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Timeline (as I saw/see it)

1965 Buchberger’s PhD [Buc65].

1970 Buchberger’s paper [Buc70].

1976 SIGSAM Bulletin [Buc76b, Buc76a]; JHD starts as
research student with John ffitch.

1979 EUROSAM presentation/paper [Buc79].

JPff “What on earth did you make of that talk”?

JHD “Not sure, but it’s not mediocre”.

Axiom JHD joins what becomes the Axiom group at IBM.
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Summer 1983

PG, BMT, JHD are all at IBM.

By now the idea is sinking in that Gröbner bases are “a good
thing”, though JHD, at least, doesn’t really understand them.

However, a key ingredient is distributed polynomials and
orderings

We decide that Kplex(x ,y ,z)[x , y , z ] and Ktdeg(x ,y ,z)[x , y , z ]
are different Ring structures

(and do a lot of exploring of isomorphisms and their encoding)

and experiment a lot (this was long before CoCoA etc.)
especially with orderings and different orderings,
homogenisations etc.

I at least learned a lot, but a lot of questions remained:
solutions, orderings etc. Also a definition of “usual”.
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Spring 1987

JHD is Programme Chair of EUROCAL 1987 (Patrizia does 1988,
but turns it into ISSAC).
Two papers land on his desk (this is 1987, and “papers”, “land”
and “desk” are all meant to be taken literally: there was an extra
desk in the office for EUROCAL papers)

[Gia89] P. Gianni Properties of Gröbner bases under
specializations

[Kal89] M. Kalkbrener Solving systems of algebraic equations
by using Gröbner bases

Different routes to a similar result: we publish both.
Only much later do I see this is connected with “lazy algebraic
numbers and D5” [DDDD85]
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1989

So I/we now understand that Lexicographical bases are the answer
to “solutions”, at least in dimension zero, but others are faster.
Then [FGLM89] arrived, the preprint version of [FGLM93] (in the
days before we really used arXiv!). We can now compute in an
efficient ordering, and convert, at least in dimension zero.
Then the Gröbner walk [CKM97] arrived, valid in positive
dimension.
[AGK97] claims the Gröbner walk is faster than FGLM, but http:
//staff.bath.ac.uk/masjhd/JHD-CA/GWalkexample.html

shows the opposite in Maple.

Open Problem

Seriously compare the two approaches.
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Positive Dimension

But what about positive dimension? If we have the Gröbner walk,
we can compute a lexicographic Gröbner base, but then what?
Does Gianni–Kalkbrener generalise? Surely it ought to. After all,
we can always take slices.
Sadly, not: [FGT01].

Open Problem

So what exactly can we say/do in positive dimension?

Open Problem

How does this compare with regular chains?
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What’s usual (I) Polynomials in Z[x ]?

The old question we used to ask in 1983: what should we try to be
fast on? A major challenge in computer algebra
“Almost all polynomials are irreducible”, or more precisely ∀d

lim
H→∞

|{irred. polys of degree d , coefficients ≤ H}|
|{polynomials of degree d , coefficients ≤ H}|

= 1

This makes it much harder to say anything about “interesting”
polynomials.

Conjecture

“Almost all reducible polynomials are squarefree”, or more
precisely ∀d

lim
H→∞

|{sqfr. red. polys of degree d, coefficients ≤ H}|
|{reducible polys of degree d, coefficients ≤ H}|

= 1
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What’s usual (II) Polynomials in ?[x ]?

By analogy with irreducibility, polynomials have few real roots
[Kac43], 2

π log(d + 1). But this is not

lim
H→∞

∑
f ∈S |{real roots of f }|

|S := {polys of degree d ∈ Z[x ], coefficients ≤ H}|
=

2

π
log(d+1)

rather a result about uniformly (−1, 1) real coefficients.
A definition with better geometric invariance properties gives√

d(d+2)
3 : very different [LL12].
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What’s usual for ideals (I)?

Though I’ve never seen it stated as such, I believe that “almost
ideals are 0-dimensional”, more accurately “almost all generating
sets generate 0-dimensional ideals”, i.e. ∀n, d

lim
H→∞

|{0-dim 〈n polys of degree ≤ d , coefficients ≤ H〉}|
|{〈n polynomials of degree ≤ d , coefficients ≤ H〉}|

= 1

And if we have more than n polynomials, almost all generating sets
are trivial.
But this poses the same problem, even assuming the correct
definition of “interesting” is “reducible”.

Open Problem

Are almost all reducible ideals 0-dimensional (in the sense above)?
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What’s usual for ideals (II)?

Open Problem

Are almost all reducible ideals radical (in the sense above)?

Open Problem (hard to state)

For a given n and dimension d, are almost all reducible ideals of
dimension d radical (in the sense above)?

These would have interesting implications for the weak worst-case
complexity (i.e. apart from an exponentially-rare subset: [AL15])
of Gröbner bases: [MR13] improves on [MM82]
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