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Abstract. We present SCSCP – the Symbolic Computation Software
Composability Protocol. SCSCP is a remote procedure call framework
for computational algebra systems in which both data and protocol in-
structions are encoded in the OpenMath language. We present SCSCP
implementations in several CASes and other SCSCP-compliant appli-
cations and APIs, developed with the support of the EU FP6 project
“SCIEnce – Symbolic Computation Infrastructure for Europe”.

1 Combining Symbolic Computation Systems

Many research problems which could be tackled with computer algebra systems
(CASes) cannot be solved within a single system or could be solved much faster
if a combination of two or more CASes would allow performing each step in the
fastest available implementation.

Examples include number theory computations in a specialized system, sym-
bolic calculations on generic character tables, computations on large finite state
automata, Gröbner computations that are faster in one system than in another,
libraries or plug-ins that are available in a system on Linux but not on Windows,
etc.

In this paper we are giving an overview of the SCIEnce project activity to
develop a framework which enables efficient and reliable combining of CASes for
such purposes. Another area the SCIEnce project hopes to bring improvement
to is that of libraries and databases of mathematical objects that may be stored
in some universal format accessible to many systems.

Since the OpenMath standard emerged, a lot of work was done on combining
CASes, e.g. the MONET project [8] and the various translators (phrasebooks)
produced by RIACA [14] (see also the OpenMath webpage [10] for a detailed
account of OpenMath software and tools). However, the approach has often been
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to have a system provide OpenMath by creating wrapper software that commu-
nicates with the system in the background and that performs the translation
from OpenMath to the internal syntax and vice versa.

The approach taken in the SCIEnce project, however, is to build the Open-
Math support into the systems themselves instead of creating a wrapper, which
yields a much more robust implementation. Also, unlike in another well-known
project in this area, namely Sage [17], the approach in SCIEnce is not to subordi-
nate the packages from an integrating system, but to define an interface that any
system can implement to provide a way to use the capabilities of other systems
within a familiar environment.

We therefore set up a project aiming to define standards and construct an
extensible framework which would:

– ensure seamless communication between CASes, both local and remote;
– use a universal format not relying on the particular input/output format for

each system;
– ensure that each system implementing the standard can immediately offer

services to and consume services from other such systems.

2 SCSCP and its CDs

To simplify the communication between the various CASes, we have developed a
protocol called the “Symbolic Computation Software Composability Protocol”,
abbreviated SCSCP [3, 2]. This protocol does not only enable the computation
of simple commands in a different system or on a different machine, but it
will also serve as a means of conveying constituents of larger, more complex,
computations.

The key features of SCSCP are:

– Mathematical data are encoded in OpenMath;
– The protocol messages are encoded in OpenMath as well, so that participat-

ing systems need to support only one language;
– The OpenMath support is wired directly into the joining systems. This is

much more robust, easier to create, and faster than the usual practice of
producing wrapping programs to enable OpenMath support.

In particular, the protocol messages are in the OpenMath language, and its
TCP-sockets based implementation uses XML processing instructions to delimit
these messages and convey small pieces of information on a higher level. Com-
munication takes place using port 26133, reserved for SCSCP by the Internet
Assigned Numbers Authority (IANA).

SCSCP does not require statefulness on behalf of the server, although it does
offer support for working with so-called “remote objects.” Such object can be
created on the server (thus, changing its state) and used in further computations
as arguments of procedure calls.

At the moment of writing the protocol has reached version 1.3 and both
client and server implementations exist in GAP, KANT, Maple, and MuPAD.
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We will detail these implementations in Section 3, except for the Maple system
which plans to announce its tools elsewhere at a later stage.

The protocol is also supported by TRIP, a general computer algebra system
dedicated to celestial mechanics, using an own publicly available implementation
of SCSCP [4]. Moreover, we have developed a Java library org.symcomp.scscp
to facilitate third party developers in exposing their own applications using SC-
SCP. We provide details on this library in Section 4. Additionally, while some of
our SCSCP implementations provide straightforward functionality for parallel
computations, another result of the SCIEnce project is the SymGrid-Par mid-
dleware, which orchestrates computational algebra components into a parallel
application that uses SCSCP for internal communication [19].

Apart from two OpenMath Content Dictionaries accompanying the SCSCP
protocol [15, 16], several other Content Dictionaries were developed in the project,
concerning, for example, polynomial factorization and efficient OpenMath rep-
resentations of matrices, number fields and orders in number fields. We have
submitted these content dictionaries separately to the OpenMath 2009 work-
shop.

As a simple example, we demonstrate a simple SCSCP session on the server.
The server is running GAP and provides a procedure to identify a finite group in
the GAP Small Groups Library. After the server receives an incoming connection,
it replies with the connection initiation message. After that, the client replies
with its preferred version, and the server confirms this version to the client.

S: <?scscp service_name="GAP" service_version="4.dev" service_id="
localhost :26133:7617" scscp_versions="1.0 1.1 1.2 1.3" ?>

C: <?scscp version="1.3" ?>
S: <?scscp version="1.3" ?>

Then the client sends the procedure call to identify the cyclic group of order
two given as permutation group:

C: <?scscp start ?>
<OMOBJ >

<OMATTR >
<OMATP >

<OMS cd="scscp1" name="call_id"/>
<OMSTR >scscp.symcomp.org :26133:7617: eBFyqFae </OMSTR >
<OMS cd="scscp1" name="option_return_object"/>
<OMSTR ></OMSTR >

</OMATP >
<OMA ><OMS cd="scscp1" name="procedure_call"/>

<OMA ><OMS cd="scscp_transient_1" name="WS_IdGroup"/>
<OMA ><OMS cd="permgp1" name="group"/>

<OMS cd="permutation1" name="right_compose"/>
<OMA ><OMS cd="permut1" name="permutation"/>

<OMI >2</OMI >
<OMI >1</OMI >

</OMA >
</OMA >

</OMA >
</OMA >

</OMATTR >
</OMOBJ >
<?scscp end ?>
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The server responds that the group has catalogue number [2, 1]:

S: <?scscp start ?>
<OMOBJ >

<OMATTR >
<OMATP >

<OMS cd="scscp1" name="call_id"/>
<OMSTR >scscp.symcomp.org :26133:7617: eBFyqFae </OMSTR >

</OMATP >
<OMA ><OMS cd="scscp1" name="procedure_completed"/>

<OMA ><OMS cd="list1" name="list"/>
<OMI >2</OMI >
<OMI >1</OMI >

</OMA >
</OMA >

</OMATTR >
</OMOBJ >
<?scscp end ?>

After that the client closes the connection, and the server is ready to accept
new procedure calls.

3 Computer Algebra Systems

In this section we give a brief overview of the status of the SCSCP implementa-
tion in various systems.

3.1 GAP

In the GAP system, the support of OpenMath and SCSCP is implemented in
two GAP packages with the same names.

The OpenMath package [1] provides an OpenMath phrasebook for GAP: it
is responsible for the conversion from OpenMath to GAP and vice versa and
reading/writing OpenMath objects from/to streams. The package provides a
framework, allowing users to extend it with private content dictionaries.

The SCSCP package [7] implements the Symbolic Computation Software
Composability Protocol on top of the GAP packages OpenMath, IO and GAP-
Doc. The package has two main components: server and client. The server may
be started interactively from the GAP session or as a GAP daemon. When the
server accepts a connection from the client, it starts the “accept-evaluate-return”
loop:

– accepts the "procedure call" message;
– performs lookup of the appropriate GAP function;
– evaluates the result (or produces a side-effect);
– returns the result in the "procedure completed" message or returns an

error in the "procedure terminated" message.

The SCSCP client performs the following basic actions:

– establishes connection with the specified server at the specified port;
– sends the "procedure call" message to the server;
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– waits for the result of the computation or returns to pick it up later;
– fetches the response, extracting the result from the "procedure completed"

message or entering the break loop in the case of the "procedure terminated"
message.

On top of this functionality we built a set of instructions for parallel com-
putations using the SCSCP framework, allowing to send several procedure calls
in parallel and then collect all results or pick up the first available result, and
implemented the master-worker parallel skeleton.

To give the users an opportunity to test the package we are running a demo
SCSCP server accessible at chrystal.mcs.st-andrews.ac.uk, port 26133. It is
working under the development version of the GAP system and a selection of
currently redistributed GAP packages. See the package homepage [7] for further
information, downloads and documentation with examples.

3.2 KANT

The KANT system provides two main packages for SCSCP support:

– libkant package which contains the core functionality of the KANT system;
– autokash which consists of the KANT SCSCP server, a simple client and a

server. The server is started by running the KANT/KASH daemon, named
kashd, which is the main binary in the autokash package.

Here are the different steps when the connection from a client is accepted by
the server:

– a socket is open and the SCSCP message comes in;
– the "procedure call" part of the message is extracted;
– a table of xpaths is matched against the message and a callback function is

looked up;
– after evaluation, the result (or an error message in case of error) is sent back

to the client.

We are running two KANT SCSCP servers accessible at port 26133 at ad-
dresses issel.math.tu-berlin.de and stirling.math.tu-berlin.de and run-
ning under the recent development version of the KANT system. The users can
also download the autokash package which contains libkant library from [6].

The OpenMath support is implemented in the autokash package. It is con-
tained in the openmath.la library. To use that library, one should load it when
running the KANT/KASH daemon kashd. See the public homepage [6] for more
information.

The KANT SCSCP Client Shell: kapy We are developing at the present
moment a KANT SCSCP client shell, named kapy. It is written in python and
fully supports the SCSCP protocol. Also, the idea of using kapy is to ease man-
ual typing when handling OpenMath objects. To connect from kapy to a run-
ning KANT SCSCP server, we need at least python version 2.5 and the script
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kapy.py. The call cas = kapy.connect(host, port) will establish the connec-
tion with the SCSCP server running at the appropriate host and port. From
then, one can create the openmath objects like OMI, OMF, OMSTR, OMV
using:

– cas.compute(kapy.omi(int)) for the intergers;
– cas.compute(kapy.omf(float)) for the floats;
– cas.compute(kapy.omf(str)) for the strings;
– cas.compute(kapy.omv(var)) for the unused variables since the KANT

system can not handle the symbolic objects.

The openmath objects OMS and OMA are constructed as follows:

– cas.compute(kapy.oms(cdname, symbolname)) for OMS;
– cas.compute(kapy.oma(cdname, symbolname, args)) for OMA.

We can also store the result in a variable to reuse it later or in other com-
putations. Finally, since kapy is written in python, it is natural to be able to
convert basic OM objects like OMI, OMF, OMSTR to the python representation
using a function named PyConvert.

3.3 MuPAD

There are two main aspects for MuPAD SCSCP support:

– OpenMath MuPAD package;
– SCSCP server wrapper for MuPAD.

While the former offers the ability to parse, generate, and handle OpenMath in
MuPAD, and to consume SCSCP services, the latter enables access to MuPADs
mathematical abilities as an SCSCP service. Sadly, however, the current MuPAD
end-user license agreement does not generally allow this. Therefore, below we
concentrate on the OpenMath package.

To use the package, download it from [9] and put it into your PACKAGEPATH.
It can then be loaded using package("OpenMath"). Afterwards, documentation
is available through OpenMath::doc().

The OpenMath Elements To represent the different OpenMath tags, there
are the following constructors:

– OpenMath::Apply(head, [params]) – expands to a function call of head
on params;

– OpenMath::Bind(head, [vars], expr) – expands to a function call of head
on vars and expr;

– OpenMath::Error(head, [params]) – expands to an error textually con-
tainig head and params;

– OpenMath::Float(x) – expands to a DOM FLOAT;
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– OpenMath::Integer(i) – expands to a DOM INT;
– OpenMath::Object(o) – expands to o;
– OpenMath::Reference(id) – expands to either the element with the given

id or an error;
– OpenMath::String(str) – expands to the given DOM STR;
– OpenMath::Symbol(cdname, name) – expands to either some MuPAD ob-

ject or the MuPAD identifier ‘cdname.name‘;
– OpenMath::Variable(name) – expands to an unused DOM IDENT.

All constructors accept an optional last argument id to set the id. A tree of
these objects may be translated to MuPAD objects by calling expand on it. It
may be necessary to call eval to get an actual result.

Calling OpenMath::toXml on an OpenMath tree gives a tree of adt::XML
nodes representing it. This can then printed or converted to an XML string. All
these constructors have a doc slot, so you can get further information by calling,
e. g., OpenMath::Apply::doc().

The OpenMath Parser In this domain, there are two functions available to
turn an OpenMath XML string into a tree of OpenMath:: objects as above:

– OpenMath::parse(str) – parses the string str;
– OpenMath::parseFile(fname) – reads and parses the file named fname.

Generating OpenMath With generate::OpenMath, a MuPAD expression
can be converted into its OpenMath representation. Internally, the above men-
tioned OpenMath elements are used to assemble the result.

The result of the call to generate::OpenMath is always wrapped in an
OpenMath::Object. To obtain the OpenMath representation without the wrap-
ping OMObject, one can simply use OpenMath(. . .).

SCSCP Client Connection By the call s := SCSCP(host, port) an SCSCP
connection object is created, which can then be used to send commands to the
SCSCP server. Note that the actual connection is initiated on construction by
starting the java program WUPSI (see 4.4) which is bundled into the OpenMath
package. It is using an asynchronous file system based message exchange mode
and thus can be used to do computations in the background.

To actually let the server compute something, one uses s::compute(. . .) or,
equivalently s(. . .). Note that it may be necessary to wrap the parameter in
hold(...) to prevent premature evaluation in MuPAD.

To use the connection asynchronously, the commands send and retrieve are
used: a := s::send(...) returns an integer which may be used to identify the
computation and to retrieve the result later with s::retrieve(a). retrieve
returns FAIL if the result of the computation is not yet computed unless you
specify a second parameter TRUE. In that case the call will block until the result
is ready.
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To disconnect the client after use (and before e. g. reset) one can use the
command s::close() to stop the corresponding Java program, and thus clean
up the associated resources. Obviously, when MuPAD exits, this is done auto-
matically.

4 Java SCSCP API

This Java library is intended to enable third party developers to use SCSCP
servers (i.e. have their own application acting as an SCSCP client), or easily
expose their own applications as SCSCP servers (i.e. have their own application
acting as an SCSCP server).

The library has two essential parts: The OpenMath library org.symcomp.
openmath and the SCSCP implementation org.symcomp.scscp. We will detail
these libraries in Sections 4.2 and 4.3, respectively. Furthermore, the library
comes with several examples that should serve as a good starting point for the
user.

We use these libraries ourselves as well: In the MuPAD client and server
application (Section 3.3), in an experimental Magma server, in the Webproxy
(Section 4.5) and in WUPSI (Section 4.4).

4.1 The Popcorn representation

When handling OpenMath objects, one frequently finds oneself typing and read-
ing lots of OMAs, OMSs, and so on. This may lead one to the conclusion that humans
were not designed to parse XML. That is why we decided to create an Open-
Math representation taking this into account, and created POPCORN. It is an
acronym standing for “Possibly Only Practical Convenient OpenMath Replace-
ment Notation”. For the sake of typographic beauty, we write it as “Popcorn”.

We emphasize that Popcorn is merely an OpenMath representation that
we consider convenient for humans, similar to the binary representation that
is obviously more convenient for machines. Furthermore, if a two-dimensional
environment such as a web browser is available, more sophisticated editors such
as the MathDox formula editor are even better. However, we still think Popcorn
is a valuable addition, e.g. for quick tests, command line applications, etc.

Popcorn is described in more details in the MKM 2009 paper [5].

4.2 org.symcomp.openmath

Although there are some Java OpenMath Libraries available [12, 13], these are
older (last update in 2000 and 2004, respectively) and we disagreed with some
of the design choices made.

We therefore created a new library that takes advantage of the recent devel-
opments in Java, such as annotations and generics, and we designed it from the
ground up to be as easily extensible as possible. It provides many convenience
classes and handy methods to traverse, construct, and analyze OpenMath trees.
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Furthermore, it has completely transparent support for OpenMath Attributions,
eliminating the need to handle these objects in any special way.

Import and export to OpenMath 2 XML, OpenMath 2 Binary, and Popcorn,
and export to LATEX are included. Moreover, to feed OpenMath data into other
applications, it is often necessary to produce a specific format. This is wired
into org.symcomp.openmath as custom renderers. We designed this part of the
library in such a way that producing e. g. a renderer for the Magma language
took only a few lines of code. Moreover, the LATEX- and Popcorn-renderer are
made using the same mechanism. These also give the user a great starting point
for developing his/her own custom renderer.

Java Runtime Library

org.symcomp.openmath

Server implementation

C3PO ProcedureCallHandler

SCSCPServer

Client implementation

CASClient

SCSCPClient

SCSCP shared classes

Computation ProcedureCall SCSCPConstants ... ...

Fig. 1. The structure of the org.symcomp Java libraries

4.3 org.symcomp.scscp

As mentioned above, this library was designed to enable a third party developer
to easily expose his or her own application using SCSCP. This library obvi-
ously uses org.symcomp.openmath for handling the OpenMath objects that are
inherent to the SCSCP protocol.

The structure of the libraries is shown in Figure 1. Depending on the level of
control a developer wants to have on the inner workings of the SCSCP protocol,
he would extend a particular class.

For an application to use an SCSCP service such as GAP or MuPAD, a
developer would typically subclass the SCSCPClient. She or he would then need
to do little else than specify the host and port to connect to, phrase the relevant
questions in OpenMath, and call the compute method.

If on the other hand someone wants to make his or her own application
available for other SCSCP clients, she or he would typically subclass called the
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ProcedureCallHandler. In its handle method, little else is required than inter-
preting the incoming OpenMath message, converting it to the internal format
of the parent application, computing the solution, and converting the solution
back to OpenMath.

4.4 WUPSI : a proof-of-concept example

The API described in this section allowed us to easily create WUPSI (“Wonderful
Universal Popcorn SCSCP Interface”). It is a small command-line application
that allows to connect to one or more SCSCP servers and issue computation
requests.

It was designed with two main purposes in mind. Firstly, it serves as a great
debugging tool for SCSCP implementations, as one simply enters OpenMath,
and receives OpenMath back (possibly in the form of Popcorn). Secondly, it is
an extensive example of how the Java libraries may be used, and could serve as
a nice reference for those who want to use these libraries.

Apart from the example uses shown in Listing 2 many other more advanced
functions are available, such as a poor-man’s parallelization tool and the possi-
bility to have WUPSI act as an SCSCP proxy server for connected systems.

4.5 WebProxy

The WebProxy is a Java application meant as an administration and orchestra-
tion console for one or more SCSCP compliant services. Whilst the WebProxy
is a web application intended for direct user interaction, it also provides ac-
cess to the capabilities of the connected CASes through SOAP and GET/POST
interfaces.

5 Licensing and Availability

The GAP packages are distributed under the GNU Public License as well as the
GAP system itself and are available from their sites and from the GAP homepage
http://www.gap-system.org.

The KANT system and the KANT SCSCP packages are distributed under
the GNU Public Licence and are available from the KANT website http://www.
math.tu-berlin.de/~kant/.

The MuPAD package is not provided by the makers of MuPAD, SciFace
Software, but by the University of Kassel. It is published [9] under an Apache 2
License and should be compatible with MuPAD 4 and above.

The SCSCP library org.symcomp.scscp and the org.symcomp.openmath
library are released under the Apache 2 License. In February 2009 the first public
release was made [11]. The libraries are available as binaries, source packages or
they may be used as Maven dependencies. Available on the website is also a
comprehensive (and continuously improving) API documentation. WUPSI will
be available for download from [11] shortly.
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WUPSI 1.2 -- Wonderful Universal Popcorn SCSCP Interface
(c) 2009 D. Roozemond & P. Horn

4 WUPSI[n/a]0> connect some.server :26139 as gap
# connected to ’some.server ’ on port ’26139 ’ using symbolic name ’gap ’
# Service Info: service Name ’GAP ’, service version ’4.dev ’

WUPSI[gap]0> 126+2323*232
9 539062

WUPSI[gap]1> local $a := $_out0
# Stored this in local variable ’$a ’:
539062

14
WUPSI[gap]2> connect 127.0.0.1:26134 as mupad
# connected to ’127.0.0.1 ’ on port ’26134 ’ using symbolic name ’mupad ’
# Service Info: service Name ’MuPAD ’, service version ’0.6.0 - mupad

-5.2.0 ’

19 WUPSI[mupad]2> output format latex
# switched output format to LATEX.

WUPSI[mupad]2> sum(1 .. infinity , lambda[$x -> 1/$x^2])
{\pi }^{2} \cdot \frac {1}{6}

24
WUPSI[mupad]3> output format popcorn
# switched output format to POPCORN.

WUPSI[mupad]3> local $p := 2^127 -1
29 # Stored this in local variable ’$p ’:

170141183460469231731687303715884105727

WUPSI[magma]4> use gap
# switched to system with symbolic name ’gap ’, service Name ’GAP ’,

service version ’4.dev ’.
34

WUPSI[gap]4> $p -2^101* $a
168774498924748772136428072069291311103

WUPSI[gap]4> describe arith1.plus
39 # -- Description for ’arith1.plus ’ --

The symbol representing an n-ary commutative function plus.
# -- END description for ’arith1.plus ’ --

Listing 2. Using WUPSI

For the links to the most recent available downloads see the homepage of the
SCIEnce project http://www.symbolic-computation.org/

6 Conclusions and future work

In this paper we presented SCSCP - a simple light-weight OpenMath-based
remote procedure call framework, and gave an overview of SCSCP-compliant
applications, represented by computer algebra systems, middleware and APIs.
Further information and concrete examples may be found in (mostly available
online) documentation for appropriate tools.

Among our future directions are developments of new content dictionaries
additionally to those submitted to the OpenMath 2009 workshop, and increasing
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the support of binary OpenMath format which seems inevitably needed in really
large-scale computations.

We hope that the appearance of SCSCP and examples of its use in our
CASes stimulate developers of other systems to support the OpenMath format
to exchange mathematical data, and we hope more SCSCP-compliant software
will become available in the future. We would like to strengthen this invitation
by offering our support and advice to all interested parties.
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Abstract. In this paper we describe the ongoing effort to specify a com-
mon file format for Interactive or Dynamic Geometry Systems (DGS).
Our approach is based on the OpenMath standard, and uses its flexible
extension mechanisms like Content Dictionaries.
We discuss the various design decisions, the Content Dictionaries that
have been defined, as well as open questions to be resolved.

1 Introduction: The Intergeo Project

Interactive geometry is one of the most well known family of computer-based
tools to support teaching of mathematics by means of personal explorations.

Intergeo (http://inter2geo.eu) is an eContentplus European project ded-
icated to the sharing of interactive geometry constructions across boundaries. It
enables teachers and pupils all over Europe to share resources and experiences
as tools for teaching, learning, and research.

Educational contents that were hard to access shall be made available, tagged
with relevant topics and competency based metadata and categorised according
to curricula, they are searchable and easily (re-)usable by everyone. It is our goal
to offer them in a common interoperable format that this article describes.

For more information about the project, we refer to its website and the
documentation available there, as well as [1,2].

A wide variety of DGSs exists. Before the Intergeo project, each system used
incompatible proprietary file formats to store its data. Thus, most of the DGS
makers have joined to provide a common file format that will be adopted either
in the core of the systems or just as a way to interchange content.

The Intergeo file format is a file format designed to describe any construction
created with a Dynamic Geometry System (DGS). Dynamic Geometry Systems,
also called Interactive Geometry Systems, are programs that are used to experi-
ment with geometric objects. A construction, a drawing consisting of geometric
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elements, is displayed to the user. But it is not just a still picture. The construc-
tion is interactive, it reacts to user’s input, who can move some of the elements
with the mouse pointer. The whole construction is then recomputed according to
the defining geometric relationships. For example, the circumcircle of a triangle
could follow the three vertices of the triangle wherever they are dragged.

The Intergeo file format is based on three design decisions: the packaging
as an archive with particular files inside it, the separation of the elements part
describing the (static) initial geometry from the constraints part where the ge-
ometric relationships are expressed using OpenMath, and the use of OpenMath
Content Dictionaries (CDs) to describe the elements and the constraints. These
CDs are provisionally called the i2geo CDs.

This paper describes the ongoing specification effort of the aforementioned
Content Dictionaries and the progress on implementation.

2 Review of pre-existing CDs

The primary and ambitious goal of OpenMath (http://www.openmath.org) is
to develop a standard for representing mathematical objects with their seman-
tics. The fact that its original designers were mainly developers of computer
algebra systems lead to little attention being paid to geometry. The geometry-
related Content Dictionaries one can find at the OpenMath website at the
time of writing are bundled in a group called plangeo. There are six of them,
plangeo1,...,plangeo6. The symbols defined in these CDs deal with planar
Euclidean geometry and with generating polynomial systems from geometric
configurations. These plangeo CDs were designed at Eindhoven University Of
Technology as part of a project for automatically proving theorems sketched in
the DGS Cinderella. Although Cinderella has an efficient randomized prover, its
proofs cannot be verified. The goal of the project was to let Cinderella com-
municate with GAP by means of OpenMath, in order to use bracket algebra to
obtain sound proofs of geometric theorems [3].

Another use of the plangeo CDs has been reported in [4]: constructions in
Cabri, The Geometer’s Sketchpad and Cinderella dealing with geometric loci,
proving and discovering, are rewritten in OpenMath and exported to Mathe-
matica and CoCoA for algebraic manipulation. As far as we know, no other use
of the plangeo CDs has been published.

3 The Intergeo file format: design decisions

The file format of Intergeo is based on three major design decisions, which we
explain below: the choice of zip-packaging, the choice of a constructions-based
approach as opposed to a constraints-based approach, and the choice of Open-
Math as semantic infrastructure. This paper provides a summary of the details
described in [5].
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3.1 Packaging

construction/
construction/intergeo.xml
construction/preview.svg
construction/preview.png
metadata/
metadata/i2g-lom.xml
resources/
resources/photo-jump.jpeg

The Intergeo files, just as many other formats
that have appeared recently, are ZIP archives
containing several files. The most important
file is the central file intergeo.xml; optional
files can be compressed containing media and
style elements which should be detached from
the construction.

The intergeo.xml file encodes the ini-
tial positions, in XML, and the constraints,
in OpenMath being made of references to the
Content Dictionaries. See [5] for a detailed
specification of the archive. On the right you
see an example archive listing.

An example content of intergeo.xml is given in figure 1 where one can see
the usage of construction and constraint elements which we explain below.

3.2 Constructions-Based Description

The objective of the file format specification is providing a semantics of interac-
tive geometry which should be understandable by all DGS implementors as well
as further systems such as proof assistants. The mathematical semantics is, thus,
important. In this section, we describe the chosen conceptual approach while the
next describes the current concrete specification of OpenMath symbols that has
been achieved.

Dynamic Geometry Systems deal with sets of geometrical objects that have
certain relations. We call such a set of objects with given relations a configuration.
All objects are part of some underlying space, for example the euclidean plane.
In principle, if nothing else is said about them, objects can move around freely in
this space. Relations then specify constraints on the movement of these objects.

Example 1. Two points P and Q, together with a line l; there is the following
constraint:

line l is incident to both points P and Q.

Example 2. A circle Γ , a point P , a line l and the following constraints:

P is on l
l is tangent to Γ

the distance of P to the center of Γ is 10.

We can make the simple observation that the constraints do not determine the
positions of the objects uniquely. This causes multiple problems that lie at the
heart of dynamic geometry.
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<construction>

<elements>

<point id="P">

<homogeneous_coordinates>

<double>2</double>

<double>5</double>

<double>1</double>

</homogeneous_coordinates>

</point>

<line id="l">

<homogeneous_coordinates>

<double>7</double>

<double>3</double>

<double>-29</double>

</homogeneous_coordinates>

</line>

<point id="Q">

<homogeneous_coordinates>

<double>5</double>

<double>-2</double>

<double>1</double>

</homogeneous_coordinates>

</point>

</elements>

<constraints>

<line_through_two_points>

<line out="true">l</line>

<point>P</point>

<point>Q</point>

</line_through_two_points>

</constraints>

</construction>

l

P

Q
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l
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Q

Figure 1: The content of an intergeo.xml for a simple construction of two points
and one line through them. On the right, two possible (default) graphical repre-
sentations of it: with or without axes; an important distinction between several
interactive geometry systems which decide to present the geometry within a
coordinate system or not per default

20 Intergeo File Format



There is the problem of how to create an instance of the configuration. We
say this has to do with the static aspect of the configuration. In Example 1,
the points P and Q could still lie anywhere on the line l as it stands. For any
instance, we must specify where l, P and Q should be. But once we have specified
one, the other two are not completely free anymore. This particular example is
not hard. And Example 2, although more difficult, is still doable. But in general,
it is very difficult to give any particular solution for a set of constraints. There
is not even a quick method to decide whether there are any instances: a set of
constraints could be too restrictive and leave none.

Second, there is the dynamic behaviour of a configuration, caused by the
freedom still left by the constraints. In Example 1, what should the user be able
to move? May the line be picked up and translated or rotated in its entirety,
the points being translated and rotated with it? Can the user only move one
of the two points, the line being adjusted accordingly? Constraints of a strictly
classical geometrical nature, such as the ones stated above, do not say anything
about this behaviour. For the approach of a DGS, this is not enough.

A natural way to shed light on both these problems is a more precise specifi-
cation of how the objects depend on each other. We could stipulate which objects
are free, meaning that they can be varied over the whole range of possibilities in
the underlying space (think of the plane) by the user. We would then proceed
saying which objects depend only on the free objects, which ones depend only on
these new objects and the free objects, etcetera. Such a specification is called a
construction. It allows a DGS to rapidly create instances or decide that there are
none. It also enables a DGS to give more consistent dynamic behaviour: objects
are only movable insofar as they still have some degrees of freedom left, suppos-
ing the objects they depend on are kept fixed. The behaviour for all different
cases (e.g. a line through a fixed point) can be decided in advance. Other objects
dependent on the object being varied have to change as well, and this still leads
to decision problems, but they are less severe. We could give a construction for
Example 1 as follows:

Example 3. Two points P and Q, together with a line l, and the following con-
struction:

free point(P )
line through point(l,P )

point on line(Q,l)

The line l would then depend on where P is placed. That point could be varied
freely. The line could then be rotated around P (and Q would most logically
rotate with it), and while P and l are kept fixed, Q could still slide over the line.
Note that such information could not be gleaned from the configuration.

It thus seems like a configuration might be too general to be practical, and
we might be better off with a construction. We therefore decided to go with
constructions. This decision implies less interoperability with constraint-based
systems, since some of their resources will not be encodable into the format. But
it ensures that construction-based DGSs will be able to interpret the resources,

Abánades et al. 21



which they might not if we used configurations. Indeed, although some systems
like Geometer’s Sketchpad [6] and Geometry Expressions [7] take a constraint-
based approach, most systems use constructions.

Another effect of the decision is the potential explosion of keywords. We
have to distinguish between “line through point” and “point on line”. This is in
sharp contrast to configurations, where one relation “incident” would suffice. In
general, if there are n different types of objects, the construction approach now
forces n2 different types of incidence on us. This means a more bloated specifi-
cation of the file format. On the other hand, it is easier for software developers
to parse constructions, so it saves trouble there.

3.3 Design Decisions: OpenMath

The advantage of using OpenMath [8] as opposed to a self-chosen xml-format lies
in the fact that the use of a Content Dictionary makes for a flexible, open, and
reusable standard whose mathematical rules can be described. First of all, the
use of OpenMath enables Intergeo to use other Content Dictionaries already in
existence, so it saves development time. Second, other kinds of software that want
to use the format in the future can combine it with other Content Dictionaries
to enrich its expressive power.

The choice of OpenMath also lies in the documentation of the extensibil-
ity: although the Intergeo consortium groups a wide majority of the imple-
mentors of interactive geometry software and the agreement they have reached,
the file formats of each of these softwares will evolve. Thanks to the formal-
mathematical-properties, new symbols can be used by one software with a fair
chance that they will be also usable, mathematically correctly, by other soft-
wares [9].

The OpenMath XML syntax specified in [8] is not used within the file-format
because of the numerous restrictions on the constraints and elements parts: they
make it easy to use a more expressive XML syntax which uses the element-name
instead of the symbol name. A look to the sample of figure 1 will allow the reader
to easily translate. The format is used, however, within the content-dictionaries
to express both the examples and the formal properties.

4 Content Dictionaries: achieved set of symbols

As the title of this paper indicates, the Intergeo File Format is still work in
progress. The Intergeo team is regularly discussing issues and trying to reach
consensus on a substantial part of them. At the end of July 2008, a first version
had been constructed that pertained to lines and points. Although outdated now,
it can still be found at http://svn.activemath.org/intergeo/Deliverables/
WP3/D3.3/. At the end of July 2009, a second version was constructed, which
looks more or less like described in this section. The content-dictionaries are
edited after more informal writing happening in the project’s wiki and a discus-
sion has taken place. They can be browsed from http://svn.activemath.org/
intergeo/Drafts/Format/cd/.
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The final version will be available at the end of June 2010. This will also mean
that at that time, all software partners will have a working API that supports
this format. For more about APIs, see section 8.

The second version of the file format mainly concerns itself with points, lines,
(directed) line segments and rays, polygons, and conics.

First, in the elements part of an i2g file, all geometric objects in the con-
struction are declared. This implies that the valid OpenMath symbols appearing
there, the vocabulary of the intergeo elements Content Dictionary, is also the
collection of mathematical types that we work with. This setup therefore makes
explicit what kind of objects we consider to be first-class citizens in a geometric
construction. For now, the types we have are:

Point Line Linear equation
Direction Ray Line segment
Directed line segment Polygon Conic
Ellipse Circle Parabola
Hyperbola Locus

We note that some types are subtypes of other types, e.g. circles are ellipses,
which are themselves conics, just like parabolas and hyperbolas. Subtyping gives
rise to some specific problems which we are tackling at the moment. For example,
we are pondering including artificial types like Linear object for generalizing
Line, Ray, Line segment and Directed line segment, as well as Object to
encompass all types.

Once all objects in a construction have been declared in the elements part of
the i2g file, in the configuration part the geometric relations between the objects
can be described. The description is done by predicates. Formally, this means
that a geometric relation is cast in the form of a functional type, in the sense of
type theory, with input the types of the relevant objects and output type Bool.
For example, we might say that a point is constrained to lie on a previously
defined line by writing

point on line(p, l)

with type

Point× Line→ Bool.

Some predicates do not refer to geometric relations but to dynamic behavior.
For example, an object can be specified to be freely movable, independent of
anything else. Since the behaviour of a free object may depend on its type, we
chose to explicitly include this type, whence we have free point, free line,
etc.

We currently have the following list of constraints:
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free point free line
point on line line through point
line through two points line perpendicular to line
line perpendicular to line through point line parallel to line
line parallel to line through point point intersection of lines
line angular bisector line segment by points
carrying line of line segment endpoint of line segment
point on line segment directed line segment by points
starting point of directed line segment end point of directed line segment
line segment of directed line segment ray from point to point
ray from point in direction starting point of ray
carrying line of ray direction of ray
point on ray point on conic

5 Basic Requirements: A Wish List

From our experience with the OpenMath geometric symbols (plangeo CDs), and
mainly from the discussion with the software partners of the Intergeo project, we
have described a basic comprehensive list of geometric elements and functions
that should be supported by the common file format. Of course, it is not a
complete and exhaustive list of all the elements from all DGSs involved but
rather the set including the most common elements and functions. The purpose
of this wish-list is hence to serve as a beacon to lead the way towards a common
ground. It consists of a limited number of basic elements, but more elements can
(and must) be added in the future.

The list has two parts: Constructions and Functions. In the Constructions
part, with 53 elements, we list the basic elements of a geometric construction,
from the simplest ones (a free point) to the more complicated ones (for exam-
ple, a geometric locus). We have identified different categories of elements. For
example, in the category Points we can find Free point, Point on line, . . .

In the Functions part, with 10 elements, we consider calculations that can
be performed on a geometric construction, like computing the area of a triangle
or the length of a segment; or transformations on a construction, like a rotation.

The following is a schematic version of the list in which the number of con-
struction subtypes has been added for each type.

– Constructions

• Points (17), Vector (1), Segment (1), Lines (15), Rays (3), Polygons (2),
Circles (6), Conics (6), Locus (2)

– Functions

• Angle, Area, Length, Distance, Reflection wrt a point, Reflection wrt a
line, Reflection wrt a circle, Rotation by two lines, Rotation by a point
and an angle, Traslation
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6 Implementation progress, library, and test-suite

A wide variety of DGSs exists nowadays. Before this project, each system used
incompatible proprietary file formats to store its data. The Intergeo file format
aims to be the convergence of the common features of the current DGSs together
with the vision of future developments and the opinion of external experts. Its
final version, based on modern technologies and planned to be extensible to
capture the flavour of different DGSs, could serve as a standard in the DGS
industry.

The specification of the first version of the Intergeo file format has been
released as [5] after intensive collaboration between DGS software developers
and experts. It specifies only a restricted subset of possible geometric elements,
which however lead to an agreement on the structure and basic composition of
the format.

As soon as Version 1 of the file format got more concrete, some of the
software developers started to investigate its practical usage by integrating it
(partially) into their software (see http://i2geo.net/xwiki/bin/view/About/
I2GformatImplementations). It was possible to move simple content between
several of the packages in the project. The gained experiences influenced the
further steps: the development of the next version of the file format is ongoing,
will be released before summer and can be followed on http://svn.activemath.
org/intergeo/Drafts/Format/cd/. The development of a common API for the
file format (ClientAPI) has started and will soon be available to all developers
to simplify their implementation work.

The need of a test suite emerged to check the compatibility level of the
different DGSs and to be able to release compatibility certificates. The test suite
is composed of several test cases for the different elements and/or constraints.
Its result is one of the following four levels:

– cannot read the element/constraint technically (which should not happen)
– can read the element/constraint technically -without throwing exceptions

etc.- so it can at least be ignored (for unsupported elements/constraints)
– can read the element/constraint and represent it internally, though maybe

with wrong or missing semantics (partial support of the element/constraint)
– can read the element/constraint and represent it internally with correct se-

mantics (full support of the element/constraint)

Furthermore another API (ServerAPI) has been defined to allow the Intergeo
platform to display DGS resources. It allows retrieving important information
like a preview image, the HTML fragment and the MIME type. It will also
enable converting the construction to the Intergeo file format. Thus all com-
mitted constructions will be available in the common file format as soon as the
corresponding DGSs will implement both APIs.

Abánades et al. 25



7 Mathematical Issues and Problems

While developing the file format we identified several issues and mathematical
problems that have to be addressed. We will discuss some of them briefly here;
for further discussions we refer to the mailing list archives of Intergeo Work
Package 3, and we also invite others to join the discussion there.10

This section repeats parts of the Deliverable 3.3, and highlights the important
aspects for the OpenMath community. Despite the fact that we are listing a lot of
yet to be solved issues, we are confident that the first version of the Intergeo file
format is capable of handling any design decisions that result from the following
discussion. For a description of some of the underlying mathematical problems,
we refer to [10].

7.1 More Elements and Polymorphism

We already specified a wish list for further elements and constraints in Section
5, that contains the most important geometric extensions. Still, there are many
other objects that have to be expressible by the file format, more general ones
like functions or numbers, as well as stylistic elements like text objects or images.
A task for the next version of the Intergeo file format is to collect and specify
all elements that are currently in geometry software.

Certain elements are very similar to others, e.g. segments and rays can be
used instead of lines in many cases. Other examples are arcs of circles in compar-
ison to plain circles. The next version of the Intergeo file format has to be able
to handle such polymorphism, as well as symbols that have a variable number
of arguments. An example for the latter is the definition of polygons by vertices.

Some objects can also be replaced by others in certain special cases, for
example, a circle might degenerate to a line, or a conic might degenerate to
two lines. Although currently no DGS uses these degenerations, this could be
desirable for the future. A DGS might construct a parallel line to a degenerate
circle through three collinear points — with our current specification and typing
mechanism it is not possible to capture this in the file format. However, we
request advise from DGS developers and users on this issue.

7.2 Ambiguity Resolving

Ambiguity Resolving is crucial in finding the correct positions of elements in
stored construction after loading, also known as the persistent naming problem
[11] from parametric CAD. Assume that an intersection point of two circles is
used in a construction. If the two circles are moved into a tangent position, and
then the construction is stored, then both intersections have the same coordi-
nates and thus cannot be distinguished. If the circles are moved into a position
where both intersection points can be distinguished, then it is essential to pick
the correct intersection point.
10 See http://lists.inter2geo.eu/mailman/listinfo/wp3
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Most DGSs solve this problem by having an implicit order of multiple out-
puts. This order is dependent on the implementation details of the algorithms
and cannot be part of a specification. Also, a point might switch branches later
due to homotopy-conserving implementations. A detailed review of these prob-
lems can be found in [12]. This means that this approach cannot be used for a
cross-software file format.

As soon as circle (or conic) intersections are introduced, we will have to find
a solution to this problem.

7.3 Functions and Scripting

Almost all DGSs support some form of plotting graphs, defining element de-
pendencies, or changing the style of elements dynamically by using functions
that are defined symbolically. All of these use a different language to specify
the functions, though many aspects are shared. The conformance to standards
varies wildly between “OpenMath compliance” and “unspecified.”

Right now it seems impossible to homogenize the various dialects. Actually,
the translation from one language to the other can be done easily by humans if
an automatic conversion fails, so we decided that for now all functions should be
specified in the private sections of the file format. Each DGS may try to interpret
the other function specification, of course, and store its own interpretation as
well.

For this, we need a notion of “alternatives”, which will be specified in an
upcoming version of the Intergeo file format.

Another difficulty in dealing with functions is that some DGSs extend the
notion of function to a general-purpose functional programming language. This
proves that it is impossible to find equivalent functions algorithmically. Nev-
ertheless, in many cases the translation is straightforward, and so it might be
sufficient to use a heuristic approach.

One solution would be to use the API approach as described in Section 8.
Actually, a DGS A could use the “function dialect” of another DGS B by asking
the other system B to interpret the native parts that A cannot understand via
the API. While this sounds very entangled, it may be the general solution to the
specification problem we face here.

7.4 Mathematical Typesetting

Usually, mathematical typesetting is done with TeX [13], and a browser-compliant
way is to use MathML [14]. DGS software uses both approaches, while the TeX
implementation used is usually only a subset of the full TeX system as created
by Knuth11.

We could not agree on a definitive way to typeset formulae. Probably it would
be a good idea to support MathML, but most of the DGS developers do not
want to adopt it, as it seems. So this is currently unspecified and mathematical
typesetting has to be specified in the private part of a construction.
11 Some use the hoteqn library, others use custom implementations
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7.5 Macro Constructions

So far there is no notion of macro constructions in the file format specification.
We expect to treat them basically as subconstructions, and it is probably suf-
ficient to add an additional inmacro attribute to the constraints and elements.
However, we have postponed this matter until we have a more substantial set of
examples.

7.6 Number Representation

Currently, the specification of coordinates uses the IEEE standard for doubles
for historical reasons. While this is probably sufficient for most purposes, it lacks
the ability to describe real coordinates, for example the irrational numbers π or√

5. As there are constructions even in elementary geometry that require such
numbers, it is desirable to be able to express them.

The OpenMath standard provides a means to specify all the real numbers
likely to appear in normal applications of Interactive Geometry, but some imple-
mentation difficulties have been pointed out. For the time being, we will restrict
the number representation to the IEEE standard, in particular due to the reason
that no DGS so far uses another specification. This should not be the cause of
severe problems, because the coordinates of dependent elements can be recal-
culated up to arbitrary precision by the DGS itself. If there is a need for other
number representations, we will extend the mechanism. This will not need a ma-
jor redesign, as all occurrences of numbers will just be replaced with real number
values.

8 File Format and API Interaction

The obvious way to use the file format is to exchange files; save them in one DGS
and load them in the other. While this is usually done manually, the file format
is even more useful when it comes to automated exchange between software.
Therefore, we are currently defining an application programming interface (API)
that will make use of the file format at several places [15].

Basic interaction facilities of the API are loading and saving of files, both
in native and Intergeo file format, which allows for creating server-side software
that delivers files in the users’ preferred format. Also, copy and paste operations
will be described in terms of the Intergeo file format, as any copied part of a
construction is in itself a construction.

We also allow for communication from and to non-DGS software, e.g. a CAS.
Getting and setting values like objects’ coordinates using a CAS opens a wide
variety of applications.12 In particular, most DGSs currently work with double
12 As a reviewer points out it is a problem to send values like π to a CAS if there is

no internal representation for it in the DGS. In practise it usually does not pose a
problem, as only coordinates of free elements have to be sent, and there is no need
to set a free element to exact real coordinates.
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precision internally, which is not sufficient for research-grade use. As a primary
concern of interactivity is real-time operation, it is not surprising that most
software only uses a precision that can be handled in hardware. Using the API
it is possible to externalize this calculations in situations where we can sacrifice
time for exactness.

Many DGSs already use built-in facilities for algebraic (or better: analytic,
as the focus is on doing calculations) manipulation. This is a major obstacle for
compatibility, as all the dialects are different. Using the API it could be possible
to use the DGS part of one software package, while using the CAS part of the
other. Again, the core of the interaction is the clear specification of Intergeo
elements.

Finally, we want to mention the pedagogical benefits of a standardized API.
The integration of interactive exercises that can be checked by other software
(like theorem proving systems) could be a huge step for technology-based teach-
ing and learning of mathematics.

9 Outlook

This paper has presented the current progress on the development of the Intergeo
file format towards interoperable interactive geometry: the choices made and
the implementations achieved. We believe that the format will support sharing
helped by the Intergeo platform which aims at breaking the other barrier of
sharing interactive geometry: the barriers between educational regions.

As a more current preoccupation, the team of authors is involved into the
maturation process with a strong hope to have a satisfactory format to indeed
break many software barriers that split interactive geometry communities in
too small chunks. We expect that it will renew a competition among dynamic
geometry systems’ shining by their exclusive features but providing the basic
exchange format for the core of interactive geometry.

The common file format has attracted several interested parties thus far,
all makers and users of softwares at the edge of interactive geometry, in such
domains as algebraic geometry.
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Abstract. Even though OpenMath has been around for more than
10 years, there is still confusion about the “semantics of OpenMath”.
As the upcoming MathML3 recommendation will semantically base
Content MathML on OpenMath Objects, this question becomes more
pressing.
One source of confusions about OpenMath semantics is that it is given
on two levels: a very weak algebraic semantics for expression trees, which
is extended by considering mathematical properties in content dictionar-
ies that interpret the meaning of (constant) symbols. While this two-
leveled way to interpret objects is well-understood in logic, it has not
been spelt out rigorously for OpenMath.
In this paper we look at the semantics of OpenMath from a foundational
point of view and reconcile this “semantics” with the foundations of
mathematics established in the early 20th century; the traditional way
of assigning meaning to mathematical objects.

1 Introduction

MathML2 [ABC+03] and OpenMath2 [BCC+04] are standards for the repre-
sentation and communication of mathematical objects. Even though they have
been around for more than 10 years, there is still confusion about the “seman-
tics of OpenMath”. As the upcoming MathML3 recommendation will seman-
tically base Content MathML on OpenMath Objects, this question becomes
more pressing.

1.1 OpenMath and MathML

MathML comes in two parts: presentation MathML, which provides XML-
based layout primitives for the traditional two-dimensional notation of mathe-
matical formulae and content MathML, which focuses on encoding the meaning
of objects rather than visual representations to allow the free exchange of math-
ematical objects between software systems and human beings. OpenMath has
the same goals as content MathML, but was developed by a different com-
munity with slightly different intuitions. Both representation formats represent
mathematical objects as expression trees. Content MathML tries to cover all of
school and engineering mathematics (the “K-14” fragment) in a representation
format intuitive to mathematicians, and OpenMath concentrates on an exten-
sible framework built on a minimal structural core language with a well-defined
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extension mechanism. Where MathML supplies more than a dozen elements
for special constructions, OpenMath only supplies concepts for function appli-
cation (OMA), binding constructions (OMBIND), and attributions (OMATTR). Where
MathML provides close to 100 elements for the K-14 fragment, OpenMath gets
by with only an OMS element that identifies symbols by pointing to declarations
in an open-ended set of Content Dictionaries.

An OpenMath Content Dictionary (CD) is a document that declares names
(OpenMath “symbols”) for basic mathematical concepts and objects. CDs act
as the unique points of reference for OpenMath symbols (via OMS elements) and
thus supply a notion of context that situates and disambiguates OpenMath ex-
pression trees. To maximize modularity and reuse, a CD typically contains a
relatively small collection of definitions for closely related concepts. The Open-
Math Society maintains a large set of public CDs [OMC08], including CDs for all
pre-defined symbols in MathML2. There is a process for contributing privately
developed CDs to the OpenMath Society repository to facilitate discovery and
reuse. OpenMath does not require CDs be publicly available, though in most
situations the goals of semantic markup will be best served by referencing public
CDs available to all user agents.

To avoid fragmentation and to smoothe out interoperability obstacles, ef-
fort is currently under way to align OpenMath and MathML semantically.
To remedy the lack of regularity and specified meaning in MathML, content
MathML was extended by concepts like binding structures and full semantic
annotations from OpenMath and a structurally regular subset of the extended
content MathML was identified that is isomorphic to OpenMath objects. This
subset is called strict content MathML to contrast it to full content MathML
that is seen to strike a more pragmatic balance between regularity and human
readability. Full content MathML borrows the semantics from strict MathML
by a mapping specified in the MathML3 specification [ABC+09] that defines
the meaning of non-strict (pragmatic) MathML expressions in terms of strict
MathML equivalents. Strict Content MathML in turn obtains its meaning by
being an encoding of OpenMath Objects.

In this situation, the “meaning of OpenMath (Objects)” obtains a com-
pletely new significance; especially when OpenMath still receives evaluations
like

On the other hand the paper leaves me unsatisfied, and even irritated. It
is frustrating to know that the MathML3 and OpenMath3 standards
still will be meaningless from a semantic point of view. [. . . ] will not lead
to a standard for mathematical expressions where those expressions have
a proper semantics. anonymous referee for [DK09]

The aim of this paper is to clarify the status of semantics in OpenMath (and
thus content MathML3) and in particular counter sentiments like the one above.
We see the reason for this “misunderstanding” in a presentational gap between
how mathematical objects and theories are conventionally given a meaning and
the way OpenMath answers the question. In the rest of this section, we will
briefly recap the established foundations (of meaning in) Mathematics and the

2
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way OpenMath establishes meaning. Based on this, we will bridge the differ-
ences and clarify gray areas in a formal semantic analysis: in Section 2 we develop
an algebraic semantics for OpenMath objects and in Section 3 we extend this
to a model-theoretic semantics for OpenMath objects. Section 4 concludes the
paper.

1.2 Foundations of Mathematics

The question of what the meaning of mathematical expressions and theories
might be is usually by methods from Logic, a scientific field at the intersec-
tion of philosophy and mathematics concerned with the study of the concepts
proposition and truth and the reasoning about them.

The age-old question about the meaning of language in general and mathe-
matics in particular turned into the “Grundlagenkrise” of mathematics by the
discovery of paradoxa, i.e., contradictions, in what is called naive set the-
ory in retrospect. Naive set theory was the implicitly assumed foundation of
mathematics at the time, Cantor’s “Grundlagen” [Can83] from 1883 being the
most influential contribution. The best known paradoxon was found by Bertrang
Russell in 1901 [Rus01]. Giuseppe Peano had noticed a similar one in 1897.

In response to this, mathematicians have developed several — sometimes al-
ternative, sometimes complementary — foundations (i.e. specific logics picked
as a starting point of mathematics) that can replace naive set theory. This hap-
pened over several decades as an evolutionary creative process. But it did not
culminate in a commonly accepted solution. Rather, it led to profound and
sometimes fierce debates on what mathematics is. The personal quarrel between
Hilbert and Brouwer, which was partially fuelled by these debates, is an almost
tragic example. From this evolution emerged two major classes of foundations:
axiomatic set theory and type theory.

The basic idea of axiomatic set theory is that there is a universe of sets,
and any mathematical object ever introduced is a set. The sets are related via the
binary relations of equality and membership. For example m ∈M is used to say
that the set m is a member of the set M . Depending on context, M is regarded
as a property of m or as a structuring concept. To talk about sets, equality,
membership, and propositions are used. The basic propositions are of the form
m = m′ and m ∈ M . Composed propositions are built up from the basic ones.
Typically, (at least) first-order logic (FOL) is used as the language of composed
propositions: FOL uses propositions such as F ∧G and ∀x.F (x) denoting “F and
G are true” and “for all (sets) x, F is true about x”. Then a limited collection
of propositions (the axioms) is chosen as fundamental truths. These are chosen
very carefully to prevent contradictions and to obtain a minimal set of axioms.
Based on the axioms, proofs are used to single out the true propositions. A proof
consists of a sequence of steps that derive one true proposition from other true
propositions starting with the axioms. In this way the whole of mathematics is
developed, and for every proposition, truth is defined by whether it has a proof.

Both set theory and type theory have led to numerous specific founda-
tions of mathematics. Zermelo-Fraenkel set theory, based on [Zer08,Fra22], is

3
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most commonly in use today. Other variants are von Neumann-Bernays-Gödel
set theory, based on [vN25,Ber37,Göd40], which is important for category the-
ory, and Tarski-Groethendieck set theory, based on [Tar38,Bou64]. The first type
theory was Russells’s ramified theory of types [Rus08]. And in their Principia
[WR13], Whitehead and Russell gave one of the most influential foundations
of mathematics. Church’s simple theory of types, also called higher-order logic,
[Chu40] is the most-used type theory today. Important other type theories are
typically organized in the lambda cube [Bar91] and include dependent type
theory [ML74,HHP93], System F [Gir71,Rey74], and the calculus of construc-
tions [CH88]. Most of these foundations have further variants, such as Zermelo-
Fraenkel set theory with or without the Axiom of Choice or type theory with or
without product types.

Hilbert’s formalistic program, set forth in his second problem [Hil00] and
various texts from the 1920s, e.g., [Hil26], called for the reduction of all math-
ematics to a set of axioms and a consistency proof for these axioms using only
finitary means. Since proofs are built up from the axioms, such a reduction would
yield all true propositions by systematically searching all proofs. In 1930, Gödel
established two negative results [Göd31], which as von Neumann recognized first
showed that the goal of Hilbert’s program is unreachable.

Gödel’s first result roughly says that no foundation of mathematics can be
found that defines the truth of all propositions in an algorithmic way. The second
one says that no foundation can prove its own consistency. Gödel worked in
the Principia — the foundation mainly in use at the time — but the results
extend to all foundations beyond a certain level of expressivity. This is the major
reason why no foundation has won the endorsement of mathematicians as a
whole and why there will not be a final answer which foundation of mathematics
is the best. Since no perfect foundation exists, the personal preferences and the
characteristics of a problem lead to different choices of foundation.

In any case, most mathematicians today accept a mathematical object or
theory as “meaningful”, iff it can (in principle) be formalized in one of the foun-
dations, most notably set theory. Incidentally, most logics (and type theories) in
use have a set-theoretic (i.e. foundational) semantics that makes them acceptable
to mathematicians in this sense.

1.3 The Meaning of OpenMath

The OpenMath standard actually gives two answers to the question about
the meaning of OpenMath expressions. The first one comes from the fact
that OpenMath is intended as a communication standard between mathe-
matical software systems: OpenMath envisions communication via phrasebooks
([AvLS98] or see [BCC+04, chapter 1]): Each mathematical software system S
is equipped with an OpenMath phrasebook that converts OpenMath expres-
sions from and to the internal representations of the system S. In this “system
communication view”, the meaning of OpenMath expressions is built into the
phrasebooks that (purport to) understand the expression, and the meaning is
whatever S (after conversion by the phrasebook) makes it to be. Clearly, this
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view of meaning is not very helpful, and taken in the radical simplicity we have
formulated it here is not an adequate account. After all, the purpose of the Open-
Math standard is to synchronize the system-specific representations of objects,
so that communication between systems is meaning-preserving. To attain this
goal, OpenMath does two things:

1. It defines the class of “OpenMath objects” which acts as the model for
encodings of mathematical formulae. OpenMath objects are essentially la-
beled trees modulo α-conversion for binding structures and flattening for
nested semantic annotations. The OpenMath standard considers Open-
Math objects as primary citizens and views the “OpenMath XML encod-
ing” as just an incidental design choice for an XML-based markup language.
In fact OpenMath specifies another encoding: the “binary encoding” de-
signed to be more space efficient at the cost of being less human-readable.

2. Rather than appealing to mathematical intuition, OpenMath stipulates
that phrasebooks should be informed by (mathematical properties in) con-
tent dictionaries.

It is the OpenMath Content Dictionaries which actually hold the
meanings of the objects being transmitted. For example if application
A is talking to application B, and sends, say, an equation involving
multiplication of matrices, then A and B must agree on what a matrix
is, and on what matrix multiplication is, and even on what consti-
tutes an equation. All this information is held within some Content
Dictionaries which both applications agree upon. [. . . ] The primary
use of Content Dictionaries is thought to be for designers of Phrase-
books, the programs which translate between the OpenMath mathe-
matical object and the corresponding (often internal) structure of the
particular application in question. [BCC+04, section 4.1]

Even if this is not spelt out1 in the OpenMath2 standard the algebra O
of OpenMath objects can be interpreted2 as an (initial) model for encodings
of mathematical formulae. Note that since O is initial it is essentially unique
and identifies (in the sense of “declares to be the same”) fewer objects than any
other model. As a consequence two mathematical objects must be identical if
their OpenMath representations are, but not the other way around.

While this can be seen as a failure of OpenMath to supply semantics
(“OpenMath is only syntax”), we see it as an expression of the OpenMath
representational philosophy expressed in

OpenMath objects do not specify any computational behaviour, they merely
represent mathematical expressions. Part of the OpenMath philosophy is
to leave it to the application to decide what it does with an object once

1 In particular the “compliance chapter” does not mention mathematical properties
in CDs at all.

2 To the best of our knowledge, this “act of interpretation” has never been backed
by a formal mathematical study; which is what prompted the work reported in this
paper.
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it has received it. OpenMath is not a query or programming language.
Because of this, OpenMath does not prescribe a way of forcing “evalua-
tion” or “simplification” of objects like 2 + 3 or sin(π). Thus, the same
object 2 + 3 could be transformed to 5 by a computer algebra system, or
displayed as 2 + 3 by a typesetting tool. [BCC+04, section 1.5]

In this sense the initial algebra semantics of OpenMath objects is intention-
ally weak to make the OpenMath format ontologically unconstrained and thus
universally applicable. It basically represents the accepted design choice of rep-
resenting objects as formulae. Any further (meaning-giving) properties of an
object o are relegated to the content dictionaries referenced in o, where they
can be specified formally (as “Formal Mathematical Properties” in FMP elements
containing XML-encoded OpenMath objects) or informally (as “Commented
Mathematical Properties” in CMP elements containing text). Thus the precision
of OpenMath as a representation language can be adapted by supplying CDs
to range from fully formal (by providing CDs based on some logical system) to
fully informal (where CDs are essentially empty except for declaring symbols).

In the next section, we will formally develop the initial algebra semantics
of OpenMath objects, and then in section 3 extend it to take mathematical
properties in CDs into account, thus showing that the interpretation above can
indeed be made mathematical and be reconciled with the notion of meaning in
foundations of mathematics.

2 An Algebraic Semantics for OpenMath Objects

We will now define a an algebraic semantic semantics for OpenMath objects
building on ideas from [BBK04]. The difference to the situation there (giving a
semantics for the simply typed λ calculus with a type of Booleans) is that Open-
Math allows n-ary function application (rather than binary) arbitrary binding
symbols (rather than just λ-abstraction), and arbitrary attributions (rather than
just simple types), but only assumes α-conversion (rather than αβη conversion).

2.1 Syntax

We start out by fixing an abstract syntax of “OM objects”, which we will relate
to OpenMath objects in Section 2.3. We will call the objects specified in Defi-
nition 4 “abstract OM Objects” when we want to distinguish from the “standard
OpenMath objects” defined in the OpenMath2 standard [BCC+04, section 2].

Definition 1 (Symbols and Variables). In all of the following, we will as-
sume the existence of two disjoint, countably infinite sets: a set Symbols of sym-
bols and a set Variables of variables. Furthermore, we assume a set Keys ⊆
Symbols of keys.

As usual in formal languages we are a little more careful about the variables
we use in the construction of complex objects. The notions of vocabularies and
contexts help us do this.

6
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Definition 2 (OM Vocabulary). An OM vocabulary is a set of symbols.
For every OM vocabulary T , we denote by Symbols(T ) := Symbols ∩ T the set
of symbols of T and by Keys(T ) := Keys ∩ T the set of keys of T .

Definition 3 (OM Context). An OM context C is an n-tuple of variables
which we will write as 〈x1, . . . , xn〉. We will use + for tuple concatenation and
∈ for tuple membership.

Definition 4 (OM Objects). Let T be an OM vocabulary. The set O(T,C) of
OM objects over T in context C is the smallest set closed under the following
operations

1. if s ∈ Symbols(T ) \Keys(T ), then S(s) ∈ O(T,C),
2. if x ∈ C, then V(x) ∈ O(T,C),
3. if f, o1, . . . , on ∈ O(T,C), then A(f, o1, . . . , on) ∈ O(T,C),
4. if b ∈ O(T,C), X1, . . . , Xn ∈ AttVar(T,C), and o ∈ O(T,C ′) where C ′ =
C+〈varname(X1), . . . , varname(Xl(σ))〉, then B(b, [X1, . . . , Xn], o) ∈ O(T,C),

5. if o ∈ O(T,C), k ∈ Keys(T ), and v ∈ O(T,C), then K(o|k := v) ∈ O(T,C).

Here attributed variables are defined by: o ∈ AttVar(T,C) if a o = V(x) for
some x ∈ C or o = K(o′|k := v) ∈ O(T,C) for some o′ ∈ AttVar(T,C). We call
OM objects in the empty context ground. The name of an attributed variable
is defined by varname(K(o′|k := v)) = varname(o′) and varname(V(x)) = x.

Note that in contrast to the OpenMath2 standard we only consider “unary”
attributions that associate an object with a single key/value pair. This allows
us to build the “flattening of attributions” into the abstract representation of
OM Objects. We can regain the syntactic structure of OpenMath2 objects
by introducing n-ary attributions as an abbreviation for nested attributions:
K(o|k1 := v1, . . . ,kn := vn) = K(K(o|k1 := v1)|k2 := v2, . . . ,kn := vn) for n ≥ 2.
With this trick3 we have fully covered the requirement of “attribution flattening
equivalence” required in the OpenMath standard.

Let us fortify our intuition with an example which will use throughout the
paper; we represent binding objects, since they are the problematic cases.

Example 1. The untyped universal quantification ∀x.x = x is represented as
U = B(S(∀), [V(x)], x = x )4, where ∀ is a symbol. To show the interaction of
attribution and binding, we use a typed identity function represented as a λ-
abstraction: λx : β.x is represented as L = B(S(λ), [K(V(x) |τ := β )],V(x)),
where τ is a key symbol (i.e. a symbol with role “semantic-attribution”). We
have U ∈ O({∀,=}, 〈〉) and L ∈ O({λ, τ, β}, 〈〉)
3 In fact we propose to follow this path in the next version of the OpenMath standard

as it simplifies the presentation. Note that we are only talking about (standard)
OpenMath objects, not their XML or binary encodings, where n-ary attributions
make sense for notational convenience.

4 Here and throughout the paper we will use boxed mathematical formulae to gloss
OpenMath objects (encoded, abstract, or standard; we assume that this distinction
is either meaningless or clear from the context).
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The use of attributed variables in binders can lead to a somewhat awkward
notations when accessing the keys and attributions present in abstract binding
objects. Therefore, we use the auxiliary definition of binding signatures in the
technical developments below. Intuitively, an OM binding object has binding
signature σ if it binds l(σ) variables where the i-th variable has di(σ) attribu-
tions.

Definition 5 (Binding Signature). A binding signature σ consists of

– a positive natural number l(σ) (the length of σ),
– natural numbers d1(σ), . . . , dn(σ) (the depth of σ at i).

We denote by σ the set of pairs 〈i, j〉 ∈ N × N where 1 ≤ i ≤ l(σ) and 1 ≤ j ≤
di(σ). If σ is a binding signature with length n, b ∈ O(T,C), K : σ → Keys(T ),
and V : σ → O(T,C), and o ∈ O(T,C + 〈x1, . . . , xn〉), then we write

B(b [x1, . . . , xn|K := V ].o) for B(b, [X1, . . . , Xn], o) ∈ O(T,C)

where Xi = K(V(xi)|K(i, 1) := V (i, 1), . . . ,K(i, di(σ)) := V (i, di(σ))).

Example 2 (Continuing Example 1). In the abbreviated syntax ∀x.x = x is
represented as U := B(S(∀) [x]. x = x ) and λx : β.x = x as L := B(S(λ) [x|K :=
V ].V(x)), where

– l(σ) = 1 and d1(σ) = 1, and therefore σ = {〈1, 1〉}
– K = {〈1, 1〉 7→ τ} and V = {〈1, 1〉 7→ β }

Clearly, every OM object of the form B(b, [X1, . . . , Xn], o) can be written
uniquely as an expression of the form B(b [x1, . . . , xn|K := V ].o), and we will use
the latter notation in the future and abbreviate B(b [x1, . . . , xn|∅ := ∅].o) with
B(b [x1, . . . , xn].o).

Definition 6 (Substitution). For o ∈ O(T, 〈x1, . . . , xn〉), the substitution func-
tion that maps 〈o1, . . . , on〉 to the object with all variables xi substituted with
oi is denoted by Subs(o).

Definition 7 (α-Equality). Two objects are said to be α-equal iff they arise
from one another by renaming bound variables. ≡α denotes the induced equiv-
alence relation, and [o]α denotes the equivalence class of o.

2.2 Semantics

In the following, we will use use the notation Λx ∈ A.f(x). for the set-theoretical
function defined by {〈x, f(x)〉 : x ∈ A}. A may be omitted if it is clear from the
context. We also write BA for the set of functions from A to B.

Definition 8 (OM Algebra). Let T be an OM vocabulary. An OM algebra
A over T consists of

8
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1. a set U := UA called the universe of discourse
2. a family of sets RAn ⊆ U (Un) for n ≥ 1,
3. an element sA ∈ U for every s ∈ Symbols(T ) \Keys(T ),
4. a family of mappings @A

n : U × Un → U for n ≥ 1,
5. a family of mappings βAK : U × Uσ × Rl(σ) → U for mappings K : σ →

Keys(T ) and binding signatures σ,
6. a family of mappings αAk : U × U → U for every k ∈ Keys(T ).

Whereas sA, @A, βA, and αA are intended to interpret symbols, applications,
bindings, and attributions, respectively in a relatively standard fashion, the sets
RAn are special. Because OpenMath permits arbitrary expressions as binders,
it is not possible to define the interpretation of every binder separately as is
common in both first-order and higher-order settings. Instead, we need to model
variable binding explicitly in the semantics. Syntactically, binders are operators
that take terms with free variables as arguments. It is well-understood in higher-
order logic and type theory that terms with n free variables can be modeled as
n-ary functions on the universe. Thus, we interpret binders as operators taking
functions as arguments. These come from the RAl(σ) in the third argument of β
operator (note that l(σ) = n here). The functions from σ to UA in the second
argument are used for dealing with the keys of the attributed variables.

Since we can always write a binder like B(b [x].V(x)) (for the empty binding
signature), the RA1 should at least contain the identity function. However, the
whole set U (Un) is too big since only some of these functions actually arise from
the interpretation of terms with free variables. Since the interpretation of these
terms depends on A itself, we permit an arbitrary set RAn here and leave it to
Def. 10 to sort out when an OM algebra is well-defined.

Definition 9 (Assignment). Let A be an OM Algebra over T , and let C be
an OM context. An A-assignment ϕ for C is a mapping from C to UA. We
denote by ϕ, [x/o] the assignment for C + 〈x〉 that maps x to o and agrees with
ϕ for all other variables.

Definition 10 (Interpretation). Let A be an OM Algebra over T , and let ϕ
be an A-assignment for a context C. The interpretation [[o]]Aϕ of o ∈ O(T,C)
in A under ϕ is defined as follows:

1. [[S(s)]]Aϕ = sA,
2. [[V(x)]]Aϕ = ϕ(x),
3. [[A(f, o1, . . . , on)]]Aϕ = @A

n ([[f ]]Aϕ , 〈[[o1]]Aϕ , . . . , [[on]]Aϕ 〉),
4. [[B(b [x1, . . . , xn|K := V ].o)]]Aϕ = βAK([[b]]Aϕ ,V,F) where

(a) σ is the binding signature of the binding (which must have length n),
(b) V = Λp ∈ σ.[[V (p)]]Aϕ ,
(c) F = Λu ∈ (UA)n.[[o]]Aϕ,[x1/u1,...,xn/un]

5. [[K(o|k := v)]]Aϕ = αAk (o, v).

Whether the case for bindings is well-defined, depends on the sets RAn . We call A
well-defined if Λu ∈ (UA)n.[[o]]Aϕ,[x1/u1,...,xn/un] ∈ RAn for all C, n, o ∈ O(T,C),
and ϕ.
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Example 3 (Continuing Example 2). To interpret U we use an OM Algebra A
with

1. UA := N ∪ {q, e, t, f}
2. RAn = U (Un),
3. ∀A := q and =A:= e,
4. @A

2 (e, u, v) = t if u = v and @A
n (u, 〈u1, . . . , un〉) = f otherwise.

5. βA∅(q,∅,F) = t if F(u) = t for all u ∈ N; and βAK(u, 〈x1, . . . , xn〉,F) = f
otherwise.

Note that we only specify the parts of the algebra we actually need for our
example, all others can be picked arbitrarily. If we want to evaluate ∀x.x = x
in A, recall that σ = ∅ and thus V = Λp ∈ σ.[[∅(p)]]A∅ = ∅, so we have

[[U]]A∅ = [[B(S(∀) [x]. x = x )]]A∅ = βA∅(q,∅,F)

where F = Λu ∈ UA.[[ x = x ]]A[x/u]. So [[U]]A∅ = t, iff F(u) = t for all u ∈ N.
But observe that we have F(u) = [[A(=,V(x),V(x))]]A[x/u] = @A

2 (e, 〈u, u〉) = t by
definition, and thus [[U]]A∅ = t as expected.

Extending A to an interpretation of the λ-binder is more complicated because
we have to commit to a type theory.

Example 4 (Continuing Example 2). We extend UA so that it contains all func-
tion sets that can be formed from the natural numbers, i.e., NN N(NN), (NN)N

and so on, as well as the functions they contain we call this set N∗∗. For this to
be useful, we should also extend our vocabulary with symbols ι and →. We put

1. U := N∗∗ ∪ {l, p}
2. RAn = U (Un),
3. ιA = N, and →A= p, and
4. interpret @A

2 (p, 〈u, v〉) as the set of functions from v to u if u and v are sets
and as f otherwise. Furthermore, we put @A

2 (f, u) = f(u) whenever function
application is defined.

5. Then for σ = {〈1, 1〉}, K = {〈1, 1〉 7→ τ}, we can put βAK(l,V,F) to be the
function Λu ∈ V(1, 1).F(u).

6. αAτ (u, v) = u.

Then we can interpret λx : β.x as follows. We have [[L]]A∅ = [[B(S(λ) [x|K :=
V ].V(x))]]A∅ = βA∅(l, 〈V,F〉) where

– V = Λp ∈ {〈1, 1〉}.[[V (p)]]A∅ = Λp ∈ {〈1, 1〉}.[[ β ]]A∅,
– F = Λu ∈ U.[[V(x)]]A[x/u] = Λu ∈ U.u

And thus, we evaluate βA∅(l,V,F) as the identity function on [[ β ]]A∅ as expected.

A simple induction over the construction of OpenMath objects in Defi-
nition 4 using the respective clauses in Definition 10 gives us an OpenMath
version of the well-known
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Lemma 1 (Substitution Value Lemma). [[[x/o′]o]]Aϕ = [[o]]ϕ
a,[x/[[o′]]Aϕ ]

This in turn can be specialized in the usual way to obtain:

Corollary 1 (Soundness of α-Equality). If o ≡α o′ then [[o]]Aϕ = [[o′]]Aϕ .

So we have shown that OM algebras form a model class for OpenMath
objects. We will now show that they characterize them up to isomorphism. For
that we need to consider initial models, which will function as canonical repre-
sentatives in this model class.

Definition 11 (Free OM Algebra). Let T be an OM vocabulary. Let Subs(o)
abbreviate the function Λ〈[o1]α, . . . , [on]α〉 ∈ Un.[Subs(o)〈o1, . . . , on〉]α. Then
the free OM algebra I := I(T ) over T is defined as follows.

1. U I = O(T, ∅)/≡α , i.e. the quotient set of the ground OpenMath objects
modulo α-conversion.

2. RIn is the set of functions Subs(o) for o ∈ O(T, 〈x1, . . . , xn〉),
3. sI = [S(s)]α,
4. @I

n([f ]α, 〈[o1]α, . . . , [on]α〉) = [A(f, o1, . . . , on)]α,
5. for a binding signature σ: βIK([b]α,V,F) = [B(b [x1, . . . , xn |K := V ].o)]α

where
– V = Λp ∈ σ.vp for some vp ∈ V(p),
– o ∈ O(T, 〈x1, . . . , xn〉) is some object such that Subs(o) = F .

6. αIk([o]α, [v]α) = [K(o|k := v)]α.

Lemma 2. I(T ) is well-defined.

Proof. We need to show several well-definedness conditions.

Subs(o): Substituting ground α-equivalent objects preserves α-equivalence. This fol-
lows from the definition of α-equivalence.

@I
n: If f ≡α f ′, o1 ≡α o′1, . . . , on ≡α o′n, then A(f, o1, . . . , on) ≡α A(f ′, o′1, . . . , o

′
n).

This follows directly from the definition of α-equivalence.
βIK : If b ≡α b′, v(p) ≡α v′(p) for all p ∈ σ, then there exists an o ∈ O(T, 〈x1, . . . , xn〉)

such that Subs(o) = F , and for two such o, o′ we have that

B(b [x1, . . . , xn|K :=Λp.vp].o) ≡α B(b′ [x1, . . . , xn|K :=Λp.v′p].o
′).

The existence follows from the definition of RIn. The α-equivalence holds
because non-α-equivalent objects induce non-α-equivalent substitution func-
tions.

αIk: If o ≡α o′ and v ≡α v′, then K(o |k := v) ≡α K(o′ |k := v′). This follows
directly from the definition of α-equivalence.

Lemma 3. Let T be an OM algebra. Then [[o]]I(T ) = [o]α for every o ∈ O(T, 〈〉).
Proof. This is proved by a straightforward induction on the structure of o.
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Lemma 4 (I(T ) is initial). Let A be an OM algebra over T , and let I := I(T ).
Then there is a (unique) mapping h : U I → UA satisfying h([[o]]I(T )) = [[o]]ϕ.

Proof. This follows directly from Cor. 1 and Lem. 3.

Corollary 2 (Completeness of α-Equality). If [[o]]Aϕ = [[o′]]Aϕ for all OM
algebras A, then o ≡α o′ .

Proof. This follows from Lem. 3 by putting A := I(T ).

2.3 OpenMath Objects with Uninterpreted Symbols

The semantics discussed so far was based on the abstract notion of OM Vocab-
ularies. To arrive at a semantics of OpenMath objects we need to relate this
to OpenMath CDs.

The OpenMath2 standard introduces “abstract content dictionaries” to
abstract from the concrete XML encoding of content dictionaries. According
to [BCC+04, section 4.2], (abstract) CDs have a CD name, a CD base URI,
and contain symbol definitions, which in turn consist (among others) of a
symbol name, an optional symbol role (one of “binder”, “attribution”, “semantic-
attribution”, “application”, “constant”, and “error”), and a set of mathemat-
ical properties.

Definition 12 (OpenMath Symbols). We say that a CD C declares an
OpenMath symbol 〈n, c, u, r〉, iff the CD base of C is u, the CD name of C is
c, and C has a symbol definition with symbol name n and symbol role r (note
that the role can be undefined as it is optional). We define the set Symbols to
be the set of symbols declared by some OpenMath CD and the set Keys to be
those with symbol role “semantic-attribution”.

There are three differences between abstract OM Objects and standard Open-
Math objects; all three are related to symbols and keys:

1. We do not take keys to be abstract OM objects by themselves (see clause 1
in Definition 4). We claim that that there are no mathematically meaningful
situations where keys can appear except in attributions. This design decision
should not be perceived as a serious impediment for our semantics, since keys
can be added analogously to the treatment below at the cost of adding an
additional case everywhere.

2. The OpenMath2 [BCC+04] “role system”, poses some additional restric-
tions on where symbols can occur, but not enough to simplify our construc-
tion of binding signatures. Therefore, we disregard it here and refer the reader
to [RK09a] for details and an extended role system proposal that would.

3. We do not consider attributions with symbols that are not in Keys, in par-
ticular symbols with roles “attribution” which are intended by the Open-
Math2 standard for just this purpose. However the standard states
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This form of attribution may be ignored by an application, so should
be used for information which does not change the meaning of the
attributed OpenMath object. [BCC+04, clause 2.1.4.ii]

and therefore it necessary to disregard these attributions in the construction
of a semantics for OpenMath. In the mapping from standard OpenMath
objects to abstract ones, we strip attributions with non-Keys symbols.

This allows us to define the meaning of an OpenMath object. As we are
not taking mathematical properties in CDs into account, we will think of these
symbols as uninterpreted, therefore we will call it the “algebraic meaning”.

Definition 13 (Algebraic Meaning). Let o be an OpenMath object, then
we call the set of symbols such that S(s) occurs in o the OM vocabulary
induced by o.

If o ∈ O(T, 〈〉) is a ground OM Object, T its induced vocabulary, and A an
OM algebra over T , then the algebraic meaning of o in A is [[o]]A and the
algebraic meaning of o is [[o]]I(T ).

Note that the algebraic meaning of an abstract OpenMath object is just its
(standard) OpenMath object.

As discussed in the introduction, the algebraic semantics only gives us a
rather weak and syntactic concept of meaning of the OpenMath language. To
understand the full meaning of OpenMath objects we need to take CDs into
account, which we do in the next section.

3 OpenMath Models

If we want to understand mathematical properties in OpenMath content dic-
tionaries, we need to have a notion of “truth” — after all the properties are
assumed to hold. Furthermore, we need to take into account the mathematical
properties themselves. In OpenMath there are two kinds of mathematical prop-
erties: “commented mathematical properties” (encoded as CMP elements which
contain mathematical vernacular) and “formal mathematical properties” (en-
coded as FMP elements that contain XML encodings of OpenMath objects).
We are going to concentrate on the latter in this paper since they provide more
structure. This is no loss of generality, given the assumption in mathematical
practice that any rigorously stated property can be fully formalized given enough
resources. For for the purposes of this paper we will just assume that we have
access to an oracle that translates all commented mathematical properties into
formal ones, which we handle with the methods presented in this section.

3.1 Theories and Satisfaction

As formal mathematical properties are expressed as OpenMath objects, we will
need to build the required notion of “truth” into an OM vocabulary, which is
rather simple.
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Definition 14 (OM Logic). An OM vocabulary L with distinguished symbols
> and = is called an OM logic.

In OpenMath CDs, (formal) mathematical properties are expressed as state-
ments in some foundational logical system, thus the OM Objects represent-
ing them will in general contain symbols from the foundation and the CD it-
self. For instance, the arith1 CD [CDa04] contains an FMP with the object
∀a, b.a+ b = b+ a to express commutativity of addition. The symbols ∀ and

= are from the vocabulary of the foundational system and the symbol + is
from the CD itself.

We will treat OpenMath content dictionaries as logical theories, which are
determined by their vocabularies and axioms, and model them using institutions
(see [Rab08] for an introduction to both).

Definition 15 (Theory). Let L be an OM logic and T an OM vocabulary. An
OM theory Θ for L is a pair 〈T,Axioms(Θ)〉 where Axioms(Θ) ⊆ O(L+T, 〈〉).
We will use O(Θ,C) := O(L + T,C) and take an OM algebra over Θ to be an
OM algebra over L+ T .

Note that 〈∅,∅〉 is a theory for any OM logic L, we call 〈∅,∅〉 the empty
theory over L.

In this setting we can define OM models as those algebras that respect equal-
ity and in which the axioms hold.

Definition 16 (Model). Let L be an OM logic and Θ be an OM theory for L.
An OM algebra M over Θ is a model of Θ if

– for all V , o, o′ ∈ O(T, V ) and ϕ, we have that [[A(=, o, o′)]]Mϕ = [[>]]M iff
[[o]]Mϕ = [[o′]]Mϕ ,

– for all A ∈ Axioms(Θ), we have that [[A]]M = [[>]]M .

The Model Class M(C) of Θ is the set of OM Models of Θ.

This gives us the standard notions of satisfaction and semantic entailment.

Definition 17 (Satisfaction). Let L be an OM logic, Θ be an OM theory for
L, o ∈ O(Θ, V ), M an OM model of Θ, and ϕ an assignment for V into M .
Then we say that M satisfies o under ϕ (which we denote as M,ϕ |= o), iff
[[o]]Mϕ = [[>]]Mϕ . We write M |= o if M,ϕ |= o holds for all assignments ϕ and say
that o is valid in M .

Definition 18 (Entailment). Let Θ be an OM theory and o a ground object.
Then we say that Θ entails o (Θ |= o), iff M |= o for all M ∈M(Θ).

Example 5 (Continuing Example 3). We can make the vocabulary {∀,=} into
an OM logic by adding > as the distinguished symbol, and the OM algebra
A from 3 into a model (for the empty theory over Q := {∀,=,>}) by setting
>A := t. Note that U is entailed by the empty theory over Q.
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3.2 The Meaning of OpenMath CDs and Objects

Note that the definitions above are still abstract in the sense that they refer
to OM vocabularies, and OM theories, and not OpenMath CDs. So as in sec-
tion 2.3 we have to relate abstract OM objects to standard ones and in partic-
ular to answer the question: what is the theory of a content dictionary? The
OpenMath2 standard leaves this information under-defined, so we propose an
interpretation that allows us to define an adequate notion of mathematical se-
mantics5.

Note that OpenMath CDs need not be self-contained, i.e. their FMPs can
contain symbols that are neither introduced in the CD nor from the foundational
system. Of course, these symbols (and thus the CDs that introduce them) should
have an effect on the meaning of the symbols described by the FMP, so they need
to be taken into account; naturally this process must be iterated until fixed point
has been reached.

Definition 19 (CD Import). Let C be an OpenMath content dictionary,
then we say that C imports D, iff C 6= D and some FMP element in C contains
a symbol with CD D. We call a CD basic, iff it does not import other CDs.

In contrast to other module systems for Mathematics (see [RK08,RK09b] for an
overview) OpenMath does not make make the “imports relation” explicit and
in particular does not make any assumptions about the absence of cycles.

Definition 20 (Signature and Property set of a CD). The signature of
a CD C is the set of symbols it declares in union with the signatures of all CDs
imported by C.

Similarly, the property set of a CD C is the set of OpenMath objects in
FMP elements in C (these are called the local properties of C) in union with
all the axiom sets of all CDs imported by C.

With this, we can directly define the OM theory induced by a CD.

Definition 21 (Theory of a CD). We call the pair 〈S, P 〉, where S is the
signature of C and P is the property set of C the OM theory of C.

In essence, the OM theory of a content dictionary is the union of all symbol
declarations and mathematical properties from all theories from which a symbol
is used in the CD. There is no problem with the (implicit) imports being cyclic,
since their morphisms are the identity and we are constructing the (iterated)
union. Note furthermore that OpenMath only supports literal CD names, and
we can assume the set of CDs to be finite, therefore, the signature and axiom
set of a CD are finite.

Note that in contrast to our definitions from section 3.1, the signature of a
CD will already contain the OM logic, as OpenMath does not distinguish OM
5 Arguably the OpenMath standard cannot fix this fully, since it intends to support

all mathematical software systems including such that are “semantics-independent”
like mathematical editing systems.
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logics from other CDs. Following accepted mathematical practice we assume the
logic to be first-order logic (with a choice operator) and a version of axiomatic
set theory as a theory of first-order logic — we choose Zermelo Fraenkel set
theory with choice [Zer08,Fra22] since this is the best-known one. Note that any
other foundation of Mathematics would serve equally well for our purposes. For
simplicity of presentation we will assume the existence of two basic CDs for
first-order logic (declaring connectives, quantifiers, equalities, and choice) and
ZFC (declaring membership and axioms).

In OpenMath practice, commented mathematical properties seem to assume
ZFC as a foundational system, whereas FMPs make due with less: they usually
only use symbols from the CDS

– logic1 [CDl04]: a logic in the sense of Definition 14, as it supplies the symbol
true — which we take as the distinguished symbol >,

– and the symbol eq from CD relation1 [CDr04] — which we take as =,
– quant1 [CDq04] that supplies the first-order quantifiers.

Definition 21 allows us to define the meaning of a CD as a class of OM
models.

Definition 22 (Model Class and Entailment for CDs). Let C be an Open-
Math CD and Θ the OM theory of C, then the Model Class of C is M(Θ)
and C |= o, iff Θ |= o.

We will now turn to the initial semantics again, this time to build initial OM
models.

Definition 23 (Congruence Relation). Let T be a OM vocabulary and A
an OM algebra over T . A congruence relation on A is a family of equivalence
relations on UA and RAn all denoted by ≡ such that (whenever applicable)

1. if u ≡ u′ and ui ≡ u′i for i = 1, . . . , n, then

@A
n (u, 〈u1, . . . , un〉) ≡ @A

n (u′, 〈u′1, . . . , u′n〉),

2. for l(σ) = n, if u ≡ u′, V(p) ≡ V ′(p) for all p ∈ σ, and F ≡ F ′, then

βAK(u,V,F) ≡ βAK(u′,V ′,F ′),

3. if u ≡ u′ and v ≡ v′, then αk(u, v) ≡ αk(u′, v′),
4. if F ≡ F ′ and ui ≡ u′i for i = 1, . . . , n, then

F(〈u1, . . . , un〉) ≡ F ′(〈u′1, . . . , u′n〉).

Definition 24 (Quotient Algebra). Let T be an OM vocabulary, A an OM
algebra over T , and ≡ a congruence relation on A. Then the OM algebra Q :=
A/ ≡ over T is defined by:

1. UQ = UA/ ≡,
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2. RQn is the set of all functions of the form

f : (UQ)n → UQ, f([u1]≡, . . . , [un]≡) = [F (u1, . . . , un)]≡

for some F ∈ RAn ,
3. @Q

n , βQK , and αQk are induced by their analogues in A.

Lemma 5. In the situation of Def. 24,

– Q is a well-defined OM algebra if A is,
– for all Q-assignments ϕ and A-assignments ϕ′ such that [ϕ′(x)]≡ = ϕ(x) for

all variables x, it holds that [[o]]Qϕ =
[
[[o]]Aϕ′

]
≡.

Proof. To prove the first part of the lemma, we have to assume a context C,
an assignment ϕ, o ∈ O(T,C), and n ∈ N, and then show that Λ〈v1, . . . , vn〉 ∈
(UQ)n.[[o]]Qϕ,[x1/v1,...,xn/vn] ∈ RQn . Let this be (1), and let (2) be the second part
of the lemma. Then we can prove (1) and (2) in a joint induction on o.

The induction step for (1) follows if we show that there is an F ∈ RAn such that
for all u1, . . . , un ∈ UA it holds that [[o]]Qϕ,[x1/[u1]≡,...,xn/[un]≡] = [F (u1, . . . , un)]≡.
And using the induction hypothesis for (2), this follows from the well-definedness
of A.

For all cases except variables and symbols, the induction step for (2) follows
immediately from the definition of congruence. For variables, it follows immedi-
ately from the relation between ϕ and ϕ′. For symbols, it is trivial.

Definition 25 (Induced Congruence). Let Θ = 〈T,Ax〉 be an L-theory, then
we define a congruence relation ≡Θ on I(L+ T ) as follows:

[o]α ≡Θ [o′]α iff Θ |= A(=, o, o′) for o, o′ ∈ O(L+ T, 〈〉)
and

Subs(o) ≡Θ Subs(o′) iff Θ |= A(=, o, o′) for o, o′ ∈ O(L+T, 〈x1, . . . , xn〉).
We call ≡Θ the congruence induced by Θ.

Lemma 6. Let Θ = 〈T,Ax〉 be an L-theory, then ≡Θ is indeed a congruence
relation.

Proof. The proof is straightforward.

As a consequence, the following construction is well-defined.

Definition 26 (Initial Model). Let Θ = 〈T,Ax〉 be an L-theory, then I(Θ) :=
I(L+ T )/ ≡Θ is called the initial model for Θ.

And that finally yields

Theorem 1. For all o ∈ O(Θ, 〈〉) we have I(Θ) |= o iff Θ |= o. In particular,
I(Θ) is a Θ-model.
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Proof. We know I(Θ) |= o iff [[o]]I(Θ) = [[>]]I(Θ). Using Lem. 5, this is equivalent
to [[[o]]I(T )]≡Θ = [[[>]]I(T )]≡Θ where T is the vocabulary of Θ. The latter is
equivalent to Θ |= A(=, o,>) by Lem. 3 and Def. 25. And that is equivalent to
Θ |= o.

And that yields the main theorem of this section

Corollary 3 (Herbrand Theorem). Every OM theory has a model that arises
as a quotient of the free OM algebra.

Note that this is exactly the bridging result between the OpenMath objects
semantics postulated in the OpenMath2 standard (see Section 1.3) and the
traditional foundations of Mathematics (see section 1.2). And with that we can
finally define the meaning of OpenMath objects.

Definition 27 (The Meaning of an OpenMath Object). Let o be an
OpenMath object, then we call the union of the theories of the CDs refer-
enced in o the Theory of o. If o ∈ O(T, 〈〉) is a ground OM Object, Θ its theory,
and M an OM Model of Θ, then the meaning of o in M is [[o]]M .

4 Conclusion

In this paper we have tried to rectify common misunderstandings about the
meaning of OpenMath (and thus MathML3) expressions. A central point in
the argument can be elucidated by another quote from the referee report men-
tioned in the introduction — it continued with

The [. . . ] “free algebra” semantics is nonsense: it amounts to saying that
“the meaning of a term is its syntax”. That is not what a mathematical
semantics is. anonymous referee for [DK09]

We have shown that the free algebra of OpenMath objects forms an initial
algebra for “formulae with uninterpreted symbols” which is syntactic in nature
as all initial algebras are. Indeed for OpenMath and content MathML ex-
pressions that do not contain symbols — and are thus unrestricted by content
dictionaries — this is the best meaning we can hope for: OpenMath cannot
impose more restrictions than α-equivalence and flattening of attributions with-
out losing coverage. Indeed this is captured by the the algebraic semantics of
OpenMath expressions in Section 2.

But the meaning of an OpenMath object comes mainly from the mathe-
matical properties in the content dictionaries of its symbols. In section 3 we
have been able to show that this can be grafted onto the algebraic semantics by
interpreting OpenMath CDs as logical theories over a foundational system like
first-order logic with ZFC as an axiomatic set theory.

Note that our semantic analysis has only taken into account symbol names,
roles, and mathematical properties. The former two are relevant for the OM
vocabularies and the latter for the OM theories that give OpenMath symbols
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their meaning. In particular, we did not look at descriptions (for symbols or
whole CDs) or examples. The status of these CD parts is left unspecified, by
the OpenMath2 standard, and usage in actual CDs is non-uniform. Symbol
descriptions reach from appealing to the folklore — e.g. “This symbol represents
the Boolean value true.” [CDl04] to specific literature references e.g. “See CRC
Standard Mathematical Tables and Formulae, editor: Dan Zwillinger, CRC Press
Inc., 1996, (7.7.11) section 7.7.1.” [CDs04]. Arguably both forms “mean” some-
thing to the human reader, and especially the latter should surely contribute to
the theory. The case of examples in CDs is similarly unclear: if they were unin-
formative to the human reader, nobody would put them in. But again practice
in published CDs is no help: examples are often statements — and thus in prin-
ciple mathematical properties — about (mathematical objects constructed by)
the symbols they illustrate, and — if they are — they tend to be valid, but it
would be uncautious to assume this to be generally the case. The next version
of the OpenMath standard could of course clarify these issues at the cost of
making it more heavyweight and thus arguably less useful. We propose to use the
OMDoc format [Koh06] that already makes these issues for specifying content
dictionaries instead if the additional functionality is desired.

A final objection often brought up against the “semantics of OpenMath”
is that the standard CDs maintained by the OpenMath society are very weak,
and (even with the methods presented here) do not give a clear and unambiguous
meaning for K-14 mathematics. Indeed this criticism is formally justified, but
misses the main point of the OpenMath philosophy, namely that the set of CDs
is open-ended, and that we can build CDs to suit all our communication and
representation needs. In particular it is possible (and in fact rather simple) to
build a CD NatArith for natural numbers and arithmetic by encoding the Peano
Axioms and recursive equations for the arithmetical operators in OpenMath
objects so that that its theory Θ = Θ(NatArith) determines the class of Θ-
models up to isomorphism (and all are isomorphic to N). To see this just use the
standard proof with our notion of OM models from section 3. If this does not
count as clear and unambiguous meaning then what? The OpenMath society
(and the W3C Math Working Group for that matter) view the weakness of the
standard OpenMath/MathML CD group as a feature and not a bug. These
CDs contain fewer mathematical properties to allow them to describe larger
model classes. For instance the CD arith1 [CDa04] (somewhat) corresponds to
the class of (Abelian) semigroups. And that is a good thing, since it is intended
to capture the informal usage in K-14: in many situations we need the flexibility
offered by the OpenMath/MathML CDs so that we do not over-specify the
meaning. We would probably not want to scare elementary school children who
are struggling with long division with the Peano Axioms or teenagers in high
school with the fine differences between Riemann and Lebesque integration.

We end this treatise on the “meaning of OpenMath and MathML” with
the observation that it is possible to specify the meaning of mathematical ob-
jects and formulae at many levels of flexibility and rigorousness and extend
the invitation to our readers to do just that: to contribute content dictionaries
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to the community of mathematicians (by way of the OpenMath society CD
site [OMC08]).
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A Better Role System for OpenMath

Florian Rabe, Michael Kohlhase

Computer Science, Jacobs University Bremen
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Abstract. OpenMath is a standard for the representation and commu-
nication of mathematical objects, which are built up from symbols and
variables using applications, binding expressions, and key-value attribu-
tions. OpenMath2 introduced a set of symbol roles that can be specified
in content dictionaries to restrict the occurrences of the respective sym-
bols. This yields a simple, high-level notion of well-formed objects.

While this system is appealing in its simplicity, the definition of well-
formedness is purely extensional without an intuitive or formal condition
that distinguishes well-formed objects from ill-formed ones. Moreover,
some well-formed objects should arguably rather be ill-formed. We try to
remedy that with a refined role system while preserving the simplicity of
the existing one. In particular, by distinguishing syntactic and semantic
roles, we can capture the intuitive notion of well-formedness better.

1 Introduction

OpenMath is a standard for the representation and communication of mathe-
matical objects, which are built up from symbols and variables as applications,
binding expressions, attribution. To provide a simple, high-level well-formedness
criterion the OpenMath2 standard [BCC+04] introduced a set of symbol roles
that can be specified in content dictionaries to restrict the occurrences of the
respective symbols. In the rest of this section we point out some problems of
the OpenMath Role system before we will try to solve them in the Section 2.
Section 4 concludes the paper.

1.1 General Problems of the OpenMath2 Role System

However, even though OpenMath attempts to use the role system for a high-
level well-formedness check, its status remains somewhat unclear. The text says
that

A symbol [...] cannot be used to construct a compound OpenMath object
in a way which requires a different role (using the definition of construct
given earlier in this section). This means that one cannot use a sym-
bol which binds some variables to construct, say, an application object.
[BCC+04, subsection. 2.1.4]

53



the compliance chapter [BCC+04, Chapter 5] does not mention the role system at
all. Furthermore, even the text above is not consequent enough to forbid clearly
ill-formed expressions where binders and keys occur anywhere in an expression
or where symbols without any role are used as binders or keys. Even worse: The
standard permits composed objects as the first child of a binder; thus, any symbol
can be used as a binder after all by wrapping it in a meaningless attribution.

As an example, for a well-formed OpenMath 2 expression that would be ill-
formed under our proposal, consider the following where C is any symbol with
the role attribution.

1 <OMBIND>
<OMATTR>

<OMATP>
C
<OMS cd=”quant1” name=”forall”/>

6 </OMATP>
<OMS cd=”arith1” name=”plus”/>

</OMATTR>
<OMBVAR><OMV name=”x”/></OMBVAR>
<OMS cd=”sts” name=”type”/>

11 </OMBIND>

It uses the plus symbol as a binder by wrapping it in an attribution that ap-
plications may ignore, uses a binder as the value of an attribution, and a key as
the scope of a binder. Standard-compliant implementations or theoretic investi-
gations must handle this object like any other one.

Thirdly, while it is reasonable to avoid a type system in OpenMath, it would
be easily possible and extremely helpful to restrict the number of arguments that
a symbol can be applied to.

1.2 Complex Binding Operators and Attribution Keys

In a nutshell, the OpenMath role system uses the roles binder, error, attribution
and semantic-attribution, application, and constant. The underlying de-
sign principle of the OpenMath role system is that binders, errors, keys, and
applications occur as the first children of OMBIND, OME, OMATP, and OMA objects.
While this is certainly appealing, there are several disadvantages.

However, composed expressions must be allowed as applications in order to
permit anonymous functions. Therefore, we have the choice to either permit
composed binders, errors, and keys or to break the symmetry between the con-
structors.

Considering the former option, it is indeed often convenient to use binders
and keys that are composed expressions, namely the results of applications. For
instance we have found that integration can be expressed most elegantly if the
integral is an operator that takes the domain of integration as the argument and
returns the binder . For example,

<OMBIND>
<OMA>

<OMS cd=”calculs1” name=”integral”/>
4 <OMA>

<OMS cd=”interval1” name=”interval”/>

2
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<OMV name=”a”/>
<OMV name=”b”/>

</OMA>
9 </OMA>

<OMBVAR><OMV name=”x”/></OMBVAR>

f(x)

</OMBIND>

is a most natural representation of
∫ b

a
f(x)dx. Here and in the future, we will use

boxed mathematical formulae to abbreviate OpenMath Objects wher the XML
representations is immaterial to the exposition.

Keys are typically atomic but not always. For example, the typing relation
in a language with an infinite type hierarchy is parametrized by an integer value
for the type level.

Furthermore, both for binder and for keys, it is conceivable to use symbols
wrapped in non-semantic attributions, i.e., to attach presentation information
to them.

2 A two-dimensional Role System

Roles are associated with symbols in content dictionaries. We propose to gener-
alize the role of a symbol into two orthogonal aspects:

– role represents the syntactic role of a symbol. It corresponds roughly to the
role of OpenMath2.

– arguments represents the number of arguments that a symbol takes.

In this section, we will present the extended role system on a conceptual level
and deal with syntactic issues in Section 3.

The role has three possible values:

– term: This role represents all kinds of expressions as they occur in mathe-
matics and type theories. It is the default if no role is given.

– binder: This role represents binding operators. There is an informal con-
sensus among mathematicians and computer scientists that expressions and
binders are to be distinguished. The characteristic feature of binders is that
they need variables and scope and cannot occur alone. For example, in
lambda calculus almost everything is an expression but not the λ itself (and
not the application operator, which is present in OpenMath already any-
way). Similarly, every mathematician would interpret a

∫
symbol occurring

by itself as the non-binding operator on functions and never as a binder.
– attribution and semantic-attribution: These roles represent keys that

can occur in attributions. Just like binders, they do not carry mathematical
meaning on their own and only become meaningful within an attribution.

We will abbreviate these four values as T , B, A, and S, respectively.
There is no value error because we hold that the property of being an error

is not a syntactic property like those of being a binder or a key. Rather, it is a

3
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semantic property. This is confirmed by programming languages such as Java or
SML where exceptions are treated as normal expressions that only obtain their
special semantics in the type-checking and execution phase. Therefore, we argue
that OME objects should be abandoned in favor of OMA objects. The property of
being an error should be marked up by introducing a second role attribute for
semantic roles. This new attribute is not only useful to mark up errors, but can
also be used to mark up other semantic roles such as element, sort, proof, or
judgment. We come back to this in Sect. 2.2.

There is no value application either. This is because the argument why
binders and keys should be separated from expressions does not carry over to
applications: A symbol designated as an application may very well occur sepa-
rately and has a well-defined meaning if it does. For example, in the context of
natural numbers, + has the set-theoretical meaning {((x, y), z) | x+ y = z}.

We do not consider the property of constructing an application to be alter-
native to that of constructing a binder or a key. Rather do we consider it as an
orthogonal property via the arguments attribute.

The attribute arguments has as values a natural number or the special value
∗. Its intended semantics is that it gives the number of arguments a symbol takes.
In particular, by making the number of arguments 0 a symbol is forbidden from
occurring as the first child of an OMA element. We also permit the special value ∗
to make the number of arguments unrestricted. If a symbol has the semrole of
a binder or key, the default value of arguments is 0. This reflects the fact that
binders and keys are typically atomic. If the semrole is term, the default value
is ∗.

2.1 Well-formed Objects

We define the well-formed objects E and their syntactic rolesR(E) ∈ {T ,B,A,S}
in a mutual induction.

1. Every symbol E = OMS(S) is a well-formed expression, and R(E) is the
value of the semrole attribute of S.

2. Every variable is a well-formed expression with role T .
3. If E,E1, . . . , En (n > 0) are well-formed expressions, R(Ei) = T for all i,

and either
– E is a composed expression and R(E) = T or
– E refers to a symbol and the value of that symbol’s arguments attribute

is ∗ or n,
then OMA(E,E1, . . . , En) is well-formed, and its role is R(E).

4. If E, V1, . . . , Vn, E
′ are well-formed expressions, R(E) = B, R(E′) = T , and

all Vi are well-formed attributed variables and R(Vi) = T , then
OMBIND(E, (V1, . . . , Vn), E′) is a well-formed expression with role T .

5. If E,K,E′ are well-formed expressions, R(E) = T , R(E′) = T , and R(K) ∈
{S,A}, then OMATTR(E,K := E′) is a well-formed expression with role
R(E). (For simplicity, we omit the analogous case of multiple attributions.)

4
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6. All elements of specific domains (numbers, strings) and all foreign objects
are well-formed expression with role T .

Note that we again omit the case of error objects. We come back to them in
Sect. 2.2.

It is simple to make a RelaxNG schema out of the above definition. The
schema can be generated from the CDs as in [Koh08].

Our role system satisfies the following invariants:

– Only terms may occur as arguments in applications, variables or scopes in
bindings, or values in attributions.

– Keys and binders can only occur as the heads of attributions and bindings,
respectively, and nothing else can occur in these positions.

– All symbols can take arguments, and the role of the symbol determines the
role of the result. Symbols can be prevented from taking arguments and
thus from occurring as the head of an application by making their number
of arguments 0.

– All expressions can be attributed, and attributions do not change the role
of the attributed expression.

In Case 5, it is reasonable to drop the requirement R(E) = T , i.e., to permit
attributions on binders and keys. However, that would make backwards compat-
ibility somewhat harder when translating OpenMath 2 roles to our roles (see
below).

2.2 Semantic Roles

In addition to distinguishing syntactic roles, it is often useful to give symbols with
syntactic role T an additional semantic role attribute semrole. The intuition
behind this becomes clear from the following list of possible values.

– element and sort: These roles represent mathematical objects and their
containers.

– proof and property: These roles represent proof terms and properties of
mathematical objects.

– error and error-type: These roles represent error objects and their con-
tainers.

In order to define the semantic role of an arbitrary term, we additionally
permit the semrole attribute on an OMV element when occurring within an
OMBVAR element. This is useful to give variables a semantic role. For example to
distinguish between a lambda abstraction over elements or over types.

Both on variables and symbols, element is the default if no semantic role is
given.

The semantic role of a well-formed expression with syntactic role T is defined
as follows:

5
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1. For a symbol: according to the declaration of the symbol.
2. For a variable: according to the declaration of the variable.
3. The semantic role of an application is that of the first child.
4. The semantic role of a binding is that of the third child.
5. The semantic role of an attribution is that of the attributed expression.
6. The semantic role of an element from a specific domain or foreign object is

element.

Then the OME objects of OpenMath2 can be recovered as syntactic sugar
for OMA objects with semantic role error.

2.3 Conservativity and Backwards Compatibility

The current roles of the OpenMath2 standard can be translated to ours as
follows:

– constant: role T with 0 arguments,
– application: role T with ∗ arguments,
– error: role T with ∗ arguments and semantic role error.
– binder: role B with 0 arguments,
– attribution: role A with 0 arguments,
– semantic-attribution: role S with 0 arguments,
– no role: defaulting to role T with ∗ arguments.

Under this translation, we can prove the following restrictions for well-formed
expressions in our sense over content dictionaries in the OpenMath2 sense:

– constant: This symbol may only occur by itself or with attributions: on
toplevel, as an argument of an application, as the scope of a binding, or as
a value of an attribution.

– application or error: This symbol may only occur as the first child of
an application (possibly with attributions) or anywhere where symbols with
role constant can occur.

– binder: This symbol may only occur as the first child of a binding.
– attribution or semantic-attribution: This symbol may only occur as

the key of an attribution.
– no role: This symbol may only occur where terms may occur.

The last of this cases is the only backwards compatibility problem: In Open-
Math 2, symbols with no role can occur anywhere, whereas we exclude such
symbols from occurring as binders or keys. However, the number of OpenMath
2 symbols without a role that are meant to occur as a binder or key is so small
(We do not know any example.) that we find that acceptable.

This means that OpenMath 2 content dictionaries can be translated to our
role system in a way that well-formed expressions in our sense come very close
to the apparently intended meaning of the OpenMath 2 standard.

6
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3 Proposed Changes to the OpenMath Standard

We propose the following changes to the OpenMath standard.

1. Symbols declarations in content dictionaries have three attributes
– role, values: term (default), attribution, semantic-attribution, binder,
– arguments, values: natural numbers or *, * is default if role is term, 0

is default otherwise,
– semrole, values: element (default), sort, proof, judgment, error, error-type.

2. OMV elements in variable declarations have a semrole attribute as above.
3. OMATP elements may have arbitrary objects as the first child.
4. The definitions of well-formed object, syntactic role of an object, and seman-

tic role of a term from Sect. 2.1 are added to the standard and replace the
existing descriptions of well-formed objects.

5. OME elements become syntactic sugar for OMA elements where the first
child has semantic role error.

4 Conclusion

In this paper we have critically re-accessed the role system introduced in the
OpenMath 2 standard. While this system is appealing in its simplicity, it has
several drawbacks that we try to solve in this paper by generalizing roles into
independent syntactic and semantic flavors.

This has the benefit that a straightforward and formal definition of well-
formed objects can be achieved that preserves the generality and simplicity of
OpenMath 2 while ruling out many so far permitted nonsensical objects. By
adding the possibility of restricting the number of arguments of a symbol, users
are able to succinctly restrict the possible uses of a symbol without incurring a
significant gain in complexity.

Users can exploit our role system to characterize the possible first children
of composed expressions more strictly as before, and these restrictions lead
to invariants that are available to applications. Our role system would also
tremendously simplify our definition of a set-theoretic semantics of OpenMath
([KR09]), which currently has to go out of its way to interpret practically useless
objects.

Our extension is conservative in the sense that existing content dictionaries
can be translated to our proposed system. Formerly well-formed objects stay
well-formed except for those cases which the OpenMath2 role system – acci-
dentally in our opinion – permitted.
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wiki.openmath.org – how it works, how you can
participate

Christoph Lange

Computer Science, Jacobs University Bremen, ch.lange@jacobs-university.de

Abstract. At http://wiki.openmath.org, the OpenMath 2 and 3
Content Dictionaries are accessible via a semantic wiki interface, powered
by the SWiM system. We shortly introduce the inner workings of the
system, then describe how to use it, and conclude with first experiences
gained from OpenMath society members working with the system and
an outlook to further development plans.

1 Introduction: The OpenMath Content Dictionaries

OpenMath [17] is a semantic markup language (“content markup language”) for
mathematical formulæ that originated as a shared knowledge representation
for applications in computer algebra and automated theorem proving in the
mid-1990s and got further applied in areas as diverse as e-learning, scientific
publishing, and interactive geometry. OpenMath defines an abstract data model
for representing mathematical objects and two concrete syntaxes for it, a binary
and a more common XML one. Important building blocks of mathematical objects
are numbers, variables, symbols, and applications of mathematical objects to
other mathematical objects. Any concrete operator, constant, set, or function
can be a symbol. In contrast to, e. g., earlier versions of MathML, the symbol
supply of OpenMath is constantly increasing due to its extensibility by so-called
content dictionaries (CDs).

<CDDefinition>
<Name>plus</Name>
<Role>application</Role>
<Description>The symbol representing an n-ary commutative
function plus.</Description>
<CMP>for all a,b | a + b = b + a </CMP>
<FMP>β(quant1#forall, a, b,

@(relation1#eq,@(arith1#plus, a, b),@(arith1#plus, b, a)))</FMP>
</CDDefinition>

Fig. 1. Definition of the arith1#plus symbol

A CD is a collection of (usually closely related) mathematical symbols, each
with a name and a mandatory informal description (cf. fig. 1). Further information
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about symbols is optional but recommended to have: mathematical properties
of the symbol, both in a formal (FMP) and an informal (“commented”, CMP)
flavour, and examples of applying the symbol. The language for expressing this
information is part of the OpenMath standard. Besides the proper CD file (named
e. g. number-theory.ocd), there can be additional files: OpenMath does not
commit to a particular type system, so it allows for types of symbols to be
specified in separate files parallel to the CD, one per type system. The most
common type system in the OpenMath community is, however, Davenport’s
Small Type System (STS [3]); types in that system would be given in a file named
number-theory.sts.

Furthermore, there is no doubt that notations must be specified for symbols
in some way, if OpenMath objects should ever be presented to a human reader,
but opinions diverge on whether this should be done in CD-like files or not. David
Carlisle and others believe that directly writing XSLT (one file per CD, one
template per symbol) does a good job in transforming OpenMath to Presentation
MathML. The advantage of XSLT is its expressive power (it’s Turing-complete!),
which comes at the expense of human comprehensibility, though. Paul Libbrecht
and Michael Kohlhase (of whose “camp” the author is a member) thus prefer
CD-like dictionaries of XML-based notation definitions in a more compact syntax.
They believe that, given a sufficient support for pattern matching or declarative
symbol 7→notation mappings, most, if not all aspects of mathematical notation
can be handled, and authored much more intuitively. Libbrecht et al. generate
XSLTs from notation definitions that use pattern matching, whereas Kohlhase et
al. have implemented a dedicated renderer (actually two ones, which are being
merged) that directly renders mathematical objects using either declarative or
pattern-based notation definitions [8,7,9].

2 Authoring and Reviewing OpenMath CDs

While everybody is free do define his own CDs for his purposes, the OpenMath
Society maintain a collection of official CDs [5] that have undergone a review
process. Still, the content of an official CD is not fixed: It might still contain
mistakes that have slipped through the review, or there might be ways to improve
the informal descriptions of symbols, or relevant mathematical properties and
examples to add.

As said in the introduction, one CD is essentially a file – containing several
metadata fields on top, and then one CDDefinition block per symbol. The official
CDs are maintained in a Subversion repository at https://svn.openmath.
org. Developers participating in their maintenance check out a working copy of
that repository, edit the CD files locally with a text or XML editor, and then
commit their changes. RIACA have developed a Java-based CD editor [20], the
only CD editor besides ours that we are aware of. The RIACA CD editor, however,
rather focuses on generating Java code for programs dealing with OpenMath
objects from CDs than on CD maintenance, and its development seems to have
been discontinued for at least three years.
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Issues with the CDs are usually being discussed on the OpenMath mailing list
(om@openmath.org) in case of fixing bugs in existing CDs, or on the OpenMath
3 mailing list (om3@openmath.org) in case of the overhaul of the CDs and
alignment with the Content MathML specification for the upcoming OpenMath
3 [4]. As an alternative for OpenMath 3, there is an installation of the Trac issue
tracking system (cf. [24]) at https://trac.mathweb.org/OM3.

For presenting a CD to human readers, the elements of the OpenMath CD
language are usually transformed to the desired output format (most commonly
XHTML) using XSLT, and the OpenMath objects occurring inside the FMPs
and examples are rendered as described in section 1. This presentation process is
usually controlled by makefiles.

2.1 Three CD Editing Use Cases

In the remainder of this paper, I will focus on supporting three common use
cases. First, the traditional way of handling these cases will be presented, to pave
the way for showing how they are handled in the OpenMath wiki.

Minor Edits: Fixing minor mistakes does not change the semantics of a symbol.
Consider correcting a spelling mistake in a description, or renaming a bound
variable in a mathematical object that does not occur as a free variable in a
subexpression. Supported by a text or XML editor only, which is not aware of
the particular features of OpenMath CDs, such a fix would be done as follows
(assuming that the mistake is in a CD from openmath.org):

1. Update the working copy of the OpenMath CDs
2. Open the CD file in question
3. Navigate to the Description child of the symbol in question
4. Fix the mistake
5. Commit the file (and, ideally: commit that file only, and give a meaningful

log message that exactly refers to the symbol where the mistake was fixed)

Discussing and Implementing Revisions: Major revisions that change the
semantics of a symbol have to be discussed among the developers before im-
plementing them. Usually, the discussion starts with pointing out a problem
(e. g. an FMP for a concrete symbol is wrong or misleading). Let us assume
that the developer who identified the problem does not know how to solve it.
Then, he would have to make others aware of the problem, e. g. by an e-mail to
the OpenMath mailing list. Pasting a link to the Subversion URL of the CD in
question into that e-mail helps others to inspect the problematic part1. Other
developers would then reply to this e-mail and propose solutions, and again by
replying to their mails, the solutions would be discussed, until the community
agrees on one to be implemented.
1 Trac features a more immediate and comprehensive integration of a trouble ticket
system with a Subversion repository, but that is not currently possible for OpenMath,
as the Trac and the Subversion repository are running on different servers.
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Editing and Verifying Notations: Suppose that an example or FMP for a
symbol σ in one CD uses a symbol τ from another CD and that the notation
defined for τ is wrong. Concretly, imagine σ being the cumulative distribution
function of the normal distribution, τ the integral symbol occurring in the
definition of σ, and then imagine that the formatting of its lower and upper
bounds is wrong. Here is how an author would fix this:

1. Identify the formal symbol name and CD of τ
2. Navigate to the file where the notation of τ is defined
3. Try to fix the notation definition
4. Regenerate the human-readable presentation of the CD defining τ (and,

ideally: regenerate all CD presentations where τ occurs)
5. Open the regenerated presentation and check if it is correct (if not, back to 2)
6. Commit the file containing the notation definition, giving a meaningful log

message

3 The OpenMath Wiki

From the previous use case descriptions it evident that a better tool support is
needed to aid maintenance of the OpenMath CDs. SWiM is a wiki – a system
for collaboration on knowledge collections on the web –, a semantic wiki for
mathematics in particular [12]. It aims at offering intelligent collaboration services
to authors of mathematical documents in semantic markup languages – such
as OpenMath CDs. SWiM’s notion of “semantics” is restricted to decidable
structural aspects of documents and CDs; it does not capture the full semantics
of OpenMath objects. Having presented first ideas at the OpenMath workshop in
January 2008 [10], the author decided to further pursue supporting the OpenMath
CD review as a case study for SWiM and set up an instance of the system at
http://wiki.openmath.org in September 2008. Figure 2 shows a CD in
the browsing view of SWiM. In the remainder of this section, it will be discussed
how SWiM supports the use cases introduced in section 2.1.

3.1 Minor Edits

We have identified three different types of knowledge in OpenMath CDs: the
structural outline of a CD (e. g. defining what symbols a CD defines), metadata
(of such structural units, e. g. their informal descriptions or the date of revision),
and OpenMath objects (inside FMPs and examples). For each of them, SWiM
offers a dedicated editor (see [14]) for details.

It was a requirement for SWiM to allow for revisions in a context as local
as possible – i. e. committing a “fixed description” to the CD repository instead
of committing a “new revision of a CD with ‘something’ changed”. SWiM acts
as a browser and editor on top of the OpenMath Subversion repository but
adopts a finer granularity. For a CD, there is not one lengthy wiki page, but, on
every request of the CD from the Subversion repository, it is split into smaller
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Fig. 2. An OpenMath CD in SWiM. Notice the navigation links on the right
side.
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logical units that are semantically subject to a revision: mathematical properties
and examples on the lowest level, then symbol definitions (grouping several
mathematical properties, examples, and metadata about one symbol together),
and finally whole CDs. Of the wiki pages on CD and symbol definition levels,
only the structural outline is editable, which keeps the content of the page editor
small and maintainable; the smaller subparts that have been split into pages of
their own right are editable separately and only represented as XInclude links [16]
in the editing view. Nevertheless, a complete CD can be viewed at once; the
presentation XSLTs have been adapted to cater for that. Metadata fields are
either editable within the structural outline editor, or in a separate form-based
view. Much attention was paid to avoiding any disruption of the file granularity
of CDs in the Subversion repository, which are still editable in the conventional
way2. Upon saving a change in the wiki, the whole CD to which the changed part
belongs is reassembled, reversing the initial splitting process, and committed to
the repository. However, the log message for this commit refers to the particular
part of the CD that has been changed. In the revision log of the CD, such a
revision will display as follows (here shown for a change of the description of the
transc1#sin symbol):

r1234 | clange | 2009-05-11 13:06:41 +0200 (Mon, 11 May 2009) |
2 lines
[Administrator@SWiM] replaced metadata field dc:description
Actually changed fragment cd:transc1+sin

The naming of CDs and parts thereof currently varies from OpenMath
conventions and instead reflects the SWiM-internal RDF representation (as
described in the following subsection) but could easily be adapted. The differing
user names are owed to the technical limitation that SWiM and the Subversion
repository do not have a unified user account management.

3.2 Discussing and Implementing Revisions

For each page (i. e. for each CD, symbol = CDDefinition, mathematical property,
and example), SWiM offers a discussion page – essentially one local discussion
forum per subject of interest. While that already allows discussions in the same
granularity as our units of mathematical knowledge have, we have also given
the discussion threads a semantic structure. On a conventional wiki discussion
page, users would have to 1. manually create one section per discussion thread,
2. manually indent replies, 3. and point out the message of their discussion post
in natural language. The IkeWiki platform [21] that SWiM is based on already
cared for (1) and (2) by adopting the user interface known from discussion forums
(and storing each discussion post as a separate resource instead of storing the
whole discussion page, as other wikis do). We have added (3) in a way that
2 As we will see in section 4, SWiM does have, and will always have, certain technical
but also conceptual limitations, be they bugs or deliberate design choices, that
disqualify it as a one-size-fits-all CD editor.
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optionally allows users to indicate the type of their discussion posts in terms of
an argumentation ontology, of which we present a simplified outline here (see [15]
for details): Such a discussion can be started by pointing out a problem (here
called issue). As replies to an issue post, ideas (= solution proposals) would
be allowed, on which users can state their position, and finally a thread can be
concluded with a post of type decision, summarising the idea that was actually
agreed on to resolve the issue. For every possible type of reply to a discussion
post, there is a dedicated reply button (cf. figure 3); “untyped” replies for posts
that do not fit into this schema are still possible but obviously prevent further
automated assistance.

Fig. 3. Part of a discussion page from the OpenMath wiki. Notice the post types
and the specialised reply buttons.

Aiming at a technical support that guides discussion threads towards common
solutions, we added a domain-specific extension to the argumentation ontology.
In a survey among OpenMath users3, patterns of common problem and solution
types in mathematical knowledge bases were identified [15]. The benefit from
that is twofold: 1. Discussion threads can be queried by their logical structure,
and 2. assistants for semi-automatically implementing common solution patterns
to common problems can be implemented (cf. [15]). SWiM not only represents
the structure of discussion threads in an RDF graph [19] in terms of the above-
mentioned argumentation ontology, but it also represents the structure of CDs in
terms of an ontology: part–whole links, as identified during the splitting of CDs
described in section 3.1, links from symbol occurrences in mathematical objects
to the place where they have been defined, as well as metadata. This whole RDF
database can be queried. On the entry page of the OpenMath wiki, this is done

3 The survey is still open for participation at http://tinyurl.com/5qdetd but
likely to be replaced by a more focused survey soon.
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in order to draw attention to unresolved issues by the following SPARQL [18]
query:

SELECT DISTINCT ?P WHERE {
?P ikewiki:hasDiscussion ?D .
?C a arguonto:Issue;

sioc:has_container ?D .
OPTIONAL { ?Dec arguonto:decides ?C . }
FILTER (!bound(?Dec)) }

P is a variable for a wiki page, which could be further restricted by its type
in terms of the OpenMath ontology, e. g. we could restrict the query to symbols
(CDDefinition). This query returns all pages P having a discussion forum D
containing a comment C of type Issue on which no decision has been made so
far. Such queries can be entered anywhere by an experienced user and result in a
list of links to wiki pages.

3.3 Editing and Verifying Notations

In rendering mathematical objects to Presentation MathML, SWiM adopts the
approach of the “Kohlhase camp” (cf. section 1) by embedding the JOMDoc
rendering library [7,9] and maintaining notation dictionaries in parallel to content
dictionaries. The notation definitions are browsable and editable in the wiki. The
workflow of editing and verifying them, as outlined in section 2.1, is facilitated
as follows (see [14,11] for details):

1. SWiM utilises the parallel markup [1, chapter 5.4] generated by the renderer
to create links from the rendered symbols to the wiki pages representing their
CDDefinitions. Thus, a developer can directly navigate from the occurrence
of a symbol to its definition, and from there its notation definition is only
one more click away.

2. The XHTML+MathML output of rendering a wiki page (= a CD or a
fragment thereof) is cached, but after changing a notation definition of a
symbol, the rendered output for all pages P containing a formula in which
the symbol occurs is removed from the cache, forcing its re-generation. Note
that the set P contains not only the FMP or example that immediately holds
the OpenMath object using the symbol, but also the enclosing CDDefinition
and CD. The set P is obtained by another SPARQL query on the database.

4 Discussion, Experiences and Further Directions

This section discusses the SWiM features presented so far, lists preliminary user
feedback about them, as well as general feedback obtained from the users of the
OpenMath wiki, and concludes with a schedule of plans for further improvement.

By supporting the use cases “minor edits”, “discussing and implementing revi-
sions” and “editing and verifying notations” and by its non-disruptive connection

68 wiki.openmath.org



to the OpenMath Subversion repository, SWiM facilitates crucial aspects of the
CD maintenance process. Moreover, we got a fine-grained permission system
for free from the underlying IkeWiki engine, which allows to define roles like
“visitor” (may comment on everything), “CD editor” (may edit the CDs), and
“administrator” (may also edit special pages like the entry page). The OpenMath
developers have made little use of the wiki for actually changing the CDs (for
usability reasons elaborated on below), but mainly used it as a browser – where is
is slower but much richer in features than the statically rendered CD presentations
–, and for discussing.

4.1 Evaluation

We have verified the principal utility of the basic argumentation ontology (without
the domain-specific extensions yet) for OpenMath by importing an old corpus
of e-mail conversations about the OpenMath/MathML 3 CDs by Chris Rowley,
David Carlisle, Michael Kohlhase, and others, into the wiki, following the dis-
cussion structure. Further discussion posts have been contributed by OpenMath
developers afterwards. Overall, this resulted in 90 discussion posts. A breakdown
of this figure can be evaluated by post type and by post granularity:

by type: 69 posts fit into one of the types from the argumentation ontology,
mainly Issue (48) and Idea (10). Only counting the 23 posts contributed by
the users themselves (who were obviously less familiar with the background
of the argumentation ontology), the result is slightly less convincing; for 9
of them the users were not sure how to classify them. The post type that
was missing in most cases was nothing argumentative at all, but the question
– either a direct question about some concept from a CD, or a follow-up
question on an argumentative post, such as “what do you mean by this issue
description?”. It will be easy to solve that problem by adding such a post type.
Some other posts could not be uniquely classified because they both raised
an issue and proposed a solution (= idea) in the same sentence. Annotating
different argumentative types not at the level of posts but within posts is
highly non-trivial, both concerning conceptual modelling and user interface
design, though, as discussed in [13].

by granularity: 36 posts (but only posts taken from the e-mail corpus) had
individual symbols as their subject; the remaining 54 posts (including all
of the posts made by users) were made on CD-level discussion pages. This
shows that either the users did not find it intuitive (or not necessary) to
access subparts of a CD when they saw a complete CD in the browser, or
that it was not possible to identify individual symbols a post referred to. The
latter is the case for certain posts that argue on design issues of a CD in
general, sometimes naming certain individual symbols as examples. A few
other posts from the e-mail corpus referred to two closely related symbols;
we filed copies of them with both affected symbols.
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Overall, this shows that the OpenMath CD editors have understood how to
make use of this way of discussing problems, which is more exact than writing
an e-mail or opening a Trac ticket.

The only evaluation of the editing features so far we have performed ourselves:
We made sure that no content is lost or broken from the CD files in the Subversion
repository during minor edits in SWiM. We have tested that by importing all
OpenMath 3 CDs into the wiki, loading them into the editor once, saving them,
and inspecting the XML diff.

A major criticism towards the wiki has so far been its focus on editing existing
content. The different granularities of the wiki and the OpenMath Subversion
repository make it very cumbersome to add, e. g., a new symbol to a CD: One
has to edit the CD wiki page, add the new CDDefinition child there, as a sibling
of the XInclude elements pointing to the existing CDDefinitions, and then save
the CD page. Upon saving, the new CDDefinition fragment will be split away
into a wiki page of its own, which can then be edited in the next step. Cleanly
adding a new CD altogether is not possible at all, this time due to the incomplete
Subversion support of SWiM. SWiM only implements the most basic Subversion
commands so far: update, commit, and lock. Other actions like adding and
deleting content are possible in the wiki itself but not reflected by its interface
to Subversion – which is hacked into the file import/export component instead
of being integrated at database level, because the latter would have required a
complete overhaul of the design of the underlying IkeWiki system.

4.2 Roadmap

These and other annoyances and missing features (not being able to link to
discussion posts, no e-mail notification about discussion posts or page changes,
no global search/replace feature across multiple symbols or CDs, to name just a
few) are hard to resolve within the existing architecture of SWiM. While some
major tasks are definitely within the responsibility of the author, the general
usability of the system – besides its adaptation to the mathematical domain
– could benefit a lot from improvements to the underlying wiki engine. The
development of IkeWiki, which had originally been chosen due to its unique
XML and RDF support, has been discontinued, though. On the other hand, its
completely reengineered successor KiWi [22] is making good progress.

Therefore, a port of SWiM to KiWi is currently in progress. KiWi’s more mod-
ular architecture allows for implementing large parts of SWiM not by modifying
the core system – as was the case with IkeWiki –, but by providing plugins. New
KiWi features of particular interest in the OpenMath setting are a dashboard
view giving every user a personalised overview of recent changes at a glance,
a service that recommends related content, a facetted search interface, and a
concept of transactions that will allow for committing several related changes at
once. With the new, improved SWiM system, we will then restart the usability
evaluation and work out an accompanying user questionnaire.

A further enhancement planned is replacing the wiki’s own database by
an integration of Subversion on database level. A database engine capable of
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versioning XML documents, particularly mathematical documents, is currently
under development in our group [23]. On the user interface end, it is planned
to make the OpenMath community benefit from our recent research on active
documents. We have implemented interactive services like in-place definition
lookup and developed an infrastructure for user-adaptable documents [6].

4.3 Conclusion

We have outlined three CD editing use cases and compared the traditional way
of performing them to the new way offered by the SWiM wiki. SWiM clearly
excels in these special but common use cases, which has partly been confirmed
by the OpenMath CD editors, while still staying compatible with old-style
operations going on in the same repository. As SWiM does not yet cover the
full CD editing workflow, we presented a roadmap towards its successor, which
will rely on a smarter database backend and increase the interactivity of the
http://wiki.openmath.org site for current and future collaborators and
users.
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The order1 Content Dictionary
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Brief Description

We propose a content dictionary for orders of number fields written for SCIEnce
project [3]. Reference textbooks on the topic are for example by Pohst and
Zassenhous [2] and Cohen [1]. The proposed order1 content dictionary contains
symbols for the basic functions and constructors in this field.

This CD is the first one of the CDs we hope to develop to deal with number
fields. Using these tools and methods, one can handle the absolute number fields
(defined over the rational field Q) and relative number fields (defined over a
number field); these different notions were not stated anywhere in the existing
CDs.

The accompanying .ocd and .html files contain the relevant descriptions
and some examples.

(Note added following referee comments: Probably numfield1 would be a
more suitable name)
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OpenMath Content Dictionary: order1

Canonical URL:

http://www.win.tue.nl/SCIEnce/cds/order1.ocd

CD File:

order1.ocd

CD as XML Encoded OpenMath:

order1.omcd

Defines:

algebraic_integer, algebraic_number, is_Dedekind, is_maximal_order, is_nonzero_divisor,

is_principal_ideal_domain, maximal_order, number_field, order, primitive_element, ring_integers

Date:

2009-06-22

Version:

1 (Revision 6)

Review Date:

Status:

experimental

Uses CD:

alg1, arith1, fieldname1, logic1, nums1, polyd1, quant1, relation1, ring1, ringname1, set1, setname1

This CD defines the basic functions and constructors for orders of number fields. Written by S. Lesseni

(lesseni@math.tu-berlin.de).

A CD of basic functions for orders of number fields written for SCIEnce project. Note that all the rin

The reference textbooks are: 

(1) M. Pohst and H. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge

Univ. Press, 1989.

(2) H. Cohen, A course in Computational Algebraic Number Theory. Berlin, Springer-Verlag (1993).

is_Dedekind

Role:

application

Description:

This symbol represents a unary boolean function. The argument should be a ring R. When evaluated on

R, the function returns true if R is a Dedekind ring and false otherwise. Note that a ring R is a Dedekind

ring if it is Noetherian, integrally closed (so integral) and such that every non-zero prime ideal is

maximal.

Commented Mathematical property (CMP):

if R is a Dedekind ring and a subring of the rational field Q then R = Z.

Formal Mathematical property (FMP):

xml  prefix  mathml

is_Dedekind  ( R ) ! is_subring  ( Q , R ) " R = Z

order1 file:///Users/danroozemond/tue/science/docs/papers/openmath200...

1 of 6 6/25/09 10:54
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Example:

if the ring (R,+,0,-,*,1) is a principal ideal domain then (R,+,0,-,*,1) is a Dedekind ring.

xml  prefix  mathml

! ! R , plus , zero , minus , times , one . is_principal_ideal_domain  ( ring  ( R , plus , zero , minus ,

times , one ) ) " is_Dedekind  ( ring  ( R , plus , zero , minus , times , one ) )

Signatures:

sts

[Next: is_nonzero_divisor] [Last: primitive_element] [Top]

is_nonzero_divisor

Role:

application

Description:

This symbol represents a boolean binary function. The first argument is a ring R, the second is an element

b of R. When evaluated on R and b, the function returns true if b is a nonzero divisor in R.

Commented Mathematical property (CMP):

if x is a non-zero divisor in the ring R then x is in R and x is different from zero and for all non-zero y in

R, x*y is different from zero or y*x is different from zero.

Formal Mathematical property (FMP):

xml  prefix  mathml

is_nonzero_divisor  ( R , x ) " x # carrier  ( R ) $ x ! zero  ( R ) $ ( ! ! y . y # carrier  ( R ) $ y ! zero 

( R ) " ( ( multiplication  ( R ) )  ( x , y ) ! zero  ( R ) ) % ( ( multiplication  ( R ) )  ( y , x ) ! zero  ( R ) )

" )

Example:

xml  prefix  mathml

is_nonzero_divisor  ( Z , 5 )

Signatures:

sts

[Next: is_principal_ideal_domain] [Previous: is_Dedekind] [Top]

is_principal_ideal_domain

Role:

application

Description:

The unary boolean function whose value is true if and only if the argument is a principal ideal domain. R

is a principal ideal domain if R is a commutative ring without zero divisors and if every ideal of R is a

principal ideal.

Commented Mathematical property (CMP):

is_principal_ideal_domain(R) then for all a, b in R a*b=b*a and a different from zero in R then a is a

order1 file:///Users/danroozemond/tue/science/docs/papers/openmath200...

2 of 6 6/25/09 10:54

Lesseni & Roozemond 75



non-zero divisor in R and I an ideal of R then there exists x in R such that I is the principal ideal

generated by x in R.

Formal Mathematical property (FMP):

xml  prefix  mathml

is_principal_ideal_domain  ( R ) ! " ! a , b . a # carrier  ( R ) $ b # carrier  ( R ) ! ( multiplication  (

R ) )  ( a , b ) = ( multiplication  ( R ) )  ( b , a ) $ ( a # carrier  ( R ) ! is_nonzero_divisor  ( R , a ) ) $ (

is_ideal  ( carrier  ( R ) , I ) ! % ! x . x # carrier  ( R ) ! I = principal_ideal  ( R , x ) )

Example:

xml  prefix  mathml

is_principal_ideal_domain  ( Z )

Signatures:

sts

[Next: order] [Previous: is_nonzero_divisor] [Top]

order

Role:

application

Description:

This is a binary function, whose first argument is a Dedekind ring R and the second is a polynomial f.

When applied to R and f, it returns an order of f over the ring of polynomial of R: it is a ring A containing

R, which is finitely generated R-module with no nilpotent non-zero ideal and as a R-module it is

torsion-free. Note that the result is not unique. Also this function allows to compute an order of a

polynomial over another polynomial ring. The idea behind this computation is to coerce f into the

polynomial ring of R and then compute the order.

Example:

xml  prefix  mathml

order  ( Z , DMP  ( poly_ring_d  ( Z , 1 ) , SDMP  ( term  ( 1 , 2 ) , term  ( 3 , 0 ) ) ) )

Signatures:

sts

[Next: maximal_order] [Previous: is_principal_ideal_domain] [Top]

maximal_order

Role:

application

Description:

This is a binary function, whose first argument is a Dedekind ring R and the second is a polynomial f.

When applied to R and f, it returns the maximal order A among the orders of f (over the polynomial ring

of R) in the quotient field of A. Note that the result is unique.

Example:
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xml  prefix  mathml

maximal_order  ( Z , DMP  ( poly_ring_d  ( Z , 1 ) , SDMP  ( term  ( 1 , 2 ) , term  ( 3 , 0 ) ) ) )

Signatures:

sts

[Next: is_maximal_order] [Previous: order] [Top]

is_maximal_order

Role:

application

Description:

The unary boolean function whose value is true if and only if the argument is a maximal order.

Example:

xml  prefix  mathml

is_maximal_order  ( maximal_order  ( Z , DMP  ( poly_ring_d  ( Z , 1 ) , SDMP  ( term  ( 1 , 2 ) , term  (

3 , 0 ) ) ) ) )

Signatures:

sts

[Next: algebraic_integer] [Previous: maximal_order] [Top]

algebraic_integer

Role:

application

Description:

This is a binary function. The first argument is an order O. The second argument should be a list L of

elements of the Dedekind ring R, such that O is an order over the polynomial ring of R (cf. order). The

length of L should be equal to the degree n of the polynomial generating the order O. When applied to O

and L, it represents the element L[0] + L[1] b + L[2] b^2 + ... + L[n-1] b^(n-1) of O, where b stands for a

primitive element of O.

Example:

xml  prefix  mathml

algebraic_integer  ( order  ( Z , DMP  ( poly_ring_d  ( Z , 1 ) , SDMP  ( term  ( 1 , 2 ) , term  ( 3 , 0 ) ) ) ) ,

( 7 , 2 ) )

Signatures:

sts

[Next: number_field] [Previous: is_maximal_order] [Top]

number_field
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Role:

application

Description:

This symbol is a constructor for number fields. It takes two arguments in the following order: a ring R

and a monic irreducible univariate polynomial f. If the ring R is Z (or Q), it returns the absolute number

field. Otherwise it returns the relative number field over the number field whose ring of integers is R. This

symbol is intended to be used in upcoming CDs for e.g. describing discriminants of number fields, or

Galois groups, unit groups, class groups, regulators, etc.; all useful number theoretical notions.

Commented Mathematical property (CMP):

number_field(Z,x^2+1)

Formal Mathematical property (FMP):

xml  prefix  mathml

number_field  ( Z , DMP  ( poly_ring_d  ( Z , 1 ) , SDMP  ( term  ( 2 , 1 ) , term  ( 0 , 1 ) ) ) )

Example:

xml  prefix  mathml

number_field  ( ring_integers  ( number_field  ( Z , DMP  ( poly_ring_d  ( Z , 1 ) , SDMP  ( term  ( 1 , 2 )

, term  ( 2 , 0 ) ) ) ) ) , DMP  ( poly_ring_d  ( Z , 1 ) , SDMP  ( term  ( 1 , 2 ) , term  ( 3 , 0 ) ) ) )

Signatures:

sts

[Next: algebraic_number] [Previous: algebraic_integer] [Top]

algebraic_number

Role:

application

Description:

This is a binary function. The first argument is a number field F. The second argument should be a list L

of elements of Q in case of an absolute number field F. Otherwise the second argument is a list L of

elements of the number field whose ring of integers is the ring R over which F is defined (cf.

number_field). The length of the list L should be equal to the degree n of F. When applied to F and L, it

represents the element L[0] + L[1] b + L[2] b^2 + ... + L[n-1] ^(b-1) of F, where b stands for a primitive

element of F.

Example:

xml  prefix  mathml

algebraic_number  ( order  ( Z , DMP  ( poly_ring_d  ( Z , 1 ) , SDMP  ( term  ( 1 , 2 ) , term  ( 1 , 0 ) ) ) ,

( 123 , 0 ) ) )

Signatures:

sts

[Next: ring_integers] [Previous: number_field] [Top]

ring_integers
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Role:

application

Description:

This is a unary function, whose argument is a number field K. When applied to K, it returns the ring of

integers of K. It is the Dedekind ring of K.

Commented Mathematical property (CMP):

if A is the ring of integers of the number field K then A is a subring of K and A is a Dedekind ring.

Formal Mathematical property (FMP):

xml  prefix  mathml

A = ring_integers  ( K ) ! is_subring  ( K , A ) " is_Dedekind  ( A )

Example:

xml  prefix  mathml

ring_integers  ( number_field  ( Z , DMP  ( poly_ring_d  ( Z , 1 ) , SDMP  ( term  ( 1 , 2 ) , term  ( 2 , 0 ) )

) ) )

Signatures:

sts

[Next: primitive_element] [Previous: algebraic_number] [Top]

primitive_element

Role:

application

Description:

This is a unary function, whose argument is a number field K. It returns a primitive element of K. Note

that the result is not unique.

Example:

xml  prefix  mathml

primitive_element  ( number_field  ( Z , DMP  ( poly_ring_d  ( Z , 1 ) , SDMP  ( term  ( 1 , 2 ) , term  ( 2 ,

0 ) ) ) ) )

Signatures:

sts

[First: is_Dedekind] [Previous: ring_integers] [Top]
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The matrix1 Content Dictionary

Sebastian Freundt1, Peter Horn2, and Dan Roozemond3

1 Fakultät II - Institut für Mathematik, Technische Universität Berlin,
freundt@math.tu-berlin.de

2 Universität Kassel, Heinrich Plett Straße 40, 34132 Kassel,
horn@math.uni-kassel.de,

3 Technical Universiteit Eindhoven, Den Dolech 2, Postbus 513, 5600 MB Eindhoven,
d.a.roozemond@tue.nl

Brief Description

During the development of the Symbolic Computation Software Composability
Protocol in the SCIEnce project [1, 2] we observed that the OpenMath support
for matrices, in particular described in the content dictionaries linalg1 and
linalg2, was not quite extended enough for us.
We therefore propose the matrix1 content dictionary, which adds in particular:

– the possibility to specify the entry domain of the entries of a matrix before-
hand. This enables for example more efficient transmission of matrices over
finite fields, because in linalg1 and linalg2 it is required to specify the
ground field with every entry.

– the possibility to efficiently transmit sparse matrices.
– very verbose syntax (cf row dimension and column dimension) that enables

easy parsing.

Especially for sparse matrices the speed up is, as expected, enormous. For
instance for permutations matrices of size 1000, the size of the OpenMath XML
object is 12MB when using linalg2 compared to 90KB when using the proposed
matrix1 content dictionary. (In the binary representation the difference is of a
similar order of magnitude: 4MB vs 35KB).

The accompanying .ocd and .html files contain the relevant descriptions
and some examples.

References

1. S. Freundt, P. Horn, A. Konovalov, S. Linton and D. Roozemond. Symbolic Compu-
tation Software Composability. In Intelligent Computer Mathematics, AISC/Cal-
culemus/MKM 2008 proceedings, Lecture Notes in Computer Science 5144/2008,
Springer, p.285-295.

2. Symbolic Computation Infrastructure for Europe. http://www.

symbolic-computation.org/
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OpenMath Content Dictionary: matrix1

Canonical URL:

http://www.win.tue.nl/SCIEnce/cds/matrix1.ocd

CD File:

matrix1.ocd

CD as XML Encoded OpenMath:

matrix1.omcd

Defines:

banded, block, column_dimension, dense, diagonal, entry_domain, lower_band, matrix, matrix_domain,

row_dimension, sparse, sparse_entry, upper_band

Date:

2009-06-22

Version:

0 (Revision 4)

Review Date:

Status:

experimental

Uses CD:

alg1, ringname1, linalg2, linalg3

This CD holds a collection of matrix constructors over arbitrary rings.

entry_domain

Description:

This symbol is a unary function, whose argument should be a ring r. When applied to r, it represents the

matrix-algebra ground domain (MAD).

Example:

xml  prefix  mathml

entry_domain  ( Z )

Signatures:

sts

[Next: matrix_domain] [Last: lower_band] [Top]

matrix_domain

Description:

This symbol is a ternary function, whose first argument should be a matrix1.entry_domain application.

The second and third arguments must be matrix1.row_dimension and matrix1.column_dimension. When

applied to these arguments this `creates' the domain of linear mappings between modules of specified

dimensions over a common ground domain, conveniently represented by matrices.
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Example:

xml  prefix  mathml

matrix_domain  ( entry_domain  ( Z ) , row_dimension  ( 12 ) , column_dimension  ( 10 ) )

Signatures:

sts

[Next: row_dimension] [Previous: entry_domain] [Top]

row_dimension

Description:

This symbol is a unary function whose first argument must be either a non-negative OpenMath integer or

nums1.infinity. When applied this creates an object that denotes the dimension of the codomain of the

linear mapping represented by the matrix.

Signatures:

sts

[Next: column_dimension] [Previous: matrix_domain] [Top]

column_dimension

Description:

This symbol is a unary function whose first argument must be either a non-negative OpenMath integer or

nums1.infinity. When applied this creates an object that denotes the dimension of the domain of the linear

mapping represented by the matrix.

Signatures:

sts

[Next: matrix] [Previous: row_dimension] [Top]

matrix

Description:

This symbol is a binary function whose first argument must be a matrix algebra constructor and the

second argument can be any of the below matrix entry constructors. Additionally it is possible to use the

matrix constructors of the linalg2 or linalg3 CDs.

Example:

xml  prefix  mathml

Todo

Signatures:

sts

[Next: dense] [Previous: column_dimension] [Top]
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dense

Description:

This symbol is an $(m \cdot n)$-ary function whose arguments specify the entries of the matrix, where

$m$ is the dimension of the codomain and $n$ is the dimension of the domain. The matrix (or block)

must be filled row-wise, that is the first argument denotes the entry in row 1, column 1 of the matrix (or

block), the second argument denotes the entry at row 1, column 2, and so forth. The number of arguments

MUST match the dimensions of either the matrix algebra or the surrounding block (see below).

Example:

xml  prefix  mathml

matrix  ( matrix_domain  ( entry_domain  ( Z ) , row_dimension  ( 3 ) , column_dimension  ( 3 ) ) , dense 

( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ) )

Signatures:

sts

[Next: sparse] [Previous: matrix] [Top]

sparse

Description:

The constructor for sparse matrices without any indication of dimension or domain for the coefficients. Its

arguments are just matrix1.sparse_entrys. Attention: No two matrix1.sparse_entrys must specify the same

location.

Signatures:

sts

[Next: sparse_entry] [Previous: dense] [Top]

sparse_entry

Description:

This symbol denotes a ternary function whose first two arguments specify the location of an entry inside

the matrix, and whose final argument is the entry itself. The entry MUST be either from the specified

ground domain directly, or be a diagonal constructor as described below, a block constructor as described

below, or a banded constructor as described below. In the block case, the dimensions of the block MUST

NOT exceed the total dimensions of the matrix algebra. In the diagonal case, the dimension of the

diagonal MUST NOT exceed the total dimensions of the matrix algebra.

Example:

xml  prefix  mathml

matrix  ( matrix_domain  ( entry_domain  ( Q ) , row_dimension  ( 3 ) , column_dimension  ( 3 ) ) , sparse

 ( sparse_entry  ( 1 , 2 , 12 ) , sparse_entry  ( 2 , 1 , 21 ) , sparse_entry  ( 3 , 3 , 33 ) ) )

Signatures:

sts

[Next: diagonal] [Previous: sparse] [Top]
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diagonal

Description:

This symbol is an $m$-ary function whose arguments specify the entries of a (generalised) matrix

diagonal. The diagonal must be filled from top-left to bottom-right. That is: the first argument represents

the entry in row 1, column 1 of the matrix, the second argument denotes the entry at row 2, column 2, and

so forth. If used inside a sparse_entry object at location $(i, j)$, the first entry is offset accordingly. If not

used inside a sparse_entry object, the number of arguments MUST match the dimensions of either the

matrix algebra (the smaller of $m$ and $n$). If used inside a sparse_entry object, the number of entries

MUST NOT exceed the total matrix dimensions.

Example:

xml  prefix  mathml

matrix  ( matrix_domain  ( entry_domain  ( C ) , row_dimension  ( 3 ) , column_dimension  ( 3 ) ) ,

diagonal  ( 1 + i , 2 + 2  i , 3 + 3  i ) )

Signatures:

sts

[Next: block] [Previous: sparse_entry] [Top]

block

Description:

This symbol is like the matrix constructor as described above, but intended for use inside matrix to form

``submatrices''. The symbol takes at least two arguments: a column_dimension and a row_dimension

object which denote the total extent of the block.

Example:

xml  prefix  mathml

matrix  ( matrix_domain  ( entry_domain  ( Q ) , row_dimension  ( 30 ) , column_dimension  ( 30 ) ) ,

sparse  ( sparse_entry  ( 10 , 20 , block  ( row_dimension  ( 2 ) , column_dimension  ( 2 ) , dense  ( 11 , 12

, 21 , 22 ) ) ) ) )

Example:

xml  prefix  mathml

matrix  ( matrix_domain  ( entry_domain  ( Z ) , row_dimension  ( 1000000 ) , column_dimension  (

1000000 ) ) , sparse  ( sparse_entry  ( 24800 , 26133 , block  ( row_dimension  ( 99999 ) ,

column_dimension  ( 99999 ) , sparse  ( sparse_entry  ( 4 , 15 , 0 ) ) ) ) ) )

Signatures:

sts

[Next: banded] [Previous: diagonal] [Top]

banded

Description:

This symbol is a constructor for banded matrices. It takes at least 2 arguments, the first of which being the

number of upper bands and the second being the number of lower bands. Amongst the further arguments
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you can specify AT MOST one matrix1.diagonal object. You MUST exactly as many matrix1.upper_band

objects as you specified upper bands, and you MUST specify as many matrix1.lower_band objects as you

specified lower bands. This symbol facilitates the use of blas based systems which expect to know the

bands structure upfront.

Example:

xml  prefix  mathml

matrix  ( matrix_domain  ( entry_domain  ( Zm  ( 7 ) ) , row_dimension  ( 3 ) , column_dimension  ( 3 ) )

, banded  ( 1 , 1 , diagonal  ( 111 , 222 , 333 ) , upper_band  ( 1 , diagonal  ( 4 , 5 ) ) , lower_band  ( 1 ,

diagonal  ( 1 , 2 ) ) ) )

Signatures:

sts

[Next: upper_band] [Previous: block] [Top]

upper_band

Description:

This symbol is a binary function whose first argument is a non-negative OpenMath integer which denotes

the index of the upper band which is specified in the second argument. Hereby the first upper band is the

one immediately above the main (generalised) diagonal, its starting coordinates relative to the top-left of

the matrix thus are (1, 2).

Signatures:

sts

[Next: lower_band] [Previous: banded] [Top]

lower_band

Description:

This symbol is a binary function whose first argument is a non-negative OpenMath integer which denotes

the index of the lower band which is specified in the second argument. Hereby the first lower band is the

one immediately below the main (generalised) diagonal, its starting coordinates relative to the top-left of

the matrix thus are (2, 1).

Signatures:

sts

[First: entry_domain] [Previous: upper_band] [Top]
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The polynomial4 Content Dictionary

Sebastian Freundt1, Peter Horn2, and Dan Roozemond3

1 Fakultät II - Institut für Mathematik, Technische Universität Berlin,
freundt@math.tu-berlin.de

2 Universität Kassel, Heinrich Plett Straße 40, 34132 Kassel,
horn@math.uni-kassel.de,

3 Technical Universiteit Eindhoven, Den Dolech 2, Postbus 513, 5600 MB Eindhoven,
d.a.roozemond@tue.nl

Brief Description

During the development of the Symbolic Computation Software Composability
Protocol in the SCIEnce project [1, 2] we observed that the OpenMath support
for polynomials, in particular considering factorization, could be improved.

We therefore propose the polynomial4 content dictionary, which is intended to
cooperate with the existing polynomial content dictionaries. While writing this
content dictionary we had in particular the polyd family in mind. It adds for
example:

– symbols to hold both the quotient and the remainder of a polynomial divi-
sion. This is convenient for example when asking a computer algebra system
to perform such a division, as quotient and remainder are often computed
simultaneously, and the user is likely interested in both.

– extended support for factorization of polynomials. For example, this content
dictionary provides symbols to indicate results that may or may not be irre-
ducible, complete and incomplete factorisations, and multiple factorisations
in case the polynomial algebra is not a unique factorisation domain.

The accompanying .ocd and .html files contain the relevant descriptions
and some examples.

References

1. S. Freundt, P. Horn, A. Konovalov, S. Linton and D. Roozemond. Symbolic Compu-
tation Software Composability. In Intelligent Computer Mathematics, AISC/Cal-
culemus/MKM 2008 proceedings, Lecture Notes in Computer Science 5144/2008,
Springer, p.285-295.
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OpenMath Content Dictionary: polynomial4

Canonical URL:

http://www.win.tue.nl/SCIEnce/cds/polynomial4.ocd

CD File:

polynomial4.ocd

CD as XML Encoded OpenMath:

polynomial4.omcd

Defines:

definitely_irreducible, divide, factor, factorisations, factorisations_complete, factorisations_incomplete,

factorise, factors, ground_ring_injected, multiplicity, possibly_reducible, quotient, quotient_remainder,

remainder

Date:

2009-06-22

Version:

0 (Revision 4)

Review Date:

Status:

experimental

Uses CD:

alg1, polyd1

This CD holds a collection of for some operations of polynomials over rings. The data structures for

polynomials can be arithmetic expressions, for instance using the ring1.expression symbol, or DMP as in the

CD polyd1.

factorise

Description:

This symbol is a unary function, whose argument should be a polynomial f. When applied to f, it

represents a list of factors of f. Cf. polynomial4.factorisations for a description of the expected reply.

Example:

xml  prefix  mathml

factorise  ( DMP  ( poly_ring_d_named  ( Z , X ) , SDMP  ( term  ( 1 , 2 ) , term  ( -1 , 0 ) ) ) )

Signatures:

sts

[Next: factorisations] [Last: remainder] [Top]

factorisations

Description:

This symbol may be used in the reply of polynomial4.factorise and takes at least 1 argument. The first
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argument is one of polynomial4.factorisations_complete to indicate that the following list of

polynomial4.factors cells covers all possible factorisations. The counterpart would be

polynomial4.factorisations_possibly_incomplete to indicate that the following list of factorisations are

some of possibly many more factorisations. Note: If the polynomial algebra is a UFD (unique

factorisation domain) the uniqueness can be underpinned by giving exactly one polynomial4.factors cell

and using the symbol polynomial4.factorisations_complete here. The rest of the arguments are

polynomial4.factors cells, each of which being a possible factorisation. Using the call of

polynomial4.factorise above we might obtain:

Example:

xml  prefix  mathml

factorisations  ( factorisations_complete , factors  ( definitely_irreducible , poly_ring_d_named  ( Z , X ) ,

1 , factor  ( DMP  ( poly_ring_d_named  ( Z , X ) , SDMP  ( term  ( 1 , 1 ) , term  ( -1 , 0 ) ) ) , multiplicity

 ( 1 ) ) , factor  ( DMP  ( poly_ring_d_named  ( Z , X ) , SDMP  ( term  ( 1 , 1 ) , term  ( 1 , 0 ) ) ) ,

multiplicity  ( 1 ) ) ) )

Signatures:

sts

[Next: factors] [Previous: factorise] [Top]

factors

Description:

This symbol is used in the reply of polynomial4.factorise and takes at least 2 arguments. Note this symbol

may also be used in a polynomial4.factorisations cell. The first argument is one of

polynomial4.definitely_irreducible or polynomial4.possibly_reducible and specifies whether the

computed factorisation is known to be irreducible or if the irreducibility of some of the factors is not

guaranteed. Note: This symbol is mandatory even if the factors themselves (see polynomial4.factor) can

carry that information, this is simply to connive at computer algebra systems that cannot figure out which

of the factors is the possibly reducible one. Generally this slot must be polynomial4.possibly_reducible if

at least one of the factors is possibly reducible. The second argument contains a polyd1.poly_ring_d or

polyd1.poly_ring_d_named cell, as specified in e.g. polyd or polyd1 to indicate the underlying

polynomial algebra. The third argument is a symbol polynomial4.common_coefficient and denotes the

common coefficient of the factorisation. Note: In case the ground ring itself is regarded as being injected

into the polynomial algebra, or the factorisation is normalised, this field may be used to specify the unit

giving the normalisation. Furthermore, the cell comprises polynomial4.factor cells which in turn

represent the factors of the polynomial in a factorisation along with their multiplicities. Using the call of

polynomial4.factorise above we might obtain:

Example:

xml  prefix  mathml

factors  ( definitely_irreducible , poly_ring_d_named  ( Z , X ) , 1 , factor  ( DMP  ( poly_ring_d_named 

( Z , X ) , SDMP  ( term  ( 1 , 1 ) , term  ( -1 , 0 ) ) ) , multiplicity  ( 1 ) ) , factor  ( DMP  (

poly_ring_d_named  ( Z , X ) , SDMP  ( term  ( 1 , 1 ) , term  ( 1 , 0 ) ) ) , multiplicity  ( 1 ) ) )

Signatures:

sts

[Next: factor] [Previous: factorisations] [Top]
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factor

Description:

A symbol which represents one factor of a factorisation, it takes at least 2 arguments, the first of which

being the factor polynomial, e.g. a polyd1.DMP, and the second being its multiplicity specified as an

integer >= 1. Optionally, the third argument is one of polynomial4.definitely_irreducible,

polynomial4.possibly_reducible to indicate whether or not the given factor is guaranteed to be

irreducible. Furthermore, this symbol may contain polynomial4.ground_ring_injected to indicate that the

ground ring is considered to be embedded in the polynomial algebra and hence the factor is actually the

factorisation of a polynomial coefficient.

Signatures:

sts

[Next: multiplicity] [Previous: factors] [Top]

multiplicity

Description:

A symbol which represents the multiplicity of a factor in a factorisation and takes exactly one argument

which must be a positive integer.

Signatures:

sts

[Next: factorisations_complete] [Previous: factor] [Top]

factorisations_complete

Description:

A symbol to indicate that a given list of factorisations of a polynomial covers in fact all possible

factorisations.

Signatures:

sts

[Next: factorisations_incomplete] [Previous: multiplicity] [Top]

factorisations_incomplete

Description:

A symbol to indicate that a given list of factorisations is an assortment of all possible factorisations.

Signatures:

sts

[Next: definitely_irreducible] [Previous: factorisations_complete] [Top]

definitely_irreducible
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Description:

A symbol which denotes that a factor of the factorisation is definitely irreducible.

Signatures:

sts

[Next: possibly_reducible] [Previous: factorisations_incomplete] [Top]

possibly_reducible

Description:

A symbol which denotes that the irreducibility of a factor of the factorisation is not guaranteed.

Signatures:

sts

[Next: ground_ring_injected] [Previous: definitely_irreducible] [Top]

ground_ring_injected

Description:

A symbol which denotes that the ground ring of a polynomial algebra is considered to be part of the latter.

This is used in the polynomial4.factor symbol to indicate that the factor is part of the factorisation of the

common coefficient.

Signatures:

sts

[Next: divide] [Previous: possibly_reducible] [Top]

divide

Description:

This symbol is a binary function whose arguments are polynomials f and g which must be defined over

the same ground domain. When applied to f and g, it represents the quotient arising from dividing f by g

and the remainder h such that h is congruent f modulo g. The result is gathered in a

polynomial4.quotient_remainder cell. Hint: We consider named polynomial rings, i.e. the indeterminate is

explicitly specified by a named variable, different once the variable names differ. That is, a polynomial in

Z[X] cannot be divided by a polynomial in Z[Y] a priori. However, we leave it up to the implementor to

handle this differently, though we strongly encourage implementors to return a polynomial in an

anonymous indeterminate (using e.g. polyd1.poly_ring_d rather than polyd1.poly_ring_d_named).

Example:

xml  prefix  mathml

divide  ( DMP  ( poly_ring_d  ( Z , 1 ) , SDMP  ( term  ( 1 , 5 ) , term  ( 2 , 3 ) , term  ( 1 , 0 ) ) ) , DMP  (

poly_ring_d  ( Z , 1 ) , SDMP  ( term  ( 1 , 2 ) , term  ( 1 , 0 ) ) ) )

Signatures:

sts
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[Next: quotient_remainder] [Previous: ground_ring_injected] [Top]

quotient_remainder

Description:

This symbol is a container for the result of polynomial4.divide. It takes 2 arguments in unspecified order,

polynomial4.quotient and polynomial4.remainder. Using the above polynomial4.divide call we may

obtain:

Example:

xml  prefix  mathml

quotient_remainder  ( quotient  ( DMP  ( poly_ring_d  ( Z , 1 ) , SDMP  ( term  ( 1 , 3 ) , term  ( 1 , 1 ) ) ) )

, remainder  ( DMP  ( poly_ring_d  ( Z , 1 ) , SDMP  ( term  ( -1 , 1 ) , term  ( 1 , 0 ) ) ) ) )

Signatures:

sts

[Next: quotient] [Previous: divide] [Top]

quotient

Description:

This symbol contains the quotient of polynomial4.divide. Cf. polynomial4.quotient_remainder for an

example.

Signatures:

sts

[Next: remainder] [Previous: quotient_remainder] [Top]

remainder

Description:

This symbol contains the remainder of polynomial4.divide. Cf. polynomial4.quotient_remainder for an

example.

Signatures:

sts

[First: factorise] [Previous: quotient] [Top]
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The scscp1 and scscp2 Content Dictionaries
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Brief Description

These content dictionaries are a result of one of the activities of the European
project “SCIEnce” [2]. The main aim of this project is to allow unified communi-
cation between different computer algebra systems (CASes) or different instances
of one CAS. This may involve one or more computers, clusters, and even grids.

When designing such a uniform communication interface for CASes, the first
problem that needs to be solved is how to transport the mathematical objects
from one system to another. Here, the obvious choice for us was OpenMath.

To assist the communication between the various CASes, we have developed
a protocol called “Symbolic Computation Software Composability Protocol”,
abbreviated SCSCP [1, 3]. This protocol does not only enable the computation
of simple commands in a different system or on a different machine, but it
will also serve as a means of conveying constituents of larger, more complex,
computations.

The protocol is XML-based; in particular, the protocol messages are in the
OpenMath language itself. The OpenMath symbols used appear in two con-
tent dictionaries: scscp1 and scscp2. The accompanying .ocd and .html files
contain the relevant descriptions and some examples.
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OpenMath Content Dictionary: scscp1

Canonical URL:

http://www.win.tue.nl/SCIEnce/cds/scscp1.ocd

CD File:

scscp1.ocd

CD as XML Encoded OpenMath:

scscp1.omcd

Defines:

call_id, error_memory, error_runtime, error_system_specific, info_memory, info_message, info_runtime,

option_debuglevel, option_max_memory, option_min_memory, option_return_cookie,

option_return_nothing, option_return_object, option_runtime, procedure_call, procedure_completed,

procedure_terminated

Date:

2009-06-22

Version:

1 (Revision 12)

Review Date:

Status:

experimental

This CD defines symbols for the description of the management of mathematical queries. In particular, it is used

by the SCIEnce project [SCIEnce website] in the communication between a web service (i.e. computer algebra

system, proof checker, etc) and a client. SCSCP is an abbreviation for "Symbolic Computation Software

Composability Protocol" [SCSCP specification].

This version of the Content Dictionary agrees with version 1.3 of the SCSCP protocol.

procedure_call

Description:

The actual procedure call. Its only argument is an OpenMath Application, whose head symbol describes

the procedure to be called, and whose arguments are the arguments to the procedure.

Example:

xml  prefix  mathml

procedure_call  ( GroupIdentificationService  ( group  ( permutation  ( 2 , 3 , 1 ) , permutation  ( 1 , 2 , 4 ,

3 ) ) ) )

Signatures:

sts

[Next: procedure_completed] [Last: error_system_specific] [Top]
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procedure_completed

Description:

The result of a successful computation. Should come along with a call_id and, possibly, some extra

information.

Example:

xml  prefix  mathml

procedure_completed  ( 26925748508234281076009 )

Instead of the result, we may return a reference to the result, as follows:

Example:

xml  prefix  mathml

procedure_completed  ( )

Signatures:

sts

[Next: procedure_terminated] [Previous: procedure_call] [Top]

procedure_terminated

Description:

The result of a failed computation. Should come along with a call_id, an error description, and possibly

some extra information.

Example:

xml  prefix  mathml

procedure_terminated  ( error_system_specific Segmentation fault )

Signatures:

sts

[Next: call_id] [Previous: procedure_completed] [Top]

call_id

Description:

Uniquely identifies a procedure call. Used in subsequent communication, so the parties know which call

they are talking about.

Example:

xml  prefix  mathml

Signatures:

sts

[Next: option_max_memory] [Previous: procedure_terminated] [Top]
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option_max_memory

Description:

An option, to be given along with a procedure call, describing the maximum amount of memory (in

bytes) the system should spend on this call.

Example:

xml  prefix  mathml

Signatures:

sts

[Next: option_min_memory] [Previous: call_id] [Top]

option_min_memory

Description:

An option, to be given along with a procedure call, describing the minimum amount of memory (in bytes)

the system should be able to spend on this call. The idea is that in certain cases we know in advance that

we will need a large amount of memory. If the system will never be able to provide that, it would be a

waste of time and resources to even start the computation.

Example:

xml  prefix  mathml

Signatures:

sts

[Next: option_runtime] [Previous: option_max_memory] [Top]

option_runtime

Description:

An option, to be given along with a procedure call, describing the maximum amount of time (in

milliseconds) the system should spend on this call.

Example:

xml  prefix  mathml

Signatures:

sts

[Next: option_debuglevel] [Previous: option_min_memory] [Top]

option_debuglevel

Description:

An option, to be given along with a procedure call, describing the amount of debug information the client

is interested in. Should be an integer.

Example:
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xml  prefix  mathml

Signatures:

sts

[Next: option_return_cookie] [Previous: option_runtime] [Top]

option_return_cookie

Description:

An option, to be given along with a procedure call, indicating that the client would like to have a cookie

(i.e. a reference to an OpenMath object residing somewhere) as return value.

Example:

xml  prefix  mathml

The reply from the server should then look like:

Example:

xml  prefix  mathml

procedure_completed  ( )

Signatures:

sts

[Next: option_return_object] [Previous: option_debuglevel] [Top]

option_return_object

Description:

An option, to be given along with a procedure call, indicating that the client would like to have the actual

OpenMath object as return value.

Example:

xml  prefix  mathml

The reply from the server should then look like:

Example:

xml  prefix  mathml

procedure_completed  ( 42 )

Signatures:

sts

[Next: option_return_nothing] [Previous: option_return_cookie] [Top]

option_return_nothing

Description:
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An option, to be given along with a procedure call, indicating that the client expects no return value.

Example:

xml  prefix  mathml

The reply from the server may then look like:

Example:

xml  prefix  mathml

procedure_completed  ( )

Signatures:

sts

[Next: info_memory] [Previous: option_return_object] [Top]

info_memory

Description:

A piece of information from the system, to be used along with a procedure_completed or

procedure_terminated message, describing how much memory was spent on the calculation. It should be

in bytes, denoted using an OMI.

Example:

xml  prefix  mathml

Signatures:

sts

[Next: info_runtime] [Previous: option_return_nothing] [Top]

info_runtime

Description:

A piece of information from the system, to be used along with a procedure_completed or

procedure_terminated message, describing how much cputime was spent on the calculation. It should be

in milliseconds, denoted using an OMI.

Example:

xml  prefix  mathml

Signatures:

sts

[Next: info_message] [Previous: info_memory] [Top]

info_message

Description:

A piece of information from the server, to be used along with a procedure_completed or

procedure_terminated message, giving some additional information. The client may choose to present this
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information to its user. The argument is an OMSTR.

Example:

xml  prefix  mathml

Signatures:

sts

[Next: error_memory] [Previous: info_runtime] [Top]

error_memory

Description:

A description of the error that caused a procedure call to be terminated. This symbol is used with a

procedure_terminated, when the system exceeded the amount of memory specified in the

option_max_memory option given in the corresponding procedure call. It carries one argument: An

OMSTR, which may be empty.

Example:

xml  prefix  mathml

procedure_terminated  ( error_memory )

Signatures:

sts

[Next: error_runtime] [Previous: info_message] [Top]

error_runtime

Description:

A description of the error that caused a procedure call to be terminated. This symbol is used with a

procedure_terminated, when the system exceeded the runtime specified in the option_runtime option

given in the corresponding procedure call. It carries one argument: An OMSTR, which may be empty.

Note that this symbol is not intended to be used when a different runtime error occurred. In those cases,

one should use error_system_specific.

Example:

xml  prefix  mathml

procedure_terminated  ( error_runtime )

Signatures:

sts

[Next: error_system_specific] [Previous: error_memory] [Top]

error_system_specific

Description:

A description of the error that caused a procedure call to be terminated. This symbol is used with a

procedure_terminated, when the error is specific to the system that carried out the calculation. This error
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must carry exactly one argument, and it must be an OMSTR describing the error that occurred.

Example:

xml  prefix  mathml

procedure_terminated  ( error_system_specific Error, the group identification for groups of size\n

3628800 is not available called from\n <function>( <arguments> ) called from read-eval-loop\n Entering

break read-eval-print loop ...\n you can 'quit;' to quit to outer loop, or\n you can 'return;' to continue\n

brk>\n )

Signatures:

sts

[First: procedure_call] [Previous: error_runtime] [Top]
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OpenMath Content Dictionary: scscp2

Canonical URL:

http://www.win.tue.nl/SCIEnce/cds/scscp2.ocd

CD File:

scscp2.ocd

CD as XML Encoded OpenMath:

scscp2.omcd

Defines:

get_allowed_heads, get_service_description, get_signature, get_transient_cd, is_allowed_head,

no_such_transient_cd, retrieve, service_description, signature, store_persistent, store_session,

symbol_set, symbol_set_all, unbind

Date:

2009-06-25

Version:

1 (Revision 7)

Review Date:

Status:

experimental

This CD defines symbols for the description of the management of mathematical queries. In particular, it is used

by the SCIEnce project [SCIEnce website] in the communication between a web service (i.e. computer algebra

system, proof checker, etc) and a client. SCSCP is an abbreviation for "Symbolic Computation Software

Composability Protocol" [SCSCP specification].

The objects in this CD are somewhat more sophisticated than those in scscp1, and some SCSCP compliant

applications may not support these. In particular, we add support for so-called "transient CDs", allowing a

server to refer to symbols from temporary content dictionaries, valid only for the duration of the session. Please

refer to the specification for more information on this concept.

The symbols in this CD mainly serve two purposes: working with remote objects ( scscp2.store_session ,

scscp2.store_persistent , scscp2.retrieve, scscp2.unbind ) and determining the procedures a system supports (

scscp2.get_allowed_heads, scscp2.is_allowed_head, scscp2.get_transient_cd, scscp2.get_signature,

scscp2.get_service_description, scscp2.signature, scscp2.service_description ). There are also some special

symbols ( scscp2.symbol_set, scscp2.symbol_set_all, scscp2.no_such_transient_cd)

This version of the Content Dictionary agrees with version 1.3 of the SCSCP protocol.

store_session

Description:

This indicates the request to store an object on the server side (possibly after computing or simplifying it),

returning only a cookie (actually, OM reference) pointing to an object that is usable (using an OMR) in

the remainder of the current SCSCP session to get access to the actual object.

The client could ask:
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Example:

xml  prefix  mathml

procedure_call  ( store_session  ( 6177887 ) )

The server might then reply:

Example:

xml  prefix  mathml

procedure_completed  ( )

Note that the content of the OMR may vary, e.g. the URI does not necessarily start with scscp://.

Signatures:

sts

[Next: store_persistent] [Last: no_such_transient_cd] [Top]

store_persistent

Description:

This indicates the request to store an object on the server side (possibly after computing or simplifying it),

returning only a cookie (actually, OM reference) pointing to an object that is usable (using OMR) in the

foreseeable future, possibly from different sessions, to get access to the actual object. The server is

encouraged to describe the expected lifetime of this object and whether references to this object from

different SCSCP sessions are allowed in the response to a scscp2.get_signature request on this symbol.

However, at this time we provide no automated or machine-readable mechanism for handling these

lifetimes.

Signatures:

sts

[Next: retrieve] [Previous: store_session] [Top]

retrieve

Description:

Using the cookie that was obtained earlier by calling the scscp2.store_session or scscp2.store_persistent

procedure or another procedure call, return to the client an OM object representing the object, referred by

the cookie.

The client could ask:

Example:

xml  prefix  mathml

procedure_call  ( retrieve  ( ) )

The server might then reply:

Example:

xml  prefix  mathml

procedure_completed  ( 6177887 )
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Signatures:

sts

[Next: unbind] [Previous: store_persistent] [Top]

unbind

Description:

This indicates the request to remove the object, referred by the cookie, from the server.

Example:

xml  prefix  mathml

procedure_call  ( unbind  ( ) )

The server might then reply:

Example:

xml  prefix  mathml

procedure_completed  ( )

Signatures:

sts

[Next: get_allowed_heads] [Previous: retrieve] [Top]

get_allowed_heads

Description:

This symbol is used to find the list of procedures supported by an SCSCP server.

The client could send:

Example:

xml  prefix  mathml

procedure_call  ( get_allowed_heads  ( ) )

and the server might then reply:

Example:

xml  prefix  mathml

procedure_completed  ( symbol_set  ( GroupIdentificationService , group , CDName  ( permut1 ) ,

CDGroupName  ( scscp ) ) )

indicating that it accepts the symbol GroupIdentificationService from the transient CD scscp_transient_1, the

symbol group1.group, the entire permut1 CD, and all cds from the CD group called scscp.

Signatures:

sts

[Next: is_allowed_head] [Previous: unbind] [Top]
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is_allowed_head

Description:

This symbol is used to find whether a particular procedure is supported by an SCSCP server. The reply

must be either true or false, described in one of the appropriate symbols from the logic1 content

dictionary.

The client could ask:

Example:

xml  prefix  mathml

procedure_call  ( is_allowed_head  ( + ) )

and the server might then reply:

Example:

xml  prefix  mathml

procedure_completed  ( F )

indicating that it does not accept this symbol. Another, slightly more contrived, example would be for the client

to ask:

Example:

xml  prefix  mathml

procedure_call  ( is_allowed_head  ( is_allowed_head ) )

and the server to reply:

Example:

xml  prefix  mathml

procedure_completed  ( T )

In particular, this is the method of choice to find out whether a particular server supports storing remote objects

using the scscp2.store_session and/or scscp2.store_persistent methods.

Signatures:

sts

[Next: get_transient_cd] [Previous: get_allowed_heads] [Top]

get_transient_cd

Description:

This symbol is used to get the contents of a transient CD created by a server.

The client could send:

Example:

xml  prefix  mathml

procedure_call  ( get_transient_cd  ( CDName  ( scscp_transient_1 ) ) )

and the server might then reply:
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Example:

xml  prefix  mathml

procedure_completed  ( CD  ( CDName  ( scscp_transient_1 ) , CDDate  ( 2007-08-24 ) , Description  (

CD created by the service provider ) , CDDefinition  ( Name  ( GroupIdentificationService ) , Description 

( IdGroup(permgroup by gens) ) ) ) )

Signatures:

sts

[Next: get_signature] [Previous: is_allowed_head] [Top]

get_signature

Description:

A symbol for the client to inquire about the signature of a particular function.

The client could send:

Example:

xml  prefix  mathml

procedure_call  ( get_signature  ( GroupIdentificationService ) )

and the server might then reply with a signature message.

Signatures:

sts

[Next: get_service_description] [Previous: get_transient_cd] [Top]

get_service_description

Description:

A symbol for the client to ask for some description of a service. Note that this is a very generic

description of the service running on a particular port on a particular machine. More details about for

example the available symbols there may be obtained with get_allowed_heads, get_signature or

get_transient_cd.

The client could send:

Example:

xml  prefix  mathml

procedure_call  ( get_service_description  ( ) )

Signatures:

sts

[Next: signature] [Previous: get_signature] [Top]

signature
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Description:

The symbol to use for describing the types of arguments of a particular function.

Example:

xml  prefix  mathml

procedure_completed  ( signature  ( GroupIdentificationService , 1 , 1 , symbol_set  ( group , CDName  (

permut1 ) ) ) )

This means that this GroupIdentificationService requires at least 1 argument, and at most 1 argument, and that

the symbol group1.group or anything from the permut1 CD may be used to form this argument.

Example:

xml  prefix  mathml

procedure_completed  ( signature  ( CAS_Service , 0 , ! , ( CDGroupName  ( scscp ) , CDName  (

scscp_transient_0 ) , CDName  ( scscp_transient_1 ) , CDName  ( arith1 ) , CDName  ( transc1 ) ) ) )

indicating that this particular CAS_Service takes any number of arguments, which may be formed using

anything from the CD group scscp, one of two transient CDs, and the arith1 or transc1 CD.

Signatures:

sts

[Next: service_description] [Previous: get_service_description] [Top]

service_description

Description:

The symbol for the server to use in a response to scscp2.get_service_description. It takes three OMSTR

arguments: Name, Version, and Description.

Example:

xml  prefix  mathml

procedure_completed  ( service_description  ( MyGreatService , 1.1.0 , This service does fantastic things!

) )

Signatures:

sts

[Next: symbol_set] [Previous: signature] [Top]

symbol_set

Description:

This symbol is used in the reply to a scscp2.get_allowed_heads call. It should be the head of an OM

Application, the contents of the OMA being arbitrarily many OM Symbols (meaning that a particular

symbol is supported), OMA's with head meta.CDName (meaning that all symbols of a particular CD are

supported) or OMA's with head meta.CDGroupName (meaning that all symbols of all CDs of a particular

CD group are supported). See the example at scscp2.get_allowed_heads.

Signatures:

sts
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[Next: symbol_set_all] [Previous: service_description] [Top]

symbol_set_all

Description:

This symbol is used in the reply to a scscp2.get_signature message. It means that this particular service

takes any OpenMath object as argument.

A reply might be:

Example:

xml  prefix  mathml

procedure_completed  ( signature  ( Something , 0 , ! , symbol_set_all ) )

indicating that this service, scscp_transient_1.Something, takes between 0 and infinity arguments, each of

which can be of any type.

Signatures:

sts

[Next: no_such_transient_cd] [Previous: symbol_set] [Top]

no_such_transient_cd

Description:

Used for errors that arise when the client asks for a transient cd that the server cannot handle.

Example:

xml  prefix  mathml

no_such_transient_cd scscp_transient_7

Signatures:

sts

[First: store_session] [Previous: symbol_set_all] [Top]
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7 of 7 6/25/09 10:54
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The MathML CD Group: Proposed update for
MathML3

David Carlisle

NAG, W3C Math WG
davidc@nag.co.uk

Abstract. The MathML3 draft (an editors’ copy may be found at http:
//monet.nag.co.uk/∼dpc/draft-spec formalises the relationship be-
tween Content MathML elements and OpenMath core CDs. While edit-
ing this specification a small number of additions to the MathML CD
Group have been proposed, either to clarify existing elements or to model
new features in MathML.
The proposed new CDs are visible at http://monet.nag.co.uk/∼dpc/
cdfiles2.
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1 Introduction

A small number of additional symbols, and one additional Content Dictionary
are proposed to be added to the MathML CD Group.

2 calculus1

The partialdiff symbol in the calculus1 CD and the partialdiff element in
MathML are structurally very different. This has always made mapping between
the two very difficult.

In MathML, the variables are given by name (and optonally a degree), but for
partialdiff, the variables are specified by position, with degree being indicated
by repetition.

So in
∂3

∂x2∂x

The variables are prepresnted for partialdiff by the list (1,1,3) (x twice and z).
This is managable for explict integer degrees, but becomes increasingly hard to
come up with a representation for degress given symbolically.

To represent
∂n

∂xj∂xk

using partialdiff you need to use a list constructor to generate a list of j 1’s
and k 3’s and have no natural represntation for the total degree being n (as the
total degree is just given by the length of the list of variable slots, j + k here.

We propose to add a partialdiffdegree sybnol to calculus1 which closely
models the MathML usage, so this last case would be specified by a list of degrees
(m,n) and a total degree n.

3 mathmlattr

MathML “XML” Attrubutes, in addition to the sematic annotations of the
of the semantics element (which correspond naturally to OpenMath attribu-
tions. These cause some problems in converting between the formats. While
<cn type=’integer’>1</cn> corresponds naturally to <OMI>1</OMI> it is not
so imediatey clear what should be the OpenMath version of
<cn type=’integer’ class=’abc’ xlink:href=’http://example.com’>1</cn>.

We propose to add a new Content Dictionary with symbols to be used as
attribution keys. One symbol will be added for each MathML attribute (class,
style, other, definitionURL) plus an additional symbol to encode any “foreign”
namespace attribute. thus the cn example would be encoded as

<OMATTR>
<OMATP>
<OMS cd="mathmlattr" name="class"/>
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<OMSTR>abc</OMSTR>
<OMS cd="mathmlattr" name="foreign"/>

<OMA><OMS cd="mathmlattr" name="foreign_attribute"/>
<apply><csymbol cd="mathmlattributes">foreign_attribute</csymbol>

<OMSTR>http://www.w3.org/1999/xlink</OMSTR>
<OMSTR>xlink</OMSTR>
<OMSTR>href</OMSTR>
<OMSTR>http://example.com</OMSTR>

</apply>
</annotation-xml>
<OMI>1</OMI>

</OMATTR>

where the class attribute is encoded as an attribution with the class symbol,
and the xlink:href attribute is an attribution with the foreign symbol with
a term construucted with foreign attribute which encodes, the namespace,
prefix, local name and value of the attribute.

4 fns1

The fns1 CD includes a symbol domainofapplication that is, at best, incom-
pletely defined. It is defined as being used for compatibatility with the MathML
domainofapplication element, however the STS type signature given is identical
to thet of domain. So this appears to be synonymous with the domain symbol,
which takes a function and returns its domain. The domainofapplication elemnt
is used (mainly) in MathML to restrict a function to a specified domain, so
it’s signature is dual to that of domain, taking a function and a domain and
returning a function. This restriction operation is genarally useful, not just for
MathML compatibility but does not appear in the current core CDs. we pro-
pose to add restriction to fns1 and deprecate (but keep) the existing domain
symbol.

5 fns2

Some of the examples make use of a symbol make list from the list1 CD but
there is no such symbol. We propose to just fix this as a minor editorial error.

We propose to add the symbol predicate on list which takes arguments a
binary predicate and a seequence and returns the conjunction of applying the
predicate to all pairs (in order). this allows a direct encoding of chains of binary
predicates a < b < c < d.

6 nums1

The nums1 CD includea a constructor for based integers, taking an OMString
of digits and an integer base. We propose to add based float which is the same
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(except that the string is allowed to include ".". This is probably not going to be
widely used, but greatly simplifies the conversion to and from MathML, which
allows <cn type=’real’ base=’16’>A.8</cn> as a representation of 15.510.

7 interval1

Both MathML and OpenMath have previously suggested that the limits on a
definite interval should be understood to be representing the end points of an
interval. This usage requires that the interval has an ordering or path structure,
so that integrating from a to b is different from integrating from b to a. We
propose to add a ordered interval element to the interval1 CD. (The detailed
encoding has been developed by James Davenport and described elesewhere in
these proceedings, but this addition is listed here for completeness.
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OpenMath Content Dictionaries for SI
Quantities and Units

Joseph B. Collins

Naval Research Laboratory
4555 Overlook Ave, SW

Washington, DC 20375-5337
joseph.collins@nrl.navy.mil

Abstract. We document the creation of a new set of OpenMath content
dictionaries to support the expression of quantities and units under the
International System of Units (SI). While preserving many of the con-
cepts embodied in the original content dictionaries, these new content
dictionaries provide a foundation for quantities and units that is compli-
ant with international standards. We respond to questions raised in prior
efforts to create content dictionaries for units and dimensions by propos-
ing and applying some rationalized criteria for the creation of content
dictionaries in general. The results have been released and submitted to
the OpenMath website as contributed content dictionaries.
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Content Dictionaries for Algebraic Topology?

Jónathan Heras, Vico Pascual, and Julio Rubio

Departamento de Matemáticas y Computación, Universidad de La Rioja,
Edificio Vives, Luis de Ulloa s/n, E-26004 Logroño (La Rioja, Spain).

{jonathan.heras, vico.pascual, julio.rubio}@unirioja.es

Abstract. Kenzo is a Symbolic Computation System devoted to Alge-
braic Topology that works with the main mathematical structures used
in this discipline. In this paper, we present OpenMath Content Dictio-
naries for each mathematical structure in Algebraic Topology the Kenzo
system works with. Besides, how using them to interoperate with a par-
ticular Theorem Prover and to obtain certified calculations from Kenzo
is explained.

1 Introduction

Kenzo [2] is a Common Lisp system devoted to Symbolic Computation in Alge-
braic Topology. It was developed in 1997 under the direction of F. Sergeraert and
has been successful, in the sense that it has been capable of computing homology
groups unreachable by any other means.

Up to now, the mathematical structures Kenzo works with have not been
represented in OpenMath [1]. In order to communicate Kenzo with other sys-
tems, like GAP [3] or ACL2 [6], we have tackled the goal of developing these
OpenMath Content Dictionaries, previous works in these directions are [7] and
[4].

2 Description of Kenzo Content Dictionaries

The Kenzo system works with the main mathematical structures used in Sim-
plicial Algebraic Topology, [5]. Figure 1 shows the Kenzo class diagram where
each class corresponds to the respective mathematical structure. For each one
of these mathematical structures, an OpenMath Content Dictionary has been
defined (these Content Dictionaries are available at http://www.unirioja.es/
cu/joheras/cdgroup.html).

Now, we are going to focus on the simplicial sets Content Dictionary; the
rest are based on the same ideas.

? Partially supported by Universidad de La Rioja, project API08/08, and Ministerio
de Educación y Ciencia, project MTM2006-06513.
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Fig. 1. Class diagram of the Kenzo system.

Definition 1. A simplicial set K, [5], is a disjoint union K =
⋃

q≥0

Kq, where

the Kq are sets, together with functions

∂q
i : Kq → Kq−1, q > 0, i = 0, . . . , q,
ηq

i : Kq → Kq+1, q ≥ 0, i = 0, . . . , q,

subject to relations
∂q−1

i ∂q
j = ∂q−1

j−1∂
q
i , i < j

ηq+1
i ηq

j = ηq+1
j ηq

i−1, i > j

∂q+1
i ηq

j = ηq−1
j−1∂

q
i , i < j

∂q+1
i ηq

i = ∂q+1
i+1 η

q
i , identity

∂q+1
i ηq

j = ηq−1
j ∂q

i−1, i > j + 1

The functions ∂ and η are called the face operators and the degeneracy op-
erators respectively.

To define a simplicial set, we must provide the disjoint sets {Kq}q≥0 and the
face and degeneracy operators. The sets {Kq}q≥0 can be seen as a graded set
so it is possible to consider its characteristic function which, from an element x
and a degree g, determines if the element x belongs to the set Kg. To be precise,
an invariant function can be used in order to encode the characteristic function
of the graded set {Kq}q≥0.

Based on the previous way of representation, the following signature has been
defined for simplicial sets.

inv : u nat -> bool
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face : u nat nat -> u
deg : u nat nat -> u

where u denotes the Universe, of Lisp objects in this case.
The OpenMath signature of Figure 2 corresponds with the previous one:

<Signature name="simplicial-set">

<OMOBJ xmlns="http://www.openmath.org/OpenMath">

<OMA>

<OMS name="mapsto" cd="sts"/>

<OMA id="inv">

<OMS cd="sts" name="mapsto"/>

<OMV name="Simplicial-Set-Element"/>

<OMV name="PositiveInteger"/>

<OMS cd="setname2" name="boolean"/>

</OMA>

<OMA id="face">

<OMS cd="sts" name="mapsto"/>

<OMV name="Simplicial-Set-Element"/>

<OMV name="PositiveInteger"/>

<OMV name="PositiveInteger"/>

<OMV name="Simplicial-Set-Element"/>

</OMA>

<OMA id="degeneracy">

<OMS cd="sts" name="mapsto"/>

<OMV name="Simplicial-Set-Element"/>

<OMV name="PositiveInteger"/>

<OMV name="PositiveInteger"/>

<OMV name="Simplicial-Set-Element"/>

</OMA>

<OMV name="Simplicial-Set"/>

</OMA>

</OMOBJ>

</Signature>

Fig. 2. Signature of simplicial-set.

The formal mathematical properties of the simplicial sets are given in the
<FMP> tag of the simplicial-set definition. Note that, besides the simplicial
properties, some invariance properties of face and degeneracy operators and
the relations among them must be added. All of them have also been included
in natural language by using the <CMP> tags. For instance, the face operator
invariance has been represented as in Figure 3.

Finally, an example of simplicial set has been included. Namely, the simplicial
set with only one element, nil, belonging to each set Kq and with each face
operation of degree q returning the element of degree q− 1 has been considered,
a piece of this example can be seen in Figure 4.
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<CMP> The face operator is invariant </CMP>

<FMP>

...

<OMA>

<OMS cd="logic1" name="implies"/>

<OMA>

<OMV name="inv"/>

<OMV name="x"/>

<OMV name="q"/>

</OMA>

<OMA>

<OMV name="inv"/>

<OMA>

<OMV name="face"/>

<OMV name="x"/>

<OMV name="i"/>

<OMV name="q"/>

</OMA>

<OMA>

<OMS cd="arith1" name="minus"/>

<OMV name="q"/>

<OMI>1</OMI>

</OMA>

</OMA>

</OMA>

...

</FMP>

Fig. 3. A Formal Mathematical Property of Simplicial Sets.

<example>

...

<OMBIND>

<OMS name="face"/>

<OMBVAR>

<OMV name="x"/>

<OMV name="i"/>

<OMV name="q"/>

</OMBVAR>

<OMS cd="list" name="nil"/>

</OMBIND>

...

</example>

Fig. 4. Fragment of the example for Simplicial Sets.

More complicated examples than the previous one can be included without
difficulties. The reason to provide such a simple example, like the previous one, is
that we have used our OpenMath Content Dictionaries to integrate Kenzo with a

Heras et al. 115



Theorem Prover, namely with ACL2 [6] in order to obtain certified computations
from Kenzo.

The ACL2 tool used for dealing with axiomatic structures is that of encap-
sulate. An encapsulate has a list of function signatures and some properties of
the encapsulated functions. In addition, ACL2 demands giving a witness for the
set of functions, that is, an instance satisfying the properties. This ensures that
the encapsulate has at least one model which avoids the appearance of inconsis-
tencies in the ACL2 logic.

Obviously, there exists a relationship between each Content Dictionary and
the respective encapsulate for the same mathematical structure. In this line, an
interpreter to extract the encapsulate from each Content Dictionary has been
developed. Now, a fragment of an encapsulate for Simplicial Sets is shown in
Figure 5.

(encapsulate

(((inv * *) => *)

((face * * *) => *)

((degeneracy * * *) => *)

)

(local (defun inv (x q)

(declare (IGNORE q))

(equal x nil)))

(local (defun face (x i q)

(declare (IGNORE x i q))

nil))

(local (defun deg (x i q)

(declare (IGNORE x i q))

nil))

; ... lines skipped

(defthm prop5

(implies (and (inv x q) (< i j))

(equal (face (deg x j q) i (+ q 1))

(deg (face x i q) (- j 1) (- q 1)))))

)

Fig. 5. Encapsulate of Simplicial Sets.

In this way, besides representing some of the main concepts used in Algebraic
Topology, our Content Dictionaries allow us to interact with the ACL2 Theorem
Prover.
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Moreover, some mathematical structures (such as spheres, Moore spaces, loop
spaces and so on) are predefined objects in the Kenzo system. These objects
have been included in the corresponding Content Dictionary in a descriptive
way. For instance, spheres are Simplicial Sets, and its Kenzo representation is
given by means of a function with a natural number as argument (constructing
the corresponding Simplicial Set). We show an example in Figure 6.

<CDDefinition>

<Name>sphere</Name>

<Description>

This symbol is a function with one argument, which should

be a natural number n between 1 and 14. When applied to

n it represents the sphere of dimension n.

</Description>

...

<FMP>

<OMOBJ xmlns="http://www.openmath.org/OpenMath">

<OMA>

<OMS cd="logic1" name="implies"/>

<OMA>

<OMS cd="Simplicial-Sets" name="sphere"/>

<OMV name="n"/>

</OMA>

<OMA>

<OMS cd="logic1" name="and"/>

<OMA>

<OMS cd="set1" name="in"/>

<OMV name="n"/>

<OMS name="N" cd="setname1"/>

</OMA>

<OMA>

<OMS cd="relation1" name="leq"/>

<OMI>1</OMI>

<OMV name="n"/>

</OMA>

<OMA>

<OMS cd="relation1" name="leq"/>

<OMV name="n"/>

<OMI>14</OMI>

</OMA>

</OMA>

</OMA>

</OMOBJ>

</FMP>

</CDDefinition>

Fig. 6. Representation of spheres.
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By using the encapsulate obtained from the simplicial sets Content Dictio-
nary it is possible to prove that each Kenzo sphere is really a Simplicial Set.

3 Conclusions

In this paper, we have presented some OpenMath Content Dictionaries where
the main mathematical structures used in Simplicial Algebraic Topology have
been defined. The definitions given in these Content Dictionaries include the
axiomatic parts and have been used, for example, to interoperate with deduction
systems. In this way, a gate has been opened not only to communicate with other
systems which work with the same mathematical structures but also to prove
the correctness of some constructions or calculations carried out by the Kenzo
system. For instance, when Kenzo builds an object belonging to the simplicial-set
class, that it is really a simplicial set can be proved. In this way, some calculations
with certificates can be carried out.
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Abstract. The effort to align MathML 3 and OpenMath has led to a re-
alisation that (pragmatic) MathML’s condition and domainofapplication

elements, when used with quantifiers, do not have a neat expression in
OpenMath.
This paper analyzes the situation focusing on quantifiers and proposes a
solution, via six new symbols. Two of them fit completely within the ex-
isting OpenMath structure, and we place them in the associated quant3

CD. The others require a generalization of OMBIND.
We also propose, logically separately but in the same area, a quant2

CD with existsuniquely, commonly written ∃!, and the ‘fusion’ symbol
existsuniquelyin.
In a second step we generalize the solution to the phenomenon of big
operators that MathML 2 implicitly provides but which do not have a
direct counterpart in the OpenMath CDs.

1 Introduction

The effort to align MathML 3 [Con08] and OpenMath [Con04] has led to a re-
alisation that (pragmatic) MathML 3’s condition and domainofapplication
elements, when used with quantifiers, does not have a neat expression in Open-
Math. We have described the MathML 3/OpenMath 3 and the general represen-
tational issues in [DK09], which we will assume as background reference. But a
central part of the alignment effort remains unsolved there: the provisioning of
the OpenMath content dictionaries that supply the necessary symbols. We will
describe what needs to be done on this front in this paper, which should be seen
as a companion paper to [DK09].

We start out by analyzing the situation focusing on quantifiers and then
generalizing the solution to the phenomenon of big operators that MathML 2
implicitly provides but which do not have a direct counterpart in the OpenMath
CDs.

2 Existential and Universal Quantifiers

“∀n ∈ N . . .” is a very natural piece of mathematical notation, even though it
tends not to be formally defined. MathML (Content) can represent this via the

119



condition element, but OpenMath3 has hitherto had no direct way of doing so,
relying on the following equivalences:

∀v ∈ S.p(v)⇔ ∀v.(v ∈ S)⇒ p(v) (1)
∃v ∈ S.p(v) ⇔ ∃v.(v ∈ S) ∧ p(v) (2)

However, in practice4, it would be better to have a convenient shorthand for
these, hence this proposal.

The challenge is the syntax of OpenMath. One represents ∀n.p(n) as
1 <OMBIND>

<OMS name=”forall” cd=”quant1”/>
<OMBVAR><OMV name=”n”/></OMBVAR>
<OMA><OMV name=”p”/><OMV name=”n”/></OMA>

</OMBIND>

Where is the “∈ N” going to fit in this syntax? In [DK09] we have argued that
there are actually two representation styles that need to be supported: Figure 1
gives both styles the first-order style on the left makes use of expressions with
bound variables whereas the higher-order style directly uses sets. The latter is

<OMBIND>
<OMS name=”forallcond” cd=”quant3”/>
<OMBVAR>

<OMV name=”n”/>
</OMBVAR>
<OMA>

<OMS name=”in” cd=”set1”/>
<OMV name=”n”/>
<OMS name=”N” cd=”setname1”/>

</OMA>

p(n)

</OMBIND>

<OMBIND>
<OMA>

<OMS name=”forallin” cd=”quant3”/>
<OMS name=”N” cd=”setname1”/>

</OMA>
<OMBVAR>

<OMV name=”n”/>
</OMBVAR>

p(n)

</OMBIND>

here and in the following we use boxed mathematical notation to represent the
obvious OpenMath counterparts

Fig. 1. Two representations of quantifiers with domains

nearer to our example, and we propose to use the fact that the first child of an
OMBIND need not be an atom and propose a symbol forallin which acts as a
binding constructor, i.e. an operator that takes a set as an argument and returns
a binding operator, which can then be used in the OMBIND. The first-order style of
representation could be glossed in Mathematics as ∀cn : n ∈ N.p(n); it makes the
bound variable that was implicit in the higher-order construction explicit in a
condition expression. So we would contend that the higher-order style is closer to
our original example. But the first-order style is more in other situations, e.g. ∀x :
(1/x is irrational).p(x), which can be represented as ∀x : (∀n, d.n/d 6= x).p(x) .

3 If restricted only to the content dictionaries the authors know about.
4 A referee objected to [DK09] on the grounds that it had stated that such shorthand

was not necessary, writing ‘one might [as well] write “not p” as“p implies false”’.

120 Quantifiers and Big Operators



Listing 1.1. A natural case for a quantifier with a condition
<OMBIND>

<OMS name=”forallcond” cd=”quant3”/>
<OMBVAR><OMV name=”x”/></OMBVAR>
<OMBIND>

5 <OMS name=”forall” cd=”quant1”/>
<OMBVAR><OMV name=”n”/><OMV name=”d”/></OMBVAR>
<OMA><OMS cd=”relation1” name=”ne”/>

<OMA><OMS cd=”arith1” name=”divide”>
<OMV name=”n”/>

10 <OMV name=”d”/>
</OMA>
<OMV name=”x”/>

</OMA>
</OMBIND>

15 p(x)

</OMBIND>

Note that for the first-order representations on the left of Figure 1 and in List-
ing 1.1 we need the extension of binding objects to allow multiple scopes pro-
posed in [DK09]. We consider the examples in this paper and representation
possibilities they enable to be a good reason for this extension.

The symbols forallin and forallcond are defined in the proposed quant3
CD, with Formal Mathematical Properties corresponding to equations (1) and
(2), at least in the single-variable case. They are related by the following FMPs:

∀P,Q. [∀cx.Q(x)P (x)]⇔ [∀i(λz.P (z))]x.Q(x)
∀Q,S. [∀i(S)]x.Q(x) ⇔ ∀x.(x ∈ S)⇒ Q(x)

where we use ∀c for forallcond and ∀i for forallin. We should note what
forallin does, and does not, encode.

does ∀n ∈ N, ∀m,n ∈ N, ∀x ∈ [0, 1], ∀x ∈ (0,∞) (but not the equivalent
∀x > 0).

does not ∀n ∈ N, x ∈ R (this needs two nested bindings of forallin5), ∀n > 2
(though we can encode ∀n ∈ (2,∞)), ∀m < n ∈ N (though we can encode
∀n ∈ (−∞, n) and use integer interval).

[Con03, section 4.2.5.1] gives an example for the formula

∀x ∈ N.∃p, q ∈ P.p+ q = 2x

where P stands for the set of prime numbers. While this would succumb to
forall/implies and exists/and encodings, it is a better tribute to the power of our
extended quantifiers to use the following encoding:

<OMBIND>
<OMA>

<OMS name=”forallin” cd=”quant3”/>
4 <OMS name=”N” cd=”setname1”/>

</OMA>

5 At first sight it seems that this could be represented as ∀iN× R. but we contend
that these are different. We can encode ∀z ∈ (N × R), and later destructure z, but
OpenMath doesn’t have a destructuring bind.
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<OMBVAR> <OMV name=”x”/> </OMBVAR>
<OMBIND>

<OMA>
9 <OMS name=”existsin” cd=”quant3”/>

<OMS name=”P” cd=”setname1”/>
</OMA>
<OMBVAR><OMV name=”p”/><OMV name=”q”/></OMBVAR>

p + q = 2x

14 </OMBIND>
</OMBIND>

Note that in some cases, we naturally combine these two: We often see some-
thing like the following ∀x, y ∈ R : x − y 6= 0. 1

x−y ∈ R. This would be suitably
encoded as
<OMBIND>

<OMA>
<OMS name=”forallincond” cd=”quant3”/>

R
5 </OMA>

<OMBVAR><OMV name=”x”/><OMV name=”y”/></OMBVAR>

1
x−y ∈ R

x− y 6= 0

</OMBIND>

using the a symbol forallincond that we propose to add to quant3 content
dictionary together with the FMP

∀ic(S)x : C(x).D ⇔ ∀i(S).C(x)⇒ D

The existential variants existin, existscond, and existsincond of all three
have analogous FMPs in the quant3 content dictionary.

3 Unique Existence

Although the notation ∃! is relatively new6, it is convenient. It would be easy
enough to introduce into OpenMath, as a symbol, say existsuniquely in the
quant2 CD, with one property, which could be held to define it.

∃!x.p(x)⇔ (∃x.p(x)) ∧ ((p(x) ∧ p(y))⇒ x = y) . (3)

One might naturally ask: “what about ∃!x ∈ N : . . ., and similar constructs”.
There is obviously no difficulty (other than the length of the name!) in adding
existsuniquelyin to the quant3 CD. The real challenge is what semantics does
one want. There are two options.

“It’s unique and it’s in N”

∃!x ∈ N.p(x)⇔ (∃x.(x ∈ N ∧ p(x)) ∧ ((p(x) ∧ p(y))⇒ x = y) . (4)

This is what one would get by applying equation (2) to the ∃ on the right-
hand side of equation (3).

6 It was not in use when the first author was a student, and the earliest we can trace
it to is [Bar84, p. xiii].
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“It’s unique within N”

∃!x ∈ N.p(x)⇔ (∃x.(x ∈ N∧p(x)))∧(((p(x) ∧ x ∈ N) ∧ (p(y) ∧ y ∈ N))⇒ x = y) .
(5)

This is what one would get by applying equation (3) to equation (2).

While both have their part to play, it appears that (5) is the one more commonly
met, and we propose to add this meaning to quant3.

4 Other Similar cases: Big Operators

Note that in the analysis above, the fact that we are dealing with quantifiers is
secondary, the interesting part is the fact that, the “operators take qualifiers”
condition and domainofapplication in MathML 2. The full list of these oper-
ators can be grouped into three parts: the special operators int, sum, product,
root, diff, partialdiff, limit, log, moment, forall, exists, the binary/nary
operators plus, times, max, min, gcd, lcm, mean, sdev, variance, median, mode,
and, or, xor, union, intersect, cartesianproduct, compose, as well as the re-
lational operators eq, leq, lt, geq, gt. The use of qualifiers with relational
operators is being deprecated in MathML 3, so we will not concern ourselves
with these.

The reason binary operators can take qualifiers is that they can be “lifted” to
their respective “big operator form”, for instance

⋃
for ∪. Note that if we look

at the special operators in the first group, then we can see that sum, product,
forall, and exists are the conventionalized “big operators” for plus, times,
and, and or. We have covered the quantifiers above, so let us look whether sum
and product show the same behavior. If they do, the quantifiers may give a
good model for the other “big operators”. Here we can directly see that all cases

occur, witnessed e.g. by the Lagrange base polynomial L(x): = Πk
i=0,i6=j

x− xi

xj − xi
,

which would need a symbol productincond in arith2.

5 Other Operators that take Qualifiers

There are other operators that take qualifiers in MathML; these are amenable
to the same treatment: Consider the naive set {x2|x < 1}, which could be rep-
resented in MathML 2 as

1 <set>
<bvar><ci>x</ci></bvar>
<condition>

<apply><lt/><ci>x</ci><cn>1</cn></apply>
</condition>

6 <apply><power/><ci>x</ci><cn>2</cn></apply>
</set>

We propose a suchthatcond binding constructor that would allow us to write
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<OMBIND>
<OMS cd=”set4” name=”suchthatcond”/>

3 <OMBVAR><OMV name=”x”/></OMBVAR>
<OMA>

<OMS cd=”relation1” name=”lt”/>
<OMV name=”x”/>
<OMI>1</OMI>

8 </OMA>
<OMA>

<OMS cd=”arith1” name=”power”/>
<OMV name=”x”/>
<OMI>2</OMI>

13 </OMA>
</OMBIND>

6 Conclusion

We have studied the representation of extended quantifiers like ∀x ∈ S. or
∀x : p(x). commonly found in informal mathematical texts. While it is pos-
sible to encode these in principle with the quantifiers and connectives provided
by the quant1 and logic1 content dictionaries from the MathML CD group.
The encoding loses the surface structure of the original mathematical expres-
sions and does not support the same intuitive modes of reasoning. Therefore we
propose to augment the OpenMath society’s set of standard CDs with a new
content dictionary quant3 with six new symbols and FMPs that relate them to
the classical quantifiers.

By the same concerns for structural adequacy we propose to introduce a sym-
bol for unique existence to the existing quant2 content dictionary and various
operators for “lifted operators” that MathML 2 implicitly supports by allowing
them to “take qualifiers”.

We feel that the proposed symbols will make the use of OpenMath more
intuitive and thus make OpenMath more attractive as a whole for the working
mathematician. At the same time, people who prefer the classical quantifiers can
refrain from using the new symbols.

It should be noted ∃!, ∃i and ∀i do not require any changes to OpenMath:
the rest require an extension of the concept of binding, or the acceptance of
mathematically meaningless ‘gluing’ operators to allow for the fact that bding
should take place over both the body and the predicate.

Hence our proposals, in increasing order of scope, are as follows.

1. Adopt existsuniquelyin, i.e. ∃!.
2. Adopt existsin, i.e. ∃i, andforallin, i.e. ∀i.
3. Accept that OMBIND should be able to bind over more than one child.
4. Adopt forallcond etc.
5. Adopt suchthatcond, and other related symbols.

Should 3 prove a bridge too far, the subsequent proposals could be adopted with
a mathematically meaningless gluing operator, as in [DK09].
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Abstract. This paper describes the lessons about OpenMath Content
Dictionaries describing units that were learned in the development of the
unit conversion tool described in [7, 8], and states explicitly the proposed
changes to the OpenMath units-related Content Dictionaries.

1 Introduction

Conversion between different measurement units “ought” to be a simple task,
but in practice is surprisingly difficult, leaving to catastrophes such as those
described in [5, 6], and to hilarious mistakes such as [10]

Long-term global temperatures are on course to rise by 6C (43F) unless
radical changes are adopted in the way that the world produces energy,
the International Energy Agency (IAE) said yesterday.

(The true number is 11F: 43F corresponds to 24C. While the error is probably
The Times’s, the mistake was repeated on the IAE’s own website.)

With this goal of defining unit conversions in mind, [4] proposed a set of
OpenMath Content Dictionaries (CDs) to describe units, and the associated
dimensions. With these CDs come associated Small Type System (STS) files [2],
which in the case of units, define the dimension of the units, and thus allow for
dimensional consistency.

[7, 8] describe the implementation of a unit converter built on these CDs, and
the difficulties, comparatively minor but still worth fixing, that were discovered.
The purpose of this paper is to convert this into a concrete list of changes.

Acknowledgements: the authors are grateful to the referees, and to Prof.
Kohlhase and Christoph Lange (Jacobs University Bremen), and Bob Dragoset
(NIST), for many comments on earlier drafts. M. Tidy (B.Sc. Bath 2009) con-
tributed experience in the area of section 4.

2 Abbreviations and Prefixes

Units have a variety of abbreviations and, particularly in the metric system,
a range of prefixes. It is possible, as apparent in [11, section 5.3.5], to regard
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prefixed units as units in their own right, and introduce a unit centimetre
with a formal property relating it to the metre, but this way lies, if not actual
madness, vast repetition and the scope for error or inconsistency (who would
remember to define the yottapascal?).

2.1 Prefixes

OpenMath therefore defines prefixes in the units_siprefix1 CD, with FMPs
to define the semantics, e.g. the following one for peta.

<OMA>
<OMS name="eq" cd="relation1"/>
<OMA>

<OMS name="times" cd="arith1"/>
<OMI> 1 </OMI>
<OMA>

<OMS name="prefix" cd="units_ops1"/>
<OMS name="peta" cd="units_siprefix1"/>
<OMV name="unit"/>

</OMA>
</OMA>
<OMA>

<OMS name="times" cd="arith1"/>
<OMA>

<OMS name="power" cd="arith1"/>
<OMI> 10 </OMI>
<OMI> 15 </OMI>

</OMA>
<OMV name="unit"/>

</OMA>
</OMA>
</OMOBJ>

OpenMath uses a prefix operation (described as option 4 of [4, section 4]) to
apply prefixes to OpenMath units. Its signature is given as follows.

<Signature name="prefix" >
<OMOBJ xmlns="http://www.openmath.org/OpenMath">
<OMA>

<OMS name="mapsto" cd="sts"/>
<OMS cd="units_sts" name="prefix"/>
<OMV name="dimension"/>
<OMV name="dimension"/>

</OMA>
</OMOBJ>
</Signature>
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which can be seen as
prefix× unit→ unit. (1)

This has the slightly unfortunate property that it would allow, for example,
‘millimicrometre’, which is explicitly forbidden by [1, p. 122]. This could be
solved by making the signature

prefix× unit→ prefixed unit, (2)

which should probably be done.
This construction also allows the use of prefixes with non-SI units, but this

is in fact legitimate [1, p. 122].

2.2 Abbreviations

Units also have abbreviations, which are fairly standard in the SI system, less
so in other systems. [8] disucssed this at some length, and came to the conclu-
sion that this was probably best dealt with outside OpenMath, as the rules are
context-sensitive. For example, in kmph, the m is ‘metre’, but in mph it is mile.

3 Recommendations from [8]

1. Move litre_pre1964 into a different CD, which is an official CD of “ob-
solete” units. Similar steps should be taken for “obsolete” imperial units.

2. Fix dimensions1 so as to have a definition for power.
3. Delete metre_squared from the units_metric1. It is anomalous (why isn’t

there metre_cubed, and why doesn’t units_imperial1 have foot_squared?)
and tempts a piece of software (such as earlier versions of [7]) into creating
units such as

<OMA>
<OMS name="prefix" cd="units_ops1"/>
<OMS name="deci" cd="units_siprefix1"/>
<OMs name="metre_squared" cd="units_metric1"/>

</OMA>

which is a deci(metre2), as opposed to a (decimetre)2, and is illegal [1, p.
121].

4. units_imperial1 is missing units such as inch, which need to be added.
5. The U.S. units seems somewhat confused — do we need U.S. in the name of

the unit as well as in the CD name?
6. U.S. units are missing several items, e.g. gallon (both dry and liquid in

theory, though the authors have never seen the U.S. dry gallon in use).
7. All forms of ton(ne) seem to be missing.
8. Add a CD for E.U. units, where different. The only case known to the authors

is the therm, which comes in both U.S. and E.U. variants. [9, footnote 25]
states the following.
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Although the therm (EC), which is based on the International Table
Btu, is frequently used by engineers in the United States, the therm
(U.S.) is the legal unit used by the U.S. natural gas industry.

The difference is about 0.02%.
9. Update all the semantics in the world of OpenMath units so as to adhere to

the principles of section 5.1 of [8], in particular definitional3 numbers should
be expressed as elements of Q, i.e. as (fractions of) OMI, rather than as
floating point numbers.

10. Sort out electrical energy definitions and other suggestions in [4].
11. Modify the signature of prefix, as described in section 3.1 of [8], from (1)

to (2).
12. Update the definition of pascal to include an FMP: currently missing.

Point 9 is more important than it seems: whereas replacing 0.3048 by 3048/10000
might seem pointless, there is a difference between 0.5556 (the conversion fac-
tor coded in current CDs for Celsius/Fahrenheit conversion) and 5/9, and the
conversion factor between pint_us_dry and litre should be 5506104713575/
/10000000000000, not simply 0.551.

4 A question of time

4.1 The second

In the current CD system, second, but no other unit of time, is defined in
units_metric1. second, minute etc. are all defined in units_time1, along with
the associated relationships. There is a Formal Mathematical Property on the
definition in units_metric1, saying that it is equal to the one in units_time1.
This should probably be converted to say that it is a formal definition (DefMP),
when OpenMath comes to support it. Apart from anything else, this would make
it clearer to converter developers that this was one unit, not two different but
related ones.

4.2 Months and Years

This is a vexed area of definition. The units currently defined in units_time1
are calendar_month and calendar_year, with FMPs such as

<OMA>
<OMS name="in" cd="set1"/>
<OMA>

<OMS name="divide" cd="arith1"/>
<OMS name="calendar_month" cd="units_time1"/>
<OMS name="day" cd="units_time1"/>

3 [8] defines these as “those that started life as experimental, but have since been
adopted as architected definitions. An obvious example is ‘1 yard = 0.9144 metre’”.
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</OMA>
<OMA>

<OMS cd="interval1" name="integer_interval"/>
<OMI> 28 </OMI>
<OMI> 31 </OMI>

</OMA>
</OMA>

While correct, and stating that a (calendar) month is always a whole number of
days, this does not much help some-one who wants to, say, “convert 5 months
into days”, though it is certainly arguable that a reasonable response might be
“which 5 months?”.

We have not looked into this in any detail, but it would be reasonable to
add the Julian year (365.25 days), as a precisely defined unit. One could also
consider adding, say, the average_year, presumably as 365 97

400 days, and the
average_month, as 1

12 of this. These might reasonably belong in units_time1
(or units_time2).

Other definitions, such as the sidereal year or the tropical year, are experi-
mental, and indeed time-dependent, quantities, which are areas we have not yet
gone into. It would seem reasonable to wait for astronomers to write, or request
assistance in writing, such CDs, rather than for us to rush in as amateurs.

It should be noted that these are not the only experimental units. For in-
stance, in [1]’s category of “non-SI units accepted for use with the SI”, the
electron volt expressed in joules is measured to be 1.602 176 487(40)× 10−19 J.
The (40) is the standard deviation, in units of the last place, i.e. 40× 10−28 J.
While this could be expressed in terms of the s-dist1 CD, again this is a route
down which we have chosen not to rush.

5 Other developments

We should also note that there are other developments in the world of units,
which we should take account of. There was a discussion paper on units in
MathML [11], but this seems not to have been followed up.

5.1 Collins

There is a paper in MKM 2009, and a companion in OpenMath 2009, discussing
a different approach to units and dimensions in OpenMath, and these should be
reconciled.

5.2 UnitsML

NIST have launched an OASIS Technical Committee4 to further the proposed
UnitsML (http://unitsml.nist.gov/), which we should also track, and prefer-
ably be at least compatible with, as two incompatible unit definitions in XML,
4 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=unitsml.
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OpenMath/MathML and UnitsML, would be helpful to no-one. However, the
first author finds it hard at the moment to see where UnitsML is going, and a
lengthy list of units5 does not seem overly helpful. There is no apparent specifi-
cation for conversion factors, but it is intended (at least in the U.S.) that they
come from the companion database UnitsDB, which is actually outside of the
scope of the OASIS UnitsML TC.

OpenMath conversions of the forms described in [4] can be expressed as
any OpenMath formula, though in practice they are all y = λx, except for
the temperature ones, which are y = λx + µ, or the intervals used for time
(section 4). λ and µ are OpenMath objects which, following point 9 above, are
integers or quotients of integers. Normal UnitsML conversions are of the form
y = d+ b

c (x+ a), which has the advantage that the inverse is x = (−a) + c
b (y −

d). More complicated conversions are specified by an external URL6, or by a
SOAP/WSDL call to a remote server7.

Conversely, UnitsML conversions8 can be approximate, with an uncertainty
radius and the specification of a “last decimal place” (of significance) for each of
a, b, c and d, whereas the OpenMath conversions programmed so far are precise,
and it is not clear how to express uncertainly of this form in OpenMath (or
anything else for that matter: the hard problem is the correlation of errors) [3].

5.3 Others

Many other projects and proposals have “units”, as part of them: for example
NASA’s SWEET9 set of over 100 OWL ontologies has a “unit” ontology, as
well as a “time” ontology. The first author’s notes on a recent discussion of unit
ontologies in an Ontolog context can be found at http://staff.bath.ac.uk/
masjhd/Sabbatical2009/Ontolog.pdf.

6 Conclusion

Even without these changes, the OpenMath unit system of CDs was workable10,
and we feel that these changes would improve it further.

Dimensional analysis, supported by the .sts files [2], is useful, as it allows a
converter to say “you can’t convert X to Y ”, rather than “I don’t know how to

5 http://unitsml.nist.gov/Schema/Documentation-0.9.17/index.html#

Link0529C5B8 seems to be the key reference.
6 See http://unitsml.nist.gov/Schema/Documentation-0.9.17/index.html#

Link056C85C0.
7 See http://unitsml.nist.gov/Schema/Documentation-0.9.17/index.html#

Link05731020.
8 http://unitsml.nist.gov/Schema/Documentation-0.9.17/index.html#

Link0526D2F0.
9 Semantic Web for Earth and Environmental Terminology (SWEET): http://sweet.
jpl.nasa.gov/.

10 Apart from relative temperatures, [7] will operate with them.
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convert X to Y ”. However, it does mean that every unit has to have a dimension,
and therefore volume is needed to give a dimension to litre, for example. It
would be possible to split such “derived” dimensions into a separate CD from
the SI “base” dimensions, but this was not done in [4], and we have seen no need
for it. After all, the SI choice of “base” dimensions is itself arbitrary.
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System of Units (SI) 8th edition. http://www.bipm.org/utils/common/pdf/si_

brochure_8_en.pdf.
2. J.H. Davenport. A Small OpenMath Type System. ACM SIGSAM Bulletin 2,

34:16–21, 2000.
3. J.H. Davenport and H.-C. Fischer. Manipulation of Expressions. Improving

Floating-Point Programming (ed. P.J.L.Wallis), Wiley, pages 149–167, 1990.
4. J.H. Davenport and W.A. Naylor. Units and Dimensions in OpenMath. http:

//www.openmath.org/documents/Units.pdf, 2003.
5. Mars Climate Orbiter Mishap Investigation Board. Mars climate orbiter: Phase I re-

port. ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO\_report.pdf, Novem-
ber 1999.

6. Wade H. Nelson. The Gimli Glider. Soaring Magazine, 1997.
7. J.D. Stratford. OpenMath-based Unit Converter. B.Sc. Dissertation, University of

Bath, 2008.
8. J.D. Stratford and J.H. Davenport. Unit Knowledge Management. In S. Autexier

et al ., editor, Proceedings AISC/Calculemus/MKM 2008, Springer Lecture Notes in
in Artificial Intellgence 5144, Springer-Verlag, pages 382–397, 2008.

9. B. N. Taylor. Guide for the Use of the International System of Units (SI). http:

//physics.nist.gov/Pubs/SP811, may 2007.
10. The Times. Temperature set to rise by 6C, energy agency warns. 13 November

2008, page 62. http://business.timesonline.co.uk/tol/business/industry_

sectors/natural_resources/article5141873.ece

11. World-Wide Web Consortium (ed. D.W. Harder and S. Devitt). Units in MathML.
http://www.w3.org/Math/Documents/Notes/units.xml, 2003.

A README from associated CD directory

Summary of changes to CDs
dimension1.ocd

Added relative_temperature
Added power

units_imperial1.ocd
Changed conversion factors from OMF to fractions
(foot, pound_mass, pound_force, degree_Fahrenheit - this was 0.5556)
Added ’gallon’ as 454609/100000 litres
Made ’pint’ exactly 1/8 of gallon
Deleted miles_per_hour,miles_per_hour_sqrd, as not a new unit
Added relative_degree_Fahrenheit
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Added (as exact derivatives of other imperial units)
inch, furlong, stone, ton_long, ounce, fluid_ounce, acre_foot

units_imperial_obselete1.ocd
New CD: rod, pole, perch (three distinct units!); chain; league

units_metric1.ocd
Deleted metre_sqrd, metres_per_second, metres_per_second_sqrd
Deleted Newton_per_sqr_metre
Defined litre as 1/1000 (rather than 0.001) of m^3
Deleted litre_pre1964 (see below)
Added FMP for watt
Changed 273.15 to 27315/100
Added relative_degree_Kelvin and relative_degree_Celsuis

units_metric2.ocd
New CD: tonne

units_metric_obselete1.ocd
New CD: litre_pre1964

units_siprefix1.ocd
Reformatted

units:us1.ocd
Changed conversion factors from OMF to fractions
(pint_us_dry; made accurate as 5506104713575/10000000000000, not 0.551)
pint_us_liquid: now in terms of fluid_ounce_us
New unit fluid_ounce_us in terms of litres.
New units cup_us, gallon_us_liquid, gallon_us_dry

dimension1.sts
Changed <OMV name="PhysicalDimension"/> to MonoidDimension
Added relative_temperature with NonMonoidDimension
Added power

units_imperial1.sts
Deleted miles_per_hour,miles_per_hour_sqrd, as not a new unit
Added relative_degree_Fahrenheit,
inch, furlong, stone, ton_long, ounce, fluid_ounce, acre_foot

units_imperial_obselete1.sts
New CD: rod, pole, perch (three distinct units!); chain; league

units_metric1.sts
Deleted metre_sqrd, metres_per_second, metres_per_second_sqrd
Deleted Newton_per_sqr_metre
Added relative_degree_Kelvin and relative_degree_Celsuis
Deleted litre_pre1964 (see below)

units_metric2.sts
New CD: tonne

units_us1.sts
New unit fluid_ounce_us
New units cup_us, gallon_us_liquid, gallon_us_dry
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Abstract. The treatment of intervals for integration, summation etc.
in OpenMath and MathML leaves something (in fact, quite a lot) to
be desired. This paper attempts to analyse the situation, and proposes
solutions to OpenMath, and suggestions to MathML.
In particular, we propose a new construct oriented_interval to cope
with the habit of ”integrating backwards”. We also propose various other
improvements to interval1.

1 Introduction

The treatment of “lower/upper limits” in mathematical notation is, if looked at
from a purist’s point of view, somewhat perverse. There is a split depending on
the operator to which they are applied.∑

,
∏

Here the interval is almost always an integer interval, or at least discrete.
The overwhelming convention is that

∑b
i=a assumes a ≤ b and i is meant

to take the values a, a + 1, . . . , b. The case a > b, if mentioned, is (almost)
universally taken to be 0 for

∑
and 1 for

∏
, i.e. the unit of the corresponding

binary operation.⋃
,
∨

etc. This is very similar, except that it is rarer to mention the empty case.
However, when it is, it is always taken to be the unit of the corresponding
binary operation1.

max, min These are very rarely2 used in the notation max9
i=0, rather as max0≤i≤9.

The case of a discrete interval is as above, except that there is no clear defi-
nition of the empty case. ±∞ is often used. For a continuous interval (where
strictly one should use sup), the case of an empty interval is not defined, and
is relatively unnatural to write, i.e. as max1≤x≤0.∫

This is the curious case. What is normally defined in calculus (or at least
analysis) texts is

∫
[a,b]

, normally under the assumption that a < b. One then

1 There’s a conceptual problem for
⋂

, since ∩ has no unit, since that would have to
be the “set of all sets”: illegal in ZF. There doesn’t seem to be a pragmatic problem
though, and OpenMath could solve this if it adopts a proposal circulating from
JHD/MK/CAR for “näıve set theory”, when the empty

⋂
would be the “universe”.

2 JHD has no examples to hand.
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goes on to define the construct
∫ b

a
f =

{∫
[a,b]

f a ≤ b

− ∫
[b,a]

f a > b
. Hence

∫ b

a

f = −
∫ a

b

f. (1)

This also lets one write results such as∫ c

a

f =
∫ b

a

f +
∫ c

b

f (2)

without worrying whether a < b < c or not (though one should worry
whether the integrals exist at all — see OpenMath recommendation 5).

It is probably worth noting here that an apparent analogue to (2), viz.

c∑
i=a

xi =
b∑

i=a

xi +
c∑

i=b

xi (3)

is not true, even if a < b < c: the correct version is (obviously, with hindsight)

c∑
i=a

xi =
b−1∑
i=a

xi +
c∑

i=b

xi. (4)

If one thinks this is purely about continuous/discrete intervals, one should also
note that

c
max
i=a

xi = max
(

b
max
i=a

xi,
c

max
i=b

xi

)
(5)

is only true if a ≤ b ≤ c.
Why, then, does

∫
seem so different? One answer, but clearly only a partial

one, since the same reasoning would apply to sums etc., is that (2) is appealing
and useful. Probably a deeper reason is that one is seeing the beginnings of
contour integration here, where (2) is both natural and useful, and the question
of whether a < b < c is irrelevant in C.

2 The corpus

This needs more work. However, a Google Scholar search on “where the empty
product” yields only that it is defined to be one (or the unit of a more complex
structure). We can note the following excerpts from the literature.

1. Landau, in his careful definition of the summation and product symbols,
[Lan30, Definition 70] only defines

∑x
n=y for y ≤ x.

2
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2. Apostol only defines intervals [a, b] etc. when a < b [Apo67, p. 60], and (2)
is his Theorem 1.17, proved when a < b < c at [Apo67, p. 86], and “The
proof is similar for any other arrangement of the points a, b, c”. However,
his Theorem 1.20 states that if g(x) ≤ f(x) for every x in [a, b], then∫ b

a

g(x)dx ≤
∫ b

a

f(x)dx,

where a ≤ b is implicit. (1) is stated on p. 74.
3. In the constructive domain, [Bis67] defines integration along paths in C, so

the question does not arise.

3 MathML and OpenMath currently (version 2)

3.1 MathML

The official W3C recommendation reads as follows.

The int function accepts the lowlimit, uplimit, bvar, interval, condition
and domainofapplication schemata. If both lowlimit and uplimit
schemata are present, they denote the limits of a definite integral. The
domain of integration may alternatively be specified using interval,
condition or domainofapplication. The bvar schema signifies the
variable of integration. . . . For example, the lowlimit, uplimit pair can
be used where explicit upper and lower limits and a bound variable are
all known, while an interval can be used in the same situation but
without an explicit bound variable as in [Con03, section 4.2.3.2]:

<apply>
<int/>
<interval><cn>0</cn><cn>1</cn></interval>
<sin/>

</apply>

It appears possible for max and min to take lowlimit and uplimit, though no
examples are given. There is an attribute closure, which can be applied (only)
to intervals, described as follows.

[closure] indicates closure of the interval. Predefined values: ”open”,
”closed”, ”open-closed”, ”closed-open”.
The default value is ”closed” [Con03, section 4.3.2.2]

The interval element is used to represent simple mathematical intervals
of the real number line. It takes an attribute closure, which can take
on any of the values ”open”, ”closed”, ”open-closed”, or ”closed-open”,
with a default value of ”closed”.
A single interval element occuring as the second child of an apply
element and preceded by one of the pre-defined n-ary operators is inter-
preted as a shorthand notation for a domainofapplication. All other
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uses of an interval element as a child of an apply should be interpreted
as ordinary function arguments unless otherwise dictated by the function
definition. [Con03, section 4.4.2.4.1]

We should note that lowlimit has a completely different use in connection
with limit in MathML.

3.2 OpenMath

Intervals in OpenMath have, surprisingly, no formal properties as such, but
merely textual descriptions. That for interval is

A symbol to denote a continuous 1-dimensional interval without any
information about the character of the end points (used in definite inte-
gration). The arguments are the start and the end points of the interval
in that order.

Similarly integer_interval is described as follows.

A symbol to denote a discrete 1 dimensional interval from the first ar-
gument to the second (inclusive), where the discretisation occurs at unit
intervals. The arguments are the start and the end points of the interval
in that order.

OpenMath3 explicitly adopts (1) in the form shown in section A, but, curiously,
only (2) with the guard a < b ∧ b < c.

4 Discussion

The MathML 2 usage is arguably consistent, but probably misleading. Since
interval is explicitly defined to be a subset of the real line, it can be used
to replace lowlimit and uplimit in int, but not in sum, where one would
presumably have to go straight to a domainofapplication qualifier. However,
sum and product are said [Con03, section 4.2.3.2] to take the interval qualifier,
as are the n-ary operators. Presumably as sets, the intervals (0, 1) and (1, 0) are
equal, which might surprise some people.

The OpenMath definition is currently almost vacuous. We note that the same
form of words is used for interval and integer_interval, whereas, as we have
stated above, usage in ordinary mathematics differs, with integer intervals, as in
sum, almost always being taken to be empty if the lower limit is greater than
the upper.

3 http://www.openmath.org/cd/calculus1.xhtml#defint.
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5 Proposals

5.1 OpenMath

It would be possible to say that OpenMath should move to contour integration.
There are two arguments against this, one pragmatic and the other philosophic.

– OpenMath has not yet defined contour integration, and the specification of
arbitrary contours looks to be messy.

– Although the inspiration for the use of “oriented” intervals comes from con-
tour integration,

∫ b

a
is defined purely over the reals, and can be used in

places where complex variable theory would have problems with essential
singularities, as in

∫ 1

−1
exp(−x2)dx.

Hence we propose the following changes to the CDs in OpenMath. They may as
well take effect from OpenMath 2 if they are to tie in with MathML.

1. All the current items “defined” in interval1 should have proper formal
mathematical properties, e.g. for integer_interval we would have the fol-
lowing definition, with the corresponding OpenMath given in appendix B,

{n ∈ Z|a ≤ n ∧ n ≤ b}. (6)

So interval_oc, for example, would be

{x ∈ R|a < x ∧ x ≤ b}. (7)

2. The undifferentiated interval should be defined as being any of the specific
ones.

3. There should be a new construct in interval14, called oriented_interval.
This would be defined to be, in terms of set membership, either interval_oo(a,b)
or interval_oo(a,b), as in appendix C (we use interval_oo to avoid prob-
lems with interals that start, or end, at infinity).

4. The uses of intervals in calculus1 be changed to oriented_interval.
5. It may be worth considering adding a predicate integral_defined to calculus1,

which would allow one to state various relations with more accuracy.

5.2 MathML

Strictly speaking, it is not up to the current author to make MathML sug-
gestions. However, we note that a variant of the OpenMath suggestions would
make MathML’s specification less misleading, and also make convergence at
MathML 3 easier. We could extend the closure attribute with two additional
values, integer and oriented. The former would correspond to OpenMath’s
integer_interval, and would allow sum and product with lowlimit/uplimit

4 Normal OpenMath practice would place this in a new CD. However, JHD thinks
that people would not find it there, and it belongs more naturally in interval1.
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constructs to convert to intervals, which is currently half-suggested. The second
would correspond to the proposed oriented_interval, and might well even
become the default, since that it what seems to be implied by the examples.

There is then a 1–1 correspondence between MathML intervals (with closure
attributes) and OpenMath’s interval1 CD.
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A OpenMath for (1)

<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0"
cdbase="http://www.openmath.org/cd">
<OMBIND>

<OMS cd="quant1" name="forall"/>
<OMBVAR>

<OMV name="a"/> <OMV name="b"/>
</OMBVAR>
<OMA>

<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="calculus1" name="defint"/>
<OMA>

<OMS cd="interval1" name="interval"/>
<OMV name="a"/> <OMV name="b"/>

</OMA>
<OMBIND>

<OMS cd="fns1" name="lambda"/>
<OMBVAR>

<OMV name="x"/>
</OMBVAR>
<OMA>

<OMV name="f"/>
<OMV name="x"/>

</OMA>
</OMBIND>

</OMA>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
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<OMA>
<OMS cd="calculus1" name="defint"/>
<OMA>

<OMS cd="interval1" name="interval"/>
<OMV name="b"/> <OMV name="a"/>

</OMA>
<OMBIND>

<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="x"/>

</OMBVAR>
<OMA>
<OMV name="f"/>
<OMV name="x"/>

</OMA>
</OMBIND>

</OMA>
</OMA>

</OMA>
</OMBIND>

</OMOBJ>

B Proposed OpenMath for (6)

<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0"
cdbase="http://www.openmath.org/cd">
<OMA>
<OMS name="equal" cd="relation1"/>
<OMA>

<OMS name="integer_interval" cd="interval1"/>
<OMV name="a"/> <OMV name="b"/>

</OMA>
<OMA>

<OMS name="suchthat" cd="set1"/>
<OMS name="Z" cd="setname1"/>
<OMBIND>

<OMS name="lambda" cd="fns1"/>
<OMBVAR> <OMV name="n"/> </OMBVAR>
<OMA>
<OMS name="and" cd="logic1"/>
<OMA>
<OMS name="le" cd="relation1"/>
<OMV name="a"/>
<OMV name="n"/>

</OMA>
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<OMA>
<OMS name="le" cd="relation1"/>
<OMV name="n"/>
<OMV name="b"/>

</OMA>
</OMA>

</OMBIND>
</OMA>

</OMA>

C Proposed OpenMath for oriented interval

<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0"
cdbase="http://www.openmath.org/cd">
<OMA>
<OMS name="equivalent" cd="logic1"/>
<OMA>

<OMS name="in" cd="set1"/>
<OMV name="x"/>
<OMA>

<OMS name="oriented_interval" cd="interval1"/>
<OMV name="a"/> <OMV name="b"/>

</OMA>
</OMA>
<OMA>

<OMS name="or" cd="logic1"/>
<OMA>

<OMS name="in" cd="set1"/>
<OMV name="x"/>
<OMA>
<OMS name="interval_oo" cd="interval1"/>
<OMV name="a"/> <OMV name="b"/>

</OMA>
</OMA>
<OMA>

<OMS name="in" cd="set1"/>
<OMV name="x"/>
<OMA>
<OMS name="interval_oo" cd="interval1"/>
<OMV name="b"/> <OMV name="a"/>

</OMA>
</OMA>

</OMA>
</OMA>
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