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History of Quantifier Elimination

In 1930, Tarski discovered [Tar51] that the (semi-)algebraic
theory of Rn admitted quantifier elimination

∃xk+1∀xk+2 . . .Φ(x1, . . . , xn) ≡ Ψ(x1, . . . , xk)

“Semi” = “allowing >, ≤ and 6= as well as =”

Needed as ∃y : x = y2 ⇔ x ≥ 0

The complexity of this was indescribable

In the sense of not being primitive recursive!

In 1973, Collins [Col75] discovered a much better way:

Complexity (m polynomials, degree d , n variables, coefficient
length l)

(2d)2
2n+8

m2n+6
l3 (1)

Construct a cylindrical algebraic decomposition of Rn, sign
invariant for every polynomial

Then read off the answer
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What is a CAD?

A Cylindrical Algebraic Decomposition (CAD) is a mathematical
object. Defined by Collins who also gave the first algorithm to
compute one. A CAD is:

a decomposition meaning a partition of Rn into connected
subsets called cells;

(semi-)algebraic meaning that each cell can be defined by a
sequence of polynomial equations and inequalities;

cylindrical meaning the cells are arranged in a useful manner
— their projections are either equal or disjoint.

In addition, there is (usually) a sample point in each cell, and an
index locating it in the decomposition
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“Read off the answer”

Each cell is sign invariant, so the the truth of a formula
throughout the cell is the truth at the sample point.

∀xF (x)⇔ “F (x) is true at all sample points”

∃xF (x)⇔ “F (x) is true at some sample point”

∀x∃yF (x , y)⇔ “take a CAD of R2, cylindrical for y projected
onto x-space, then check

∀ sample x ∃ sample (x , y) : F (x , y) is true”: finite check

NB The order of the quantifiers defines the order of projection

So all we need is a CAD!
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The basic idea for CAD [Col75]

Rn Rn

Rn−1 Rn−1

Rn−2 Rn−2

R1 R1

Projection Lifting
(& Isolation)

Root Isolation
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So how do we project?
(Lifting is in fact relatively straight-forward)

Given polynomials Pn = {pi} in x1, . . . , xn, what should Pn−1 be?

Näıve (Doesn’t work!) Every discxn(pi ), every resxn(pi , pj)

i.e. where the polynomials fold, or cross: misses lots of
“special” cases

[Col75] First enlarge Pn with all its reducta, then näıve plus
the coefficients of Pn (with respect to xn) the
principal subresultant coefficients from the discxn and
resxn calculations

[Hon90] a tidied version of [Col75].

[McC88] Let Bn be a squarefree basis for the primitive parts of
Pn. Then Pn−1 is the contents of Pn, the coefficients
of Bn and every discxn(bi ), resxn(bi , bj) from Bn

[Bro01] Näıve plus leading coefficients (not squarefree!)
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Are these projections correct?

[Col75] Yes, and it’s relatively straightforward to prove that,
over a cell in Rn−1 sign-invariant for Pn−1, the
polynomials of Pn do not cross, and define cells
sign-invariant for the polynomials of Pn

[McC88] 52 pages (based on [Zar75]) prove the equivalent
statement, but for order-invariance, not
sign-invariance, provided the polynomials are
well-oriented, a test that has to be applied during
lifting.

But if they’re not known to be well-oriented?

[McC88] suggests adding all partial derivatives

In practice hope for well-oriented, and if it fails use Hong’s
projection.

[Bro01] Needs well-orientedness and additional checks
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What about the complexity?

If the McCallum projection is well-oriented, the complexity is

(2d)n2
n+7

m2n+4
l3 (2)

versus the original
(2d)2

2n+8
m2n+6

l3 (1)

and in practice the gains in running time can be factors of a
thousand, or, more often, the difference between feasibility and
infeasibility
“Randomly”, well-orientedness ought to occur with probability 1,
but we have a family of “real-world” examples (simplification/
branch cuts) where it often fails
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Need it be this hard?

The Heintz construction

Φk(xk , yk) :=

∃zk∀xk−1yk−1

[
yk−1 = yk ∧ xk−1 = zk ∨ yk−1 = zk ∧ xk−1 = xk

⇒ Φk−1(xk−1, yk−1)

]
If Φ1 ≡ y1 = f (x1), then Φ2 ≡ y2 = f (f (x2)),
Φ3 ≡ y3 = f (f (f (f (x3))))

[DH88] shows Ω
(

22
(n−2)/5

)
(using yR + iyI = (xR + ixI )

4)

[BD07] shows Ω
(

22
(n−1)/3

)
(using a sawtooth)

Hence doubly exponential is inevitable, but there’s a lot of room!
In fact, there are theoretical algorithms which are
singly-exponential in n, but doubly-exponential in the number of
∃∀ alternations
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Useful special cases

[McC99] “equational constraints” : when
Φ ≡ f (x , y , . . .) = 0 ∧ (. . .)

Note If Φ ≡ (f1(x , y) = 0 ∧ g1(x , y) < 0) ∨ (f2(x , y) =
0 ∧ g2(x , y) < 0, which has no obvious equational
constraint, we can consider (f1 · f2)(x , y) = 0 ∧ Φ,
which is equivalent (but higher degree)

[BDE+13] “truth table invariant CAD” treats this directly

submitted also handles the case where not every clause has an
equality (TTICAD)

Roughly speaking, the effect is to reduce n by 1, which square
roots the complexity

Davenport Recent advances in real geometric reasoning



An alternative approach [CMMXY09]

Proceed via the complex numbers,

Rn Rn

Cn Cn

Rn−1 Rn−1

R1 R1

Projection Lifting

CCD

RRI

Do a complex cylindrical decomposition via Regular Chains
Can be combined with truth table ideas [BCD+14]
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Example Complex CD

root

c = 0

b = 0

2x = 0 2x 6= 0

b 6= 0

p = 0 p 6= 0

c 6= 0

b2 − 4c = 0

2x + b = 0 2x + b 6= 0

b2 − 4c 6= 0

p = 0 p 6= 0

Figure: Complete complex cylindrical tree for the general monic
quadratic equation, p := x2 + bx + c , under variable ordering c ≺ b ≺ x .

Note that b = 0 is only tested where relevant
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So how do I use these tools?

That’s actually a very good question: there’s a lot of choice in how
to phrase the question

1 Choice of variable ordering (where permitted)

2 Choice of equalities

3 Choice of overall technology (Projection/Regular Chains/. . . )

4 Choice of how the problem is posed

5 (including Gröbner pre-conditioning)

� Choice of software: no software has (even close to) all the
techniques, and each has extra “features”

These are not independent questions
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How might this look? Wilson’s thesis
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Variable ordering

Theorem ([BD07])

There are CAD problems doubly exponential (in n) for all
orderings, and other problems which are doubly exponential (in n)
for some orderings, but constant for others

How to tell which case we’re in?
How to choose the best (legal) ordering?
This was described in yesterday’s CICM talk by Huang:
a variety of heuristics, with a machine-learning meta-heuristic
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TTICAD: Kahan Example: [Kah87, pp. 187–189]

With the usual definitions, the conformal map to solve his “fluid
flow in a slotted strip” problem

w = g(z) := 2 arccosh

(
1 +

2z

3

)
− arccosh

(
5z + 12

3(z + 4)

)
(3)

is the same as the ostensibly more efficient

w
?
=q(z) := 2 arccosh

(
2(z + 3)

√
z + 3

27(z + 4)

)
, (4)

only if we avoid the teardrop shaped area{
z = x + iy : |y | ≤

√
−(x + 3)2(2x + 9)

2x + 5
,−9

2
≤ x ≤ −3

}
(5)

We must analyse the branch cuts of (3) and (4)

Davenport Recent advances in real geometric reasoning



Plots of the absolute value of g(z)− q(z).

Davenport Recent advances in real geometric reasoning



Analysing the Kahan cuts

One branch cut is[
8y3x + 8yx3 + 20y3 + 84yx2 + 288yx + 324y = 0,

− 225x2 − 324x + 63y2 − 4x4 − 52x3 + 12y2x + 4y4 < 0
]
.

Previous a sign-invariant CAD would need to be constructed
with respect to all polynomials: producing 409
(x ≺ y) or 1143 (y ≺ x) cells for the Kahan example.

TTICAD for the sets will suffice for deciding the validity of the
simplification with respect to these branch cuts: 55
(x ≺ y) and 39 (y ≺ x) cells for both projection and
lifting TTICAD and regular chains TTICAD.

Qepcad 261 and 1143 cells

Mathematica 72 and 278 cells
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More choices

The most recent Regular Chains algorithm [CMM12] is
incremental , which means order of clauses matters (for the first
time in this field)
Most previous heuristic work has been based on “size” heuristics
such as sotd (sum of total degrees) or total degree, which are order
invariant
Need to develop a new set of guiding principles — England’s talk
yesterday
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Example from [EBC+14]

Table: Details on the TTICADs that can be built using RC-TTICAD

φ1 ∨ φ2 where
φ1 := (f1 = 0 ∧ h = 0 ∧ a > 0 ∧ a < 2),
φ2 := (f2 = 0 ∧ h = 0 ∧ a > 0 ∧ a < 2)

Constraint Ordering o TTICAD Co

Formula φ1 order φ2 order Cells Time sotd deg

φ1 → φ2 h→ f1 h→ f2 24545 86.082 16 2
φ1 → φ2 h→ f1 f2 → h 73849 499.595 114 8
φ1 → φ2 f1 → h h→ f2 67365 414.314 114 8
φ1 → φ2 f1 → h f2 → h 105045 1091.918 8 6
φ2 → φ1 h→ f1 h→ f2 24545 87.378 16 2
φ2 → φ1 h→ f1 f2 → h 67365 401.598 114 8
φ2 → φ1 f1 → h h→ f2 73849 494.888 114 8
φ2 → φ1 f1 → h f2 → h 105045 1075.568 8 6

Note how sotd spectacularly fails to predice the winner!
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A 2D CAD of (x , y)-space: moving a ladder [WBDE14]
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So might I trust these results?

Trivially for ∃ problems a positive result, or negative for ∀
problems, is easily verified (witness computation)

Negative ∃ is essentially refutation [JdM12]

Otherwise we’re believing a complicated software package and
some maths

[Col75] Algebra system + 3200LOC + “some maths”

[McC88] Algebra system + 3200LOC + “a lot of maths”

[CMMXY09] Algebra system + 5000LOC + “medium maths”

[BDE+13] Algebra system + 6200LOC + “medium maths”

Proven software? [CM12] does QE (not full CAD), loosely based
on [Col75], in COQ, but terribly impractical
Note that CAD has other applications — algebraic simplification
[BCD+02], robot path planning [SS83], which tends to require
adjacency(unsolved in general dimension)
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