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History

I have worked in computational algebra, especially computer
algebra/symbolic computation, for over 50 years: [SDSD+75]
contains results from 1970–72, and my thesis [Dav81] is still
occasionally cited.

Since the inspirational talk of Erika Ábrahám at ISSAC 2015
[Á15] I have been interested in the interface between
Symbolic Computation and Satisfiability Checking.

This has led to an EU-funded project [ABB+16], and a
sequence of workshops
http://www.sc-square.org/workshops.html.

Initially this seemed like a dialogue of the deaf [Dav17], but
things are improving.
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Complexity in Computer Algebra (1)

When it comes to dense polynomials/matrices, we have found
good algorithms, and apart from the gap in matrix multiplication
etc. exponent (2 + o(1) ≤ ω ≤ 2.3728596 [AW21]) we have upper
bounds that match lower bounds for most basic problems.
When it comes to sparse polynomials, there is a major problem:
lack of correlation between input size and output size. Consider

xn − 1

x − 1
= xn−1 + xn−2 + · · ·+ 1

gcd(xpq − 1; xp+q − xp − xq + 1) = xp+q−1 − xp+q−2 ± · · · − 1

(the second example is due to [Sch03]). There has been significant
progress here since [DC09]: [GGdCR22] has algorithms that are
nearly linear in max(|Input|, |Output|).
[ETCT22] is an interesting development in the area of polynomial
root isolation: their algorithm is ÕB(d

2 + dτ) on average whereas
the “best” algorithm has a worst case complexity of ÕB(d

3+d2τ)
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Complexity isn’t all

But many problems do not have as neat a correlation between
worst-case complexity and average-case, even if one could prove a
result about “average complexity”, which often has not been done.

Polynomial Factorisation: the answer may be “irreducible”,
but this may be easily found, or be very difficult [SD69]. The
time may also depend on random choices for evaluations.

Gröbner bases: the answer may be {1}, but this may require a
great deal of computation. Note that there are
doubly-exponential Gröbner bases [Chi09, MR13], but these
seem to be “rare”.

Cylindrical Algebraic Decomposition. Again, there are
doubly-exponential examples [BD07, DH88], but these seem
to be “rare”.

Can we quantify “rare”? See [AL17], who propose to ignore
exponentially rare doubly exponential examples.
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Complexity in Computer Algebra Publications

Figure: ISSAC Proceedings, from [vdH22]

Note that (apart from 2004!) there was significantly more
attention on complexity than benchmarks.
However, by and large, every benchmark set is different.
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Benchmark Sets

SAT is the quintessential NP-complete problem which is stunningly
easy in practice (much of the time). Since 2000, every car made by
a German manufacturer is a result of SAT-solving [?].
Hence the SAT and SMT communities collect large,
centrally-curated, collections of benchmarks. There is still a
question of how representative these are, and new sub-collections
are being contributed [UDE22].
[Dav21] is a plea for Computer Algebra to follow the tradition of
the SAT and SMT communities, and collect large,
centrally-curated, collections of benchmarks. Computer Algebra
is bad at this.
Since this is a SIGSAM-sponsored conference, we might have a
discussion on how SIGSAM could help with this.
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Such Benchmark sets allow contests

SAT contests are here: http://www.satcompetition.org. They
have been run since 2002. In the early years, there were distinct
tracks for Industrial/Handmade/Random problems: this has been
abandoned. SMT contests now have Cloud and Parallel tracks.
The methodology is that the organisers accept submissions (from
contestants1 and others), then produce a list of problems (in
DIMACS, a standard format) and set a time (and memory) limit,
and see how many of the problems the submitted systems can
solve on the contest hardware.
SAT is easy to certify (the solver just produces a list of values of
the xi ). Verifying UNSAT is much harder, but since 2013 the
contest has required proofs.
The general feeling is that these contests have really pushed the
development of SAT solvers, roughly speaking ×2/year. For
comparison, Linear Programming has done ×1.8 over a greater
timeline and with more rigorous documentation [Bix15].

1In 2020, contestants were required to submit at least 20 problems, as well
as a solver.
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We need to improve Data Citation

Data Citation is a mess in practice [vdSNI+19]: only 1.16% of
dataset DOIs in Zenodo are cited (and 98.5% of these are
self-citation).

Is poorly harvested: [vdSNI+19, Figure 5].

so there
are between
4,000–20,000
data sets waiting
to be harvested
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We need to improve Data Citation

Data Citation is a mess in practice [vdSNI+19]: only 1.16% of
dataset DOIs in Zenodo are cited (and 98.5% of these are
self-citation).

Is poorly harvested: [vdSNI+19, Figure 5].

Is still a subject of some uncertainty: [MN12, KS14]

Changes are still being proposed [DPS+20]

de facto people cite a paper if they can find one.

? A rôle for Communications in Computer Algebra.
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Important Databases in Pure Mathematics

OEIS Online Encyclopedia of Integer Sequences [Slo03];

Long time at a personal site: http:
//www.research.att.com/~njas/sequences; now
at https://oeis.org/.

* Recommended citation: “N. J. A. Sloane, editor, The
On-Line Encyclopedia of Integer Sequences, published
electronically at https://oeis.org, [date]”.

� But you have to search the website to find it!

+ Large toolset around it.
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Group Theory (as an example)

The Classification of Finite Simple Groups

The Transitive Groups acting on n points: [BM83] (n ≤ 11);
[Roy87] (n = 12); [But93] (n = 14, 15); [Hul96] (n = 16);
[Hul05] (17 ≤ n ≤ 31); [CH08] (n = 32).

These are in GAP (and MAGMA), except that n = 32 isn’t in
the default build.

+ These are a really great resource (if that’s what you want)

– How do you cite them? “[The21, GAP transgrp library]”?

Also Other libraries such as primitive groups

� Group Theory is “easy”: for a given n there are a finite
number and we “just” have to list them.
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SMT can learn from CA: Finite Fields

A new trend at SMT 2022 was having the theory T be finite fields
(sometimes Fp for small p, sometimes Fp for large p, and
sometimes Fqn).
Note that if we actually want solutions in Fp rather than its
algebraic closure, we need to add the field equation xp − x : a
lesson that the SMT community is learning.

Fp small The usual approach is “bit-blasting”, i.e. representing a
number < 2n by n booleans representing its bits. But both
JHD (p = 7) and [Had22] (p = 3, 13) have had success with
direct representations (one Boolean for each value).

Fp large This was described at SMT 2022, but the field equations are a
major bottleneck.

Fqn As above.
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SMT can learn from CA: Finite Fields

The key trick with the field equations for large fields is to ignore
them at first. After we have a system of equations, via Gröbner or
SMT, then if the equations are zero-dimensional there is (possibly
after FGLM [FGLM93]) a polynomial pn in xn only. Then by
repeated squaring and reduction we compute xpn − xn modulo pn.
Even if the equations are not zero-dimensional, this is often a
better approach. JHD has had some (limited) success with

1 Compute Gröbner Basis (without field equations)

2 Add the reduction of xpn − xn modulo the whole Gröbner Basis

3 Recompute the Gröbner Basis and repeat as necessary.
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Accuracy

A problem for both fields, but where the SMT community is
probably more advanced, is the question of the accuracy of the
systems. Both Computer Algebra and SMT systems are large,
complex, and often multi-generational, systems. The
multi-generational aspect is probably more acute in Computer
Algebra: JHD still gets queries (and bug reports) on his thesis
[Dav81]. Maple is over 40 years old, SageMath may appear new,
but incorporates Macsyma which is 55 years old.
Practically no computer algebra system can “explain” its results:
[Dav81] can produce a trace of decisions, but that is a long way
from a certificate.
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Accuracy in Computer Algebra: Formal Proof

GCD Verifying “common divisor” is easy, “greatest” is
NP-hard for sparse polynomials [Pla84].

GCD and SAT! The NP-hardness results of [Pla84] rely on
encoding a SAT-formula W in x1, . . . , xn as PM(W ),
which vanishes at the M =

∏n
i=1 pi th roots of unity

corresponding to satisfying assignments for W .

Blowup [Sch03]

gcd(xpq − 1, xp+q − xp − xq + 1) = (xp−1)(xq−1)
x−1

= xp+q−1 + xp+q−2 ± · · · − 1︸ ︷︷ ︸
2min(p, q) terms

,

James Davenport CA and SMT 15 / 31



Accuracy in Computer Algebra: Formal Proof

GCD As above.

Factorisation Verifying that these are the factors is easy: verifying
that they are irreducible may require the trace of the
original run in hard cases [SD69].

Integration
∫
f = g is (generally) verifiable by differentiation,

verifying unintegrability seems to require a trace, and
proof of the relevant theorems.

Gröbner Bases Verifying that the output G is a Gröbner base is
(relatively) trivial: All S(gi , gj) ⇒G 0. Verifying that
it’s the base of the input fi is harder: ∀i : fi ⇒G 0
and we need to track the linear algebra and end up
with the ci ,j such that each gi =

∑
j ci ,j fi .

Cylindrical Algebraic Decomposition This is really hard, and
brighter people than me have failed [CM12] to prove
the algorithm. There is some hope that we could
prove specific instances [ADE+20], but this has not
been tried yet.
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Accuracy: Software Engineering

[NPB22] report on an SMT fuzzer for testing the reliability of
SMT solvers. It appears this is the latest of several such. It does
seem pretty impressive: “more than 100 [errors] for cvc5 alone, and
some of them critical”.
Since most of these SMT systems are written in C/C++, it was
possible to use gcov, the standard GCC tool, to measure code
coverage from fuzzing. Though not perfect, it is a measure of test
validity.
This would be difficult/impossible for the “kernel plus written in
self” model of most algebra systems.
Nevertheless, Computer Algebra systems, despite their age, could
benefit from modern software engineering.

James Davenport CA and SMT 17 / 31



Bibliography
I
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