
Lessons between Computer Algebra and
Verification/Satisfiability Checking

James Davenport1

University of Bath
J.H.Davenport@bath.ac.uk

20 June 2018

1Thanks to EU H2020-FETOPEN-2016-2017-CSA project SC2 (712689)
Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

But first, a word from our sponsors

EU Coordinating and Support Action 712689
Satisfiability Checking and Symbolic Computation
http://www.sc-square.org/CSA/welcome.html

University of Bath James Davenport; Russell Bradford

RWTH Aachen Erika Ábrahám
Fondazione Bruno Kessler Alberto Griggio; Alessandro Cimatti
Università degli Studi di Genova Anna Bigatti
Maplesoft Europe Ltd Jürgen Gerhard; Stephen Forrest
Université de Lorraine (LORIA) Pascal Fontaine
Coventry University Matthew England
University of Oxford Daniel Kroening; Martin Brain
Universität Kassel Werner Seiler; John Abbott
Max Planck Institut für Informatik Thomas Sturm
Universität Linz Tudur Jebelean; Bruno Buchberger;

Wolfgang Windsteiger; Roxana-Maria Holom

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

http://www.sc-square.org/CSA/welcome.html

A Personal Reflection

Q Are you a happy computer science professor?

JHD Yes: several times a week I put my life in the hands
of my ex-students, and I am happy with this!

Q How does this happen?

JHD Several work for a local software house, writing
railway signalling and air traffic control software

Q When mine write code, it has bugs!

JHD Same, but they don’t deliver bugs

Q How come?

JHD Program verification, based on satisfiability.

JHD For example National Air Traffic System has
1,000,000 crash-free hours

+ Métro ligne 14 (driverless) software delivered in 1999:
no bug reports

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

History: Computer Algebra

1894 Bachmann [Bac94] invents O-notation.

1953 First MSc theses in Computer Algebra

1961 Slagle’s AI thesis [Sla61] “integrates better than a
freshman”.

1966 First Computer Algebra Conference (SYMSAC)

1967 Moses’ thesis [Mos67], beating [Sla61]
algorithmically, moves computer algebra out of AI

1974 Knuth [Knu74] popularises O etc. in computer
science

today Annual ISSAC conferences, dominated by complexity
results

And ACA and other conferences.

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

History: SAT Solving

1971 Cook [Coo71] shows that 3-SAT is NP-complete.

1988 Exponential lower bounds for resolution (DPLL)
solvers

1993 Modern SMT (Satisfiability Modulo Theories) starts
[AG93]

∼1995 CDCL (Conflict Driven Clause Learning) introduced

1996 First SAT conference

2001 “Two watched literals” invented [MMZ+01]

“just” a programming hack, but powerful

2003 First SMT2 workshop

today Annual SAT conferences and SMT workshops, with
contests a major feature

2Then known as PDPAR.
Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

Reminder of SAT

Problem (SAT)

Given a Boolean formula (in CNF) (lij ∈ {xk , xk} : 1 ≤ k ≤ m)

(l11 ∨ l12 ∨ · · ·) ∧ (l21 ∨ l2 ∨ · · ·) ∧ · · · ∧ (ln,1 ∨ ln,2 ∨ · · ·) (1)

find values of xk ∈ {T ,F} to make (1) true, or return UNSAT

These days, contests ask for an “UNSAT core”, i.e. a (locally)
minimal unsatisfiable equivalent.
NB: the global minimum is impracticable [CGS11, §3.1].
SAT examples with m, n > 106 occur routinely in hardware
verification, and are routinely solved.

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

Statement of SMT

Problem (SMT)

Given a Boolean formula (possibly in CNF) (lij ∈ T a theory)

(l11 ∨ l12 ∨ · · ·) ∧ (l21 ∨ l2 ∨ · · ·) ∧ · · · ∧ (ln,1 ∨ ln,2 ∨ · · ·) (2)

find values in the theory to make (2) true, or return UNSAT
(possibly also an UNSAT core)

There are many possible theories: SMT-LIB
http://smtlib.cs.uiowa.edu/theories.shtml lists seven,
such as Reals, But there are over 50 “benchmark categories”,
such as QF_NRA (quantifier-free nonlinear real arithmetic3).

3SMT-speak uses “arithmetic” where this community would use “algebra”.
Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

http://smtlib.cs.uiowa.edu/theories.shtml

Statement of SMT QF NRA

Problem (SMT–QF NRA)

Given a Boolean formula (possibly in CNF) (lij := fijσij0,
fij ∈ Q[x1, . . . , xk], σij ∈ {=, 6=, <,>,≤,≥})

(l11 ∨ l12 ∨ · · ·) ∧ (l21 ∨ l2 ∨ · · ·) ∧ · · · ∧ (ln,1 ∨ ln,2 ∨ · · ·) (3)

find values for x1, . . . , xk ∈ Q to make (3) true, or return UNSAT.

Fortunately Q is sufficient, but Q is not (x2 − 2 = 0).
We could ask for an UNSAT core here as well, but one tends to
need an “UNSAT core+proof”, a concept that’s still not
well-defined.

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

Translation into Computer Algebra

Problem

Solve (or prove insoluble)

∃x1 · · · ∃xkΦ(fiσi0) : (4)

fi ∈ Q[x1, . . . , xk], σi ∈ {=, 6=, <,>,≤,≥}, Φ a Boolean
combination.

This is more specific than usual quantifier elimination/Cylindrical
Algebraic Decomposition, as all variables are quantified with the
same quantifier, and hence the doubly-exponential bounds
[BD07, DH88] don’t apply.

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

Goals

Computer Algebra Describe the space of all solutions

Satisfiability Find one solution, or UNSAT

#SAT is the problem of counting all solutions, and this is
known to be much harder in practice

MAXSAT is the problem of finding the “best” solution, also
much harder in practice

worse Cylindrical Algebraic Decomposition will find all the
geometry of all the polynomials, so will struggle with

(x < −1) ∧ (x > 1) ∧ Φ(big polynomials) (5)

whereas any decent SMT will say UNSAT
immediately

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

Strategies

Computer Algebra:

[Col75] Look at the fi first

[McC99] If Φ is f1 = 0 ∧ Φ′ process f1 and xk specially, then
look at the resxk (f1, fi) first

[BDE+16] Handle (f1 = 0 ∧ Φ′) ∨ Φ′′ as well

[McC01] handle multiple fi = 0

[ED16] improve on this, provided fi etc. are primitive

Satisfiability Modulo Theories:

all look at the logic first

[JdM12] Use CAD-inspired techniques to construct a
refutation

[Bro13, Bro15] Feed these ideas back into Computer Algebra

Idea An imprimitive polynomial f (x) = 0 is a disjunction
cont(f) = 0 ∨ pp(f) = 0

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

Other theories

QF LRA Can make use of linear programming, another field
where practice is far better than theory

Linearise Work in [CGI+17, Irf18] linearises multiplication, and
even transcendental functions

Used to verify aircraft wheel systems: note the R refers to
the real world

QF FLOAT to verify programs manipulating floating-point
numbers

� Tends to be done by converting into bit-vectors: very
expensive.

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

Meta-Strategies

Computer Algebra:

Complexity What’s the worst case?

Also Can we prove lower bounds (e.g. [BD07])

Algorithms probably want four examples to show we’re faster
than some other guy

But we run these tests, so probably comparing my
experimental with his old production

Satisfiability Modulo Theories:

Benchmarks are everything, the more examples (preferably
thousands) the better

Contests with independent jury/setting implement these.

Therefore doing well on easy cases also matters

And heuristics matter

But how do you present results of benchmarks on thousands of
examples? [BDG17]

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

“Cactus” or “Survival” plots

The methodology for producing these, given a large benchmark set
of problems, is as follows.

1 For each method separately
1 Solve each problem pi , noting the time ti (up to some

threshold T).
2 Sort the ti into increasing order (discarding the time-out ones).
3 Plot the points (t1, 1), (t1 + t2, 2) etc., and in general

(
∑k

i=1 ti , k).

2 Place all the plots on the same axes, optionally using a
logarithmic scale for time.

3 Optionally add “virtual best solver”

N.B. There is therefore no guarantee that the same problems were
used to produce time results from different solvers.

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

A plot

 0

 500

 1000

 1500

 2000

 0.01 0.1 1 10 100 1000 10000

#
 o

f
in

s
ta

n
c
e
s

time

log-accumulated

base-newrw-strict-tan-msat
base-newrw-strict-tan-cvc4
base-newrw-strict-tan-yices

base-newrw-strict-tan-z3
base-newrw-strict-tan-best

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

Another plot (axes swapped)

Cactus plot
Heizmann

50 100 150 200
0 s

10 s

20 s

30 s

40 s

50 s

instances solved

tim
e Colibri

CVC4
MathSAT
MathSAT (ACDL)
Z3

23 CVC4 IEEE-754 implementation

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

Plot with Virtual Best Solver

Figure: Schanda Cactus Plot

25 50 75 100 125 150 175

0 s

10 s

20 s

30 s

40 s

50 s

instances solved

ti
m

e Virtual best
Colibri
cvc4 (F)
MathSAT
Z3

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

How do two solvers compare?

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000 10000

S
ol

ve
r

2

Solver 1

unsatisfiable
satisfiable

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

Conclusions

“People like theorems because they are neat, but people use
software because it solves problems”

1 Computer Algebra does not make enough (?any) use of SAT
solvers

2 The same is probably true of linear programming
3 Can computer algebra help with QF_FLOAT?
4 “If we could use reals rather than booleans for signalling, we

could get 30% more trains on our tracks” SC2 colleague

� The challenge isn’t writing the software — it’s proving it
correct, and I want to stay a happy CS professor!

??? Is ACA the right place to host benchmarking for computer
algebra?

But Where do we get thousands of problems from?

� By being industrially relevant, which requires demonstrating
on benchmarks of thousands of problems, which . . .

SMT-Lib has similar challenges: Let’s start! [WBD12]

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

Bibliography
I

A. Armando and E. Giunchiglia.
Embedding Complex Decision Procedures inside an Interactive
Theorem Prover.
Annals of Mathematics and Artificial Intelligence, 8:475–502,
1993.

P. Bachmann.
Die analytische Zahlentheorie.
Teubner, 1894.

C.W. Brown and J.H. Davenport.
The Complexity of Quantifier Elimination and Cylindrical
Algebraic Decomposition.
In C.W. Brown, editor, Proceedings ISSAC 2007, pages 54–60,
2007.

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

Bibliography
II

R.J. Bradford, J.H. Davenport, M. England, S. McCallum, and
D.J. Wilson.
Truth table invariant cylindrical algebraic decomposition.
J. Symbolic Computation, 76:1–35, 2016.

M.N. Brain, J.H. Davenport, and A. Griggio.
Benchmarking Solvers, SAT-style.
SC-Square 2017 Satisfiability Checking and Symbolic
Computation CEUR Workshop 1974, 2017.

C.W. Brown.
Constructing a single open cell in a cylindrical algebraic
decomposition.
In Proceedings ISSAC 2013, pages 133–140, 2013.

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

Bibliography
III

C.W. Brown.
Open Non-uniform Cylindrical Algebraic Decompositions.
In Proceedings ISSAC 2015, pages 85–92, 2015.

A. Cimatti, A. Griggio, A. Irfan, M. Roveri, and R. Sebastiani.
Satisfiability Modulo transcendental functions via incremental
linearization.
Proc. SMT 2017 CEUR Workshop Proceedings, 1889, 2017.

A. Cimatti, A. Griggio, and R. Sebastiani.
Computing small unsatisfiable cores in satisfiability modulo
theories.
Journal of Artificial Intelligence Research, 40:701–728, 2011.

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

Bibliography
IV

G.E. Collins.
Quantifier Elimination for Real Closed Fields by Cylindrical
Algebraic Decomposition.
In Proceedings 2nd. GI Conference Automata Theory &
Formal Languages, pages 134–183, 1975.

S.A. Cook.
The Complexity of Theorem-Proving Procedures.
In Proceedings of the 3rd Annual ACM Symposium on Theory
of Computing, pages 151–158, 1971.

J.H. Davenport and J. Heintz.
Real Quantifier Elimination is Doubly Exponential.
J. Symbolic Comp., 5:29–35, 1988.

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

Bibliography
V

M. England and J.H. Davenport.
The Complexity of Cylindrical Algebraic Decomposition with
Respect to Polynomial Degree.
In V.P. Gerdt, W. Koepf, W.M. Seiler, and E.V. Vorozhtsov,
editors, Proceedings CASC 2016, Springer Lecture Notes in
Computer Science 9890, pages 172–192. Springer, 2016.

A. Irfan.
Incremental Linearization for Satisfiability and Verification
Modulo Nonlinear Arithmetic and Transcendental Functions.
PhD thesis, Università degli Studi di Trento, 2018.

D. Jovanović and L. de Moura.
Solving Non-Linear Arithmetic.
In Proceedings IJCAR 2012, pages 339–354, 2012.

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

Bibliography
VI

D.E. Knuth.
Big Omicron and big Omega and big Theta.
ACM SIGACT News 2, 8:18–24, 1974.

S. McCallum.
On Projection in CAD-Based Quantifier Elimination with
Equational Constraints.
In S. Dooley, editor, Proceedings ISSAC ’99, pages 145–149,
1999.

S. McCallum.
On Propagation of Equational Constraints in CAD-Based
Quantifier Elimination.
In B. Mourrain, editor, Proceedings ISSAC 2001, pages
223–230, 2001.

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

Bibliography
VII

M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, and
S. Malik.
Chaff: Engineering an Efficient SAT Solver.
In Proceedings 38th Design Automation Conference, pages
530–535, 2001.

J. Moses.
Symbolic Integration.
PhD thesis, M.I.T. & Project MAC TR-47, 1967.

J. Slagle.
A Heuristic Program that Solves Symbolic Integration
Problems in Freshman Calculus.
PhD thesis, Harvard U., 1961.

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

Bibliography
VIII

D.J. Wilson, R.J. Bradford, and J.H. Davenport.
A Repository for CAD Examples.
ACM Communications in Computer Algebra 3, 46:67–69,
2012.

Davenport Lessons between Computer Algebra and Verification/Satisfiability Checking

