −1− i and (1) becomes
√
−2− i

√
−i

?
=
√
(−1− i)2 − 1, also false.

Cuts In principle we need to do similar analysis on these.
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Towards an algorithm (III)

Not quite so simple: on each cell, the proposed identity is either
everywhere true ot generically false.
Consider multiplying (1) by z2 + 2z + 2, which vanishes at both
z = −1 + i and z = −1− i .
Then this is “accidentally” true at the sample points si = −1± i ,
even though false elsewhere in their regions. How do we deal with
this?
[BBD03] Regard our equation as power series, and use an explicit
zero test for these [vdH02].
In practice a poly-algorithmic approach is useful [BBDP07], and for
branch cuts, we can ask what full-dimensional cell they “adhere”
to [BBDP05].
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Implementation

This is implemented in the package BranchCuts in Maple: see
[EBDW13]. For example given asin(2z

√
1− z2), it can produce

{ℑ(z) = 0, 1 < ℜ(z)} {ℑ(z) = ℑ(z),ℜ(z) = −1
2

√
2 + 4ℑ(z)2}

{ℑ(z) = 0,ℜ(z) < −1} {ℑ(z) = ℑ(z),ℜ(z) = 1
2

√
2 + 4ℑ(z)2}

and the branch cuts on the right (left is a Maple plot).

Figure: Branches of asin(2z
√
1− z2) [EBDW13, Figure 2]
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Branch cuts: Lambert W

W is the solution of W (z)eW (z) = z , and is not Liouvillian
[BCDJ08]. Its branches are more complicated [JHC96].

Figure: Branches of W [JHC96, Figure 2]
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Interactions with Proving/Verification

Can we be more formal than the “proof” I sketched via CAD?

In an ideal world, that sketch would become a tactic, or
possibly a generator of counter-examples.

And how dependent is this on a “fully verified” CAD?

Code can be generated from prover output (as in [FM24]),
but is that code, with its choice of branch cuts, actually
compatible with the prover?

What if the branch cuts aren’t semi-algebraic? As in W .

James Davenport masjhd@bath.ac.uk Branch Cuts and Formal Methods? 17 / 23



Interactions with Proving/Verification

Lean I see nothing in [AM24]

Isabelle There’s a lot of underpinning stuff around winding
numbers in [Gro24], but no branch cuts as such.

Rocq See [Bru11], which treats winding numbers but not
branch cuts, and is explicitly “non-constructive”.

JHD asked for other input.

PVS NASA have a tool precision which, the responder
thought, did some of this as well as simple precision
checking.
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