
The Computer Algebra view of “solving”

James Davenport
Hebron & Medlock Professor of Information Technology1

University of Bath (U.K.)

31 August 2016

1Thanks to Matthew England and SC2: H2020-FETOPEN-2016-2017-CSA
project 712689: www.sc-square.org

www.sc-square.org

Concepts

Given a set of polynomial equations in k[x1, . . . , xn], how do we
solve them

* Or possibly “describe the solutions” if infinitely many

1 Gröbner bases — solves over k

2 Regular Chains — solves over k

3 Cylindrical Algebraic Decomposition — solves over R

SMT Of course, we miight only want one solution, or the existence
of a solution

Base case

Given A set of linear equations

Reduce to triangular form
1 ? ? . . . ?
0 1 ? . . . ?
0 0 1 . . . ?
...

...
...

. . .
...

0 0 0 . . . 1




x1

x2

x3
...

xn

 =


b1

b2

b3
...

bn


Solve by back substitution: xn is obvious, then xn−1 is

obvious, and so on

Implicitly We’ve imposed an order on the variables

Nonlinear equations: Order

Ordering the variables is not enough: does x2
1 come before x1x2?

Before x1x2
2 ? etc.

Lexicographic Sort on x1 powers, then on x2 powers . . .

Degree lex Sort on total degrees first, then break ties by lex

x3 > x2y >x2z > xy 2 > xyz > xz2 > y 3 > y 2z > yz2 > z3

Degrevlex Sort on total degrees, then break ties by reverse lex

x3 > x2y >xy 2 > y 3 > x2z > xyz > y 2z > xz2 > yz2 > z3

Elimination Something on x1, . . . , xk , breaking ties on
xk+1, . . . , xn

In general, lexicographic is the most useful, but degrevlex the
fastest to compute (but see [vH15])

Beyond Gaussian Elimination

Gaussian can still be done

Also Reduction (division): x1x2 + x2 reduces x2
1 x2 + x3 to

−x1x2 + x3, which reduces to x2 + x3 (and this
reduces x1x2 + x2 to −x1x3 − x3)

Insufficient What about f := x2
1 x2 + x2x2

3 and g := x1x2
2 + x4?

S(f , g) := x2f − x1g =6x2
1 6x2

2 + x2
2 x2

3 − (6x2
1 6x2

2 + x1x4) =
x2

2 x2
3 − x1x4 =: h

S(g , h) := x2
3 g − x1h =6x1 6x2

2 6x2
3 + x2

3 x4 − (6x1 6x2
2 6

x2
3 − x2

1 x4) = x2
1 x4 + x3x4

Note The degree has grown, nevertheless [Buc65] this
process terminates, in a Gröbner basis

[x2
4x3

2 + x4
2,−x2

2x3
2 + x1 x4 , x1 x2

2 + x4 , x1
2x2 + x2 x3

2]

Lex Gröbner bases look like (finitely many solutions)

Generally (Shape Lemma [BMMT94])
x1 0 0 . . . p1(xn)
0 x2 0 . . . p2(xn)
0 0 x3 . . . p3(xn)

. . .
...

...
. . .

...
0 0 0 . . . pn(xn)

 =


0
0
0
...
0


Solve by back-substitution

But not always this shape, e.g.

3 points
{

x2
1 − 1, x1(x2 − 1)− x2 + 1, x2

2 − 1
}

[Gia89, Kal89] Intelligent back-substitution can still work

Also Can convert to Lex by [FGLM93]

Regular Chains/Triangular Decompositions

Regular Chain T := (f1, . . . , fk) such that the fi have distinct main
variables, and each ltmvar(fi)(fi) is invertible with
respect to T .

3 points
{

x2
1 − 1, x1(x2 − 1)− x2 + 1, x2

2 − 1
}

is not a regular
chain

But RCs
{

x2
1 − 1, x2 − 1

}
and {x1(x2 − 1)− x2 + 1, x2 + 1}

Quasivariety W (T) = V (T) \ V
(∏

lcmvar(fi)(fi)
)
: those things

that are proved zero by T , without “suspicious
cancellation”

(Lazard) Triangular Decomposition Produce a set of Regular
Chains Ti from F such that V (F) =

⋃
W (Ti)

Quantifier Elimination

Throughout, Qi ∈ {∃,∀}. Given

Φ := Qk+1xk+1 . . .Qnxnφ(x1, . . . , xn),

where φ is in some (quantifier-free, generally Boolean-valued)
language L, produce an equivalent

Ψ := ψ(x1, . . . , xk) : ψ ∈ L

In particular, k = 0 is a decision problem: is Φ true?

Quantifier Elimination is difficult

∀n : n > 1⇒ ∃p1∃p2 (p1 ∈ P ∧ p2 ∈ P ∧ 2n = p1 + p2)

[m ∈ P ≡ ∀p∀q (m = pq ⇒ p = 1 ∨ q = 1)]

is a statement of Goldbach’s conjecture with, näıvely, seven
quantifiers (five will do)
In fact, quantifier elimination is impossible over N. [Mat70]
However, it is possible for semi-algebraic (polynomials and
inequalities) L over R [Tar51]
Unfortunately, the complexity of Tarski’s method is indescribable

Over R we can add > to =

(must) ∃y : y 2 = x ⇔ x ≥ 0

Hence Semi-algebraic geometry, or real algebraic geometry

CAD “Cylindrical (semi-)Algebraic Decomposition”: A
partition of Rn into semi-algebraic sets Di such that
∀i , j , k , if (x1, . . . , xn) 7→π (x1, . . . , xk), either
π(Di) = π(Dj) or π(D1) ∩ π(Dj) = ∅

Also Each Di has a sample point αi

Given set fi of polynomials, construct a CAD sign-invariant
for every fi

from a CAD we can read off the answer to any QE problem
(quantified in xl , . . . , xn in that order)

Collins’ method [Col75]

1 Let Sn be the polynomials in φ (m polynomials, degree d , n
variables)

2 Compute Sn−1 (Θ(m2) polys, degree Θ(d2), n − 1 variables)

3 and Sn−2 (Θ((m2)2) polys, degree Θ((d2)2), n − 2 variables)
... continue

n and S1 (Θ(m2n−1
) polys, degree Θ(d2n−1

), 1 variable)

n + 1 Isolate roots of S1

n + 2 Over each root, or interval between roots, isolate roots of S2
... continue

2n Sn has invariant signs on each region of Rn, so φ(x1, . . . , xn)
has invariant truth on each region

2n + 1 So evaluate truth of Φ on each region of (x1, . . . , xk)-space

Clearly complexity (md)2O(n)
: in fact O

(
(2m)22n+8

d2n+6
)

[Col75]

Collins’ method continued

Well, at least that’s describable, even if worrying

A better analysis of step n + 1 [Dav85] gives O

(
(2k)22n+/86

d2n+/64

)
which doesn’t look very impressive until you realise it’s Z 4 → Z
In fact, it largely affects the analysis, not the actual running time

[DH88] showed QE is Ω
(

22(n−2)/6
)

, or (harder) Ω
(

22(n−2)/5
)

(at least in the dense model, i.e. storing all d + 1 coefficients of a
polynomial of degree d).

So we’re in
(

22Θ(n)
)

-land:

this is not the same as Θ
(
22n
)
-land, of course

More lower bounds [BD07]

The key idea [Hei83]: suppose Φn is yn = fn(xn). Then

Φn+1(xn+1, yn+1) := ∃zn∀xn∀yn

[(yn = yn+1 ∧ xn = zn+1) ∨ (yn = zn+1 ∧ xn = xn+1)]⇒ Φn(xn, yn)

is yn+1 = fn(fn(xn+1)). Apply this to

f0(x0) =

{
2x x ≤ 1/2

2− 2x x > 1/2

Then Φn(xn,
1
2) defines a set with 22n isolated points.

[BD07] shows this set needs doubly exponential space to encode,
in dense, sparse or factored form.
However each solution itself is at most singly-exponential ([DH88]
has individual solutions doubly-exponential)

Changing the Question

The Heintz construction of [BD07] is ∃∀∀︸︷︷︸
block

· · · ∃∀∀︸︷︷︸
block

, with two

alternations of quantifiers for every three quantifiers
Let a be the number of alternations
Then [FGM90] the (sequential) cost is (md)n

O(a)

The doubly-exponential nature is really only for the number of
alternations, and it’s singly-exponential for the number of variables

� I know of no implementation of this method

But It means that cylindrical algebraic decomposition is not always
(asymptotically!) best

Order is (sometimes) everything

Consider the polynomial [BD07, Theorem 7](
(yn−1 −

1

2
)2 + (xn−1 − zn)2

)(
(yn−1 − zn)2 + (xn−1 − xn)2

)
xn+1

+
n−1∑
i=1

(
(yi−1 − yi)

2 + (xi−1 − zi)
2
) (

(yi−1 − zi)
2 + (xi−1 − xi)

2
)

x i+1

+

(
(y0 − 2x0)2 + (α2 + (x0 −

1

2
))2

)
×(

(y0 − 2 + 2x0)2 + (α2 − (x0 −
1

2
))2

)
x + a

Eliminating a, xn, zn, xn−1, yn−1, zn−1 . . . , z1, x0, α, y0, x gives a
CAD (in fact a polynomial in a) with at least 22n cells, whereas the
opposite order has three cells.
Conversely [BD07, Theorem 8] there are problems that are doubly
exponential for all orders.

If we can choose the order, how?

Various heuristics:

sotd For all n! orders, perform steps 1-n, measure sotd
(sum of total degrees) and do n + 1, . . . for the least

Greedy sotd [DSS04] Do step 1 for each variable, choose the best
(sotd) and repeat: often ties

ndrr [BDEW13] For all n! orders, perform steps 1-n, count
number of distinct real roots

we tend to use greedy sotd with ndrr as a tiebreaker

Brown [Bro04, 5.2] Eliminate lowest degree variable first
(with tie-breaking rules): quite effective

Machine Learning metaheuristic: results from [HEW+14] are
encouraging (but what’s the benchmark?)

Ordering Example [DSS04]

Lazard’s quartic: ∀x : px2 + qx + r + x4 ≥ 0
6 possible orders for (p, q, r)

order sotd #cells CAD #true QE
1 54 445 4.71 251 7.04
2 54 445 83.39 251 138.18
3 50 417 0.54 235 0.89
4 50 417 1.64 239 2.55
5 66 — >600 — >600
6 66 — >600 — >600

Equational Constraints [McC99]

If φ is f = 0 ∧ φ̂, we need only consider the cells when f = 0 is
true. This means the first projection step produces O(m)
polynomials rather than O(m2), and the complexity is

O

(
(2m)22n+/86

d2n+6

)
.

This gives an interesting formulation problem: given

(f1 = 0 ∧ g1 < 0) ∨ (f2 = 0 ∧ g2 < 0) (1)

we are better off solving the equivalent

f1f2 = 0 ∧ [(f1 = 0 ∧ g1 < 0) ∨ (f2 = 0 ∧ g2 < 0)] (2)

even though the degree goes up: O

(
(2m)22n+/86

d2n+/67

)
[There is a technical side-condition well-orientedness, possibly
obsoleted [MPP16]]

Truth-Table invariant CAD [BDE+16]

In
(f1 = 0 ∧ g1 < 0) ∨ (f2 = 0 ∧ g2 < 0) (3)

the first projection set need only be Disc(f1), Disc(f2), Res(f1, f2),
Res(f1, g1), Res(f2, g2) (and omits Disc(g1), Disc(g2), Res(g1, g2),
Res(f1, g2), Res(f1, g2)). Essentially all the advantages of
equational constraints.
There is still the technical side-condition well-orientedness,
removed (with many other improvements) in [BCD+14]
There are still issues of formulation: e.g. in
(f1 = 0 ∧ f2 = 0 ∧ g1 < 0) ∨ . . ., which equation do we prefer?

Alternative method: CAD by Regular Chains [CM14]

C Compute a triangular decomposition over C

Hence different challenging problems (may) live in different
decompositions

Then Make it semi-algebraic, i.e. work out where real lines
cross.

Note That this is where different problems interact

Then construct the CAD

Choice of Equational Constraint [BDE+16]

EC Choice 1 EC Choice 2 EC Choice 3
Cells Time S N Cells Time S N Cells Time S N

657 5.6 61 7 463 5.1 64 8 269 1.3 42 4
711 6.3 66 6 471 5.4 71 6 303 1.1 40 5
375 2.7 81 9 435 3.6 73 8 425 2.8 80 8

1295 21.4 140 13 477 3.8 84 9 1437 23.9 158 14
285 2.0 61 7 169 1.0 59 5
39 0.1 54 5 9 0.0 47 1
F - 14 0 F - 14 0 27 0.1 14 0
57 0.3 32 3 117 0.7 35 3 119 0.6 36 4

Table: Comparing the choice of equational constraint for a selection of
problems. The lowest cell count for each problem is highlighted and the
minimal values of the heuristics emboldened.

Which constraint?

We assume x ≺ y and consider {φ1, φ2}:

f1 := x2 + y2 − 1, h := y2 − x
2 , g1 := xy − 1

4

f2 := (x − 4)2 + (y − 1)2 − 1 g2 := (x − 4)(y − 1)− 1
4 ,

φ1 := h = 0 ∧ f1 = 0 ∧ g1 < 0, φ2 := f2 = 0 ∧ g2 < 0. (1)

RC-TTICAD with f1 → h → f2 (57 cells).

RC-TTICAD with h → f1 → f2 (75 cells). This is the
default and the same as with f2, h, f1.

RC-TTICAD with f2 → f1 → h (77 cells).

PL-TTICAD with f1 identified (117 cells).

RC-TTICAD with h identified (163 cells).

Gröbner Reduction as well [BDEW13]

Order Full CAD TTI CAD TTI+Grö CAD
Cells Time Eq Const Cells Time S N Eq Const Cells Time S N

y ≺ x 725 22.802 f1,1, f2,1 153 0.818 62 12 f̂1,1, f̂2,1 27 0.095 37 3
f1,1, f2,2 111 0.752 94 10 f̂1,1, f̂2,2 47 0.361 50 5
f1,2, f2,1 121 0.732 85 9 f̂1,1, f̂2,3 93 0.257 50 9
f1,2, f2,2 75 0.840 99 7 f̂1,2, f̂2,1 47 0.151 47 5

f̂1,2, f̂2,2 83 0.329 63 7
f̂1,2, f̂2,3 145 0.768 81 11
f̂1,3, f̂2,1 95 0.263 46 10
f̂1,3, f̂2,2 151 0.712 80 12
f̂1,3, f̂2,3 209 0.980 62 16

x ≺ y 657 22.029 f1,1, f2,1 125 0.676 65 14 f̂1,1, f̂2,1 29 0.085 39 4
f1,1, f2,2 117 0.792 96 11 f̂1,1, f̂2,2 53 0.144 52 6
f1,2, f2,1 117 0.728 88 11 f̂1,1, f̂2,3 97 0.307 53 97
f1,2, f2,2 85 0.650 101 8 f̂1,2, f̂2,1 53 0.146 49 6

f̂1,2, f̂2,2 93 0.332 65 8
f̂1,2, f̂2,3 149 0.782 81 13
f̂1,3, f̂2,1 97 0.248 48 11
f̂1,3, f̂2,2 149 0.798 82 13
f̂1,3, f̂2,3 165 1.061 65 18

Table 2. Experimental results relating to Example 7. The lowest cell counts are high-
lighted and the minimal values of the heuristics emboldened.

We can apply Gröbner preconditioning to both QFFs separately, computing
a Gröbner basis, with respect to the compatible ordering, of {fi,1, fi,2}. For both
QFFs and both variable orderings three polynomials are produced. We denote
them by {f̂i,1, f̂i,2, f̂i,3} (note the polynomials differ depending on the variable
ordering). The algorithm used to compute these bases gives the polynomials in
decreasing order of leading monomials with respect to the order used to compute
the basis (purely lexicographical).

Table 2 shows that the addition of Gröbner techniques to TTICAD can pro-
duce significant reductions: a drop from 153 cells in 0.8s to 27 cells in under 0.1s
(including the time required to compute the Gröbner bases). As discussed in [27],
preconditioning is not always beneficial, as evident from the handful of cases that
produce more cells than TTICAD alone. As with Table 1 we have highlighted the
examples with lowest cell count and emboldened the lowest heuristic. Looking
at the values of S and N we see that for this example ndrr is the best measure
to use.

In [27] TNoI was used to predict whether preconditioning by Gröbner Basis
would be beneficial. In this example TNoI is increased in both orderings by
taking a basis, which correctly predicts a bigger full CAD after preconditioning.
However, TNoI does not take into account the added subtlety of TTICAD (as
shown by the huge benefit above).

Robot Motion Planning

Reduces to CAD [SS83]. But can we move ladder 1 to position 2?

1

2

Insoluble in 1986 [Dav86], insoluble today by [SS83, and today’s
hardware and CAD advances]

A different formulation [WDEB13]

A
B

C

D

Figure: Four canonical invalid positions of the ladder. Note from the
algebraic descriptions that for positions A–C only one end need be
outside the corridor.

length∧¬(A ∨ B ∨ C ∨ D): Soluble (5 hours CPU, 285419 cells)

The solution: (but what does it mean?)

x ≤ 0 ∧ y ≥ 0 ∧ w ≤ 0 ∧ z ≥ 0 ∧ (y − z)2 + (x − w)2 = 9

∧
[
[x + 1 ≥ 0 ∧ w + 1 ≥ 0] ∨

[
y − 1 ≤ 0 ∧ w + 1 ≥ 0

∧ y 2w 2 − 2yw 2 + x2w 2 + 2xw 2 + 2w 2 − 2xy 2w

+ 4xyw − 2x3w − 4x2w − 4xw + x2y 2 − 2x2y

+ x4 + 2x3 − 7x2 − 18x − 9 ≥ 0
]

∨
[
x + 1 ≥ 0 ∧ yw − w + y + x ≥ 0 ∧ w 2 − 2xw + y 2

− 2y + x2 − 8 > 0 ∧ z − 1 ≤ 0
]

∨
[
x + 1 ≥ 0 ∧ yw − w + y + x ≥ 0 ∧ y 2w 2 − 2yw 2

+ x2w 2 + 2xw 2 + 2w 2 − 2xy 2w + 4xyw − 2x3w

− 4x2w − 4xw + x2y 2 − 2x2y + x4 + 2x3 − 7x2

− 18x − 9 ≤ 0 ∧ z − 1 ≤ 0
]

∨ [y − 1 ≤ 0 ∧ z − 1 ≤ 0]
]
. (4)

However,

Conclusions

The more I learn, the less I know, but

There’s more than one way to state a problem

Clearly equivalent in terms of decidability, but not practical
computability

The differences are vast in practice

We have some reasonable heuristics

But much more work needs to be done, theoretically,
experimentally, and on the “software packaging” side

We need practical work on alternative methods for quantifier
elimination

Bibliography I

R.J. Bradford, C. Chen, J.H. Davenport, M. England,
M. Moreno Maza, and D.J. Wilson.
Truth Table Invariant Cylindrical Algebraic Decomposition by
Regular Chains.
In Proceedings CASC 2014, pages 44–58, 2014.

C.W. Brown and J.H. Davenport.
The Complexity of Quantifier Elimination and Cylindrical
Algebraic Decomposition.
In C.W. Brown, editor, Proceedings ISSAC 2007, pages 54–60,
2007.

R.J. Bradford, J.H. Davenport, M. England, S. McCallum, and
D.J. Wilson.
Truth table invariant cylindrical algebraic decomposition.
J. Symbolic Computation, 76:1–35, 2016.

Bibliography II

R.J. Bradford, J.H. Davenport, M. England, and D.J. Wilson.
Optimising Problem Formulation for Cylindrical Algebraic
Decomposition.
In J. Carette et al., editor, Proceedings CICM 2013, pages
19–34, 2013.

E. Becker, M.G. Marinari, T. Mora, and C. Traverso.
The shape of the shape lemma.
In Proceedings ISSAC 1994, pages 129–133, 1994.

C.W. Brown.
Tutorial handout.
http://www.cs.usna.edu/~wcbrown/research/ISSAC04/

handout.pdf, 2004.

http://www.cs.usna.edu/~wcbrown/research/ISSAC04/handout.pdf
http://www.cs.usna.edu/~wcbrown/research/ISSAC04/handout.pdf

Bibliography III

B. Buchberger.
Ein Algorithmus zum Auffinden des basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal.
PhD thesis, Math. Inst. University of Innsbruck, 1965.

C. Chen and M. Moreno Maza.
An Incremental Algorithm for Computing Cylindrical Algebraic
Decompositions.
In Ruyong Feng, Wen-shin Lee, and Yosuke Sato, editors,
Computer Mathematics, pages 199–221. Springer Berlin
Heidelberg, 2014.

Bibliography IV

G.E. Collins.
Quantifier Elimination for Real Closed Fields by Cylindrical
Algebraic Decomposition.
In Proceedings 2nd. GI Conference Automata Theory &
Formal Languages, pages 134–183, 1975.

J.H. Davenport.
Computer Algebra for Cylindrical Algebraic Decomposition.
Technical Report TRITA-NA-8511 NADA KTH Stockholm
(Reissued as Bath Computer Science Technical report 88-10),
1985.

J.H. Davenport.
On a ”Piano Movers” Problem.
SIGSAM Bulletin 1/2, 20:15–17, 1986.

Bibliography V

J.H. Davenport and J. Heintz.
Real Quantifier Elimination is Doubly Exponential.
J. Symbolic Comp., 5:29–35, 1988.

A. Dolzmann, A. Seidl, and Th. Sturm.
Efficient Projection Orders for CAD.
In J. Gutierrez, editor, Proceedings ISSAC 2004, pages
111–118, 2004.

J.C. Faugère, P. Gianni, D. Lazard, and T. Mora.
Efficient Computation of Zero-Dimensional Gröbner Bases by
Change of Ordering.
J. Symbolic Comp., 16:329–344, 1993.

Bibliography VI

N. Fitchas, A. Galligo, and J. Morgenstern.
Precise sequential and parallel complexity bounds for the
quantifier elimination over algebraic closed fields.
J. Pure and Applied Algebra, 67:1–14, 1990.

P. Gianni.
Properties of Gröbner bases under specializations.
In Proceedings EUROCAL 87, pages 293–297, 1989.

J. Heintz.
Definability and Fast Quantifier Elimination in Algebraically
Closed Fields.
Theor. Comp. Sci., 24:239–277, 1983.

Bibliography VII

Z. Huang, M. England, D. Wilson, J.H. Davenport, L.C.
Paulson, and J. Bridge.
Applying machine learning to the problem of choosing a
heuristic to select the variable ordering for cylindrical algebraic
decomposition.
In S.M.Watt et al., editor, Proceedings CICM 2014, pages
92–107, 2014.

M. Kalkbrener.
Solving systems of algebraic equations by using Gröbner bases.
In Proceedings EUROCAL 87, pages 282–292, 1989.

Yu.V. Matiyasevich.
Enumerable sets are Diophantine.
Soviet Math. Doklady 2, 11:354–358, 1970.

Bibliography VIII

S. McCallum.
On Projection in CAD-Based Quantifier Elimination with
Equational Constraints.
In S. Dooley, editor, Proceedings ISSAC ’99, pages 145–149,
1999.

S. McCallum, A. Parusinski, and L. Paunescu.
Validity proof of Lazard’s method for CAD construction.
https://arxiv.org/abs/1607.00264, 2016.

J.T. Schwartz and M. Sharir.
On the ”Piano-Movers” Problem: II. General Techniques for
Computing Topological Properties of Real Algebraic Manifolds.

Adv. Appl. Math., 4:298–351, 1983.

https://arxiv.org/abs/1607.00264

Bibliography IX

A. Tarski.
A Decision Method for Elementary Algebra and Geometry.
2nd ed., Univ. Cal. Press. Reprinted in Quantifier Elimination
and Cylindrical Algebraic Decomposition (ed. B.F. Caviness &
J.R. Johnson), Springer-Verlag, Wein-New York, 1998, pp.
24–84., 1951.

M. van Hoeij.
Groebner basis in Boolean rings is not polynomial-space.
http://arxiv.org/abs/1502.07220, 2015.

D.J. Wilson, J.H. Davenport, M. England, and R.J. Bradford.
A ”Piano Movers” Problem Reformulated.
In Proceedings SYNASC 2013, pages 53–60, 2013.

http://arxiv.org/abs/1502.07220

