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Plan of Talk

1 Background

2 Parametric Occurrence of Multiple Steady States
[BDE+17, EEG+17, BDE+19]

3 Expected number of positive real solutions in reaction
networks [FS20]

4 Personal Conclusions
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Prehistory at Bath

1988 “Solution of Some Equations in Biochemistry”
[BDS88] — rejected by J. Theoretical Biology as
“this is too theoretical”.

1991 “Computer Algebra Approaches to Enzyme Kinetics”
[BDD+91] — let’s pretend it’s Control Theory.

1993 “Solution of Some Equations in Biochemistry”
Mustafa Bayram’s thesis —[Bay93].

We could show that there was scope for applying computer algebra
to enzyme kinetic reactions.
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Polynomial Systems Theories

Why do I say “theories”?

C1 Equations from Q[x1, . . . , xn], solutions in C —
Gröbner Bases [Buc65, CLO15]

C2 Equations from Q[x1] . . . [xn], solutions in C —
Regular Chains [Wu 78, ALM99]

R Equations from Q[x1] . . . [xn], solutions in R —
Cylindrical Algebraic Decomposition [Col75]

* Can also be computed via Regular Chains [CM14]

Only C1 was available in easy software at the time of our early
work (and it is still the most accessible — in all computer algebra
systems).
None of these quite meet need Biology’s needs, where almost all
variables (concentrations, populations etc.) are in R≥0.
All are doubly-exponential worst case in the number of variables
(including parameters): [BD07, DH88, MM82, MR13].
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Gröbner Bases [Buc65, CLO15]

C2 Equations from Q[x1] . . . [xn], solutions in C —
Regular Chains [Wu 78, ALM99]

R Equations from Q[x1] . . . [xn], solutions in R —
Cylindrical Algebraic Decomposition [Col75]

* Can also be computed via Regular Chains [CM14]

Only C1 was available in easy software at the time of our early
work (and it is still the most accessible — in all computer algebra
systems).
None of these quite meet need Biology’s needs, where almost all
variables (concentrations, populations etc.) are in R≥0.
All are doubly-exponential worst case in the number of variables
(including parameters): [BD07, DH88, MM82, MR13].

James Davenport Polynomials & Biology 4 / 48



Polynomial Systems Theories

Why do I say “theories”?

C1 Equations from Q[x1, . . . , xn], solutions in C —
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Parametric Occurrence of Multiple Steady States
[BDE+17, EEG+17, BDE+19]

We aim to identify symbolically regions of a parameter space
over which a biological network exhibits multi-stationarity
(multiple steady states).

When the corresponding reactions are modelled by mass
action kinetics, then mathematically the task is to (a) identify
positive real solutions of a parametrised system of polynomials
and (b) check stability. We focus on task (a).

Specifically, we consider the Mitogen-Activated Protein
Kinases (MAPK) cascade. We have results for models # 26
(and # 28) in the Biomodels Database2.

In contrast to most of the literature on the topic, we work
with methods from Symbolic Computation (where values are
exact rather than floating point).

2http://www.ebi.ac.uk/biomodels-main/
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MAPK – what and why?

A Mitogen-Activated Protein Kinase (MAPK) is a type of protein
kinase enzyme.

Why study MAPK?

MAPKs are involved in directing cellular responses to a
diverse array of stimuli, such as mitogens, osmotic stress and
heat shock.

They regulate cell functions including proliferation, gene
expression, differentiation and mitosis.

Why study multistationarity?

Instrumental to cellular memory and cell differentiation during
development or regeneration of multicellular organisms.

Used by micro organisms in survival strategies.
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MAP: Phosphorylated residues are displayed in red

X-ray structure of the ERK2 MAP kinase in its active form

Source: Wikipedia - via molecular visualization system PyMol.
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Symbolic Methods Case Study (4/23)

This is work of an interdisciplinary group including researchers
from Mathematics, Computer Science, and Systems Biology.
Naturally, our focus here will be on symbolic computation aspects.

Why use symbolic methods for this problem?

Numerical methods observed to give incorrect results at
certain points in parameter space.

Symbolic methods have the scope to give semi-algebraic
descriptions of parameter space: the exact solution.
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Case Study: Model 26

From: www.ebi.ac.uk/biomodels-main/BIOMD0000000026

ẋ1 = k2x6 + k15x11 − k1x1x4 − k16x1x5

ẋ2 = k3x6 + k5x7 + k10x9 + k13x10 − x2x5(k11 + k12)− k4x2x4

ẋ3 = k6x7 + k8x8 − k7x3x5

ẋ4 = x6(k2 + k3) + x7(k5 + k6)− k1x1x4 − k4x2x4

ẋ5 = k8x8 + k10x9 + k13x10 + k15x11−
x2x5(k11 + k12)− k7x3x5 − k16x1x5

ẋ6 = k1x1x4 − x6(k2 + k3)

ẋ7 = k4x2x4 − x7(k5 + k6) 11 differential equations

ẋ8 = k7x3x5 − x8(k8 + k9) 11 variables

ẋ9 = k9x8 − k10x9 + k11x2x5 16 parameters

ẋ10 = k12x2x5 − x10(k13 + k14)

ẋ11 = k14x10 − k15x11 + k16x1x5

James Davenport Polynomials & Biology 9 / 48
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Rate Constants

The biomodels database also gives us meaningful values for the
rate constants.

Some are measured:

k1 = 0.02, k3 = 0.01, k4 = 0.032,

k7 = 0.045, k9 = 0.092, k11 = 0.01,

k12 = 0.01, k15 = 0.086, k16 = 0.0011.

Others are estimated with confidence:

k2 = 1, k5 = 1, k6 = 15, k8 = 1,

k10 = 1, k13 = 1, k14 = 0.5.

James Davenport Polynomials & Biology 10 / 48



Linear Conservation Constraints (6/23)

Three further Linear Conservation Constraints may be derived,
introducing three further constant parameters.

x5 + x8 + x9 + x10 + x11 = k17

x4 + x6 + x7 = k18

x1 + x2 + x3 + x6 + x7 + x8 + x9 + x10 + x11 = k19

We work with some realistic values for these new parameters:

k17 = 100, k18 = 50, k19 ∈ {200, 500}.

However, the confidence in these estimates is not as high as the
others. Ideally we would treat all three of these as symbolic
parameters.
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Semi-algebraic System of Interest I (7a/23)

To identify regions of multistationarity we must count real (ideally
positive) solutions of an integer polynomial system:

Replacing the left hand sides of Model 26 by 0;

Supplementing with the linear conservation constraints;

Substituting for values of parameters:

Ideally all but k17, k18, k19;
In [BDE+17] it was all but one of these.

Converting to rationals and multiplying up to integers.

Appending positivity constraints on all variables and free
parameters.

James Davenport Polynomials & Biology 12 / 48
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Semi-algebraic System of Interest II (7b/23)

0 = −200x1x4 − 11x1x5 + 860x11 + 10000x6,

0 = −16x2x4 − 10x2x5 + 500x10 + 5x6 + 500x7 + 500x9,

0 = −9x3x5 + 3000x7 + 200x8,

0 = −10x1x4 − 16x2x4 + 505x6 + 8000x7,

0 = −11x1x5 − 200x2x5 − 450x3x5 + 10000x10 + 860x11 + 10000x8 + 10000x9,

0 = 2x1x4 − 101x6,

0 = 4x2x4 − 2000x7, 14 polynomial equations

0 = 45x3x5 − 1092x8, 11 variables

0 = 5x2x5 + 46x8 − 500x9, 1− 3 parameters

0 = x2x5 − 150x10, 12− 14 positivity conditions

0 = 11x1x5 + 5000x10 − 860x11, denote (conjunction of) this as φ

0 = −k17 + x10 + x11 + x5 + x8 + x9,

0 = −k18 + x4 + x6 + x7,

0 = −k19 + x1 + x10 + x11 + x2 + x3 + x6 + x7 + x8 + x9,

0 < x1, . . . , 0 < x11, 0 < k17, 0 < k18, 0 < k19.
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What symbolic methods do we use?

Tools designed for studying real solutions of polynomial systems
(i.e. including inequalities and inequations - not just ideals).

Cylindrical Algebraic Decomposition (CAD). Developed by
Collins [Col75] and his students starting in the 1970s, and
heavily developed since. Numerous implementations:
Mathematica, ProjectionCAD, Qepcad-B, Redlog,
RegularChains, SyNRAC, Maple.

Virtual Substitution (VS). Developed by Weispfenning
[Wei88, Wei94] and his students starting in the late 1980s.
Leading implementation in Redlog [DSS04] and Maple
[Ton21].

Lazy Real Triangularize (LRT). Recent work by Chen et al.
[CDM+11, CM16]. Implemented in the RegularChains
Library for Maple.
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Tools designed for studying real solutions of polynomial systems
(i.e. including inequalities and inequations - not just ideals).

Cylindrical Algebraic Decomposition (CAD). Developed by
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heavily developed since. Numerous implementations:
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What is a CAD? (9/23)

A CAD is:

a decomposition meaning a partition of Rn into connected
subsets called cells;

(semi)-algebraic meaning that each cell can be defined by a
sequence of polynomial equations and inequalities.

cylindrical meaning the cells are arranged in a useful manner -
their projections (relative to a given variable ordering) are
either equal or disjoint.

Produced from a set of polynomials so each has constant sign
(+/0/−) in each cell (thus truth of overall system also constant).

CAD is necessary, and theoretically sufficient to solve the problem,
but used alone is computationally infeasible. We found success
when combining with either VS or LRT (focus on latter here).
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Approach 1: CAD + VS in Redlog

Consider φk19 as the system with all parameters except k19 set.

We solve for i ∈ {1, . . . , 11} eleven QE problems using VS:

φ
(i)
k19

= VS(∃x1 . . . ∃xi−1∃xi+1 . . . ∃x11φk19).

Each φ
(i)
k19

is a bivariate quantifier-free formula in k19 and the
corresponding xi .

We then construct eleven 2-dimensional CADs, one for each
φ
(i)
k19

(projecting xi and decomposing k19 axis).

Feasible in Redlog providing we do not extend over 0-dim k19-cells.
Hence accept finitely many known blind spots (a single value,
hence biologically infeasible) in parameter space.
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Pruned CAD tree for φ
(2)
k19

First layer decomposes k19-axis.

Rectangular cells are sections - those in top layer are the blind
spots in k19.

Ovals are sectors - full dimensional cells. Over these we
extend to a cylinders in the (x2, k19)-plane.

We see that the decomposition of that cylinder either has one
or three sections depending on k19 value.
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Conclusions from Approach 1

All 11 CAD trees were similar giving the following observations:

(i) For all positive choices of k19 (extending to ∞) there is at
least one positive solution for (x1, . . . , x11).

(ii) There is a break point around k19 = 409.253 where the
system changes its qualitative behaviour:

Below this there is exactly one solution
Above there are at least 3 (and at most 311).
The point itself is one of the blind spots.

(iii) We may give the break point exactly as an algebraic number
with degree 10 defining polynomial.
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Approach 2: CAD + Real Triangularization

A Real Triangularization is a decomposition of a polynomial system
into finitely many regular semi-algebraic systems. These are the
real counterparts of the well studied regular chains. Such
decompositions are always possible.
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Approach 2: CAD + LRT

We can also produce a Lazy Real Triangularization (LRT) which
outputs the highest dimension component and unevaluated
function calls: if evaluated and their output appended we gain the
full solution.
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LRT for Case Study with 1 free parameter

With one free parameter we can easily build an LRT for the system:

The evaluated solution component is not only triangular but:

1 With all but one equation linear in its main variable;

2 The remaining equation bivariate (one variable and the
parameter);

3 Only two positivity constraints still explicitly stated (on the
two variables in that bivariate equation).

Thus solving the bivariate problem allows for easy back
substitution of solutions.

The unevaluated components from LRT concern only a handful of
isolated positive real points - so as with Approach 1 we have a few
known blind spots.
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Solution Formulae

With k17 = 100 and k18 = 50 the following are valid formulae for
positive real solutions at all but 3 isolated points:

x11 = − 1
60x

2
2 + 1

600(10k19 − 10x1 − 37x3 + 10x4 − 2100)x2

− 9
200x

2
3 + 1

600(−27x1 + 27x4 + 27k19 − 4650)x3

− x1 + x4 + k19 − 50,

x10 =
1

150x2(x2 + x3 − x4 − k19 + x1 + 150),

x9 =
1

18200(69x3 + 182x2)(x2 + x3 − x4 − k19 + x1 + 150),

x8 =
15
364(x2 + x3 − x4 − k19 + x1 + 150)x3,

...

x2 = rational function in x1 and k19,

where x1 and k19 are the real positive solutions of a degree 6
bivariate polynomial equation.
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Approach 2 conclusions

To finish the Approach 2 solution we can produce a full CAD
sign-invariant for that bivariate polynomial. A CAD of the
(x1, k19)-plane into 135 cells takes a few seconds.

Interrogating the cells we find the same break point value of k19
below which there is a single positive real solution, and above
which there are exactly three positive real solutions. Again, the
point itself was one the blind spots.

This time we may conclude exactly 3 (instead of at least) which
indicates a possible bistability region, of interest to biologists. We
also have the exact solution formulae for the region.
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Approach 2 Other Choices

We can repeat this process for different choices of free parameter
and different choices of fixed parameter values.

With k17 set to 95 instead of 100 we find that the break point
moves to k19 = 369.917. With k17 set to 105 it moves to
k19 = 450.077.

Allowing k17 to be free and fixing k19 = 200 we find that
there is only ever one positive real solution.

Allowing k17 to be free and fixing k19 = 500 we find the
number of positive real solutions moving from 1 to 3 to 1
breaking at k17 = 85.988 and k17 = 110.869.

Similarly, allowing k18 to be free and fixing k19 = 200 we find
there is only ever one positive real solution; but fixing
k19 = 500 instead we find 3 real solutions between
k18 = 44.434 and 58.329 and 1 otherwise.
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Grid Sampling

We can use grid-sampling to get an understanding of the
parameter region in more than one dimension. We have considered
two approaches:

1. Numeric: Using the homotopy solver Bertini [BHSW13].

In [BDE+17] we used this to hypothesise the shape of the
bistability region. However, at some sample points the method
gave errors (identifying the wrong number of solutions due to
rounding errors).

2. Symbolic: Iteratively applying RT + CAD with no free
parameters.

Not only did this approach avoid such errors, it even produced the
images quicker than Bertini for model 26 (although the timings
were reversed for Model 28). Details are in [EEG+17].
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Grid Sampling Comparison
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Going Further

We can increase sampling density to get a better
understanding of the multi-stationarity region;
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Going Further

We can increase sampling density to get a better
understanding of the multi-stationarity region;

and make a 3d grid-sampling.

But ideally we want semi-algebraic descriptions. We have
results [BDE+19] for two free parameters:

Preprocessing with a graph theoretic reduction method;
Lazy Real Triangularize;
and the restricted CAD lifting of Approach 1.

Note: The blind spots are now blind line segments here.
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Final Thoughts from Bath/Coventry/. . .

Conclusions:

Problems like MAPK were, until recently, out of the scope of
symbolic methods. But by combining the latest approaches
progress is possible.

The two parameter case seems in reach: see [BDE+19]. Three
parameters?

In either case, incorporating symbolic techniques leads to
much better grid sampling.
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Setting for [FS20]: Hybrid Histidine-Kinase Network (HK)

X1
k1−−→ X2

k2−−→ X3
k3−−→ X4

X3 + X5
k4−−→ X1 + X6

X4 + X5
k5−−→ X2 + X6

X6
k6−−→ X5



k4x3x5 − k1x1 = 0
k5x4x5 + k1x1 − k2x2 = 0
−k4x3x5 + k2x2 − k3x3 = 0
−k4x3x5 − k5x4x5 + k6x6 = 0
x1 + x2 + x3 + x4 − T1 = 0
x5 + x6 − T2 = 0

Variables xi s (concentrations of species).

Parameters ki s (reaction rate constants) and Ti ’s (constants
of conservation laws).

The network is called multistationary if there exists a choice of
parameters for which the new system of equations has more than
one positive solution.
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Region of multistationarity

For illustration purposes fix the following values for all parameters other

than T1 and T2.

(k1, . . . , k6) = (0.7329, 100, 73.29, 50, 100, 5).

Question

Find the region in (T1,T2)-space intersected with the box
[0, 5]× [0, 5] where the network is multistationary.
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Using CAD

CAD gives 6 open cells where number of steady states is invariant
in each.

Number of cells grows fast, specially doubly exponential on

d = number of variables + number of parameters.

Therefore only applicable on very small systems.
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What is Kac-Rice formula? [Kac43]

Let f : RN −→ RN be a polynomial system with coefficients being
polynomials on random parameters with uniform or normal
distribution. Then under some conditions we can find the expected
number of positive real roots:

E
(
#
(
f −1(0) ∩ RN

>0

))
=

∫
RN
>0

E
(
| det(Jt f )| | f (t) = 0

)
pt(0)dt.
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=

∫
RN
>0

E
(
| det(Jt f )| | f (t) = 0

)
pt(0)dt.

The key to compute Kac-Rice integral in reaction network settings

For each polynomial isolate one parameters in a linear form. The
easiest choice;

For conservation laws isolate its conserved amount Ti .

For steady state polynomials, choose a reaction rate constant
ki . By linear operations remove its corresponding term in the
rest of steady state polynomials. Then isolate it in the only
steady state polynomial containing it.
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Using Kac-Rice formula

Make a grid and for each sub-box compute the Kac-Rice integral
with

T1 ∼ U([ai , ai+1]),T2 ∼ U([bj , bj+1])
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JHD’s Personal Conclusions

1 Biology, especially the enzyme kinetics area, is a very
challenging area in view of the number of parameters, and the
doubly-exponential nature of symbolic algorithms (hence the
DEWCAD project).

2 However, we can afford to ignore special points, as we want
realistic answers.

3 Nevertheless, we can make progress, using

(a) a judicious combination of numeric and symbolic techniques

(*) (quite often more than one numeric and one symbolic)

(b) the intelligence of my collaborators.

4 The computational mathematicians are seeing slightly more
acceptance by the biologists — coauthors of
[BDE+17, BDE+19, EEG+17].
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T. Sturm, and A. Weber.
A Case Study on the Parametric Occurrence of Multiple
Steady States.
In Proceedings of ISSAC ’17, pages 45–52, 2017.

James Davenport Polynomials & Biology 41 / 48



Bibliography
III

R.J. Bradford, J.H. Davenport, M. England, H. Errami,
V. Gerdt, D. Grigoriev, C. Hoyt, M. Košta, O. Radulescu,
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