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Thesis

At a deep level, the problems which SMT’s Nonlinear Real
Arithmetic (NRA) and Computer Algebra’s Cylindrical Algebraic
Decomposition (CAD) wish to solve are the same: nevertheless the
approaches are completely different, and are described in different
languages. We give an NRA/CAD dictionary, explain the CAD
process as it is traditionally presented (and some variants), then
ask how NRA and CAD might have a more fruitful dialogue.
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(partial) Dictionary

Concept SMT’s NRA CA and CAD
Arithmetic Algebra
Unquantified ∃quantified
Quantified Alternation of quantifiers

Goal A model Set of all models
or UNSAT Quantifier elimination etc.

Starting point Boolean structure Polynomials
Order frequent change absolutely fixed

(of boolean variables) (of theory variables)
Measure Performance complexity
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Logical/Polynomial Systems over (R)

Let pi be the Boolean fiσi0 where fi ∈ Z[x1, . . . , xn] and
σi ∈ {=, 6=, <,≤, >,≥}.
Let the problem be Ψ := Q1x1Q2x2 . . .QnxnΦ(p1, . . . , pm), where
Φ is a Boolean combination (typically in CNF for SAT), and
Q ∈ {∃,∀, free}. SMT typically has all Qi as ∃, QE insists the free
occur first (say x1, . . . , xk).
Then the goals are:

NRA SAT and a model, or UNSAT (?+proof);

CAD A decomposition of Rn into Dj such that every fi is
sign-invariant (> 0, = 0 or < 0) on each Dj

cylindrical ∀i , j , k : πk(Di ) and πk(Dj) are disjoinnt or equal

QE Φ̂(qi , . . . , qm′), where qi := giτi0, gi ∈ Z[x1, . . . , xk ]
and τi ∈ {=, 6=, <,≤, >,≥}.
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Approaches (very simplified)

NRA1 Ignore the fi .

NRA2 Find a Φ-satisfying assigment to pi .

NRA3 Check this against the theory pi = fiσi0, and SAT

NRA4 or try again (maybe learning a lemma).

QE1 Ignore Φ and the pi .

QE2 Decompose Rn into regions (with a sample point)
where the fi are sign-invariant on each region.

QE3 Evaluate Φ at each sample point.

QE4 By cylindricity, evaluate Ψ at sample points of Rk .

∀xl ⇒
∧

xl sample points

; ∃xl ⇒
∨

xl sample points

QE5 Φ̂ :=
∨

description of Ψ-true cells.
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Why might Φ have different values? Geometry(x2 = y)

discy (y2 − x3 + x2 + 9x − 9)
resy ( y − x3 − 2x2 + x + 2,

y − 2x3 + 6x2 + 8x − 24)

4x3 − 4x2 − 36x + 36 −x3 + 8x2 + 7x − 26
{−3, 1, 3} {−2., 1.535898384, 8.464101616}
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So just compute resultants and discriminants?

Not quite: more can go wrong, especially in higher dimensions
We certainly need to worry about contents if non-trivial

[Col75] Also all coefficients, and subresultants

[McC84] Not the subresultants

� But a resultant might vanish identically on a set:
CAD fails “not well-oriented”

[Hon90] Unconditional slight improvement on [Col75].

[Laz94] Conjectures (false proof) we only need leading &
trailing coefficients

[MPP16] Proves Lazard projection (better than McCallum)
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So what’s the complexity?

Suppose Ξn = { polynomials in Φ} has m polynomials of degree
≤ d (in each variable).
Then after Geometry(xn), Ξn−1 has O(m2) polynomials of degree
O(d2).
Then after Geometry(xn−1), Ξn−2 has O(m4) polynomials of
degree O(d4).

After Geometry(x2), Ξ1 has m2O(n)
polynomials of degree d2O(n)

.
�The analysis is significantly messier than this, but qualitatively

these results are right.
This doubly-exponential behaviour is inherent in CAD and QE
[DH88, BD07], even for the description of a single sample point.
However, for QE these assume O(n) alternations of quantifiers,

and there are theoretical results showing mn2O(a)
, dn2O(a)

.
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But we can do better (by looking at the logic)

SMT It’s silly to ignore Φ and pi .

[Col98] True, if Φ = (f1 = 0) ∧ Φ′, we’re not interested in Φ′

except when f1 = 0.

[McC99] Implemented this: replaces n by n − 1 in double
exponent of m (therefore C →

√
C ).

• Φ := (f1 = 0 ∧ Φ1) ∨ (f2 = 0 ∧ Φ2) can be written as
f1f2 = 0 ∧ Φ and benefit (but d → 2d)

[BDE+13] address this structure directly

[BDE+16] the case (f1 = 0 ∧ Φ1) ∨ Φ2 etc.

[ED16, DE16] the case (f1 = 0) ∧ · · · ∧ (fs = 0) ∧ Φ′ replaces n by
n − s in double exponents of m and d

� provided the iterated resultants are primitive: alas
not a technicality

Davenport SMT Nonlinear Real Arithmetic and Computer Algebra: a Dialogue of the Deaf?



Two alternative methods for computing CAD

Regular Chains [CM16]
1 Decompose Cn cylindrically by regular chains (C1 is “special

cases” + “the rest”)
2 MakeSemiAlgebraic to decompose Ri ⊂ Ci — “the rest” is

generally not connected in Ri and needs to be split up
3 Read off a CAD
• Less theory but often better computation in practice

Comprehensive Gröbner Bases [Wei92]
1 Build a CGB, i.e. the generic solution and all the special cases.
2 Use this to build CAD [FIS15]
• Bath have been unable to get this to work

Or Just produce a single cell of the CAD [Bro15]: start from a
sample point and see what the obstacles to extending it are

Inspired by NLSAT [JdM13]

QE Needn’t be by CAD: Virtual Term Substitution
[Wei98, KS15], very effective for linear/ quadratic problems
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?SMT looks at the algebra

There are algebraic deductions: consider

The discriminant is
4x3 − 4x2 − 36x + 36, so
y2 < x3 − x2 − 9x + 9⇒
(x > −3 ∧ x < 1) ∨ (x > 3);
however y2 > x3 − x2 − 9x + 9
gives no deductions.

Does it make sense to partition the logic variables by the theory
variables they relate to, and to ask the theory to produce
deductions with fewer variables?
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More information

SC2 Symbolic Computation and Satisfiability Checking.
Project description [ABB+16] and
www.sc-square.org. Workshop in Kaiserslautern
next Saturday and at FLoC 2018.

CAD/QE [CJ98], probably best analysis in [BDE+16].

Computer Algebra [vzGG13] is probably the best text; I am writing
one at
http://staff.bath.ac.uk/masjhd/JHD-CA.pdf.
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Questions?
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