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Cylindrical

A Cylindrical Algebraic Decomposition (CAD) is a partition of R”
into cells arranged cylindrically (meaning their projections by
dropping trailing coordinates are either equal or disjoint) such that
each cell is defined by a semi-algebraic set.
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A Cylindrical Algebraic Decomposition (CAD) is a partition of R”
into cells arranged cylindrically (meaning their projections by
dropping trailing coordinates are either equal or disjoint) such that
each cell is defined by a semi-algebraic set.

Defined by Collins who gave an algorithm to produce a
sign-invariant CAD for a set of polynomials, meaning each
polynomial had constant sign on each cell.
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Cylindrical

A Cylindrical Algebraic Decomposition (CAD) is a partition of R”
into cells arranged cylindrically (meaning their projections by
dropping trailing coordinates are either equal or disjoint) such that
each cell is defined by a semi-algebraic set.

Defined by Collins who gave an algorithm to produce a
sign-invariant CAD for a set of polynomials, meaning each
polynomial had constant sign on each cell.

Originally motivated for use in quantifier elimination. Has also
been applied directly on problems as diverse as algebraic
simplification and robot motion planning, essentially because the
output is very explicit.
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Projection

Collins algorithm has two main phases:

Projection A projection operator is applied repeatedly to the
polynomials, each time producing a new set of
polynomials in one less variable.

Lifting

The projection operator is defined so the CAD is sign-invariant.

James Davenport CADs for Boolean Combinations



Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

Projection

The projection operator
applied to the sphere
identifies the circle. The
projection operator applied
to the circle identifies two
points on the real line.
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Projection

Collins algorithm has two main phases:

Projection A projection operator is applied repeatedly to the
polynomials, each time producing a new set of
polynomials in one less variable.

Lifting e A CAD of R is produced using the roots of the
univariate polynomials and intervals between.

@ Over each cell: the bivariate polynomials are
evaluated at a sample point, a stack is built
consisting of sections (the roots) and sectors
(the intervals). Together these are a CAD of R2.

@ Repeated until a CAD of R" is constructed.

The projection operator is defined so the CAD is sign-invariant.
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A CAD of R? which is
sign-invariant with respect
to the circle. Each black
dot represents a cell.
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sign-invariant with respect
to the circle. Each black
dot represents a cell.
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A CAD to resolve JyVz f(x,y,z) =0Ag(x,y,z) > 0 will also
resolve

e Vydz f(x,y,z)=0Ag(x,y,z) >0
o VyVz f(x,y,z)<0Vg(x,y,z)=0
e Jz f(x,y,z)=0=g(x,y,z) >0

and any other formula where the quantified variables occur in the
same order.

As a consequence, CAD is doubly exponential in the number of
variables [DH88, BDO07]
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CAD of a

Most applications of CAD relate not just to polynomials, but
formulae containing them. A key approach to improving CAD is to
take the structure of these formulae into account.

Partial CAD The input is a quantified formula rather than the
polynomials within. Stack construction is aborted if
the value of the quantified formula on the whole
stack is already apparent.

CAD with equational constraint The input is a formula and
equation logically implied by the formula. The
projection operator is modified so that the other
polynomials are guaranteed sign invariant only on
those cells of the CAD where the equational
constraint is satisfied.
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Truth inva

A CAD is truth-invariant with respect to a formula if the formula
has constant truth value on each cell. Such a CAD could in theory
be produced using far fewer cells than a CAD sign-invariant for the
polynomials involved.

@ Brown employed truth invariance to simplify sign-invariant
CADs / PartialCADs.

@ The use of a reduced projection operator with respect to an
equational constraint produces a CAD which is not
sign-invariant but truth-invariant.
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Cylindrical Algebraic Decomposition
CAD for Boolean Combinations

Given a sequence of quantifier free formulae (QFF) we define a
truth table invariant CAD (TTICAD) as a CAD such that each
formulae has constant truth value on each cell.

We give an algorithm to construct TTICADs for sequences of
formulae which each has an equational constraint. This:

@ will (in general) produce far fewer cells than the sign-invariant
CAD for the polynomials involved;

@ does not require calculation of the sign-invariant CAD first.

We achieve this by extending the theory of equational constraints.

The algorithm has been implemented in MAPLE and shows
promising experimental results.
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Consider the polynomials:

f1::X2—|—y2—1 gl;:xy_%
b= (42 (171 g (x—4)y—1) -}

We wish to find the regions of R? where the formula ® is true:

®:=(A=0Ag1 <0)V(L=0Ag <0)
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Example:
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Consider the polynomials:

f1::X2—|—y2—1 gl;:xy_%
b= (42 (171 g (x—4)y—1) -}

We wish to find the regions of R? where the formula ® is true:
¢ =(A=0A"g1<0)V(Lh=0Ag <0)

We could solve the problem using a full sign-invariant CAD for
{f,&1,",8}. QEPCAD and MAPLE would both use 317 cells.
This identified 20 points on the real line.
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Example:

All curve intersections identified.
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Simple mot

We could instead employ the theory of equational constraints.

Although @ has no explicit equational constraint the equation
fifo = 0 is implied implicitly.

Using the functionality in QEPCAD this gives a CAD with 249
cells. This identifies 16 points on the real line.
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Example:
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New projec

Let A = {A;}L_; be a list of irreducible bases for the polynomials in
a sequence of QFFs and & = {E;}!_; non-empty subsets E; C A;.

We define the reduced projection of A with respect to &, as:

Pe(A) := Ui—1 Pe(Ai) URes™(€)

PEi(Ai) = P(E’) U {reSXn(e7 a)}éEE/,QEA,’\E,‘
( {disc(a), coeffs,,(a), resx,(a, b)}a bca
Res™ (&) = {resy,(e,8) |3i,j: ec Ej,é € Ej,i <j,e# @&}

)
=
I
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Using the o

Full technical details of our algorithm to produce a TTICAD of R”
are given in [BDE+13], along with a formal verification.
Key points:

@ Apply the reduced projection once to find projection
polynomials B in n — 1 variables.

@ Use McCallum’s verified algorithm to build a sign-invariant
CAD of R"! for 3.

@ Perform a final lift with respect to the equational constraints.

James Davenport CADs for Boolean Combinations



Motivation
Developing TTICAD New Projection Operator
Important Technicalities

Example:

A TTICAD for the motivating example is built with 105 cells
(compared to 317 and 249). This identified 12 points on the real
line (compared to 20 and 16).
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Example:

A TTICAD for the motivating example is built with 105 cells
(compared to 317 and 249). This identified 12 points on the real
line (compared to 20 and 16).
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All three CADs together.
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Example:

A TTICAD for the motivating example is built with 105 cells
(compared to 317 and 249). This identified 12 points on the real
line (compared to 20 and 16).
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TTICAD only
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Important

We highlight a couple of important technicalities:
@ We used McCallum'’s algorithm to produce the CAD of R™!
as this gives a CAD which is order-invariant.

This stronger condition is require to conclude that the output
of our algorithm is a TTICAD.
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Important

We highlight a couple of important technicalities:

@ We used McCallum'’s algorithm to produce the CAD of R™!
as this gives a CAD which is order-invariant.
This stronger condition is require to conclude that the output
of our algorithm is a TTICAD.

@ McCallum's operator and hence his algorithm are only valid
for use when the input is well-oriented, (finite number of
nullification points for all projection polynomials).

© Hence our new projection operator and algorithm requires a
similar condition:

A is well oriented with respect to £ if the equational constraints
have a finite number of nullification points and 3 is well-oriented.
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There are various existing implementations of CAD including
QEPCAD, MAPLE, MATHEMATICA. But none output
order-invariant CADs.

We built our own implementation on MAPLE. Developed a
package ProjectionCAD for use in MAPLE 16 and 17. Available
to download freely from: http://opus.bath.ac.uk/35636/

Can produce CADs sign-invariant (using McCallum or Collins’
operators), order invariant, with equational constraint and
truth-table invariant. Also provides heuristics for formulation.
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First compared our implementation of TTICAD with our
implementation of sign-invariant CAD using McCallum’s operator.

@ TTICAD cell counts and timings usually an order of
magnitude lower.
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First compared our implementation of TTICAD with our
implementation of sign-invariant CAD using McCallum’s operator.

@ TTICAD cell counts and timings usually an order of
magnitude lower.

@ One example with the same cell count: the equational
constraint occurred as a projection factor of the projection set
for the other constraints.

@ Two examples where a sign-invariant CAD could be
constructed while a TTICAD cannot: an equational constraint
was nullified.
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Experiment

Next compared our TTICAD implementation with QEPCAD-B
(v1.59), MAPLE (v16) and MATHEMATICA (v9).

@ Mathematica certainly the quickest although TTICAD often
produces fewer cells. Mathematica produces cylindrical
formulae rather than CADs and uses powerful heuristics.

@ TTICAD usually produces far fewer cells than QEPCAD or
MAPLE, even when QEPCAD produces partial CADs.

@ Some examples of theoretical failure for TTICAD where others
complete.

@ Timings vary according to example. TTICAD competing well
with QEPCAD and MAPLE, but usually slower.
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Conclusio

@ TTICAD theory offers great advantages over both
sign-invariant CAD and CAD with equational constraint.

@ Allows for an unoptimised implementation to compete with
the state of the art.
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Conclusion

@ TTICAD theory offers great advantages over both
sign-invariant CAD and CAD with equational constraint.

@ Allows for an unoptimised implementation to compete with
the state of the art.

@ The timings for our implementation could certainly be
improved using established techniques.

@ Preferable would probably be the incorporation of TTICAD
into the well-established software.
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@ Can we widen the input specification to allow some QFFs
without equational constraint?
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@ Can we widen the input specification to allow some QFFs
without equational constraint?

YES: By treating all constraints in that QFF with the importance
reserved for equational constraints.

James Davenport CADs for Boolean Combinations



Implementation in MAPLE
Experimental Results
TTICAD in Practice Conclusions

Future Wo

@ Can we widen the input specification to allow some QFFs
without equational constraint?

YES: By treating all constraints in that QFF with the importance
reserved for equational constraints.

e Can we use improved projection at more than the first level /
make use of more than one equational constraint from a QFF?

@ Can we avoid unnecessary lifting if the truth of a clause is
already known?

@ What can be done when the input is not well-oriented?
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