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At a deep level, the problems which SMT'’s Nonlinear Real
Arithmetic (NRA) and Computer Algebra’s Cylindrical Algebraic
Decomposition (CAD) wish to solve are the same: nevertheless the
approaches are completely different, and are described in different
languages. We give an NRA/CAD dictionary, explain the CAD
process as it is traditionally presented (and some variants), then
ask how NRA and CAD might have a more fruitful dialogue.

Davenport SMT Nonlinear Real Arithmetic and Computer Algebra: a Dialog



(partial) Dictionary

Concept SMT's NRA CA and CAD

Arithmetic Algebra

Unquantified Jquantified

Quantified Alternation of quantifiers
Goal A model Set of all models

or UNSAT Quantifier elimination etc.
Starting point Boolean structure Polynomials
Order frequent change absolutely fixed

(of boolean variables) (of theory variables)
Measure Performance complexity
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Logical /Polynomial Systems over (R)

Let p; be the Boolean fio;0 where f; € Z[xy, ..., x,] and
o €{=#4,<<,>,>}
Let the problem be ¥ := Q1x1Qox2 ... Qpxy®(p1, - .., Pm), Where
® is a Boolean combination (typically in CNF for SAT), and
Q € {3,V, free}. SMT typically has all Q; as 3, QE insists the free
occur first (say x1,...,Xk).
Then the goals are:
NRA SAT and a model, or UNSAT (?+proof);

CAD A decomposition of R" into D; such that every f; is
sign-invariant (> 0, = 0 or < 0) on each D;

cylindrical Vi, j, k : m(D;) and 7, (D;) are disjoinnt or equal

QE &(qi, ..., qn), where g; := gi7i0, g € Z[x1, . .., x|
and 7; € {=,#,<,<, >, >}
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Approaches (very simplified)

NRAL Ignore the f;.
NRA2 Find a ®-satisfying assigment to p;.
NRA3 Check this against the theory p; = f;ic;0, and SAT
NRA4 or try again (maybe learning a lemma).
QE1 Ignore ® and the p;.

QE2 Decompose R” into regions (with a sample point)
where the f; are sign-invariant on each region.

QE3 Evaluate ® at each sample point.
QE4 By cylindricity, evaluate W at sample points of R¥.
Vx) = /\ D dx = \/
x; sample points x; sample points
QE5 ¢ = \/description of W-true cells.
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Why might ® have different values? Geometry(x, = y)
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So just compute resultants and discriminants?

Not quite: more can go wrong, especially in higher dimensions
We certainly need to worry about contents if non-trivial

[Col75] Also all coefficients, and subresultants
[McC84| Not the subresultants

But a resultant might vanish identically on a set:
CAD fails “not well-oriented”

[Hon90] Unconditional slight improvement on [Col75].

[Laz94] Conjectures (false proof) we only need leading &
trailing coefficients

[MPP16] Proves Lazard projection (better than McCallum)
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So what's the complexity?

Suppose =, = { polynomials in ®} has m polynomials of degree

< d (in each variable).

Then after Geometry(x,), =,_1 has O(m?) polynomials of degree

0(d?).

Then after Geometry(x,—1), =p—2 has O(m*) polynomials of

degree O(d*).

After Geometry(xz), =1 has m ) polynomials of degree a2’
The analysis is significantly messier than this, but qualitatively

these results are right.
This doubly-exponential behaviour is inherent in CAD and QE
[DH88, BDO7], even for the description of a single sample point.

However, for QE these assume O(n) alternations of quantifiers,
20(3) anO(a)

20(n

and there are theoretical results showing m”
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But we can do better (by looking at the logic)

SMT It's silly to ignore ® and p;.
[Col98] True, if & = (f1 =0) A &', we're not interested in &’
except when f; = 0.

[McC99] Implemented this: replaces n by n — 1 in double
exponent of m (therefore C — /C).

o ®:= (A =0AP;)V (fr=0AP;) can be written as
fif, =0 A ® and benefit (but d — 2d)
[BDE"13] address this structure directly
[BDET16] the case (A = 0A ®1) V &, etc.
[ED16, DE16] the case (i = 0) A--- A (fs = 0) A &' replaces n by
n — s in double exponents of m and d
@ provided the iterated resultants are primitive: alas
not a technicality
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Two alternative methods for computing CAD

@ Regular Chains [CM16]
© Decompose C” cylindrically by regular chains (C! is “special
cases” + “the rest”)
@ MakeSemiAlgebraic to decompose R’ C C' — “the rest” is
generally not connected in R’ and needs to be split up
© Read off a CAD
e Less theory but often better computation in practice
e Comprehensive Grébner Bases [Wei92]

© Build a CGB, i.e. the generic solution and all the special cases.
@ Use this to build CAD [FIS15]
e Bath have been unable to get this to work

Or Just produce a single cell of the CAD [Brol5]: start from a
sample point and see what the obstacles to extending it are

@ Inspired by NLSAT [JdM13]

QE Needn't be by CAD: Virtual Term Substitution
[Wei98, KS15], very effective for linear/ quadratic problems
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?SMT looks at the algebra

There are algebraic deductions: consider

4

The discriminant is

4x3 — 4x% — 36x + 36, so
V2<x3—x2—9x+9=
(x>-3Ax<1)V(x>3);
however y? > x3 — x2 — 9x 4+ 9
gives no deductions.

Does it make sense to partition the logic variables by the theory
variables they relate to, and to ask the theory to produce
deductions with fewer variables?

s
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More information

SC? Symbolic Computation and Satisfiability Checking.
Project description [ABB*16] and
www.sc-square.org. Workshop in Kaiserslautern
next Saturday and at FLoC 2018.

CAD/QE [CJ98], probably best analysis in [BDE*16].
Computer Algebra [vzGG13] is probably the best text; | am writing

one at
http://staff.bath.ac.uk/masjhd/JHD-CA.pdf.
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