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Scope

e “polynomial-type” systems: Axiom, Macsyma/Maxima, Maple

Mathematica and Reduce.
e We quote Maple, but do not intend to condemn it.

e [ do not ignore systems such as GAP, KANT, PARI and
Magma: rather the thesis of this talk is (largely) irrelevant to

them.




Strengths

e These algebra systems perform massive computations
(Delaunay’s 20-year computation of the orbit of the moon can

now be done in under a second)

They incorporate extremely sophisticated algorithms:

integration, ordinary differential equations and Grobner bases

G.H. Hardy on integration: “There is no known process
lalgorithm|, and there is reason to believe that no such can be

given” .

Solved (Risch) since indefinite integration can be viewed as an

algebraic processs, essentially anti-differentiation.




But these systems do not please the users
e Some of this is because users are never pleased;
e Some of this is because users have unrealistic expectations.

e but some of it is because there is a mismatch between what
these systems do, and what users think they do. In particular,

the users think that the systems are doing mathematics,

whereas typically the systems are only doing that part of the

mathematics that is algebra.




A little history

The scope of the computer algebra systems of the 1960s was
unashamedly limited to algebra: they did the tedious algebra,
but it was the task of the user, generally an expert in the
relevant mathematics, to see that the algebra made sense.

As computers spread, and particularly with the advent of
personal computers, these systems became available to a much
wider audience, and the assumption that they were merely
“algebra engines” and all the mathematical knowledge
belonged to the user, had to be challenged.

Mathematica is now explicitly sold as a “computer
mathematics system”. Do we know what “computer

mathematics” is?

Does “computer mathematics” make sense as one subject, or is
“computer R” different from “computer C”?




Algebraic Numbers and their Fields

The common way of constructing Q(+/2) algebraically is as

K = Qla]/(a? — 2): the quotient of a polynomial ring by a

principal ideal.

In K, just as in R, the equation z? = 2 has two roots, o and

—a. However, nothing says whether a corresponds to
V2 =1.4142 or —/2 = —1.4142.

K as we have defined it is not an ordered field.

How does K embed into R?




For more general algebraic numbers, this information is no longer
implicit in the definition of the roots of a polynomial. For example,
the polynomial f(z) := 2% — 1022 + 1 has four real roots, and we
might have to code one possible embedding of Q extended by a

root of this polynomial as

Qla]/(a* —10a? +1) A € [3,4].

The other possible embeddings have o € [0,1], a € [—1,0] and

a € [—4,—3]. Once we have this interval information, a bisection
process can refine the interval sufficiently that any two different
elements of Q[a]/(a* — 10a? + 1) can be compared.




There are several other approaches to distinguishing the real roots
of a polynomial, e.g. by Thom’s Lemma, but we will not compare
these in detail. In these approaches, the abstract algebraic

extension, as an unordered field, is modeled as Q[a]/(f(«)), with

algebra and equality testing done in this algebraic domain, and the
choice of “which root” is only important when the ordering
properties of the field are invoked. Nevertheless, a purely algebraic
approach has to be blended with some numeric information in

order to model the user’s mental image of “this root of
f(z) =2 —102% +17.




The Numeric Approach

An alternative approach is to model the field as a subset of R, with
a being represented by a “sufficiently accurate” numerical
approximation. Possible models include the use of continued
fractions and B-adic approximations for various bases B. This
seems to model the ordered field structure correctly, and in one
sense it does. However, in computer algebra, we also take for
granted the notion of equality, and that is what this approach does
not do. If we try to compare \@2 with 2, we will find that, no

matter how much precision we call for, the answer is always

“uncertain”.




The solution to this problem seems to be that an element of

Q(a) C R must be modeled with both its numerical properties and
its algebraic properties. One way of doing this is to combine a
numerical approximation with a minimal, or at least defining,

polynomial, so an algebraic « is represented as (@, f(«)), where @ is

the approximation-producing equivalent of a. In the example in the
) = 2 2
previous paragraph, v/2 would be represented by (/2,22 — 2), v/2

by (V2 , 2% — 822 +16), and V2 — 2 by (v2° — 2, z* + 823 + 1622).

This last polynomial admits x = 0 as a root, and numerical

evaluation of \@2 — 2, combined with Mahler’s lower bound on

non-zero roots of a polynomial will show that this has to be zero.

However we do it, we have to blend the numeric approach with
some algebraic information in order to model the user’s mental

image of “this number 3.1462... is also a root of
f(z) =2 —102% +17.




How to Model a Number Field

While we mention minimal polynomials above, this is in practice a
very inefficient means of computing, and one should certainly

compute in a tower of extensions. We should note this as a typical

example of mathematical cleanliness (“without loss of generality,

we may assume that oy, ..., ax all lie in a given field Q(/3)”) versus
computational efficiency. There are several reasons for the practical

use of towers.




. Primitive elements tend to introduce a lack of sparsity. For
example, the field Q(v/2,v3,/5,+/7) has a primitive element
(viz. B := V2 +vV3+V5+VT7 ) whose minimal polynomial is
(16— 1368 + - .. — 559684052 + 46225.

. As one can see from the example above, they also tend to

induce coefficient growth.

. Primitive elements tend to place one in the “most general

setting”: one could be subtracting v/2 from itself, but because

one had mentioned \/§, one was dealing in a more complex

world, where the generator was o : a* — 10a? +1 = 0, and to
check that v2 — /2 = 0, one has to satisfy oneself that one has
the root 8 =0 of £ — 32 % 814 + ... +4096/° rather than of

Bt 85°.
. From the point of view of programming a computer algebra

system, the field is not generally given in advance: the user can




introduce a new algebraic element, i.e. grow the field of

definition, at any time. This requires an elaborate data

structure to convert elements on-the-fly from the old

presentation to the new one, even though that conversion may
not be necessary.




Local or global towers

Line Code  Tower
1 a:=sqrt(2) V2
2 b:=at+sqrt(3) v2,V3

3 c:=a+sqrt(5) e

If 277 is V2, V3,5, then we have adopted the “global tower”

approach, using the last tower even though /3 is irrelevant to c.

We are then working in a larger tower than is necessary. For
example, if line 2 was a typographical error, and line 3 were
b:=a+sqrt (5), from then on we would be working in a field of
twice the degree necessary — an expensive price to pay for a simple

typing error.




Local Towers

If 777 is v/2, /5, then we have adopted the “local tower” approach,
using the tower of the input (merger of the towers of the inputs, in
general) to build on. This leads to much smaller towers, and avoids
the “typing error penalty” of the other approach. However, the
operation of merging towers can prove interesting.

Line Code Tower
1 a:=sqrt(2) V2
2 b:=a+sqrt(3) V2,v3
3 c:=a+sqrt(6) \/5, V6
4 d:=b+c merge(+/2,v3,v2,6)

It is clear that, algebraically, the merged tower is v/2, /3 (which is
isomorphic to v/2, \@), but we have no idea whether v/6, in this

tower, 1s V2v/3 or —v/2+/3.




In line with our thesis, that one has to know the embedding into R
as well as the algebraic information, the code fragment should be

written as below, where d becomes 2/2 + /3 + v2/3.

Line Code Tower
1 a:=[sqrt(2),[1,2]] V2 € [1,2]
c=a+[sqrt(3),[1,2]1] V2¢€[1,2,v/3¢€[1,2]

2
3 :=a+[sqrt(6),[2,3]1] V2¢€[1,2],V6 <€ [2,3]
4 d:=b+c V2€[1,2],V/3€[1,2]

It should be noted that it is also possible to have a “lazy” tower

merging process, in which one can build an unreduced tower.




Code Tower
a:=[sqrt(2), [1,2]] V2 € [1,2]
:=a+[sqrt (3),[1,2]] V2 €[1,2],V3 € 1,2
:=a+[sqrt(6), [2,3]] V2 € [1,2],V6 € [2,3]

d:=b+c V2€[1,2],v/3€[1,2],V6 € [2,3]
if c-a=ax(b-a) ... V2¢€[1,2],v/3¢€][1,2],v6¢c[2,3]

In this case, d becomes 2v/2 +3 + \/6, and it is only at line 5 that
we discover that v/6 = v/2v/3.




e In the algebraic approach, testing whether a number is zero is
tantamount to testing whether it is a zero divisor, and,
appliying the extended Euclidean algorithm to inverting v — af3
subject to 7% — 6, 82 — 3 and a? — 2, we soon find that y8a — 6
is a zero-divisor, with cofactor vBa + 6. Which of these is
“right” depends on the numeric information for «, 8 and .

In the numerical approach, since numerical computation with
the approximations to c-a and a*(b-a) does not decide the
equality after a suitable point, we switch to a symbolic test of
equality via Mahler’s inequality. At this point, we can change
the minimal polynomial for \/6, from 22 — 6 to z — v/2v/3. Note
that, in this case, had we been asked the same question, but
with v/6 € [—3, —2], we would not have bothered to construct

the (reducible) defining polynomial (which is of course the

same), since numerical tests would have shown us that
V6 — /23 € [-3, 7], and is therefore nonzero.




The principal advantage of the “lazy tower” method is that one
avoids all factorisation of polynomials over algebraic number fields.
Instead, a factorisation is only detected when it is thrust in our face
by the user’s computations. Although theoretically in polynomial
time, factorisation of polynomials over algebraic number fields is
very expensive. The drawback is that, if, say, one starts with
Q(v/2,v/8), then, until the redundancy is detected, one is working
in extensions of twice the necessary degree. We should note that
there is no need to “split” and pursue multiple computations, since
the numeric information tells us which branch to pursue.

Moral. The moral of this section is two-fold. The first is that it is
necessary, to capture the users’ requirements, to model algebraic
numbers both as elements of an abstract algebraic extension, and

with an embedding into R (or C). Secondarily, we have learnt that

the simplest situation for abstract mathematics (a primitive
element) is neither efficient nor suitable for practical computation.




Elementary Transcendental Functions

These functions are normally considered to be exp and its inverse
In, the six trigonometric functions and their inverses, and the six
hyperbolic functions and their inverses. For the purposes of this
paper, we will class exp, the six trigonometric functions and the six
hyperbolic functions together as the forward functions, and the
remainder as the inverse functions. The forward functions are

relatively straight-forward: they are many—one, continuous

functions C — C (and restrict to similar functions R — R). These

functions, or at least most of them, are built into computer algebra
systems, as well as the numeric languages for which computer
algebra systems often generate code, and are used in a variety of

ways.




Calculus We expect to integrate, differentiate, and solve
differential equations with expressions involving these

functions. In particular, we expect [ % dz to return Inzx (or

possibly In |z| ).

“Simplification” We expect to see expressions involving the
elementary functions “simplified” — whatever that might
mean, and simplification is, in general, in the eye of the
beholder. For example, we might expect
exp(a) exp(b) — exp(a + b), and many people would expect its
converse In(a) + In(b) — In(ab) to happen, even though the

branch cuts mean that this is not true over C.

Symbolic Evaluation We expect to see In1 — 0 and sin 5 — 1.
Whether we expect to see tan 5 — oo or +00 is a moot point.

Numeric Evaluation We expect to be able to evaluate these
functions at floating-point values (in R or C) to yield




floating-point results.

Furthermore, the user wishes to perform any or all of these
operation on an expression built from elementary functions, and

know that he is getting consistent results.




What Need a System Know

Indefinite Calculus By this phrase, we mean differentiation,
indefinite integration and indefinite solution of ordinary
differential equations. Here all that is required is a knowledge

of the differential-algebraic properties of the functions, e.g.

(exp f(@))" = f'(x) (exp f(2)) or (In f(x))’ = £{5). From this
point of view, [ expx = expz, and whether exp(z) is e* or 2e

x

is irrelevant, and where the branch cuts of any actual function
In : C — C lie even more so. Indeed, in differential algebra,
there is no concept of “evaluating” x at all: x is merely the
base symbol whose derivative is 1.

Definite Calculus By this phrase, we mean definite integration
and definite solution of ordinary differential equations.
Sometimes these are solved numerically, in which case we are
really back to numeric evaluation, but more often they are
solved by indefinite methods followed by instantiation. At this




stage the actual meaning of the functions, as R — R (or

possibly C — C) matters: after all fol e’ dx is suddenly very

different from fol 2¢” dz. Furthermore branch cuts in the
integrand and the (indefinite) integral become very important.
In certain cases the Lazard/Rioboo/Trager formulation of the
integral can help, but in general there is no substitute for a

complete analysis of these branch cuts.




A simple example is given by the following integral in the complex

plane: [ If I dz, where P is the point on the unit circle _\1/‘2fi.

An indefinite integration followed by substitution gives

In P — In P, which is indeed what Maple 8 returns. A naive
evaluation of this would give _TBM' — %m' = —%m’. However,
standard complex variable theory tells us that integrating
along the straight line between P and P is the same as
integrating along the arc, when we are integrating something of
absolue value 1 along an arc of length 7, so the answer is
clearly Zi. So we have two answers: —%m’ and Fi. The second
is correct, the first ignored the fact that the standard branch
cut for logarithm, the negative real axis, intersects the path of
integration, so that our integral, as expressed by the standard
form of In, is not continuous. The resolution is to choose a
different branch cut, and therefore, if In P = %m’, In P has to

be %m, and the correct solution is restored.




Simplification/Symbolic Evaluation Purely algebraic
simplification, as in Maple’s simplify(...,symbolic), can be

achieved from the differential-algebraic definitions and

appropriate values of constants. For example, consider

In f +Ing = In fg. Differentiating this equation gives fTI + %/

on the left-hand side, and (";—i]), on the right-hand side, and
these are clearly equal. Hence we can deduce that

In f+1Ing =c+ In fg for some constant c. Unfortunately, the
meaning of the word “constant” here is “something that
differentiates to zero” rather than “something that takes on the
same value as the variables range through C”. The value of
this “constant” is given by equation (3), and depends on the

imaginary parts of In f and Ing.




However, this sort of simplification says very little about the actual
simplification rules as applied to functions C — C (or R — R).
There is a close relation between precisely what definitions are
adopted for the elementary functions, and precisely what

simplifications are valid.

e With the standard definitions of

arctan(z) = 2% (In(1 4+ i2) — In(1 —iz)), (1)

z

and, as functions C — C, arcsin(z) # arctan A since they
differ on the branch cuts (—oo, —1) U (1, 00).

Conversely, for Derive’s definition of arctan,

arcsin(z) = arctan ——%—, and
—— V1—22

Derive

arctan (z) # 5- (In(1 4 4z) — In(1 — iz)) since they differ on the

Derive

branch cuts. What is true is that




arctan (z) = 5- (In(1 4 4z) — In(1 — iz)).

Derive

e Of course, arctan and arctan agree on [—1,1], i.e. as (partial)
N——

Derive

functions R — R.




Numeric Evaluation Here again, the numeric value is critically
dependent on the branch cuts chosen. A further problem,
intrinsic to floating-point, is that numeric evaluation near
branch cuts is inevitably unstable: a minor change in real or
imaginary part can push the problem the wrong side of the cut,
and give completely the “wrong” answer. The risk is reduced
for elementary functions, since the branch cuts for these lie

along the axes (and therefore the “signed zeros” approach

works for these branch cuts), but not eliminated.




Hence computer algebra systems need to know:
. differential-algebraic information;

. abstract simplification information (including symbolic

evaluation);
. branch cut information;
. numerical evaluation information.

In theory, all four should be consistent, but a look at the last two
lines of the next table shows that it is perfectly possible for them

not to be.

Item (1) is easily encoded inside the calculus packages or

equivalent, and similarly item (4) is easily encoded in the numerical

evaluation package.




Source
AS

AS

GR
CRC
Maple
Axiom
Mathematica
Maxima
Reduce
Matlab
Matlab

Different values of arccot(—1)

Detail

Ist printing
9th printing
S5th edition
30th edition

V release 5

2.1

0.9

3.4.1
5.3.0
5.3.0

arccot(—1)

3 /4
—7 /4

7
3 /4
3 /4
3 /4
—7 /4
—7 /4
—7 /4
—7 /4

Comments

Inconsistent

inconsistent

Inconsistent

in floating point
in floating point

symbolic toolbox




The note “inconsistent” means that, although the source quotes, or
clearly lets be inferred, a value for arccot(—1), there are enough

inconsistencies in the definition of arccot that one could infer a

different value. For GR, 37/4 and —7 /4 are equally inferrable.




Simplification and Branch Cuts

[tems (2—3) are more complicated. It is not even clear what would
be meant by a formal encoding of “branch cut information” —
however, it should include both the location of the branch cut and
the values that the function takes on the branch cut. For In, AS
resorts to a mixture of words (for the former) and the inequality
— < Slnz < 7 (for the latter). For elementary functions, two
solutions have recently been proposed.

e CJ introduces the unwinding number K, defined by

z—Inexpz Sz —m
— = Z. 2
=) 271 [ 27 —‘ - 2)

The branch cut information associated with each simplification
can then be encoded in terms of additional unwinding number

terms, as in:

In(z122) =Inz; + Inzo — 2mi(In 21 + In 25); (3)




arcsin z = arctan Vi + 7 (—In(1 + 2)) — 7(—In(1 — z()))
4

One drawback of this is that the notation is unfamiliar to most
users, and is not in calculus texts, so a system which used it
internally would probably have to convert it into a more
user-friendly form on output — quite a challenge in practice.
One advantage that such a system might have is that it
restricts comparatively easily to R. For example, in

equation(3), if In z; and In z5 are real, then K(In z; + In 25) is

automatically zero. It is also possible (at least for a human) to
tell from the form of the IC terms whether they are ruling out
the simple identity for a whole region (as in equation (3)), or

just specific branch cuts (as in equation (4)).




e CDJW proposes to encode all elementary functions in terms of
exp and In. If we treat the branch cut for In as a built-in
primitive, then all other elementary branch cuts can be
expressed in terms of this one. One major drawback to this
scheme by itself is that the simplifier would then have to do a
lot of reasoning to derive, and ensure the appropriate
correction terms in, simplification rules. While it is possible to
derive equations such as (4) quasi-automatically, the process is
complicated and can only be guaranteed to work in a restricted
set of cases.

However, we could still take this approach as a base, in that
the primitive would indeed be the branch cut for In, and any
added rules, whether encoded via K or in other ways, would be

verifiable (semi-manually?) to be consistent with this primitive.

Moral. The moral of this section is that a full interpretation of a
function such as arctan involves several different kinds of




information, differential-algebraic, simplification, branch cuts and

numeric, which have to be present consistently in a system for it to
be able to model a user’s full range of expectations about that
function. It should also be noted that, while “abstract”
differential-algebraic simplification can be achieved, in terms of
deciding whether two expressions are “equal up to constants”, the
problem for actual functions R — R or C — C is much harder and

in general undecidable.




R or C?

Aslaksen asks: “Can your computer do complex analysis?”, to
which the answer generally is “not very well”. An equally relevant
question would be “Can your computer do real analysis, or does it

insist on (trying to do) complex analysis?”. In this section, we

explore the difference.




The issue

We have already seen that In(a) + In(b) — In(ab) is true over R (by
which we mean that not only a,b € R but also In(a),In(b) € R) but
not over C. In general, most computer algebra systems:

e are unclear® (certainly to the user, and all too often in the
minds of the authors) whether they are working in R or C;

provide few or no means for controlling this behaviour. The
Maple assume facility, while very powerful, does not really
control this — it can control, inter alia, whether particular
variables are to be interpreted in R or C, as in

assume (a,real), but this is insufficient, since In(a) might still

not be real (indeed a = b = —1 is a counter-example to

aAn honest assessment is given in the Maxima 5.5 documentation: “Variable:
DOMAIN. Default: [REAL] — if set to COMPLEX, SQRT(X2) will remain
SQRT(X2) instead of returning ABS(X). The notion of a “domain” of simplifi-
cation is still in its infancy, and controls little more than this at the moment.”




In(a) + In(b) — In(adb)). One would need to add that a and b
were positive. In a more complicated case, it might be very
difficult to work out the assumptions on the input variables
that would guarantee that all the intermediate functions were
real, and there is still no guarantee that Maple would make

those deductions as well.

A common argument is that, since C is closed under the
elementary functions, it is the “natural” domain, and that to work

in R would leave systems open to variants on the
2
1=V1i=+/(-1)-)=v-1-V-1=v-1 =-1

paradox. This is a reasonable argument for making C the default,

which we do not challenge, but seems like a poor argument for

making the semantics of R inaccessible, or at least very hard to

aCCess.




But R Cc C

It is often assumed that, since R C C, this doesn’t really matter,
since everything that is true in C will still be true in R. For
identities, this is indeed true: since exp(a)exp(b) — exp(a + b) is
true over C, it is true over R. However, this piece of glib reasoning
misses the following points.

1. It may give unexpected results to the user: having seen Maple,
say, simplify In2 + In3 — In6 (which Maple can do since it
knows that the Ins involved are positive, so the branch cuts

don’t interfere), the user is frustrated by the fact that
In(a) + In(b) 4 In(ab).

. Although R C C, the same is not true of their topological
completions: R U {—o00, 400} ¢ CU{oc}. For example, over R

one can define tan to be a bijection between |

|[—00, +00], but over C, tan(—%) = tan(%) = oo.

2 2




3. The “natural” values of some intrinsically multivalued
functions may be different. For example, over C it is natural to
choose /—1 to be LZ\E = exp(3 In(—1)), but over R it is
natural to choose it to be —1. Now, Maple does provide the
function surd: R x N — RU"“square root of negative” to solve
this problem, but nevertheless the issue crops up about once a
month in the Maple news group.

. Any statement that requires an existence argument, e.g. a
proof that f # g via Maple’s testeq [17], which relies on
finding a z such that f(z) # g(z), may not be valid over R,
since the necessary z may not be in R. For example,

z

— as functions C — C, since, for

arcsin(z) # arctan

example, arcsin(2) ~ 5 — 1.317¢, whereas
arctan \/L__S ~ —% — 1.317i. However, as (partial) functions
R — R, they do agree, since all the counter-examples,

although real values of z, involve complex values of arcsin z.




The Users’ Reality

It is the author’s experience, both first-hand and from reading the
Maple user group and news group, that the majority of users (if
they are concerned at all about the field of definition) are
concerned with R rather than C. The conclusion from Maple users
could be considered biased, since those who are happy with C, the
semantics of Maple, may well not comment; however the conclusion
from the author’s own experience is probably free from such biases.
In particular, when working with the GENTRAN FORTRAN

generation package in Reduce, it was obvious (and conversations

with the author confirmed this) that the complex part of this was

much less heavily exercised than the real.

The reason for this is obvious. The vast majority of physical
equations involve real variables. Indeed many physical quantities
(masses, resistances, concentrations etc.) are constrained to be
non-negative, and the Maple user group is often advising people on




how to ensure this.

Those users who do venture into complex variables, e.g. for the
conformal mapping solution of 2-dimensional fluid dynamics

problems are often unaware of the pitfalls of complex simplification,

and wish to use the rules inherited from the reals. Algebra systems

often stop them, but do not explain why they are doing so.




The following excerpt from a posting by Fateman in the Maple

news group in 1993 expresses the view that the majority of users of

the “polynomial-type” computer algebra systems today are hoping
that they are using “computer mathematics” systems.

I believe that for many readers of this newsgroup, those who
are interested in the problems of general algorithmic
manipulation of mathematical objects in CAS, the point is
really this:

You cannot tell the sign of RootOf(x" 2-1) (which could be
either +1 or -1). As a consequence, an enormous range of
computations that you could do with the specific number 1 or
the specific number -1 are excluded.

When an algebraist claims ”any root will do” he/she has
focussed on a set of operations that represent only a portion of
what a CAS can do. What is sin(rootof(x~ 2-1) )? The
algebraist might say, oh, I didn’t mean you could do THAT!

While I think I have some appreciation for the importance




of algebra as the basis for the CAS of today, most people ”out
there” are probably NOT asking algebraic questions. Most
people who wish to find the roots of a univariate polynomial are
generally NOT seeking algebraic answers. They are seeking a
set of complex floating-point numbers. If they are offered
algebraic factoring programs instead of root-finding programs,
they will be wasting time, and will be unhappy with the results.
Of course, some people ARE interested in the algebraic
questions, and it is nice to be able to answer them, too.
However, it may be a good idea to address those issues in a
different fashion. Some people advocate building a separate

CAS in the service of algebraists, number theorists, etc.

Although I think it is good to have algebraic facilities available

in a general system — to use them when needed, I think it is a
mistake to view algebraic answers as ”the most correct” or

when they are useless for the purposes intended for the answers.




Conclusions

We can make various deductions about the inadequacy of current
computer algebra systems in meeting users’ requirements for

computer mathematics.

e Even in the case of algebraic numbers, a | a? = 2 does not fully
capture the user’s intuitive V2. One needs some way of
combining the algebraic information with numerical
information o ~ 1.4142.... We point out a couple of solutions
which have been discussed, but neither have made their way
into main-stream computer algebra systems yet. Specialised
software, e.g. to do Cylindrical Algebraic Decomposition has

incorporated these ideas for years, typically in the

ala?=2ANac[l,2] or “a|a®=2 and « is the second root

(from —o0) of this equation” formulations.

e Elementary functions have many uses in mathematics, and




many ways to manipulate them in algebra systems. Systems
are not necessarily consistent (see Appendix) in this, and the
information required to define both the algebraic and analytic

behaviours of these functions, in a consistent way, is not
well-defined.

Systems are much better at not applying a simplification (for

good reason) than they are in explaining why it was not

applied.

Computer algebra systems have not come to terms with the
R /C dichotomy.




Questions for Mathematicians

1. Is it possible to produce a theory of the elementary functions
as they are in computation: single-valued functions
C \ {singularities} — C? The following standard responses are
not necessarily adequate, for the reasons given.

e Many analysts would urge one to “consider the Riemann

surface”. Unfortunately, in the case of

Tty

arctan x is defined on
l—zxy )7

arctan x + arctan y; arctan (

1—xy
third. It is not clear how “considering the Riemann surface”

one surface, arctan y on a second, and arctan ( 21y ) on a

solves practical questions such as this identity.

In a similar vein, one is urged to consider multivalued
definitions (denoted Ln etc.) for the inverses of exp etc.
Simple examples with Ln and Arctan look fairly convincing.
However, there are difficulties in practice, e.g.




Arcsin(x) — Arcsin(x) =

{2nm | n € Z}U{2arcsin(x)—7m+2nm | n € Z}U{wr—2arcsin(x)+Pnm | n € Z},

which depends on z, so the algebra of multivalued functions
is non-trivial. Several useful identities also become more

: .7
difficult, e.g. arcsin z= arctan \/12_7 (true except on the

branch cuts) becomes the more complicated

Arcsin(z) U Arcsin(—z) = Arctan <Sqrt(f— 22)) .

2. Is it possible to produce a “calculus of branches”? This might

be more promising, since it might extend to non-elementary
functions, for which there may be no simple explanation of the
branch structure in the form +2n7m, as in the case of the

Lambert W function.
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Questions for Computer Algebra System Designers

. Should there be (and we have argued for) an explicit choice
between the semantics of R and C? This could either be
global, e.g. a massive reworking of Maxima’s DOMAIN switch, or
local, e.g. a command such as realsimplify.

. Is it possible to explain to users why simplifications don’t

happen?

. Could some interactivity be built in? This is trickier than it
looks: Macsyma used to be notorious for asking questions of the

form “is very large expression positive, negative or zero?”.

. Below we observe that a command like LOGCONTRACT does not
keep any record of what is being assumed in the process, e.g.
Ina + Inb — In(ab) assumes that —7 < S(lna + Inb) < 7.
Maybe such a record should be kept, and either displayed to
the user, or maybe even fed to some kind of verifier. Such




verification would need to take account of any assume facility
137]. Also, the verifier would need to have the same meanings
of the elementary functions as the algebra system: not entirely

obvious in view of the table in the appendix.

. Generalising the above idea, is the manipulation of these
functions best left to an algebra system, or is interaction
between an algebra system and theorem provers required?




Questions for User Education

1. It is quite clear from the questions asked in, e.g., the Maple
news group, that many users are ignorant about, or puzzled by
aspects of, the analysis of C. We have argued above that some
of these problems could be remedied by explicitly offering R
instead. However, this is not a complete solution, and one has
to ask how one explains the issues to the user, who is currently
faced with a choice between:

e A refusal by the system to “do the right thing”, e.g.
Ina +Inb 4 In(ab), with no explanation attached;

e A command like LOGCONTRACT, which will do what the user
believes to be the right thing, but with no explanation of

what the user is assuming in the process — the verification
community would think of these as the user’s proof

obligations.




2. How does an algebra system explain to the user “valid except
on these branch cuts” or “valid outside this region”? We have
already said that an explanation in terms of unwinding
numbers is unlikely to make sense to most users in the current

state of complex variable education. In one complex variable,

one can imagine the system drawing a diagram (though issues

of scale would be interesting), but in more than one variable it

is hard to see how to do it.
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