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Symbolic Computation and Satisfiability Checking tackle similar
problems but with different algorithmic and technological solutions.
Though both communities have made remarkable progress in the
last decades, they still need to be strengthened to tackle practical
problems of rapidly increasing size and complexity. Currently the
two communities are largely disjoint and unaware of the
achievements of each other: researchers from these two
communities rarely interact, and also their tools lack common,
mutual interfaces for unifiying their strengths. Bridges between the
communities in the form of common platforms and roadmaps are
necessary to initiate an exchange, and to support and to direct
their interaction.
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@ SC? special session at ACA 2016, CASC 2016

@ First SC2 workshop September 24 2016 (Timisoara)

© Second SC? workshop July 29 2017 (Kaiserslautern)

@ SC? summer school July 31-August 4 2017 (Saarbriicken)
© Third SC? workshop August 2018 (Oxford)
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Theoretical versus Practical Complexity

Notation n variables, m polynomials of degree d (in each
variable separately; 0 total degree: d <0 < nd),
coefficients length /

Theoretical doubly exponential, whether via Grobner bases
[MM82, Yap91, lower], [Dub90, upper] or Cylindrical
Algebraic Decomposition [DH88, BD07, lower],
[Col75, BDE™ 16, upper]

But this is doubly exponential in n, polynomial in
everything else.

In practice we see very bad dependence on m, d,/, and n is often
fixed

Anyway The Bézout bound says there are 9" solutions to such
polynomial systems: singly exponential if the system
is zero-dimensional
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Grobner bases: [MR13] versus [MM82]

Let r be the dimension of the variety of solutions. Focus on the

degrees of the polynomials (more intrinsic than actual times)

[MR13] modified both lower and upper bounds to show pn°®2e)
lower Essentially, use the r-variable [Yap91] ideal

which encodes an EXPSPACE-complete rewriting problem
into a system of binomials

note that these ideals are definitely not radical
(square-free)

upper A very significant improvement to [Dub90], again
using r rather than n where possible
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What we would like to do

Show radical ideal problems are only singly-exponential in n
This ought to follow from [Kol88]

Show non-radical ideals are rare (non-square-free
polynomials occur with density 0)

However there seems to be no theory of distribution of ideals

Deduce weak worst-case complexity (i.e. apart from an
exponentially-rare subset: [AL15]) of Grobner bases
is singly exponential
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There's a catch [Chi09]

Theorem

¥n > ng,d > dy there are homogeneous fi,...,f, € k[x1,...,Xa]
(v < n, deg f; < d) and a prime ideal p such that

@ the zeros Z(p) coincides with a component, defined over k, of
Z(fA,...,f), and furthermorf Z(f,..., 1) has exactly two
components irreducible over k: Z(p) and linear space;

@ the Hilbert function of p only stabilised after g2 ;

© the maximum degree of any system of generators of p is 4220

| don't fully understand the construction: it starts with [Yap91], as
[MR13], but somehow builds a prime ideal inside this
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A technical complication, and solution

Making sets of polynomials square-free, or even irreducible,
@ is computationally nearly always advantageous
@ is sometimes required by the theory

but might leave the degree alone, or might replace one polynomial
by O(v/d) polynomials
hard to control from the point of view of complexity theory.
Solution [McC84] Say that a set of polynomials has the
(M, D) property if it can be partitioned into M sets,

each with combined degree at most D (in each
variable)

This is preserved by taking square-free decompositions etc.

Can Define (M,®) analogously
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Cylindrical Algebraic Decomposition for polynomials

Assume All CADs we encounter are well-oriented [McC84], i.e.
no relevant polynomial vanishes identically on a cell

However there is no theory of distribution of CADs

And Bath has a family of examples which aren’t
well-oriented

And rescuing from failure is doable, but not well-studied
Note [MPP16] says this is no longer relevant

Then if A, is the polynomials in n variables, with primitive
irreducible basis B, the projection is

An—1 = cont(A,) U [P(Bp) := coeff(B,) U disc(B,) Ures(B,)]

If A, has (M, D) then A,_1 has (M +1)2/2,2D?)
Hence doubly-exponential growth in n
The induction (on n) hypothesis is order-invariant decompositions
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Cylindrical Algebraic Decomposition for propositions (1)

Suppose we are tryimg to understand (e.g. quantifier elimination)
a proposition ® (or set of propositions), and f(x) =0 is a
consequence of ® (either explicit or implicit), an equational
constraint, and f involves x, and is primitive

Then [Col98] we are only interested in R"|f(x) = 0, not R”

So [McC99] let F be an irreducible basis for f, and use

Pe(B) :=P(F)U{res(f,b)|f € F,be B\ F}

This has (2M,2D?) rather than (O(M?),2D?), but only produces
a sign-invariant decomposition
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Cylindrical Algebraic Decomposition for propositions (2)

Generalised to Pg(B) := Pr(B) Udisc(B \ F) [McC01], which
produces an order-invariant decomposition, and has (3M,2D?)
If f(x) =0 and g(x) = 0 are both equational constraints, then
resy, (f, g) is also an equational constraint

Suppose we have s equational constraints

And (after resultants) we have a constraint in each of the
last s variables

And these constraints are all primitive
Then [EBD15] we get O <m52"75d2"> behaviour
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Recent Developments

CASC 2016[ED16] Under the same assumptions,

) (msznfsdsznis) behaviour
using Grobner bases rather than resultants for the

elimination, but multivariate resultants [BM09] for
the bounds

ICMS 2016[DE16] The primitivity restriction is inherent: we can
write [DH88] in this format, with n — 1 non-primitive
equational constraints

ISSAC2017 (lots) Can do Cylindrical Algebraic Decomposition in
12 variables with 11 equational constraints
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it's not R/C: it's quantifiers (and alternations)

[DH88, BDO7] Are really about the combinatorial complexity of

Let Si(xk, yx) be the statement xx = f(yx) and then define

recursively Skfl(kal,ykfl) = Xk—1 = f(f(ykfl)) =

32 VY (k-1 = Y Axe = zi) V (Vi = 2k A Xk—1 = X)) = Sk(Xk, Y.

Qx Ly

We can transpose this to the complexes, and get zero-dimensional
. . O(n) . . .

QE examples in C" with 22 ™ isolated point solutions, even though

the equations are all linear and the solution set is zero-dimensional.

Davenport The doubly-exponential problem in equation/inequality solving



So let's not be mesmerised by the QE problem

Consider (as we, TS and others have been doing) a single
semi-algebraic set defined by

f].(Xla"'yxn—lakl) :OAfé(Xl,...,Xn_l,kl) =0A---
f,-,_l(Xl,...,Xn_l,kl):0/\X1 >0A---AXxp—1>0

and ask the question “How does the number of solutions vary with
ki?" The f; are multilinear (d = 1) and primitive, and are pretty
“generic”.

Of course, this doesn’t guarantee that all the iterated resultants in
[EBD15], or the Grobner polynomials in [ED16], are primitive, but
in practice they are.
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The basic idea for CAD [Col75]

Rn Rn
Rnf2 Ran
; A
; :
R? R!

Root Isolation
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An alternative approach [CMXY(Q9]

Proceed via the complex numbers,

CCD
Cn > Cn
| | -
R" R"

5 ) Rn—l Rn—l
Projection ‘ ) -

I
I
\
Rl > Rl

Do a complex cylindrical decomposition via Regular Chains, then
use Real Root Isolation
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Regular Chain Decompositions

Fix an ordering of variables. The initial of f, init(f), is the leading
coefficient of f with respect to its main variable.

Definition

A list, or chain, of polynomials fi,..., fx is a regular chain if:

@ whenever i < j, mvar(f;) < mvar(f;) (therefore the chain is
triangular);
@ init(f;) is invertible modulo the ideal (f; : j < /).
The set of regular zeros W(S) of a set S of polynomials is
V(S)\ V(init(S)).
A (Complex) Regular Chain Decomposition of / is a set of regular
chains T; such that V (/) =J W(T;).

Normally (and | wish | knew what that meant) there is one RC of
maximal (complex) dimension, and many of lower dimension.
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RealTriangularize (assuming a pure conjunction)

© Do a CCD of all the equations
@ Make the result SemiAlgebraic over the reals
© Add all the inequalities, splitting chains as we need to

LazyRealTriangularize [CDM™13] doesn't bother with the
lower (complex) dimensional components, but wraps then up as
unevaluated calls to itself: “Here's the generic answers(s), and how
to ask me for the special cases”.

In the examples with TS, LazyRealTriangularize seems to
produce the same answer as the [ED16] version of Projection CAD.
This is good news, as what we want should be a geometric
invariant.
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