
Computer Algebra and Satisfiability Modulo
Theories

Invited Talk at ACA 2022

James Davenport

University of Bath
(supported by EPSRC under EP/T015713)

James Davenport CA and SMT 1 / 31

History

I have worked in computational algebra, especially computer
algebra/symbolic computation, for over 50 years: [SDSD+75]
contains results from 1970–72, and my thesis [Dav81] is still
occasionally cited.

Since the inspirational talk of Erika Ábrahám at ISSAC 2015
[Á15] I have been interested in the interface between
Symbolic Computation and Satisfiability Checking.

This has led to an EU-funded project [ABB+16], and a
sequence of workshops
http://www.sc-square.org/workshops.html.

Initially this seemed like a dialogue of the deaf [Dav17], but
things are improving.

James Davenport CA and SMT 2 / 31

http://www.sc-square.org/workshops.html

Complexity in Computer Algebra (1)

When it comes to dense polynomials/matrices, we have found
good algorithms, and apart from the gap in matrix multiplication
etc. exponent (2 + o(1) ≤ ω ≤ 2.3728596 [AW21]) we have upper
bounds that match lower bounds for most basic problems.
When it comes to sparse polynomials, there is a major problem:
lack of correlation between input size and output size. Consider

xn − 1

x − 1
= xn−1 + xn−2 + · · ·+ 1

gcd(xpq − 1; xp+q − xp − xq + 1) = xp+q−1 − xp+q−2 ± · · · − 1

(the second example is due to [Sch03]). There has been significant
progress here since [DC09]: [GGdCR22] has algorithms that are
nearly linear in max(|Input|, |Output|).
[ETCT22] is an interesting development in the area of polynomial
root isolation: their algorithm is ÕB(d

2 + dτ) on average whereas
the “best” algorithm has a worst case complexity of ÕB(d

3+d2τ)

James Davenport CA and SMT 3 / 31

Complexity isn’t all

But many problems do not have as neat a correlation between
worst-case complexity and average-case, even if one could prove a
result about “average complexity”, which often has not been done.

Polynomial Factorisation: the answer may be “irreducible”,
but this may be easily found, or be very difficult [SD69]. The
time may also depend on random choices for evaluations.

Gröbner bases: the answer may be {1}, but this may require a
great deal of computation. Note that there are
doubly-exponential Gröbner bases [Chi09, MR13], but these
seem to be “rare”.

Cylindrical Algebraic Decomposition. Again, there are
doubly-exponential examples [BD07, DH88], but these seem
to be “rare”.

Can we quantify “rare”? See [AL17], who propose to ignore
exponentially rare doubly exponential examples.

James Davenport CA and SMT 4 / 31

Complexity in Computer Algebra Publications

Figure: ISSAC Proceedings, from [vdH22]

Note that (apart from 2004!) there was significantly more
attention on complexity than benchmarks.
However, by and large, every benchmark set is different.

James Davenport CA and SMT 5 / 31

Benchmark Sets

SAT is the quintessential NP-complete problem which is stunningly
easy in practice (much of the time). Since 2000, every car made by
a German manufacturer is a result of SAT-solving [?].
Hence the SAT and SMT communities collect large,
centrally-curated, collections of benchmarks. There is still a
question of how representative these are, and new sub-collections
are being contributed [UDE22].
[Dav21] is a plea for Computer Algebra to follow the tradition of
the SAT and SMT communities, and collect large,
centrally-curated, collections of benchmarks. Computer Algebra
is bad at this.
Since this is a SIGSAM-sponsored conference, we might have a
discussion on how SIGSAM could help with this.

James Davenport CA and SMT 6 / 31

Such Benchmark sets allow contests

SAT contests are here: http://www.satcompetition.org. They
have been run since 2002. In the early years, there were distinct
tracks for Industrial/Handmade/Random problems: this has been
abandoned. SMT contests now have Cloud and Parallel tracks.
The methodology is that the organisers accept submissions (from
contestants1 and others), then produce a list of problems (in
DIMACS, a standard format) and set a time (and memory) limit,
and see how many of the problems the submitted systems can
solve on the contest hardware.
SAT is easy to certify (the solver just produces a list of values of
the xi). Verifying UNSAT is much harder, but since 2013 the
contest has required proofs.
The general feeling is that these contests have really pushed the
development of SAT solvers, roughly speaking ×2/year. For
comparison, Linear Programming has done ×1.8 over a greater
timeline and with more rigorous documentation [Bix15].

1In 2020, contestants were required to submit at least 20 problems, as well
as a solver.

James Davenport CA and SMT 7 / 31

http://www.satcompetition.org

We need to improve Data Citation

Data Citation is a mess in practice [vdSNI+19]: only 1.16% of
dataset DOIs in Zenodo are cited (and 98.5% of these are
self-citation).

Is poorly harvested: [vdSNI+19, Figure 5].

so there
are between
4,000–20,000
data sets waiting
to be harvested

James Davenport CA and SMT 8 / 31

We need to improve Data Citation

Data Citation is a mess in practice [vdSNI+19]: only 1.16% of
dataset DOIs in Zenodo are cited (and 98.5% of these are
self-citation).

Is poorly harvested: [vdSNI+19, Figure 5].

Is still a subject of some uncertainty: [MN12, KS14]

Changes are still being proposed [DPS+20]

de facto people cite a paper if they can find one.

? A rôle for Communications in Computer Algebra.

James Davenport CA and SMT 9 / 31

Important Databases in Pure Mathematics

OEIS Online Encyclopedia of Integer Sequences [Slo03];

Long time at a personal site: http:
//www.research.att.com/~njas/sequences; now
at https://oeis.org/.

* Recommended citation: “N. J. A. Sloane, editor, The
On-Line Encyclopedia of Integer Sequences, published
electronically at https://oeis.org, [date]”.

� But you have to search the website to find it!

+ Large toolset around it.

James Davenport CA and SMT 10 / 31

http://www.research.att.com/~njas/sequences
http://www.research.att.com/~njas/sequences
https://oeis.org/
https://oeis.org

Group Theory (as an example)

The Classification of Finite Simple Groups

The Transitive Groups acting on n points: [BM83] (n ≤ 11);
[Roy87] (n = 12); [But93] (n = 14, 15); [Hul96] (n = 16);
[Hul05] (17 ≤ n ≤ 31); [CH08] (n = 32).

These are in GAP (and MAGMA), except that n = 32 isn’t in
the default build.

+ These are a really great resource (if that’s what you want)

– How do you cite them? “[The21, GAP transgrp library]”?

Also Other libraries such as primitive groups

� Group Theory is “easy”: for a given n there are a finite
number and we “just” have to list them.

James Davenport CA and SMT 11 / 31

SMT can learn from CA: Finite Fields

A new trend at SMT 2022 was having the theory T be finite fields
(sometimes Fp for small p, sometimes Fp for large p, and
sometimes Fqn).
Note that if we actually want solutions in Fp rather than its
algebraic closure, we need to add the field equation xp − x : a
lesson that the SMT community is learning.

Fp small The usual approach is “bit-blasting”, i.e. representing a
number < 2n by n booleans representing its bits. But both
JHD (p = 7) and [Had22] (p = 3, 13) have had success with
direct representations (one Boolean for each value).

Fp large This was described at SMT 2022, but the field equations are a
major bottleneck.

Fqn As above.

James Davenport CA and SMT 12 / 31

SMT can learn from CA: Finite Fields

The key trick with the field equations for large fields is to ignore
them at first. After we have a system of equations, via Gröbner or
SMT, then if the equations are zero-dimensional there is (possibly
after FGLM [FGLM93]) a polynomial pn in xn only. Then by
repeated squaring and reduction we compute xpn − xn modulo pn.
Even if the equations are not zero-dimensional, this is often a
better approach. JHD has had some (limited) success with

1 Compute Gröbner Basis (without field equations)

2 Add the reduction of xpn − xn modulo the whole Gröbner Basis

3 Recompute the Gröbner Basis and repeat as necessary.

James Davenport CA and SMT 13 / 31

Accuracy

A problem for both fields, but where the SMT community is
probably more advanced, is the question of the accuracy of the
systems. Both Computer Algebra and SMT systems are large,
complex, and often multi-generational, systems. The
multi-generational aspect is probably more acute in Computer
Algebra: JHD still gets queries (and bug reports) on his thesis
[Dav81]. Maple is over 40 years old, SageMath may appear new,
but incorporates Macsyma which is 55 years old.
Practically no computer algebra system can “explain” its results:
[Dav81] can produce a trace of decisions, but that is a long way
from a certificate.

James Davenport CA and SMT 14 / 31

Accuracy in Computer Algebra: Formal Proof

GCD Verifying “common divisor” is easy, “greatest” is
NP-hard for sparse polynomials [Pla84].

GCD and SAT! The NP-hardness results of [Pla84] rely on
encoding a SAT-formula W in x1, . . . , xn as PM(W),
which vanishes at the M =

∏n
i=1 pi th roots of unity

corresponding to satisfying assignments for W .

Blowup [Sch03]

gcd(xpq − 1, xp+q − xp − xq + 1) = (xp−1)(xq−1)
x−1

= xp+q−1 + xp+q−2 ± · · · − 1︸ ︷︷ ︸
2min(p, q) terms

,

James Davenport CA and SMT 15 / 31

Accuracy in Computer Algebra: Formal Proof

GCD As above.

Factorisation Verifying that these are the factors is easy: verifying
that they are irreducible may require the trace of the
original run in hard cases [SD69].

Integration
∫
f = g is (generally) verifiable by differentiation,

verifying unintegrability seems to require a trace, and
proof of the relevant theorems.

Gröbner Bases Verifying that the output G is a Gröbner base is
(relatively) trivial: All S(gi , gj) ⇒G 0. Verifying that
it’s the base of the input fi is harder: ∀i : fi ⇒G 0
and we need to track the linear algebra and end up
with the ci ,j such that each gi =

∑
j ci ,j fi .

Cylindrical Algebraic Decomposition This is really hard, and
brighter people than me have failed [CM12] to prove
the algorithm. There is some hope that we could
prove specific instances [ADE+20], but this has not
been tried yet.

James Davenport CA and SMT 16 / 31

Accuracy: Software Engineering

[NPB22] report on an SMT fuzzer for testing the reliability of
SMT solvers. It appears this is the latest of several such. It does
seem pretty impressive: “more than 100 [errors] for cvc5 alone, and
some of them critical”.
Since most of these SMT systems are written in C/C++, it was
possible to use gcov, the standard GCC tool, to measure code
coverage from fuzzing. Though not perfect, it is a measure of test
validity.
This would be difficult/impossible for the “kernel plus written in
self” model of most algebra systems.
Nevertheless, Computer Algebra systems, despite their age, could
benefit from modern software engineering.

James Davenport CA and SMT 17 / 31

Bibliography
I

E. Ábrahám.
Building Bridges between Symbolic Computation and
Satisfiability Checking.
In D. Robertz, editor, Proceedings ISSAC 2015, pages 1–6,
2015.

E. Ábrahám, B. Becker, A. Bigatti, B. Buchberger, A. Cimatti,
J.H. Davenport, M. England, P. Fontaine, S. Forrest,
D. Kroening, W. Seiler, and T. Sturm.
SC2: Satisfiability Checking meets Symbolic Computation
(Project Paper).
In Proceedings CICM 2016, pages 28–43, 2016.

James Davenport CA and SMT 18 / 31

Bibliography
II

E. Ábrahám, J.H. Davenport, M. England, G. Kremer, and
Z.P. Tonks.
New Opportunities for the Formal Proof of Computational
Real Geometry?
SC 2’20: Fifth International Workshop on Satisfiability
Checking and Symbolic Computation CEUR Workshop
Proceedings, 2752:178–188, 2020.

D. Amelunxen and M. Lotz.
Average-case complexity without the black swans.
J. Complexity, 41:82–101, 2017.

J. Alman and V.V. Williams.
A refined laser method and faster matrix multiplication.
In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, pages 522–539, 2021.

James Davenport CA and SMT 19 / 31

Bibliography
III

C.W. Brown and J.H. Davenport.
The Complexity of Quantifier Elimination and Cylindrical
Algebraic Decomposition.
In C.W. Brown, editor, Proceedings ISSAC 2007, pages 54–60,
2007.

E.R. Berlekamp.
Factoring Polynomials over Large Finite Fields.
Math. Comp., 24:713–735, 1970.

R.E. Bixby.
Computational Progress in Linear and Mixed Integer
Programming.
Presentation at ICIAM 2015, 2015.

James Davenport CA and SMT 20 / 31

Bibliography
IV

G. Butler and J. McKay.
The transitive groups of degree up to 11.
Comm. Algebra, 11:863–911, 1983.

G. Butler.
The transitive groups of degree fourteen and fifteen.
J. Symbolic Comp., 16:413–422, 1993.

J.J. Cannon and D.F. Holt.
The transitive permutation groups of degree 32.
Experiment. Math., 17:307–314, 2008.

A.L. Chistov.
Double-exponential lower bound for the degree of any system
of generators of a polynomial prime ideal.
St. Petersburg Math. J., 20:983–1001, 2009.

James Davenport CA and SMT 21 / 31

Bibliography
V

C. Cohen and A. Mahboubi.
Formal Proofs in Real Algebraic Geometry: From Ordered
Fields to Quantifier Elimination.
Logical Methods in Computer Science, 8:1–40, 2012.

J.H. Davenport.
On the Integration of Algebraic Functions, volume 102 of
Springer Lecture Notes in Computer Science.
Springer Berlin–Heidelberg–New York (Russian ed. MIR
Moscow 1985), 1981.

J.H. Davenport.
SMT Nonlinear Real Arithmetic and Computer Algebra: a
Dialogue of the Deaf?
SMT 2017 Satisfiability Modulo Theories CEUR Workshop
1889, pages 1–1, 2017.

James Davenport CA and SMT 22 / 31

Bibliography
VI

J.H. Davenport.
Digital Collections of Examples in Mathematical Sciences.
To appear in Proc. EMS 2021, 2021.

J.H. Davenport and J. Carette.
The Sparsity Challenges.
In S. Watt et al., editor, Proceedings SYNASC 2009, pages
3–7, 2009.

J.H. Davenport and J. Heintz.
Real Quantifier Elimination is Doubly Exponential.
J. Symbolic Comp., 5:29–35, 1988.

James Davenport CA and SMT 23 / 31

Bibliography
VII

M. Daquino, S. Peroni, D. Shotton, G. Colavizza, B. Ghavimi,
A. Lauscher, P. Mayr, M. Romanello, and P. Zumstein.
The OpenCitations Data Model.
International Semantic Web Conference 2020, pages 447–463,
2020.

Alperen Ergür, Josué Tonelli-Cueto, and Elias Tsigaridas.
Beyond Worst-Case Analysis for Root Isolation Algorithms .
In Hashemi [Has22], pages 139–148.

J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora.
Efficient Computation of Zero-Dimensional Gröbner Bases by
Change of Ordering.
J. Symbolic Comp., 16:329–344, 1993.

James Davenport CA and SMT 24 / 31

Bibliography
VIII

Pascal Giorgi, Bruno Grenet, Armelle Perret du Cray, and
Daniel S. Roche.
Sparse Polynomial Interpolation and Division in Soft-linear
Time.
In Hashemi [Has22], pages 459–468.

T. Hader.
Non-Linear SMT-Reasoning over Finite Fields.
Master’s thesis, TU Wien, 2022.

Amir Hashemi, editor.
ISSAC ’22: Proceedings of the 2022 International Symposium
on Symbolic and Algebraic Computation, New York, NY, USA,
2022. Association for Computing Machinery.

James Davenport CA and SMT 25 / 31

Bibliography
IX

A. Hulpke.
Konstruktion transitiver Permutationsgruppen.
PhD thesis, RWTH Aachen, 1996.

A. Hulpke.
Constructing transitive permutation groups.
J. Symbolic Comput., 39:1–30, 2005.

W. Küchlin and C. Sinz.
Proving Consistency Assertions for Automotive Product Data
Management.
J. Automated Reasoning, 24:145–163, 2000.

J. Kratz and C. Strasser.
Data publication consensus and controversies (version 3).
F1000Research Article 94, 3, 2014.

James Davenport CA and SMT 26 / 31

Bibliography
X

H. Mooney and M.P. Newton.
The Anatomy of a Data Citation: Discovery, Reuse, and
Credit.
Journal of Librarianship and Scholarly Communication Article
p.eP1035, 1, 2012.

E.W. Mayr and S. Ritscher.
Dimension-dependent bounds for Gröbner bases of polynomial
ideals.
J. Symbolic Comp., 49:78–94, 2013.

A. Niemetz, M. Preiner, and C. Barrett.
Murxla: A Modular and Highly Extensible API Fuzzer for SMT
Solvers.
International Conference on Computer Aided Verification,
pages 92–106, 2022.

James Davenport CA and SMT 27 / 31

Bibliography
XI

D.A. Plaisted.
New NP-Hard and NP-Complete Polynomial and Integer
Divisibility Problems.
Theor. Comp. Sci., 31:125–138, 1984.

G.F. Royle.
The Transitive Groups of Degree Twelve.
J. Symbolic Comp., 4:255–268, 1987.

A. Schinzel.
On the greatest common divisor of two univariate polynomials,
I.
In A Panorama of number theory or the view from Baker’s
garden, pages 337–352. C.U.P., 2003.

James Davenport CA and SMT 28 / 31

Bibliography
XII

H.P.F. Swinnerton-Dyer.
Letter to E.R. Berlekamp.
Mentioned in [Ber70], 1969.

H.P.F. Swinnerton-Dyer, N.M. Stephens, J.H. Davenport,
J. Vélu, F.B. Coghlan, A.O.L. Atkin, and D.J. Tingley.
Numerical Tables on Elliptic Curves.
Modular Functions of One Variable IV (Proceedings Antwerp
1972), pages 75–114, 1975.

N.J.A. Sloane.
The Online Encyclopedia of Integer Sequences.
Notices A.M.S., 50:912–915, 2003.

James Davenport CA and SMT 29 / 31

Bibliography
XIII

The GAP Group.
GAP — Groups, Algorithms, and Programming, Version
4.11.1.
https://www.gap-system.org, 2021.

A.K. Uncu, J.H. Davenport, and M. England.
SMT-Solving Combinatorial Inequalities.
To appear in Proc. SCSC 2022, 2022.

Joris van der Hoeven.
On the Complexity of Symbolic Computation.
In Hashemi [Has22], pages 3–12.

James Davenport CA and SMT 30 / 31

https://www.gap-system.org

Bibliography
XIV

S. van de Sandt, L.H. Nielsen, A. Ioannidis, A. Muench,
E. Henneken, A. Accomazzi, C. Bigarella, J.B.G. Lopez, and
S. Dallmeier-Tiessen.
Practice meets Principle: Tracking Software and Data
Citations to Zenodo DOIs.
https://arxiv.org/abs/1911.00295, 2019.

James Davenport CA and SMT 31 / 31

https://arxiv.org/abs/1911.00295

