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Introduction
‘Simplification’ is a key concept in Computer
Algebra. But many simplifications rules, such
as

√
x
√
y → √

xy, are not universally valid,
due to the fact that many elementary functions
are multi-valued. Hence a key question is
“Is this simplification correct?”, which involves
algorithmic analysis of the branch cuts in-
volved. Here we look at variable ordering and
pre-conditioning as supporting technologies for
this analysis.

Algorithm

Our verification system to analyse formulae in
elementary functions works as follows:

Calculate all the branch cuts of the proposed
identity.
Decompose C (or C

n), viewed as R
2 (or R

2n),
with respect to the branch cuts and find a sam-
ple point in each region in R

2 (or R2n) defined
by the branch cuts.
Evaluate the identity on each connected com-
ponent using the obtained sample point,
thereby conclude whether the identity is true
or not on that entire region by the Monodromy
theorem.

The decomposition step is achieved by means
of Cylindrical Algebraic Decompostion (CAD),
which in this case is the new Maple 14’s CAD as
opposed to QEPCAD used in our earlier papers.

Variable Order
There are (2n)! possible variable orders and
number of cell decomposition depends on
which of these orders is used. Bigger problem
in more dimensions.
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Branch Cuts

Example 1:

√
z − 1

√
z + 1

?
=

√

z2 − 1, (1)

is false for some z ∈ C.

Example 2:

√
1− z

√
1 + z

?
=

√

1− z2, (2)

is true for all z ∈ C.

The branch cut for
√
z is conventionally {z | ℜ(z) < 0 ∧ ℑ(z) = 0}. Illustrating these examples

geometrically shows that although they are similar algebraically, the are very different geometrically.

Figure 1: Branch cuts of (1) Figure 2: Branch cuts of (2)

Pre-conditioning

Example 1:
QEPCAD Input: Prenex formula

[[x−1 < 0∧y = 0]∨[x+1 < 0∧y = 0]∨[x2 − y
2 − 1 < 0∧xy = 0]]

Maple 14 Input: A set of polynomials

[x− 1, y, x+ 1, y, x2 − y
2 − 1, xy]

Note: Redundant y can be removed without altering the result.

Problem: Maple loses information about the branch cuts.
Improvement aim: Allow some linkages between pairs of
inequalities and equalities in Maple’s CAD sense.
Method: Pseudo-division, either to eliminate x or y.
Result: The two - - - curves are removed.

Figure 3: Branch cuts of (1) as
viewed by Maple

Table
Example 3:

log(z3)
?
= 3 log(z). (3)

Example
Maple QEPCAD

x, y y, x x, y y, x

1 (No elimination) 29 29 36 32
1 (Eliminating x) 21 21 28 24
1 (Eliminating y) 21 21 22 24
2 (No elimination) 29 29 36 32
2 (Eliminating x) 21 21 28 10
2 (Eliminating y) 21 21 13 24
3 (No elimination) 25 25 28 28
3 (Eliminating x) 17 17 20 17
3 (Eliminating y) 25 25 28 28

Table 1: Number of cell decomposition

Note: Pre-conditioning to eliminate y in (3)
does not have any effect on the set of input
polynomials.

Preliminary Results

CAD via Triangular Decomposition, despite
starting from a weaker formulation, is still
very competitive with QEPCAD.
Pre-conditioning the branch cuts often helps
in reducing the number of cells produced by
CAD. Even QEPCAD can benefit from it.
Variable order matters, both in elim-
ination and in projection (QEP-
CAD)/triangularization (Maple), and the
interaction is significant and subtle.
Unlike QEPCAD which is able to exploit the
symmetry of the variables, Maple’s CAD can-
not.
The minimal cylindrical algebraic decomposi-
tion may be larger than the optimal algebraic
decomposition (the true branch cuts).


