22nd OpenMath Workshop

Editor: James H Davenport
University of Bath

July 9th 2009
Grand Bend Ontario
Draft of book to be published by
the University of Bath Press and the OpenMath Society
ISBN of final book: 978-1-86197-172-2

Table of Contents

A. Contributed Papers

OpenMath in SCIEnce: evolving of symbolic computation interaction 5
Alexander Konovalov, Sebastian Freundt, Peter Horn, Sylla Lesseni,
Steve Linton, Dan Roozemond

The Intergeo File Format in Progress 17
Miguel Abdnades, Francisco Botana, Jesus Escribano, Maxim Hen-
driks, Ulrich Kortenkamp, Yves Kreis, Paul Libbrecht, Dani Marques,
Christian Mercat

Semantics of OpenMath and MathML3 31
Michael Kohlhase, Florian Rabe

A Better Role System for OpenMath 53
Florian Rabe, Michael Kohlhase

wiki.openmath.org — how it works, how you can participate 61
Christoph Lange

B. Content Dictionary Descriptions

The order1 Content Dictionary, 73
Sylla Lesseni, Dan Roozemond

The matrixl Content Dictionary 80
Sebastian Freundt, Peter Horn, Dan Roozemond

The polynomial4d Content Dictionary 86
Sebastian Freundt, Peter Horn, Dan Roozemond

The scscpl and scscp2 Content Dictionaries 92
Sebastian Freundt, Peter Horn, Alexander Konovalov, Sylla Lesseni,
Steve Linton, Dan Roozemond

The MathML CD Group: Proposed update for MathML3 107
David Carlisle

OpenMath Content Dictionaries for SI Quantities and Units............ 111
Joseph Collins

Content Dictionaries for Algebraic Topologyc.ccoviiii... 112
Jonathan Heras, Vico Pascual, Julio Rubio

Quantifiers and Big Operators in OpenMath 119
James Davenport, Michael Kohlhase

Content Dictionaries for Units and Dimensions
James Davenport, Jonathan Stratford

Integrals and intervals
James Davenport

OpenMath in SCIEnce: Evolving of Symbolic
Computation Interaction

Sebastian Freundt!, Peter Horn?, Alexander Konovalov3, Sylla Lesseni!, Steve
Linton?, and Dan Roozemond*

L Fakultiit IT - Institut fiir Mathematik, Technische Universitit Berlin, Berlin,
Germany, {freundt|lesseni}@math.tu-berlin.de
2 Fachbereich Mathematik, Universitit Kassel, Kassel, Germany,
horn@math.uni-kassel.de
3 School of Computer Science, University of St Andrews, Scotland,
{alexk|sal}@mcs.st-and.ac.uk
4 Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, Netherlands, d.a.roozemond@tue.nl

Abstract. We present SCSCP — the Symbolic Computation Software
Composability Protocol. SCSCP is a remote procedure call framework
for computational algebra systems in which both data and protocol in-
structions are encoded in the OpenMath language. We present SCSCP
implementations in several CASes and other SCSCP-compliant appli-
cations and APIs, developed with the support of the EU FP6 project
“SCIEnce — Symbolic Computation Infrastructure for Europe”.

1 Combining Symbolic Computation Systems

Many research problems which could be tackled with computer algebra systems
(CASes) cannot be solved within a single system or could be solved much faster
if a combination of two or more CASes would allow performing each step in the
fastest available implementation.

Examples include number theory computations in a specialized system, sym-
bolic calculations on generic character tables, computations on large finite state
automata, Grobner computations that are faster in one system than in another,
libraries or plug-ins that are available in a system on Linux but not on Windows,
etc.

In this paper we are giving an overview of the SCIEnce project activity to
develop a framework which enables efficient and reliable combining of CASes for
such purposes. Another area the SCIEnce project hopes to bring improvement
to is that of libraries and databases of mathematical objects that may be stored
in some universal format accessible to many systems.

Since the OpenMath standard emerged, a lot of work was done on combining
CASes, e.g. the MONET project [8] and the various translators (phrasebooks)
produced by RIACA [14] (see also the OpenMath webpage [10] for a detailed
account of OpenMath software and tools). However, the approach has often been

6 Konovalov et al.

to have a system provide OpenMath by creating wrapper software that commu-
nicates with the system in the background and that performs the translation
from OpenMath to the internal syntax and vice versa.

The approach taken in the SCIEnce project, however, is to build the Open-
Math support into the systems themselves instead of creating a wrapper, which
yields a much more robust implementation. Also, unlike in another well-known
project in this area, namely Sage [17], the approach in SCIEnce is not to subordi-
nate the packages from an integrating system, but to define an interface that any
system can implement to provide a way to use the capabilities of other systems
within a familiar environment.

We therefore set up a project aiming to define standards and construct an
extensible framework which would:

— ensure seamless communication between CASes, both local and remote;

— use a universal format not relying on the particular input/output format for
each system;

— ensure that each system implementing the standard can immediately offer
services to and consume services from other such systems.

2 SCSCP and its CDs

To simplify the communication between the various CASes, we have developed a
protocol called the “Symbolic Computation Software Composability Protocol”,
abbreviated SCSCP [3,2]. This protocol does not only enable the computation
of simple commands in a different system or on a different machine, but it
will also serve as a means of conveying constituents of larger, more complex,
computations.

The key features of SCSCP are:

— Mathematical data are encoded in OpenMath;

— The protocol messages are encoded in OpenMath as well, so that participat-
ing systems need to support only one language;

— The OpenMath support is wired directly into the joining systems. This is
much more robust, easier to create, and faster than the usual practice of
producing wrapping programs to enable OpenMath support.

In particular, the protocol messages are in the OpenMath language, and its
TCP-sockets based implementation uses XML processing instructions to delimit
these messages and convey small pieces of information on a higher level. Com-
munication takes place using port 26133, reserved for SCSCP by the Internet
Assigned Numbers Authority (IANA).

SCSCP does not require statefulness on behalf of the server, although it does
offer support for working with so-called “remote objects.” Such object can be
created on the server (thus, changing its state) and used in further computations
as arguments of procedure calls.

At the moment of writing the protocol has reached version 1.3 and both
client and server implementations exist in GAP, KANT, Maple, and MuPAD.

OpenMath in SCIEnce 7

We will detail these implementations in Section 3, except for the Maple system
which plans to announce its tools elsewhere at a later stage.

The protocol is also supported by TRIP, a general computer algebra system
dedicated to celestial mechanics, using an own publicly available implementation
of SCSCP [4]. Moreover, we have developed a Java library org.symcomp.scscp
to facilitate third party developers in exposing their own applications using SC-
SCP. We provide details on this library in Section 4. Additionally, while some of
our SCSCP implementations provide straightforward functionality for parallel
computations, another result of the SCIEnce project is the SymGrid-Par mid-
dleware, which orchestrates computational algebra components into a parallel
application that uses SCSCP for internal communication [19].

Apart from two OpenMath Content Dictionaries accompanying the SCSCP
protocol [15, 16], several other Content Dictionaries were developed in the project,
concerning, for example, polynomial factorization and efficient OpenMath rep-
resentations of matrices, number fields and orders in number fields. We have
submitted these content dictionaries separately to the OpenMath 2009 work-
shop.

As a simple example, we demonstrate a simple SCSCP session on the server.
The server is running GAP and provides a procedure to identify a finite group in
the GAP Small Groups Library. After the server receives an incoming connection,
it replies with the connection initiation message. After that, the client replies
with its preferred version, and the server confirms this version to the client.

S: <?scscp service_name="GAP" service_version="4.dev" service_id="
localhost :26133:7617" scscp_versions="1.0 1.1 1.2 1.3" ?>

C: <?scscp version="1.3" 7>

S: <?scscp version="1.3" 7>

Then the client sends the procedure call to identify the cyclic group of order
two given as permutation group:

C: <?scscp start 7>

<0MOBJ>
<OMATTR >
<OMATP>
<0MS cd="scscpl" name="call_id"/>
<OMSTR>scscp.symcomp.org:26133:7617: eBFyqFae </0OMSTR>
<0MS cd="scscpl" name=“option_return_object"/>
<0OMSTR ></0MSTR >
</0OMATP >
<OMA><0OMS cd="scscpl" name="procedure_call"/>
<OMA><0OMS cd="scscp_transient_1" name="WS_IdGroup"/>
<OMA><0OMS cd="permgpl" name="group"/>
<0OMS cd="permutationl" name="right_compose"/>
<0OMA><0OMS cd="permutl" name="permutation"/>
<0OMI>2</0MI>
<0OMI>1</0MI>
</0OMA>
</0OMA>
</0OMA>
</0MA>
</OMATTR >
</0MOBJ >

<?scscp end 7>

8 Konovalov et al.

The server responds that the group has catalogue number [2, 1]:

S: <?scscp start ?>
<0OMOBJ>
<OMATTR >
<OMATP>
<0MS cd="scscpl" name="call_id"/>
<0OMSTR>scscp.symcomp.org:26133:7617: eBFyqFae </0OMSTR >
</0OMATP >
<OMA><0OMS cd="scscpl" name="procedure_completed"/>
<OMA><OMS cd="1listl" name="1list"/>
<0OMI>2</0MI>
<0OMI>1</0MI>
</0MA>
</0MA>
</OMATTR >
</0MOBJ >
<?scscp end 7>

After that the client closes the connection, and the server is ready to accept
new procedure calls.

3 Computer Algebra Systems

In this section we give a brief overview of the status of the SCSCP implementa-
tion in various systems.

3.1 GAP

In the GAP system, the support of OpenMath and SCSCP is implemented in
two GAP packages with the same names.

The OpenMath package [1] provides an OpenMath phrasebook for GAP: it
is responsible for the conversion from OpenMath to GAP and vice versa and
reading/writing OpenMath objects from/to streams. The package provides a
framework, allowing users to extend it with private content dictionaries.

The SCSCP package [7] implements the Symbolic Computation Software
Composability Protocol on top of the GAP packages OpenMath, 10 and GAP-
Doc. The package has two main components: server and client. The server may
be started interactively from the GAP session or as a GAP daemon. When the
server accepts a connection from the client, it starts the “accept-evaluate-return”
loop:

— accepts the "procedure_call" message;

— performs lookup of the appropriate GAP function;

— evaluates the result (or produces a side-effect);

— returns the result in the "procedure_completed" message or returns an
error in the "procedure_terminated" message.

The SCSCP client performs the following basic actions:

— establishes connection with the specified server at the specified port;
— sends the "procedure_call" message to the server;

OpenMath in SCIEnce 9

— waits for the result of the computation or returns to pick it up later;

— fetches the response, extracting the result from the "procedure_completed"
message or entering the break loop in the case of the "procedure_terminated"
message.

On top of this functionality we built a set of instructions for parallel com-
putations using the SCSCP framework, allowing to send several procedure calls
in parallel and then collect all results or pick up the first available result, and
implemented the master-worker parallel skeleton.

To give the users an opportunity to test the package we are running a demo
SCSCP server accessible at chrystal .mcs.st-andrews.ac.uk, port 26133. It is
working under the development version of the GAP system and a selection of
currently redistributed GAP packages. See the package homepage [7] for further
information, downloads and documentation with examples.

3.2 KANT
The KANT system provides two main packages for SCSCP support:

— libkant package which contains the core functionality of the KANT system:;

— autokash which consists of the KANT SCSCP server, a simple client and a
server. The server is started by running the KANT/KASH daemon, named
kashd, which is the main binary in the autokash package.

Here are the different steps when the connection from a client is accepted by
the server:

a socket is open and the SCSCP message comes in;

— the "procedure_call" part of the message is extracted;

— a table of xpaths is matched against the message and a callback function is
looked up;

— after evaluation, the result (or an error message in case of error) is sent back

to the client.

We are running two KANT SCSCP servers accessible at port 26133 at ad-
dresses issel.math.tu-berlin.de and stirling.math.tu-berlin.de and run-
ning under the recent development version of the KANT system. The users can
also download the autokash package which contains libkant library from [6].

The OpenMath support is implemented in the autokash package. It is con-
tained in the openmath.la library. To use that library, one should load it when
running the KANT/KASH daemon kashd. See the public homepage [6] for more
information.

The KANT SCSCP Client Shell: kapy We are developing at the present
moment a KANT SCSCP client shell, named kapy. It is written in python and
fully supports the SCSCP protocol. Also, the idea of using kapy is to ease man-
ual typing when handling OpenMath objects. To connect from kapy to a run-
ning KANT SCSCP server, we need at least python version 2.5 and the script

10 Konovalov et al.

kapy.py. The call cas = kapy.connect (host, port) will establish the connec-
tion with the SCSCP server running at the appropriate host and port. From
then, one can create the openmath objects like OMI, OMF, OMSTR, OMV
using:

— cas.compute (kapy.omi(int)) for the intergers;

— cas.compute (kapy.onf (float)) for the floats;

— cas.compute (kapy.onf (str)) for the strings;

— cas.compute (kapy.omv(var)) for the unused variables since the KANT
system can not handle the symbolic objects.

The openmath objects OMS and OMA are constructed as follows:

— cas.compute (kapy.oms (cdname, symbolname)) for OMS;
— cas.compute (kapy.oma(cdname, symbolname, args)) for OMA.

We can also store the result in a variable to reuse it later or in other com-
putations. Finally, since kapy is written in python, it is natural to be able to
convert basic OM objects like OMI, OMF, OMSTR to the python representation
using a function named PyConvert.

3.3 MuPAD
There are two main aspects for MuPAD SCSCP support:

— OpenMath MuPAD package;
— SCSCP server wrapper for MuPAD.

While the former offers the ability to parse, generate, and handle OpenMath in
MuPAD, and to consume SCSCP services, the latter enables access to MuPADs
mathematical abilities as an SCSCP service. Sadly, however, the current MuPAD
end-user license agreement does not generally allow this. Therefore, below we
concentrate on the OpenMath package.

To use the package, download it from [9] and put it into your PACKAGEPATH.
It can then be loaded using package ("OpenMath"). Afterwards, documentation
is available through OpenMath: :doc().

The OpenMath Elements To represent the different OpenMath tags, there
are the following constructors:

— OpenMath: : Apply (head, [params]) — expands to a function call of head
on params;

— OpenMath: :Bind (head, [vars], expr) —expands to a function call of head
on vars and expr;

— OpenMath: :Error (head, [params]) — expands to an error textually con-
tainig head and params;

— OpenMath: :Float (z) — expands to a DOM_FLOAT;

OpenMath in SCIEnce 11

OpenMath: : Integer (i) — expands to a DOM_INT,;

— OpenMath: :0bject (o) — expands to o;

OpenMath: :Reference (id) — expands to either the element with the given

id or an error;

OpenMath: :String(str) — expands to the given DOM_STR;

— OpenMath: : Symbol (cdname, name) — expands to either some MuPAD ob-
ject or the MuPAD identifier ‘cdname.name*;

— OpenMath: :Variable (name) — expands to an unused DOM_IDENT.

All constructors accept an optional last argument id to set the id. A tree of
these objects may be translated to MuPAD objects by calling expand on it. It
may be necessary to call eval to get an actual result.

Calling OpenMath: :toXml on an OpenMath tree gives a tree of adt: :XML
nodes representing it. This can then printed or converted to an XML string. All
these constructors have a doc slot, so you can get further information by calling,
e.g., OpenMath: : Apply: :doc().

The OpenMath Parser In this domain, there are two functions available to
turn an OpenMath XML string into a tree of OpenMath: : objects as above:

— OpenMath: :parse(str) — parses the string str;
— OpenMath: :parseFile(fname) — reads and parses the file named fname.

Generating OpenMath With generate: :0penMath, a MuPAD expression
can be converted into its OpenMath representation. Internally, the above men-
tioned OpenMath elements are used to assemble the result.

The result of the call to generate::0OpenMath is always wrapped in an
OpenMath: :Object. To obtain the OpenMath representation without the wrap-
ping OMObject, one can simply use OpenMath(...).

SCSCP Client Connection By the call s := SCSCP(host, port) an SCSCP
connection object is created, which can then be used to send commands to the
SCSCP server. Note that the actual connection is initiated on construction by
starting the java program WUPSI (see 4.4) which is bundled into the OpenMath
package. It is using an asynchronous file system based message exchange mode
and thus can be used to do computations in the background.

To actually let the server compute something, one uses s: : compute(...) or,
equivalently s(...). Note that it may be necessary to wrap the parameter in
hold(...) to prevent premature evaluation in MuPAD.

To use the connection asynchronously, the commands send and retrieve are
used: a := s::send(...) returns an integer which may be used to identify the
computation and to retrieve the result later with s::retrieve(a). retrieve
returns FAIL if the result of the computation is not yet computed unless you
specify a second parameter TRUE. In that case the call will block until the result
is ready.

12 Konovalov et al.

To disconnect the client after use (and before e.g. reset) one can use the
command s::close() to stop the corresponding Java program, and thus clean
up the associated resources. Obviously, when MuPAD exits, this is done auto-
matically.

4 Java SCSCP API

This Java library is intended to enable third party developers to use SCSCP
servers (i.e. have their own application acting as an SCSCP client), or easily
expose their own applications as SCSCP servers (i.e. have their own application
acting as an SCSCP server).

The library has two essential parts: The OpenMath library org.symcomp.
openmath and the SCSCP implementation org.symcomp.scscp. We will detail
these libraries in Sections 4.2 and 4.3, respectively. Furthermore, the library
comes with several examples that should serve as a good starting point for the
user.

We use these libraries ourselves as well: In the MuPAD client and server
application (Section 3.3), in an experimental MAGMA server, in the Webproxy
(Section 4.5) and in WUPSI (Section 4.4).

4.1 The Popcorn representation

When handling OpenMath objects, one frequently finds oneself typing and read-
ing lots of OMAs, OMSs, and so on. This may lead one to the conclusion that humans
were not designed to parse XML. That is why we decided to create an Open-
Math representation taking this into account, and created POPCORN. It is an
acronym standing for “Possibly Only Practical Convenient OpenMath Replace-
ment Notation”. For the sake of typographic beauty, we write it as “Popcorn”.
We emphasize that Popcorn is merely an OpenMath representation that
we consider convenient for humans, similar to the binary representation that
is obviously more convenient for machines. Furthermore, if a two-dimensional
environment such as a web browser is available, more sophisticated editors such
as the MathDox formula editor are even better. However, we still think Popcorn
is a valuable addition, e.g. for quick tests, command line applications, etc.
Popcorn is described in more details in the MKM 2009 paper [5].

4.2 org.symcomp.openmath

Although there are some Java OpenMath Libraries available [12,13], these are
older (last update in 2000 and 2004, respectively) and we disagreed with some
of the design choices made.

We therefore created a new library that takes advantage of the recent devel-
opments in Java, such as annotations and generics, and we designed it from the
ground up to be as easily extensible as possible. It provides many convenience
classes and handy methods to traverse, construct, and analyze OpenMath trees.

OpenMath in SCIEnce 13

Furthermore, it has completely transparent support for OpenMath Attributions,
eliminating the need to handle these objects in any special way.

Import and export to OpenMath 2 XML, OpenMath 2 Binary, and Popcorn,
and export to ITEX are included. Moreover, to feed OpenMath data into other
applications, it is often necessary to produce a specific format. This is wired
into org.symcomp.openmath as custom renderers. We designed this part of the
library in such a way that producing e.g. a renderer for the MAGMA language
took only a few lines of code. Moreover, the I¥TEX- and Popcorn-renderer are
made using the same mechanism. These also give the user a great starting point
for developing his/her own custom renderer.

e S cli Y
———
Y [R G

~
([emwmation) (reorstorneots) (scscromatane) (Lo J (o)

org.symcomp.openmath

Java Runtime Library

Fig. 1. The structure of the org.symcomp Java libraries

4.3 org.symcomp.scscp

As mentioned above, this library was designed to enable a third party developer
to easily expose his or her own application using SCSCP. This library obvi-
ously uses org.symcomp.openmath for handling the OpenMath objects that are
inherent to the SCSCP protocol.

The structure of the libraries is shown in Figure 1. Depending on the level of
control a developer wants to have on the inner workings of the SCSCP protocol,
he would extend a particular class.

For an application to use an SCSCP service such as GAP or MuPAD, a
developer would typically subclass the SCSCPClient. She or he would then need
to do little else than specify the host and port to connect to, phrase the relevant
questions in OpenMath, and call the compute method.

If on the other hand someone wants to make his or her own application
available for other SCSCP clients, she or he would typically subclass called the

14 Konovalov et al.

ProcedureCallHandler. In its handle method, little else is required than inter-
preting the incoming OpenMath message, converting it to the internal format
of the parent application, computing the solution, and converting the solution
back to OpenMath.

4.4 WUPSI : a proof-of-concept example

The API described in this section allowed us to easily create WUPSI (“Wonderful
Universal Popcorn SCSCP Interface”). It is a small command-line application
that allows to connect to one or more SCSCP servers and issue computation
requests.

It was designed with two main purposes in mind. Firstly, it serves as a great
debugging tool for SCSCP implementations, as one simply enters OpenMath,
and receives OpenMath back (possibly in the form of Popcorn). Secondly, it is
an extensive example of how the Java libraries may be used, and could serve as
a nice reference for those who want to use these libraries.

Apart from the example uses shown in Listing 2 many other more advanced
functions are available, such as a poor-man’s parallelization tool and the possi-
bility to have WUPSI act as an SCSCP proxy server for connected systems.

4.5 WebProxy

The WebProxy is a Java application meant as an administration and orchestra-
tion console for one or more SCSCP compliant services. Whilst the WebProxy
is a web application intended for direct user interaction, it also provides ac-
cess to the capabilities of the connected CASes through SOAP and GET/POST

interfaces.

5 Licensing and Availability

The GAP packages are distributed under the GNU Public License as well as the
GAP system itself and are available from their sites and from the GAP homepage
http://www.gap-system.org.

The KANT system and the KANT SCSCP packages are distributed under
the GNU Public Licence and are available from the KANT website http://www.
math.tu-berlin.de/~kant/.

The MuPAD package is not provided by the makers of MuPAD, SciFace
Software, but by the University of Kassel. It is published [9] under an Apache 2
License and should be compatible with MuPAD 4 and above.

The SCSCP library org.symcomp.scscp and the org.symcomp.openmath
library are released under the Apache 2 License. In February 2009 the first public
release was made [11]. The libraries are available as binaries, source packages or
they may be used as Maven dependencies. Available on the website is also a
comprehensive (and continuously improving) API documentation. WUPSI will
be available for download from [11] shortly.

OpenMath in SCIEnce 15

WUPSI 1.2 -- Wonderful Universal Popcorn SCSCP Interface
(c) 2009 D. Roozemond & P. Horn

4 WUPSI[n/alO> connect some.server:26139 as gap
connected to ’some.server’ on port ‘26139’ using symbolic name ’gap’

Service Info: service Name ’GAP’, service wersion ’4.dev’

WUPSI[gaplO> 126+2323%232

9 539062
WUPSI [gapl1> local $a := $_outO
Stored this in local wvariable ’$a’:
539062

14

WUPSI[gapl2> connect 127.0.0.1:26134 as mupad

connected to ’127.0.0.1° on port ‘26134’ wusing symbolic name ’mupad’

Service Info: service Name ’MuPAD’, service wversion ’0.6.0-mupad
-5.2.0°

19 WUPSI[mupadl2> output format latex
switched output format to LATEX.

WUPSI[mupad]2> sum(1 .. infinity, lambdal$x -> 1/$x"2])
{\pi}~{2} \cdot \frac{1}{6}
24
WUPSI [mupad]3> output format popcorn
switched output format to POPCORN.

WUPSI [mupad]l3> local $p := 2°127-1
29 # Stored this im local wvariable ’$p’:
170141183460469231731687303715884105727

WUPSI [magmal4> use gap
switched to system with symbolic name ’gap’, service Name ’GAP’,
service wversion ’4.dev’.
34
WUPSI [gapl4> $p-2"101%$a
168774498924748772136428072069291311103

WUPSI[gapl4> describe arithl.plus

39 # -- Description for ’arithl.plus’ --
The symbol representing an n-ary commutative function plus.
-- END description for ’arithl.plus’ --

Listing 2. Using WUPSI

For the links to the most recent available downloads see the homepage of the
SCIEnce project http://www.symbolic-computation.org/

6 Conclusions and future work

In this paper we presented SCSCP - a simple light-weight OpenMath-based
remote procedure call framework, and gave an overview of SCSCP-compliant
applications, represented by computer algebra systems, middleware and APIs.
Further information and concrete examples may be found in (mostly available
online) documentation for appropriate tools.

Among our future directions are developments of new content dictionaries
additionally to those submitted to the OpenMath 2009 workshop, and increasing

16 Konovalov et al.

the support of binary OpenMath format which seems inevitably needed in really
large-scale computations.

We hope that the appearance of SCSCP and examples of its use in our
CASes stimulate developers of other systems to support the OpenMath format
to exchange mathematical data, and we hope more SCSCP-compliant software
will become available in the future. We would like to strengthen this invitation
by offering our support and advice to all interested parties.

References

1. M. Costantini, A. Konovalov and A. Solomon. GAP package OpenMath. Version
10.0, 2009. http://www.cs.st-andrews.ac.uk/~alexk/openmath.htm

2. S. Freundt, P. Horn, A. Konovalov, S. Linton and D. Roozemond. Symbolic Com-
putation Software Composability. In Intelligent Computer Mathematics, AISC/Cal-
culemus/MKM 2008 proceedings, Lecture Notes in Computer Science 5144/2008,
Springer, p.285-295.

3. S. Freundt, P. Horn, A. Konovalov, S. Linton, D. Roozemond, Symbolic Compu-
tation Software Composability Protocol (SCSCP) specification, Version 1.3, 2009.
http://www.symbolic-computation.org/scscp/

4. M. Gastineau, SCSCP C Library - A C/C++ library for Symbolic Computation Soft-
ware Composibility Protocol, IMCCE, 2009, http://www.imcce.fr/Equipes/ASD/
trip/scscp/

5. Peter Horn and Dan Roozemond. OpenMath in SCIEnce: SCSCP and POPCORN.
To appear in Intelligent Computer Mathematics, MKM 2009 proceedings.

6. KANT SCSCP Package. http://www.math.tu-berlin.de/~kant/kantscscp.html

7. A. Konovalov and S. Linton. GAP package SCSCP. Version 1.1, 2009. http://www.
cs.st-andrews.ac.uk/~alexk/scscp.htm.

8. The MONET project. http://monet .nag.co.uk/monet/

9. MuPAD OpenMath Package. http://mupad.symcomp.org/

10. OpenMath. http://www.openmath.org/

11. The org.symcomp.openmath and org.symcomp.scscp libraries: http://java.
symcomp . org/

12. PolyMath/OpenMath. http://pdg.cecm.sfu.ca/openmath/

13. RIACA OpenMath Library. http://www.mathdox.org/new-web/openmath.html

14. RIACA OpenMath Phrasebooks. http://www.mathdox.org/new-web/products.
html

15. Roozemond, D.: OpenMath Content Dictionary: scscpl. http://wuw.win.tue.nl/
SCIEnce/cds/scscpl.html

16. Roozemond, D.: OpenMath Content Dictionary: scscp2. http://www.win.tue.nl/
SCIEnce/cds/scscp2.html

17. Sage. http://sagemath.org/

18. Symbolic Computation Infrastructure for Europe. http://www.
symbolic-computation.org/

19. A.D. Al Zain, P.W. Trinder, K. Hammond, A. Konovalov, S. Linton and
J. Berthold. Parallelism without Pain: Orchestrating Computational Algebra Com-
ponents into a High-Performance Parallel System. In International Symposium on
Parallel and Distributed Processing with Applications, 2008, p.99-112.

The Intergeo File Format in Progress

Miguel Abdnades!, Francisco Botana?, Jests Escribano?,
Maxim Hendriks*, Ulrich Kortenkamp®, Yves Kreis®,
Paul Libbrecht”, Daniel Marques®, Christian Mercat®

1 CES Felipe II - UCM, Aranjuez, Spain
2 Universidad de Vigo, Spain
3 Universidad Complutense de Madrid, Spain
4 Eindhoven University of Technology, The Netherlands
5 University of Education Karlsruhe, Germany
6 University of Luxembourg, Luxembourg
7 DFKI GmbH, Saarbriicken, Germany
8 Maths for More (WIRIS), Barcelona, Spain
9 I3M, Université Montpellier 2, France

Abstract. In this paper we describe the ongoing effort to specify a com-
mon file format for Interactive or Dynamic Geometry Systems (DGS).
Our approach is based on the OpenMath standard, and uses its flexible
extension mechanisms like Content Dictionaries.

We discuss the various design decisions, the Content Dictionaries that
have been defined, as well as open questions to be resolved.

1 Introduction: The Intergeo Project

Interactive geometry is one of the most well known family of computer-based
tools to support teaching of mathematics by means of personal explorations.

Intergeo (http://inter2geo.eu) is an eContentplus European project ded-
icated to the sharing of interactive geometry constructions across boundaries. It
enables teachers and pupils all over Europe to share resources and experiences
as tools for teaching, learning, and research.

Educational contents that were hard to access shall be made available, tagged
with relevant topics and competency based metadata and categorised according
to curricula, they are searchable and easily (re-)usable by everyone. It is our goal
to offer them in a common interoperable format that this article describes.

For more information about the project, we refer to its website and the
documentation available there, as well as [1,2].

A wide variety of DGSs exists. Before the Intergeo project, each system used
incompatible proprietary file formats to store its data. Thus, most of the DGS
makers have joined to provide a common file format that will be adopted either
in the core of the systems or just as a way to interchange content.

The Intergeo file format is a file format designed to describe any construction
created with a Dynamic Geometry System (DGS). Dynamic Geometry Systems,
also called Interactive Geometry Systems, are programs that are used to experi-
ment with geometric objects. A construction, a drawing consisting of geometric

17

18 Intergeo File Format

elements, is displayed to the user. But it is not just a still picture. The construc-
tion is interactive, it reacts to user’s input, who can move some of the elements
with the mouse pointer. The whole construction is then recomputed according to
the defining geometric relationships. For example, the circumcircle of a triangle
could follow the three vertices of the triangle wherever they are dragged.

The Intergeo file format is based on three design decisions: the packaging
as an archive with particular files inside it, the separation of the elements part
describing the (static) initial geometry from the constraints part where the ge-
ometric relationships are expressed using OpenMath, and the use of OpenMath
Content Dictionaries (CDs) to describe the elements and the constraints. These
CDs are provisionally called the i2geo CDs.

This paper describes the ongoing specification effort of the aforementioned
Content Dictionaries and the progress on implementation.

2 Review of pre-existing CDs

The primary and ambitious goal of OpenMath (http://www.openmath.org) is
to develop a standard for representing mathematical objects with their seman-
tics. The fact that its original designers were mainly developers of computer
algebra systems lead to little attention being paid to geometry. The geometry-
related Content Dictionaries one can find at the OpenMath website at the
time of writing are bundled in a group called plangeo. There are six of them,
plangeol,...,plangeo6. The symbols defined in these CDs deal with planar
Euclidean geometry and with generating polynomial systems from geometric
configurations. These plangeo CDs were designed at Eindhoven University Of
Technology as part of a project for automatically proving theorems sketched in
the DGS Cinderella. Although Cinderella has an efficient randomized prover, its
proofs cannot be verified. The goal of the project was to let Cinderella com-
municate with GAP by means of OpenMath, in order to use bracket algebra to
obtain sound proofs of geometric theorems [3].

Another use of the plangeo CDs has been reported in [4]: constructions in
Cabri, The Geometer’s Sketchpad and Cinderella dealing with geometric loci,
proving and discovering, are rewritten in OpenMath and exported to Mathe-
matica and CoCoA for algebraic manipulation. As far as we know, no other use
of the plangeo CDs has been published.

3 The Intergeo file format: design decisions

The file format of Intergeo is based on three major design decisions, which we
explain below: the choice of zip-packaging, the choice of a constructions-based
approach as opposed to a constraints-based approach, and the choice of Open-
Math as semantic infrastructure. This paper provides a summary of the details
described in [5].

Abédnades et al. 19

3.1 Packaging

The Intergeo files, just as many other formats
that have appeared recently, are ZIP archives
containing several files. The most important [construction /
file is the central file intergeo.xml; optional |construction /intergeo.xml
files can be compressed containing media and |construction /preview.svg
style elements which should be detached from |construction /preview.png
the construction. metadata/

The intergeo.xml file encodes the ini- metadata/i2g-lom.xml
tial positions, in XML, and the constraints, |resources /
in OpenMath being made of references to the |resources /photo-jump.jpeg
Content Dictionaries. See [5] for a detailed
specification of the archive. On the right you
see an example archive listing.

An example content of intergeo.xml is given in figure 1 where one can see
the usage of construction and constraint elements which we explain below.

3.2 Constructions-Based Description

The objective of the file format specification is providing a semantics of interac-
tive geometry which should be understandable by all DGS implementors as well
as further systems such as proof assistants. The mathematical semantics is, thus,
important. In this section, we describe the chosen conceptual approach while the
next describes the current concrete specification of OpenMath symbols that has
been achieved.

Dynamic Geometry Systems deal with sets of geometrical objects that have
certain relations. We call such a set of objects with given relations a configuration.
All objects are part of some underlying space, for example the euclidean plane.
In principle, if nothing else is said about them, objects can move around freely in
this space. Relations then specify constraints on the movement of these objects.

Ezxample 1. Two points P and @, together with a line [; there is the following
constraint:

line [is incident to both points P and Q.

Ezxample 2. A circle I', a point P, a line [and the following constraints:

Pisonl
l is tangent to I"
the distance of P to the center of I" is 10.

We can make the simple observation that the constraints do not determine the
positions of the objects uniquely. This causes multiple problems that lie at the
heart of dynamic geometry.

20 Intergeo File Format

<construction>
<elements>
<point id="P">
<homogeneous_coordinates>
<double>2</double>
<double>5</double>
<double>1</double>
</homogeneous_coordinates>
</point>
<line id="1"> 2
<homogeneous_coordinates>
<double>7</double>
<double>3</double>
<double>-29</double>
</homogeneous_coordinates>
</line> s
<point id="Q"> .
<homogeneous_coordinates>
<double>5</double>
<double>-2</double> :
<double>1</double> L
</homogeneous_coordinates> .
</point>)
</elements>
<constraints> 2
<line_through_two_points>
<line out="true">1</line>
<point>P</point>
<point>Q</point>
</line_through_two_points>
</constraints>
</construction>

Figure 1: The content of an intergeo.xml for a simple construction of two points
and one line through them. On the right, two possible (default) graphical repre-
sentations of it: with or without axes; an important distinction between several
interactive geometry systems which decide to present the geometry within a
coordinate system or not per default

Abédnades et al. 21

There is the problem of how to create an instance of the configuration. We
say this has to do with the static aspect of the configuration. In Example 1,
the points P and @ could still lie anywhere on the line [as it stands. For any
instance, we must specify where [, P and @) should be. But once we have specified
one, the other two are not completely free anymore. This particular example is
not hard. And Example 2, although more difficult, is still doable. But in general,
it is very difficult to give any particular solution for a set of constraints. There
is not even a quick method to decide whether there are any instances: a set of
constraints could be too restrictive and leave none.

Second, there is the dynamic behaviour of a configuration, caused by the
freedom still left by the constraints. In Example 1, what should the user be able
to move? May the line be picked up and translated or rotated in its entirety,
the points being translated and rotated with it? Can the user only move one
of the two points, the line being adjusted accordingly? Constraints of a strictly
classical geometrical nature, such as the ones stated above, do not say anything
about this behaviour. For the approach of a DGS, this is not enough.

A natural way to shed light on both these problems is a more precise specifi-
cation of how the objects depend on each other. We could stipulate which objects
are free, meaning that they can be varied over the whole range of possibilities in
the underlying space (think of the plane) by the user. We would then proceed
saying which objects depend only on the free objects, which ones depend only on
these new objects and the free objects, etcetera. Such a specification is called a
construction. It allows a DGS to rapidly create instances or decide that there are
none. It also enables a DGS to give more consistent dynamic behaviour: objects
are only movable insofar as they still have some degrees of freedom left, suppos-
ing the objects they depend on are kept fixed. The behaviour for all different
cases (e.g. a line through a fixed point) can be decided in advance. Other objects
dependent on the object being varied have to change as well, and this still leads
to decision problems, but they are less severe. We could give a construction for
Example 1 as follows:

Ezxample 3. Two points P and @, together with a line [, and the following con-
struction:

free_point(P)
line_through_point(I,P)
point_on_line(Q,1)

The line [would then depend on where P is placed. That point could be varied
freely. The line could then be rotated around P (and @ would most logically
rotate with it), and while P and [are kept fixed, @ could still slide over the line.
Note that such information could not be gleaned from the configuration.

It thus seems like a configuration might be too general to be practical, and
we might be better off with a construction. We therefore decided to go with
constructions. This decision implies less interoperability with constraint-based
systems, since some of their resources will not be encodable into the format. But
it ensures that construction-based DGSs will be able to interpret the resources,

22 Intergeo File Format

which they might not if we used configurations. Indeed, although some systems
like Geometer’s Sketchpad [6] and Geometry Expressions [7] take a constraint-
based approach, most systems use constructions.

Another effect of the decision is the potential explosion of keywords. We
have to distinguish between “line_through_point” and “point_on_line”. This is in
sharp contrast to configurations, where one relation “incident” would suffice. In
general, if there are n different types of objects, the construction approach now
forces n? different types of incidence on us. This means a more bloated specifi-
cation of the file format. On the other hand, it is easier for software developers
to parse constructions, so it saves trouble there.

3.3 Design Decisions: OpenMath

The advantage of using OpenMath [8] as opposed to a self-chosen XML-format lies
in the fact that the use of a Content Dictionary makes for a flexible, open, and
reusable standard whose mathematical rules can be described. First of all, the
use of OpenMath enables INTERGEO to use other Content Dictionaries already in
existence, so it saves development time. Second, other kinds of software that want
to use the format in the future can combine it with other Content Dictionaries
to enrich its expressive power.

The choice of OpenMath also lies in the documentation of the extensibil-
ity: although the INTERGEO consortium groups a wide majority of the imple-
mentors of interactive geometry software and the agreement they have reached,
the file formats of each of these softwares will evolve. Thanks to the formal-
mathematical-properties, new symbols can be used by one software with a fair
chance that they will be also usable, mathematically correctly, by other soft-
wares [9)].

The OpenMath XML syntax specified in [8] is not used within the file-format
because of the numerous restrictions on the constraints and elements parts: they
make it easy to use a more expressive XML syntax which uses the element-name
instead of the symbol name. A look to the sample of figure 1 will allow the reader
to easily translate. The format is used, however, within the content-dictionaries
to express both the examples and the formal properties.

4 Content Dictionaries: achieved set of symbols

As the title of this paper indicates, the Intergeo File Format is still work in
progress. The Intergeo team is regularly discussing issues and trying to reach
consensus on a substantial part of them. At the end of July 2008, a first version
had been constructed that pertained to lines and points. Although outdated now,
it can still be found at http://svn.activemath.org/intergeo/Deliverables/
WP3/D3.3/. At the end of July 2009, a second version was constructed, which
looks more or less like described in this section. The content-dictionaries are
edited after more informal writing happening in the project’s wiki and a discus-
sion has taken place. They can be browsed from http://svn.activemath.org/
intergeo/Drafts/Format/cd/.

Abédnades et al. 23

The final version will be available at the end of June 2010. This will also mean
that at that time, all software partners will have a working API that supports
this format. For more about APIs, see section 8.

The second version of the file format mainly concerns itself with points, lines,
(directed) line segments and rays, polygons, and conics.

First, in the elements part of an i2g file, all geometric objects in the con-
struction are declared. This implies that the valid OpenMath symbols appearing
there, the vocabulary of the intergeo_elements Content Dictionary, is also the
collection of mathematical types that we work with. This setup therefore makes
explicit what kind of objects we consider to be first-class citizens in a geometric
construction. For now, the types we have are:

Point Line Linear_equation
Direction Ray Line_segment
Directed_line_segment |Polygon|Conic

Ellipse Circle |Parabola
Hyperbola Locus

We note that some types are subtypes of other types, e.g. circles are ellipses,
which are themselves conics, just like parabolas and hyperbolas. Subtyping gives
rise to some specific problems which we are tackling at the moment. For example,
we are pondering including artificial types like Linear_object for generalizing
Line, Ray, Line_segment and Directed_line_segment, as well as Object to
encompass all types.

Once all objects in a construction have been declared in the elements part of
the i2g file, in the configuration part the geometric relations between the objects
can be described. The description is done by predicates. Formally, this means
that a geometric relation is cast in the form of a functional type, in the sense of
type theory, with input the types of the relevant objects and output type Bool.
For example, we might say that a point is constrained to lie on a previously
defined line by writing

point_on_line(p,!)

with type

Point X Line — Bool.

Some predicates do not refer to geometric relations but to dynamic behavior.
For example, an object can be specified to be freely movable, independent of
anything else. Since the behaviour of a free object may depend on its type, we
chose to explicitly include this type, whence we have free point, free_line,
etc.

We currently have the following list of constraints:

24 Intergeo File Format

free_point free_line

point_on_line line_through_point
line_through_two_points line_perpendicular_to_line
line_perpendicular_to_line_through_point|line_parallel to_line
line_parallel to_line_through_point point_intersection_of lines
line_angular_bisector line_segment_by_points
carrying_line_of_line_segment endpoint_of_line_segment
point_on_line_segment directed_line_segment_by_points

starting_point_of_directed_line_segment |end_point_of_directed_line_segment
line_segment_of_directed_line_segment |ray_from_point_to_point

ray_from_point_in_direction starting_point_of_ray
carrying_line_of_ray direction_of _ray
point_on_ray point_on_conic

5 Basic Requirements: A Wish List

From our experience with the OpenMath geometric symbols (plangeo CDs), and
mainly from the discussion with the software partners of the Intergeo project, we
have described a basic comprehensive list of geometric elements and functions
that should be supported by the common file format. Of course, it is not a
complete and exhaustive list of all the elements from all DGSs involved but
rather the set including the most common elements and functions. The purpose
of this wish-list is hence to serve as a beacon to lead the way towards a common
ground. It consists of a limited number of basic elements, but more elements can
(and must) be added in the future.

The list has two parts: Constructions and Functions. In the Constructions
part, with 53 elements, we list the basic elements of a geometric construction,
from the simplest ones (a free point) to the more complicated ones (for exam-
ple, a geometric locus). We have identified different categories of elements. For
example, in the category Points we can find Free point, Point on line, ...

In the Functions part, with 10 elements, we consider calculations that can
be performed on a geometric construction, like computing the area of a triangle
or the length of a segment; or transformations on a construction, like a rotation.

The following is a schematic version of the list in which the number of con-
struction subtypes has been added for each type.

— Constructions
e Points (17), Vector (1), Segment (1), Lines (15), Rays (3), Polygons (2),
Circles (6), Conics (6), Locus (2)
— Functions
e Angle, Area, Length, Distance, Reflection wrt a point, Reflection wrt a

line, Reflection wrt a circle, Rotation by two lines, Rotation by a point
and an angle, Traslation

Abédnades et al. 25

6 Implementation progress, library, and test-suite

A wide variety of DGSs exists nowadays. Before this project, each system used
incompatible proprietary file formats to store its data. The Intergeo file format
aims to be the convergence of the common features of the current DGSs together
with the vision of future developments and the opinion of external experts. Its
final version, based on modern technologies and planned to be extensible to
capture the flavour of different DGSs, could serve as a standard in the DGS
industry.

The specification of the first version of the Intergeo file format has been
released as [5] after intensive collaboration between DGS software developers
and experts. It specifies only a restricted subset of possible geometric elements,
which however lead to an agreement on the structure and basic composition of
the format.

As soon as Version 1 of the file format got more concrete, some of the
software developers started to investigate its practical usage by integrating it
(partially) into their software (see http://i2geo.net/xwiki/bin/view/About/
I2GformatImplementations). It was possible to move simple content between
several of the packages in the project. The gained experiences influenced the
further steps: the development of the next version of the file format is ongoing,
will be released before summer and can be followed on http://svn.activemath.
org/intergeo/Drafts/Format/cd/. The development of a common API for the
file format (ClientAPI) has started and will soon be available to all developers
to simplify their implementation work.

The need of a test suite emerged to check the compatibility level of the
different DGSs and to be able to release compatibility certificates. The test suite
is composed of several test cases for the different elements and/or constraints.
Its result is one of the following four levels:

— cannot read the element/constraint technically (which should not happen)
— can read the element/constraint technically -without throwing exceptions
etc.- so it can at least be ignored (for unsupported elements/constraints)

— can read the element/constraint and represent it internally, though maybe

with wrong or missing semantics (partial support of the element/constraint)

— can read the element/constraint and represent it internally with correct se-
mantics (full support of the element/constraint)

Furthermore another API (ServerAPI) has been defined to allow the Intergeo
platform to display DGS resources. It allows retrieving important information
like a preview image, the HTML fragment and the MIME type. It will also
enable converting the construction to the Intergeo file format. Thus all com-
mitted constructions will be available in the common file format as soon as the
corresponding DGSs will implement both APIs.

26 Intergeo File Format

7 Mathematical Issues and Problems

While developing the file format we identified several issues and mathematical
problems that have to be addressed. We will discuss some of them briefly here;
for further discussions we refer to the mailing list archives of Intergeo Work
Package 3, and we also invite others to join the discussion there.!?

This section repeats parts of the Deliverable 3.3, and highlights the important
aspects for the OpenMath community. Despite the fact that we are listing a lot of
yet to be solved issues, we are confident that the first version of the Intergeo file
format is capable of handling any design decisions that result from the following
discussion. For a description of some of the underlying mathematical problems,
we refer to [10].

7.1 More Elements and Polymorphism

We already specified a wish list for further elements and constraints in Section
5, that contains the most important geometric extensions. Still, there are many
other objects that have to be expressible by the file format, more general ones
like functions or numbers, as well as stylistic elements like text objects or images.
A task for the next version of the Intergeo file format is to collect and specify
all elements that are currently in geometry software.

Certain elements are very similar to others, e.g. segments and rays can be
used instead of lines in many cases. Other examples are arcs of circles in compar-
ison to plain circles. The next version of the Intergeo file format has to be able
to handle such polymorphism, as well as symbols that have a variable number
of arguments. An example for the latter is the definition of polygons by vertices.

Some objects can also be replaced by others in certain special cases, for
example, a circle might degenerate to a line, or a conic might degenerate to
two lines. Although currently no DGS uses these degenerations, this could be
desirable for the future. A DGS might construct a parallel line to a degenerate
circle through three collinear points — with our current specification and typing
mechanism it is not possible to capture this in the file format. However, we
request advise from DGS developers and users on this issue.

7.2 Ambiguity Resolving

Ambiguity Resolving is crucial in finding the correct positions of elements in
stored construction after loading, also known as the persistent naming problem
[11] from parametric CAD. Assume that an intersection point of two circles is
used in a construction. If the two circles are moved into a tangent position, and
then the construction is stored, then both intersections have the same coordi-
nates and thus cannot be distinguished. If the circles are moved into a position
where both intersection points can be distinguished, then it is essential to pick
the correct intersection point.

10 See http://lists.inter2geo.eu/mailman/listinfo/wp3

Abédnades et al. 27

Most DGSs solve this problem by having an implicit order of multiple out-
puts. This order is dependent on the implementation details of the algorithms
and cannot be part of a specification. Also, a point might switch branches later
due to homotopy-conserving implementations. A detailed review of these prob-
lems can be found in [12]. This means that this approach cannot be used for a
cross-software file format.

As soon as circle (or conic) intersections are introduced, we will have to find
a solution to this problem.

7.3 Functions and Scripting

Almost all DGSs support some form of plotting graphs, defining element de-
pendencies, or changing the style of elements dynamically by using functions
that are defined symbolically. All of these use a different language to specify
the functions, though many aspects are shared. The conformance to standards
varies wildly between “OpenMath compliance” and “unspecified.”

Right now it seems impossible to homogenize the various dialects. Actually,
the translation from one language to the other can be done easily by humans if
an automatic conversion fails, so we decided that for now all functions should be
specified in the private sections of the file format. Each DGS may try to interpret
the other function specification, of course, and store its own interpretation as
well.

For this, we need a notion of “alternatives”, which will be specified in an
upcoming version of the Intergeo file format.

Anoth