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Chapter 1

2 August 2018

1.1 Donaldson

1.1.1 Part I: Kähler

n = 2m and X a complex manifold. Define a skew-symmetric ω(v1, v2) =
〈v1, v2〉g. The Kähler metric is a fixed cohomology class [ω] ∈ H2(X,R) are
parametrised by a function.

ICM 1954 (Amsterdam) where Calabi initiated the study of existence ques-
tion.

Kähler–Einstein metrics have Ricci = λg. These can only exist when the
first Chern class c1(M) is positive, negative or zero, depending on the sign of
λ. In 1983 he introduced more general extremal metrics, which include constant
scalar curvature Kähler (CSCK) metrics.

Example 1 (Classical) m = 1: any compact Riemann surface admits a met-
ric of constant Gauss (i.e. scalar) curvature, unique up to holomorphic auto-
morphisms. Basically the Uniformisation Theorem.

Yau (1978) solved the case λ ≤ 0. Looks like the m = 1 case. λ = 0 gives
Calabi–Yau metrics with Ricci=0 is especially important. The structure group
of the tangent bundle is reduced to SU(m) ⊂ U(m).

This existence problem can be set up as a second order nonlinear PDE
(complex Monge–Ampère):

det

(
∂2φ

∂za∂zb

)
= e−λφ.

So the main technique is PDE methods.
Positive λ gives Fano manifolds. But there are various obstructions. This is

now understood as K-stability : Tian (1997) and Donaldson (2002). (X, [ω]) is
K-stable if, for all non-trivial degenerations χ of X have Fut(χ) > 0.
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Conjecture 1 (YTD) X admits a CSCK metric in the class [ω] iff (X, [ω])
is K-stable.

The Fano case what settled in 2013 by Chen–Donaldson–Sun in 2013, see 2014
ICM Székelyhidi. There are now a variety of proofs of this. Chen–Cheng have
done recent work on extremal metrics.

Infinite-dimensional geometry. Let H be the space of Kähler metrics in a
fixed class. Then there’s a Mabuchi metric on this space:

||δφ||2 =

∫
χ

(δφ)2 vol
φ
.

The Mabuchi functional F : H → R, whose extremal points are the CSCK. See
lecture of Berndtsson in this ICM.

Theorem 1 (Berman–Berndtsson) Convexity . . .

Roughly speaking, degenerations of X give points at infinity of H. If there is
no critical point of F in H, then this can be detected by the behaviour of F at
such points at infinity.

Riemannian convergence theory. Gromov, Cheeger–Colding. Let (Mi, gi)
be a sequence of Riemannian manifolds with volume 1, bounded diameter and
bounded Ricci curvature. Then there is a subsequence that converges in the
Gromov–Hausdorff sense to a metric space M∞. This has an open dense regular
set M∞ \ S with a C1,∞ Riemannian metric. [Fujita2015] showed “projective
space maximises volume”. But the proof is algebro-geometric.

Singularities and tangent cones. Let Z be a Gromov–Hausdorff limit as
above. Then it is naturally a complex algebraic variety and the metric tangent
cone at a point p ∈ Z can be described in terms of a valuation νp on the local
ring

νp(f) = lim
r→0

log maxBr,p
|f |

· · ·
.

see Sun at this ICM. These ideas can be compared with Deligne–Mumford the-
ory.

1.1.2 Part 2: exceptional holonomy

R,C,H,O=octonians are the four normed division algebras. Note that cross
products only exist in R3 and R7. O = R1 ⊕ R7. The corresponding 7-
manifolds are important in physics. [Bryant,ICM1986] had local examples, and
[Joyce,ICM1998] had compact examples. Little is known systematically about
such questions.

Let Y ve a reducible Calabi–Yau 3-fold Then there is a parallel 2-form ω on
Y and a parallel holomorphic 3-form Θ . . . .

[Kovalev2003] Let W be a complex 3-fold with a “Lefschetz fibration”. Then
there are a finite number of critical values of π, where the fibres have ordinary
double point singularities.

Corti et al. have millions of deformation classes of such matching building
blocks. There are 7-manifolds which are homeomorphic but not diffeomorphic.



1.2 Sylvia Serfaty: Systems of Points with Coulomb
Interactions

The N -particle Coulomb kernel is w(x) = 1
|x|d−2 for d ≥ 3 and w(x) = log |X| if

d = 2.Consider the energy

Hn(x1, . . . , xN ) =
1

2

∑
1≤i 6=j≤N

w(xi − xj) +N

N∑
i=1

V (xi),

where xi ∈ Rd. We want minimisers (critical points) of Hn, Also evolutions
ẋi − 1

N∇xi
HN (gradient flow), or ẍi − 1

N∇xi
HN (Newton flow).

Motivation 1 (Fekete points (Approximation theory)) Given µ, since x1, . . . , xN
s.t. ∣∣∣∣∣ 1

N

N∑
i=1

f(xi)−
∫
f(x)dµ(x)

∣∣∣∣∣
is small for all regular functions f . On closed manifolds (spheres) they are
maximisers of

∏
1≤i 6=j≤N |xi − xj |.

If s→∞ this tends to close packing problems.

Motivation 2 (Vortices) Vortices in the Ginzburg–Landau model of super-
conductivity, in superfluids and Bose–Einstein condensates. Vortices are the
zeros of ψ : R2 → C with degree in the asymptotics ε→ 0. This can (with a lot
of effort) be reduced to discrete problem.

Motivation 3 (Statistical and Quantum mechanics) Various:

d = 1, 2 logarithmic case and eigenvalues of random matrices problems.

d ≥ 2 Classical Coulomb gas. Toy model for matter.

d = 2 logarithmic is “two-component plasma”, with particles of ± charges we
get theoretical physics models (sine-Gordon etc.)

Problem 1 (sSmale’s 7th) compute a minimiser on the sphere up to an error
logN , in polynomial time.

1.2.1 II Mean-field Limit

Limits for empirical measures 1
N

∑
δxi?

We get Frostman equilibrium measure as the unique minimiser among prob-
abilities of

E(µ) =
1

2

∫
Rd×Rd

w(x− y)dµ(x)dµ(y) +

∫
Rd

V (x)dµ(x).

Makes sense only if w integrable near 0 ⇔ s < d. Exists only if V grows fast
enough at ∞.



V (x) = |x|2, is the Coulomb case, then µV = 1
cd

1B1 (circle law).
Potential generated by a distribution µ

hµ(x) := w ∗ µ =

∫
Rd

w(x− y)dµ(y).

Mean field force is ∇(hµ+V ). Then ∂tδx(t) = −div · · · . But a formal proof has
difficulties with passing to the limit N →∞ of the nonlinear products. Proves
[Speaker2018].

For Newton’s law, the formal limit is

∂tf + v · ∇xf −∇(hµ + V ) · ∇vf = 0.

There are convergence proofs if the singularity is less than Coulomb, but the
Coulomb case is still open.

But none of these mean field results are really specific to Coulomb . . . . They
work for Riesz s < d, on integrable or . . . So what is specific to Coulomb? The
Coulomb kernel is the fundamental solution for the Laplace operator. so the
main tool is rewriting the interaction energy. We reformulate the energy in
terms of the Coulomb potential hµ = w ∗ µ, where ∆w = cµδ0.

1.2.2 Beyond the Mean-field limit

So what is the next order term in the expansion for HN . Main approach is to
expand the energy around µV and compute the energy via the potential hN .
Rewrite the next-order energy as . . . .

HN (x1, . . .) = N2E(µV )− N

2d
logN +N1+ s

dW + o(N1+ s
d ).

If d = 1 the minimum of W over all possible configurations is achieved for the
lattice Z.

Conjecture 2 (Cohn–Kumar) If d = 2 we have the triangular lattice. Also
E8 and the Leech lattice.

These are really hard crystallisation problems. There is an announced solu-
tion (n = 8, 24), not yet on arXiv. Note n = 2 is not yet solved. But the
conjecture is supported by experimental observations in Abrikosov lattice ob-
servations. We know it is the minimum in the class of lattices of fixed volume.
[CasslesRankinEnnolaDiananda1950s].

In d = 3 we believe BCC has the min mum, but still not known.

1.2.3 With temperature

β = 1/temperature. We assume ZN,β =
∫
Rd)N

e−βHN (x1,...,xNdx1 . . . , dXN as

the partition function. There is a “large deviations” principle.
The Gibbs measure minimises “energy + 1

β entropy”.



Theorem 2 (Leblé–Speaker2015) Gibbs concentrates on configurations whose
limiting processes P x after zoom around x minimise

Fβ(P ) :=

∫
)Σ(W (P x) +

1

β
ent[P x[Π])dx

where Π is Poisson.

Then

logZN,β −−βN2−n
d E(µv) +

βN

2d︸︷︷︸
interesting

+ · · ·

The distribution of the points is following the equilibrium behaviour very closely.

1.2.4 Conclusion

The analysis of Coulomb systems is at the intersection of several branches (anal-
ysis , PDE, probability, number theory, geometry) Large Coulomb systems ex-
hibit an macroscopic behaviour which can be understood by mean field theory.
The microscopic behaviour can be understood . . .

1.3 Rahul Pandharipande: Geometry of the mod-
uli of curves

Given four points, we can take the first three to 0, 1,∞, soM0,4
∼= C¶1\{0, 1,∞}

— essentially cross-ratio.
What happens in higher genus, For g = 0 the complex structure is unique,

but this is no longer the case in higher g C can be viewed as an algebraic curve
defined by the zero locus in C2 of a single polynomial F (x, y) = 0. Plot in R2

of the solutions in C2. Mg is the moduli space of Riemann surfaces of genus g,
[C] ∈Mg.

Riemann essentially know thatMg is a complex manifold of dimension 3g−3
(g ≥ 2). “Riemann constructs the variations of complex structure, states this
dimension, and defines the term moduli, all in a single sentence ” [shown]. Last
30 years have all been about the cohomology of the moduli space.

1.3.1 Cohomology

Let S ⊂ |n×Gr(r, n) be the universal subbundle. H∗(Gr(n, r)Q) is generated by
the Chern classes of S, which measure how much S twists. limn→∞H∗(Gr(rmn)Q) =
Q[c1, . . . , cr].

1.3.2 What is the analogue of S

The answer is the “universal curve”. C ∼=Mg,1. We will construct cohomology
classes from an intrinsic complex line bundle on C. Let calL be the cotangent
line over the universal curve.



Question 1 Is R∗(Mg) = H∗(Mg,Q)?

The answer is No, but Yes stably! (Mumford’s conjecture).

Question 2 What is the structure of R∗(Mg)?

We are interested in the full ideal of relations of R∗(Mg).

Conjecture 3 (Faber–Zagier) Let p be the set of variables pi where i 6≡ 2
(mod 3). Let

Ψ(t, p) = (1 + tp3 + t2pg + · · · ) . . .+ () . . . .

Define the constants

log Ψ =
∑
σ

∞∑
r=0

CtZr (σr)pσ

In particular, do the Faber–Zagier relations span the ideal of all relations. For
g < 24 shown by Faber (lots of computer work), but otherwise open.

There are essentially three proof of Faber–Zagier, all via Gromov–Witten
theory and the virtual fundamental class. We proved it via Witten’s 3-spin class
and Giventah–Teleman classification of semisimple CohFTs. Then [Janda2015]
proved all suitable semisimple CofHTs yield exactly the Faber–Zagier relations.

A CohFT is . . . ..
The genus 0 3-pointed map Ω0,3 determines a quantum product (v1∗v2, v3) =

Ω0,3(v1, v2, v3).
We seem to have a class of pure dimension, but Givental–Teleman gives

a CohFT of pure dimension, and the two actually agree precisely because of
Faber–Zagier.

Question 3 What are the relations in Mg,n?

Claims that the boundary strata of the moduliMg,n of fixed topological type cor-
respond to stable graphs. He can go from graphs to the corresponding stratum
(?1–1?).

The initial relation is the cross-ratio. First non-trivial found in 1996 (Chicago).
A relation between seven graphs. Speaker+Belorusski1998 found a genus 2 one
connection 20 graphs with small rational coefficients. So is there any structure
to these formulae or coefficients? How does it connect to Faber–Zagier?

1.3.3 Pixton’s relations on Mg,n

We define tautological classes Rdg,A. We have already seen series B0, B1. They
controlled the original set of Faber–Zagier relations. They also control Pixton’s
relations.

Rdg,A =
∑

Γ ∈ Gg,n
1

2h1(Γ)
[Γ,ΠKνΠΨEΠ∆e]d

A key tool is B0(T )B1(−T ) +B1(T )B0(−T ) = 2.



Theorem 3 (Pixon–speaker–someone)

Rdg,A = 0 ∈ H ∗ 2d(Mg,n,Q).

Question 4 Are Pixton’s relations complete?

1.4 Ma, dry: Gradients and Flows

Core primitive: given x, find ∆ such that f(x+∆) < f(x). We’re assuming our
functions are locally Taylor.

Problem 2 (Maximum Flow) Think of a directed graph G, with capacities
on each edge, and special nodes S[ource] and T [arget]. Constraints are conser-
vation at each interior node and the capacities, and we wish to maximise the
total flow. If all capacities are 1, we are looking for arc-disjoint paths. Especially
interested in sparse graphs.

Classical Evan–Tarjan 1975, Karzanov1975 where O(n3/2) for unit capacities.
[GoldbergRao1998] Õ ∗ n3/2 logU) for general case.

Modern Let’s look for ε-approximate algorithms. [Madry2010] etc. Õ(nε−1)
time for undirected and (1 + ε)-approximate. Not have Õ((nU)10/7) for
undirected case, which breaks the Ω(n3/2) belief.

Setting Think of flow as a vector f with fe being flow along edge e: fix an
orientation and use sign of fe to indicate direction. Therefore we should
solve

min
f
||Πγ(f)− f ||2 s.t. ||f ||∞ ≤ 1.

Then can do this by gradient descent. NäıvelyÕ(n2/ε). Standard tech-
niques get O(n3/2/ε). Then problem is that we are trying to minimise l∞,
but our tools are l2.

1.4.1 Directed Version

The good news is that you can transfer directed to undirected. But only works
fro (near)-exact solutions. In this regime, gradient descent doesn’t give enough
accuracy. So consider path-following interior points methods [Kar84a, Kar84b].
But these are not natural. He has a basically classical method with three insights
from interior-point and this gets the complexity.

These insights would for a wide range of graph problems. Is this a major
change of paradigm for graph algorithms?

Q Implementations?

A Most graphs succumb well to classical, so it is not clear what the practical
gain is.

Q Which problems?

A “If there is a linear relation in the combinatorics, come and call me”.



1.5 Ambainis: Understanding Quantum Algo-
rithms via Query Complexity

See [Amb18]1.

Notation 1 D(f) =# queries for a deterministic algorithm; R0(f) for a zero-
error randomised algorithm and R2 for a bounded-error one. Corresponding for
quantum we use QE and Q2.

[Feynman1981]: simulating quantum processes on a classical computer re-
quires exponential memory. We have search [Gro96], Logic evaluation [FKT16].
We now have 20-qubit devices by IBM, and larger (50–70) bits under construc-
tion. At this point they are too hard to simulate.

So my question is: what is the biggest advantage we can get? Note that
BQP ⊂ PSPACE, so we can’t expect much progress. [Simon1994] PA 6=
BQPA for an oracle A. [RazTal2018] as well.

1.5.1 Decision Trees/Quantum Algorithms

. Task, compute f(x1, . . . , xN ) where the xi are accessed via queries. Complex-
ity=#queries.

Example 2 (Period finding) We are told the sequence is periodic with pe-
riod R <

√
N . [Sho94] this is O(log logN) quantumly, as oppose to O( 4

√
N)

classically. This is the key to his factoring.

Example 3 (Grover’s search) ∃?i : xi = 1: classically O(N) for determin-
ism.

Deterministic we look at decision trees. A quantum state is a unit vector in
Cd, with basis states |1〉 etc. Generally |ψ〉 =

∑d
i=1 αi|i〉 with

∑
α2
i = 1.

A quantum query algorithm inputs |ψ〉 and does a sequence of queries and
quantum transformations (not depending on xi). For partial functions, there
are huge speedups, but for total the best we can do is Grover.

Example 4 ([+Aaronson]) Task that requires 1 query quantumly, and Ω(
√
N/ logN)

classically. This is “Forrelation” = Fourier Correlation. Let |ψ〉 =
∑
xi|i >

+
∑
yi|i + N〉, which is one query, then use standard SWAP technique. The

classical lower bound is fairly standard.

Theorem 4 Any 1 query quantum algorithm can be simulated probabilistically
with O(

√
N) queries. [BBC+01].

Theorem 5 ([BBC+01]) Let p(x1, . . . , xn) be a polynomial of degree p, eval-
uating in [0, 1] for values in [0, 1]

1https://eta.impa.br/dl/043.pdf.

https://eta.impa.br/dl/043.pdf


Theorem 6 Any k-query quantum algorithms can be simulated probabilistically
with O(N1−1/2k) queries.

Conjectures this is optimal, but not proved, even for k = 2.
So why are partial function so much better? For total functions we have an

example where it is O(N)/O(N1/4).
And/Or trees. [Snir1985,SaksWidgerson1986]. Randomly O(n0.5537...), but

deterministically O(n). [GPW15]. Communication versus partition number.
Want D(f) to be large, but f = 1 easy to certify. Function of mn variables,
f = 1 iff there is a unique all-1 column. So a certificate is O(m + n) — all
values in the column, and one zero in every other column. There’s a subtle
arrangement [GPW15] of linking these non-zeros.

Theorem 7 ([ABB+17]) Gaps:

• There exists a total Boolean function f with Q2(f) = Õ(D1/4(f)).

• There exists a total Boolean function f with R0(f) = Õ(D1/2(f)).

• There exists a total Boolean function f with R2(f) = Õ(R
1/2
0 (f)).

1.5.2 Computing f on most inputs

Partial: Q = 1, R = Ω(
√
N/ logN) Total functions: Q = Ω( 6

√
D).

Conjecture 4 Dε(F ) = O(Qcδ(f)) where ε means computing on 1−ε of inputs.

1.5.3 Symmetric functions

Counting and search tend to be symmetric. Period-finding is very non-symmetric.

Conjecture 5 For a symmetric function, then R is polynomial in Q.

Can prove it in the case where we can also permute values.

1.6 Lower bounds for Subgraph Isomorphism prob-
lems: Rossman

PnNP and NC1vP. Average case. n is size of graph, k is fixed (or slowly growing).

k-Clique Does the graph contain a complete graph of size k. Trivial nk, or
n0.79k with fast matrix algorithms. nΩ(k) would imply P 6= NP .

k-Cycle on layered graphs best space complexity is O(log(k) log(n)) . If this
were Ω we would prove NC1 6= P .

general: SUB(G) Given a graph X and a vertex-colouring V (X) → V (G),
does X contain a properly-coloured G-subgraph. Includes previous two.



Circuit complexity is an approach to complexity theory.

Theorem 8 ([Sha49]) almost all functions on n variables require Θ(2n/n)-
size circuits.

Note that formulae are weaker than circuits as they lack memory. Formalising
this is NC1 6= P .

AC0 circuit size PARITYn is 2Θ(n1/(d−1)). Note that our problems are mono-
tone in the graphs: if X has it, so does any supergraph. Monotone circuits have
many strong properties, and mon-P 6=mon-NP.

However, though both our key problems are monotone, the “graph” is pretty
jagged. So let’s look at slice functions. A functionf : {0, 1}n → {0, 1}n is called
a k-slice iff f(x) equals the O-vector if x has less than k ones and f(x) equals
the l-vector if x has more than k ones. That means the interesting part of f
happens when x has exactly k ones.

Theorem 9 ([Ber82]) The monotone circuit complexity of slice functions can-
not be much larger than the circuit (combinatorial) complexity of these functions
for arbitrary complete bases.

1.6.1 Average case k-Clique

Seem to have a phase transition issue for “G(n, p) contains a k-clique”.

Conjecture 6 (after Karp) Iterated greedy is the asymptotically optimal k-
clique finding algorithm in G(n.p).

Theorem 10 (Speaker 2008) AC0 circuits solving k-Clique on G(n, p) with
probability 0.51 requires size Ω(nk/4).

Theorem 11 (Speaker 2008) AC0 circuits solving k-Clique on G(n, p) and
G(n, p+ p1−o(1)) with probability 0.51 requires size Ω(nk/4).

Folklore: ntreewidth(G)+1.
By divide and conquer we can do k-Cycle with a circuit of size no(1) depth

O(log k). They become AC0 formulas of size nO(log k).
The formula size of SUB(G) is soluble by monotone AC0 formulas of size

O(ntree-depth(G)). Also a lower bound of nΩ(tree-depth(G)const).

1.7 Kalai: Delegating Computation via Non-Signalling
Strategies

Scenario of weak devices and powerful cloud with the data largely stored there.
To do verified computation, we are going to import ideas from cryptography and
quantum mechanics, even though the problem specification requires neither.

Many functions computable in time T do not have proofs verifiable in times
≺≺ T . [GMR88] introduced the idea of interactive proofs. The verifier can



make random choices, and only requires high probability. Also [BenOretal1988]
examples of multi-prover interactive proofs. [BabaiFortnowLund1990] any proof
can be made exponentially shorter.

Open Problem: Interactive polylog(T ) proof for any T -time S-space compu-
tation, Can do this for bounded-depth computation. Also bounded-space.

Since these are open, we’ll take ideas from the two-prover setting. Hence
soundness will only hold against computationally bounded adversaries. Then
from quantum we can reduce to two queries, the first of which is independent
of the computation, so we’re almost back to the non-interactive setting.

[BielMeyerWetzel1999]: send the one server the two queries, but encrypted
under FHE [Gen09]. But there were counter-examples. We had soundness when
A1 was only a function of Q1 etc. The guarantee that we actually get is that A1

doesn’t reveal Q2 etc., which is not the same thing. This is “non-signalling”, as
defined in quantum mechanics.

[KalaiRothblumRaz2014] ∀ T -time f , where verifier’s runtime is ??-bounded,
. . . .

There’s also work on non-deterministic computations, on delegating memory
and on actual efficiency. Also note that this has been a real bridge between
theory and practice

Q FHE?

A You don’t need the full power of FHE in practice. All you need is enough
non-signalling.



Chapter 2

3 August 2018

2.1 Okounkov: New worlds for Lie Theory

See http://math.columbia/edu/~okounkov/icm.pdf.In particular susy gauge
theories in < 4 (especially 3) space-time dimensions. I want to share my ex-
citement about a field that is still forming. Today I am talking about super-
symmetric QFT. There is a powerful idea of duality, generalising Langlands. So
which highlights of late XXth are being generalised.

Weyl groups

braid group B = π1(Cn
reg/W

Hecke algebra

2.1.1 MacDonald–Cherednik Theory

Replace linear differential equation by q-difference equations. Solutions are
generalisation of q-hypergeometric. Remarkable index symmetry: Pn(qm) =
Pm(qn); Pn(x) = xn are kindergarten examples.

2.1.2 Kazhdan–Lustzig theory

Describes the character of irreducible highest-weight modules.

2.1.3 Yang–Baxter equations

Started in 2D statistical mechanics. The degrees of freedom live in vector space
Vi attached to the edges of a grid, and their interactions are described by a ma-
trix R of weights attached to each vertex. R-matrices with a spectral parameter
define an action of non affine Weyl group of type A by q-difference operators.

Look at Index := Even Fermion number − Odd. At the lowest energies (very
large B) the states of the QFT can be described by a modulated vacuum, that
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is a map f from B to the moduli space X of vacua of the theory. The amount
of supersymmetry that we want makes X, ideally, a hyperkähler manifold and
f a holomorphic map. This now looks like enumerative geometry. The index is
the Euler characteristic of a certain coherent sheaf (or virtual Â-genus) on the
moduli space f such. The additional grading on this index by the degree of the
map can be viewed as a character of the Kähler torus Z = Pic(X)⊗C∗.

For example, susy gauge theories contains gauge fields for a compact form
of a Lie group G, matter fields in a symplectic representation M of G. Then
X − µ−1(o)//G. Ultimately the q becomes the automorphism of B ' C. There
are two ways of thinking of this:

• These q-difference equations generalise what we have seen before

• The whole enumerative theory may be described using certain new geo-
metric representation theory.

Unlike Langlands duality, there is no reason why the Kähler equivariant roots
have to live in spaces of the same dimension. There is a full elliptic theory
of [Agaagic–O]. It controls the roots of unity analogues of characteristic p〉〉0
quantisation questions for finite p.

2.2 Lawler: Critical Phenomena in Statistical
Physics

β = 1/T (T = temperature). For high temperature (β < βc) long range inter-
actions decay quickly. I am interested in behaviour around βc. Physicists use
Coulomb gas techniques to give non-rigorous predictions of critical exponents
for 2D systems. From the late 1990s mathematicians have been able to make
some of this rigorous, and give greater insight. Define a discrete model, let it
become large (or lattice spacing → 0) to approximate continuum.

Imagine a random walk in Z2 = Z + iZ. Brownian (heat equation) scaling
has ∆T ∼ (∆x)2. For a self-avoiding walk, we believe (open!) that the length
∼ n4/3. This converges to a probability measure on continuous curves γ(t) .

What happens to Loop-Erased Random Walks, which are, of course, self-
avoiding. These can also be considered as Laplacian random walks. Need a
random walk loop measure. “Loop soup” is a Poissonian realisation from the
loop measure. At intensity λ a loop of length l appears with probability λm(l).

Have a (wired) uniform spanning tree chosen at random. Wilson’s algo-

rithm chooses a tree with probability F (A)
(

1
4

)#(A)
. This is the same for all

trees, so we recover Kirchoff’s theorem on the number of trees. 4#(A) det(I −
Q). Brownian loop soup measure has a restriction property: if D ⊂ D′,
soup(D)=soup(D′)|D.

Many of these have the Domain Markov property: In the measure µD(z, w),
given an initial segmentγ(s) : 0 ≤ s ≤ t, then the distribution of the remainder
depends only on γ(t), not the history of getting to t.



For κ < 8, these are supported on curves of Hausdorff dimensionα = 1 + κ
8 .

Our parametrisation of Hölder u continuous for u ≤ 1
α . α-dimensional Hausdorff

measure tends to be 0. α-dimensional Minkowski content is more helpful:

Contα(V ) = lim
ε↓0

εα−2Area{z : dist(z, V ) < ε}.

SLEκ is weakly Hölder-continuous up to 1
α . It’s still an open problem to prove

the convergence of self-avoiding walks with κ = 8
3 .

Take any finite simply-connected ⊂ Z2. containing origin. There exists c∗, u
such that the probability that a LERW from x to w (both on boundary) goes
through the origin is . . . (θ), where θ is the angle between z and w at the origin.

There are other loop measures.
Take a very fine lattice of infinitesimal length 1/N (non-standard analysis)

can choose mesoscopic and multi-scale analysis by choosing N〉〉M〉〉1.

2.2.1 Higher dimensions

For LERW and SAW the upper critical dimension is 4. This is because random
walk paths have fractal dimension2, and the critical dimension for the inter-
section of two-dimensional sets is d = 4. For d = 4 we expect convergence to
Brownian motion with logarithmic corrections to the scaling. For LERW the
mean square distance after n steps is . . . .

Three dimensions is the domain for ICMs of the future, Conformal invariance
doesn’t work. The mean square distance is predicted to be 22ν . SAW: originally
believed ν = 3.5, but now .588. . . . For LERW we get ν = 0.61 . . ., and a rigorous
proof that ν > 0.6.

2.3 Moreira: Dynamical Systems, Fractal Ge-
ometry and Diophantine Approximations

Poincaré’s restricted three-body work was the start of dynamical systems. Hy-
perbolic system introduced by Smale, especially Smale Horseshoe.

Conjecture 7 (Palis–Smale) The structurally stable dynamical systems are
the hyperbolic ones.

Proved by[Mañé1988] for a special case. Homoclinic bifurcations are the most
important mechanisms for creating complicated systems from simple ones.

Consider φµ : M2 → M2, hyperbolic fro µ < 0. Homoclinic tangency at
µ = 0.

Fractal sets appear naturally. Hence needs Hausdorff dimension := inf{s >
0; infX⊂∪B(xn,rn)

∑
rsn} = 0}. Regular Cantor sets, e.g. the usual ternary set.

A Horseshoe Λ in a surface is locally diffeomorphic to the Cartesian product of
two regular Cantor sets: the stable and unstable ones Ks/Ku. The HD(Λ) :=
HD(Ks) +HD(Ku) is important.

Use equivalent of Erdős probabilistic method.



2.3.1 II: Diophantine

Dirichlet’s Theorem. Hurwitz improvement.
∣∣∣α− p

q

∣∣∣ < 1√
5q2

and
√

5 is best

possible. But fix α, and let best possible be k(α). Indeed k
(

1+
√

5
2

)
=
√

5.

Note k(α) =∞ is possible, indeed these have Lebesgue measure 1.

Theorem 12 ([Markov,1975]) L∩{−∞, 3) = {finite set}. These are
√

9− 4
z2

when z : ∃x, y : x2 + y2 + z2 = 3xyz.

Note there’s a unicity conjecture for x2 + y2 + z2 = 3xyz.

The biggest half-line contained in L is [c,∞] with c ≈ 4, 527 = A+B
√

452
C . So

there’s a gap.
k(α) = lim sup(αn+βn) where αn/βn is the residuum of the CF approxima-

tion. Replace lim sup by sup and get the Markov set M ⊃ L. Now have some
results on HD(M \ L). Can interpret these sets as maximum heights (resp.
asymptotic heights) in a modular space. Nice film demonstrating these.

2.4 Ventakesh (Fields): Cohomology of Arith-
metuc Groups

Consider a form like 10x2 − 14xy + 5y2. This is the same as u2 + v2 with
x := v−2u; y := v−3u. All my QFs are +ve definite. All forms are equivalent to
ax2 + bxy + cy2, with |b| ≤ a ≤ c. Minkowski generalised to n variables. Image
of Cassels’ Rational Quadratic Forms. The group Γ = S :n (Z) of invertible
integral linear transformation acts on the space S of positive definite quadratic
forms, and we are looking for a fundamental domain, i.e. a region that tessellates
space. The number of faces is at least

∑
Betti(S/T ). kth Betti number is

dimHk(S/T,R). Group cohomology assigns a family of vector spaces to a
group Γ. H1(Γ,R is the space of homomorphisms: Γ→ R.

Example 5 2× 2 matrices with bottom left divisible by 11.

If S/T is a s a complex algebraic variety, we know more in this case. A precise
conjecture, based on a small number of examples which all check out.

For x3 − x − 1 (mod p) the algorithm computes the discrete log logp x in
terms of a derived Hecke operator.

2.5 Chenyang Xu: Interaction between singu-
larity theory and the minimal model pro-
gram

Given x ∈ X a singularity, we would resolve it: find a morphism f : Y → X
with Y smooth, and a lower-dimensional Z ⊂ X such that f is isomorphic over



X \ Y , Then X ad T are birational. In characteristic 0 this is always possible
by Hironaka’s Resolution of Singularities Theorem. However, when dim ≥ 3,
there is often no “best” (i.e. minimal) Y .

Given a normal space X, and Q-Gorenstein (i.e.the class given by KX is
torsion in the class group). Let f : Y → X be a resolution, such that Ex(f) is
a simple normal crossing. Write KY/X =

∑
i ai(X : Ei)Ei then we say X is

terminal ai(X : Ei) > 0

canonical ]ai(X : Ei) ≥ 0

Kawanata log terminal ]ai(X : Ei) > −1

log canonical ]ai(X : Ei) ≥ −1

for all i.
Each class is preserved under the minimal model. Giving an explicit classi-

fication is too complication for dim > 3, We can do the same for a pair (X,∆).
Define a regular cell complex D(∆) to characterise how the Ei intersect each

other. For each Ei we put a vertex vj for each component Ei ∩Ej , an edge for
each component Ei ∩Ej ∩Ek etc. So dimD(∆) ≤ dim(X)− 1. We have shown
D(∆) does not depend on X ...: call it DMR(x ∈ X).

Theorem 13 D(Ex(f)) admits a strong deformation retract to DMR(x ∈ X).

There is a general local–global principle that there is a correspondence between
klt singularities and Fano, strict lc singularities and Calabi–Yao.

Let E over X have a(E) = −1, then we can find a model g : Z → X such
that g∗(KX + c · V (f)) = KZ + c · g−1

v (V (f)) + E, and restricting to E we get
a log Calabi–Yao pair.

Theorem 14 If I ⊂ [0, 1] is a set satisfying DCC, then

• V (l, n) := (volKx + ∆)) where dim(X) = n, coefficients of ∆ and in I,
(X,∆) is log canonical) form a DCC set. In particular V (l, n) ∩ (0,∞)
has a minimum.

• There exists N = N(l, n) such that if Kx + ∆ is big . . .

Conjecture 8 (Stable Degneration) Given any klt singularity x ∈ X up
to a rescaling there is a unique (up to scaling) minimiser v ∈ V alX,x over
˘vulX,x which is quasi-monomial, with a finitely-generated associated graded ring
R0 = grv(R) :=

⊕
. . . .

We know existence (Blum), and (us) semi-stability implies minimising. Answer-
ing a conjecture of Donaldson–Sun, uniqueness among K-semistable valuations.
The missing part is that minimiser is quasi-monomial, and the associated graded
ring is finite-dimensional.

Question 5 How to check an example of a Fano variety if K-(semi,poly)stable.

Question 6 Using K-(semi,poly)stability to construct a projective moduli space
of X-polystable Fano varieties.



2.6 Kurdyka/ From continuous rational to reg-
ulous functions

Example 6 (Cartan’s umbrella) x3 − z(x2 + y2) = 0. Looks like two com-
ponents, but not distinguishable.

So we are searching for real analogues of complex utopia: arc-symmetric sets
and arc-analytic functions.

A subset E ⊂ Rn is arc-symmetric if for every analytic arc γ : (−1, 1)→ Rn,
with γ((−1, 0)) ⊂ E , we have γ((−1, 1)) ⊂ E.

Theorem 15 (BierstoneMilman) Let X be a smooth real algebraic set. A
semialgebraic function f : X → R is arc-analytic iff it is blow-Nash.

Let X ⊂ Rn be a real algebraic set and f : W → R be a function defined
on W ⊂ X. f is ( regular) at w ∈ W if there are two polynomial functions p, q
on Rn . . . .

Let Y be the Zariski closure of W in X. A rational function R on Y is
said to be a rational representation of f if there is a Zariski open dense subset
Y 0 ⊂ Y \ Pole(R) such that f |W∩Y 0 = R|W∩Y 0 . Then the following conditions
are equivalent . . . .

Example 7 (Kollár) S := (x3 − (1 + z2)y3 = 0) ⊂ R3 and let f : S → R.
f(x, y, z) = (1 + z2)1/34. Sing(S) = z-axis and f(x, y, z) = x/y on S \ z-axis.
f is continuous and has a rational representation, not regulous since f |z-axis
is not rational.

We say f is curve-regulous if for every irreducible algebraic curve C ⊂ X the
restriction F |W∩C is regulous. Arc-regulous if this happens in neighbourhoods.
Say k-regulous of regulous and Ck. LetRk(U) be the ring of k-regulous functions
on an open U ⊂ |Rn. Such functions are semi-algebraic and arc-analytic. Rk(U)
is not Noetherian of n ≥ 2. ∞-regulous = regular, so we only consider k
finite.A ⊂ |Rn s constructible f it belongs to the Boolean algebra generated by
the algebraic subsets of Rn. The Euclidean closed constructible subsets of Rn

are precisely the closed sets of a Noetherian topology.

Theorem 16 (Fichoi et al, 2015) For a subset E ⊂ Rn, take

1. E = Z(I) for some ideal I of Rk(Rn)

2. E = Z(f) for some function f ∈ Rk(Rn)

3. . . .

Also let I be an ideal of Rk(Rn). If f ∈ Rk(Rn) vanishes on Z(I) then some
power fm belongs to I.

The last line is almost a Nullstellensatz.
Then Cartan’s Theorems A and B are available for k-regulous sheaves. Note

that this isn’t obvious: they fail in the obvious (?) translation.



Conjecture 9 Let X be a compact real algebraic set. For a continuous map
f : X → §p, the following are equivalent:

1. f can be approximated by regular maps;

2. f is homotopic to a regular map.

2⇒ 1 is the hard part.

Conjecture 10 For any pair (np) of positive integers, each continuous map
Sp → Sp can be approximated by regular maps.

Theorem 17 (Bochnak+K) These two are true when p = 1, 2, 4.

2.7 Global symmetry from local information: the
Graph Isomorphism Theorem: Babai

This is something that essentially doesn’t happen, yet here it does. Isomor-
phism is a bijection of vertices that preserves adjacency. Trivial bound n!.
exp(O(

√
n log n)) [Luks1983] – moderately exponential. Group theory is the

asymptotic theory of permutation groups, combinatorics of highly regular ob-
jects (Kirkman, Bose, Schur, Higman etc.). This is a project I have worked
on for more than three decades, but Eureka 14 September 2015. Graphs are
universal over all explicit finite structures, so semigroups is efficiently reducible
to graph isomorphism. P ⊂ NP ∪ coNP . GI ∈ NP , but not known to be in
coNP. factoring ∈ NP ∩ coNP [Pratt1975]. NP-complete — “the hardest NP-
problems”. 30-colourability, Hamiltonicity of graphs. But there are problems
(like GI) which are not known to be in P, or to be NP-complete.

Groups: Sym and Alt. Gx = {σ ∈ G : xσ = x} (stabiliser). Let φ : G →
Alt(Γ) be an epimorphism. Suppose G ≤ Sym(Ω). x ∈ Ω is affected by φ if
φ(G(x) ∈ Alt(Γ).

Theorem 18 (Unaffected Stabiliser Theorem) Let U be the set of unaf-
fected elements of Ω and G(U) the pointwise stabiliser of U . Then . . . if
m ≥ 2 + log n (strict!).

Therefore at least one point is affected. Uses CSFG via Schreier’s Hypothesis:
the outer automorphism group of every finite simple group is solvable. Not
using this ends up with m > polylog(n).

PATRIOTMENU is an anagram of PERMUTATION. G-isomorphism if the
permutation comes from G. exp(Õ(

√
n)) [Babai1983], now quasi-polynomial.

Note that coset intersection, centraliser in coset etc. are equivalent to string
isomorphism under Karp reduction. Note that a Graph with n vertices can be

encoded in a string of length

(
n
2

)
.

D+C: a moderate number of significantly smaller (≤ 90%) instances. Branch-
ing factor q(n). If q is quasipolynomial, so is f .



We can get a canonical by degree, refined by colours of neighbours until sta-
ble. This is a functor from Graphs to coloured sets. Weisfeller–Leman refine to
ordered pairs by counting triples with shared base and same colour composition.
There’s a k-version of this. [ImmermannLaner1980s]. Computable in nΘ(k) But
there are CFI pairs of non-isomorphic graphs indistinguishable by k-ary WL
unless k = Ω(n).

Theorem 19 GI for vertex-coloured with bounded colour classes is in Las Vegas
polynomial time.

This actually solved CFI graphs.
“Isomorphism of graphs of bounded degree can be solved in polynomial time”

[Luks1980] really used deep group theory. This works by string isomorphism on
the composition factors.

• reduce to orbits

• descend to a subgroup (multiplicative cost is the index of the subgroup)

• typically descent to the kernel of action on blocks of imprimitivity.

The Luks bottleneck is Sym/Alt (Giant), see [Cameron1981] — CFSG. Then
want either

• confirm AutG(x)→ Giant(Γ) or

• break symmetry of Γ; find M ≤ Sym(Γ) s.t. . . .

So use unaffected stabilisers to find canonicalk-ary structure on Γ where k =
3 − log2 n. Then use Split-or-Johnson. Johnson Graph J(s, t) with s ≥ 2t +

1. Vertex set =

(
t
t

)
.. We analyse CC(coherent configuration) which are

colourings of pairs stable under WL.

2.7.1 Local Certificates

Take a test set T ⊂ Γ. |T | = k > 2+log2 n. Restrict G to GT . Sat=y “T is full”
if AutGT

(x) → Giant(T ). So we either have a fullness certificate, or converse,
which is M(T ) ≤ Sym(T ) s.t. . . . .

Local Certificates Algorithm

• W := ∅

• while (condition

• W := Aff(A(GT ,W )) points affected by current A(GT ,W )

• update A(GT ,W )

• end while



Why do we stop?

1. A(GT , H) becomes too small. Then M(T ) := φ(A(GT ,W )) and I have
non-fullness

2. window stops growing. Then we have fullness, and we have deduced this
global property from local information.

2.8 Chang: Conformal Geometry on 4-manifolds

1 (Mn, g) a compact Riemannian manifold. A metric ĝ is conformal to g if
ĝ = ρg for some ρ > 0. Set ρ = e2w, and gw = e2wg. Conformal means
“angle preserving”. In Geometric Analysis we use PDE etc. methods to study
problems such as the sign of the curvature.

2.8.1 Introduction Yamabe problem

On a compact surface (M2, g), Kg the Gaussian curvature. Gauss–Bonnet for-
mula. Uniformisation Theorem classifies orientable (M2, g) according to sign of∫
M
Kgdvg. It’s really

-1 torus

1 ?

0 sphere

One can solve Kgw = c by a variational approach and Moser’s function Jg. Also
Ray–Singer–Polyakov formula.

On Mn, g) with n ≥ 3, the conformal Laplace operator Lg = ∆g + cnRg
when cn = n−2

4(n−1) and Rg is the scalar curvature. Under a conformal change

ĝ = u4/(n−2)g with u > 0, the Lgu = cn . . .

2.8.2 Compact closed 4-manifolds

Gauss–Bonnet–Chern formula:

8π2χ(M)

∫
m

1

2
|Wg|2dvg +

∫
m

1

6
(R2

g − 3|Ricg |2)dvg,

where χ is the Euler characteristic of M , Wg the Weyl curvature, Rg the scalar
curvature and Ric the Ricci. W measures the obstruction to being conformally
flat. On (mn, g), Wg ≡ 0 in a neighbourhood of a point iff g = e2w . . .. Let
σ2 = 1

6 (R2
g − 3|ricg|2) and conclude that g →

∫
M
σ2(g)dvg is also an integral

conformal invariant. Then Schouten tensor A := Rigg − R
2(n−1)g. On (M4, g)

σ2(g)− σ2(Ag) =
1

6
(· · · ).

1Emmy Noether lecture. She gave the first ICM Plenary by a woman at ICM 1932 —
Zürich.



To solve the “generalised Yamabe” problem. σ2(Agw) = const. This is a fully
non=linear equation.

When n = 2 we have Jg, and n 6= 4 we have F2. For n = 4 we need new
ideas. σ2 is linked to the Panietz operator and Q-curvature. Panietz operator
(1983) on (Mn, g) for n ≥ 5,

Pn4 = (−∆)2 + δ(anRg + bn Ric)d+
n− 4

2
Dn

4 .

He used ĝ = u
4

n−4 g, hence the restriction. Pn4 (1) = n−4
2 Qn4 so Qn4 is immediate.

Branson pointed out that we can define these when n = 4. gw = e2wg.
2Qg = − 1

6δRg + σ2(Ag). Following Moser, we define . . . . Theorem: g ∈ A
iff there is some gw ∈ [g] . . . . There is also a uniqueness result. If g ∈ A and not
S4, then gw ∈ [g] with gw ∈ . . .. par There are also diffeomorphism theorem. If
. . . , then M is diffeomorphic to either S4 or RP4. Use the Signature formula

12π2τ =

∫
M4

(||W+||2 = ||W−||2)dv

where τ = b∗2 − b−2 . Then there’s a perturbation theorem on CP2. It would be
an ambitious program to find the entire class of 4-manifolds with metrics in A,
and classify their diffeomorphism types by the relative size of their conformal
invariants.

2.8.3 Conformal invariants on compact 4-manifolds with
boundary

In 2D for (X2,M ∗ 1, g) where the metric g is defined on X2 ∪M ∗ 1, we have
a Gauss-Bonnet formula

2π . . . .

We construct (P3, T ) where P3 has bidegree (0, 3). In general the formula
for T is lengthy, but when (X4, g) is with totally geodesic boundary, that is the
second fundamental term vanishes, then T = 1

12
∂
∂nR.

2.8.4 Conformal Compact Einstein manifolds

Given a compact (M4, h) when is it the boundary of a conformally compact
Einstein manifold (Xn+1, g) with rwg+|m = h.

On a CCE manifold special r can be chosen such that r2g+ is with totally
geodesic boundary.

Example 8 On (Rn+1
+ ,Rn, gH)

There are many existence (and non-existence) results.
There is a ‘renormalised volume” [Maldacena1998]. For n even,

V olg+({r > ε}) = series in ε+ V · · ·+ L · · · .



2.8.5 Compactness results for Einstein manifolds of di-
mension 3+1

Question 7 Does the entire class of metrics (S3, h) with positive scalar curva-
ture allow CCE filling in B4?

The class is path-connected by a result of [F.Marques2012].
The difficulty lies in the existence of a non-local term.

g := r2g+ = h+ g(2)r2 + g(3)r3 + g(4)r4 + · · ·

where . . . .
For convenience we choose h = hY ∈ [h], the Yamabe metric. But what is a

good choice of g. gY doesn’t work as we can’t control its behaviour.

Example 9 (B4, S3, g), g∗ = e(1−(x)2) . . .

We get a bunch of equivalent conditions. Then there is some ε > 0 such that
for (B4, S3, h), if ||h− gc||C∞ < ε, the CCE filling of (B4, S3, h) is unique.



Chapter 3

4 August 2018

3.1 Luigi Ambrosio: Calculus, heat flow and curvature-
dimension bounds in metric measure spaces

Many recent developments rest on Eulerian (gradients, Laplacians, Hessians)
versus Lagrangian (1D curves) duality. We tend to overlook this in Calculus II.

Example 10 The ODE γ̇t = b(t, γt), γ0 = x corresponds in Eulerian terms, to
∂tu + div(bu) = 0 (t, x) ∈ R × X. This connection when b is not smooth,
was studied by [DiPerma–Lions] then in general metric spaces by us.

Example 11 Compressible Euler equations in fluid mechanics

∂tv(V · ∇)v = −∇p; div
x
v = 0

corresponds to
γ̈t = −∇− · · ·

3.1.1 I: Weakly differentiable functions

Lagrangian minimisation:

min

{∫
a

∗bL(t, γyγ̇t)dt : γa = A, γb = B

}
.

There are three approaches

1. distribution;
∫
Rn f∇φdx = −

∫
Rn Fφdx

2. approximation by smooth functions (Lipschitz in our setting).

3. identify by prescribing behaviour on “p-almost all” curves. Introduced by
Beppo Levi (1901).

f(γ1)− f(γ0) =

∫
γ

F

27



for p-almost every curve γ : [0, 1]→ Rn.

Theorem 20 In any m.m.s. (X, d,m), the three definitions, properly adapted,
are equivalent and define the same “gradient”.

The theory of optimal transport, pioneered by [Monge1781] then [Kantorovich1939]
has been confined to probability and linear programming. Now we see more con-
nections. The new ideas are

• New nonlinear interpolation between probability measures

• new geometric way of looking at the space of probability measures.

Monge’s formulation

Let µ.ν ∈ P(X) and c : X × X → [0,∞) a Bole cost function. The min-
imise

∫
X
c(x, T (x))dµ(x) among all admissible transport maps pushing µ tp ν.

µ(T−1(E)) = · · · .

K’s formulation

Minimise
∫
X2 c(x, y)dΣ(x, y) among all couplings Σ ∈ P(X ×X) of µ and ν, so

|σ(A×X) = µ(A) etc.

McCann’s displacement interpolation

If T is an optimal transport maps in P2(Rn), then

µt := (Tt)#µ ∈ Geo(P2(Rn))

and Tt is optimal. With this, McCann proved Renyi is optimal.

Dynamic formulation

More generally we focus on geodesic spaces.. LetGeo(X) := {constant speed geodesicsγ :
[0, 1]→ X}.

Otto Calculus

∂tµ + div(vµ) = 0 the continuity equation, Otto linked infinitesimal variations
s ∈ TµP2(R)to gradient velocities v = ∇φ and defined a formal Riemannian
metric. The induced Riemannian distance is precisely W 2

2 (µ, ν). Many effort to
make this rigorous, but it’s still insightful.



3.1.2 Heat Flow

∂tu = ∆u; u(0, ·) = u0;
∫
Rn u0(x)dx = 1.

S(µ :=

{∫
Rn ρ log ρde if µ = ρLn

+∞ otherwise

This gave rise to many more interpretations of conservative PDEs. A key prop-
erty is that the roles of d and m are nicely decoupled, unlike was happens for
D. In m.m.s. (X, d,m),

Entm(µ) :=

{∫
X
ρ log ρdm if µ = ρm

+∞ otherwise
for . . .

3.1.3 Curvature/Dimension Bounds

Bounds on the Ricci tensor are at the heart of many functions/geometric in-
equalities. Ricm := Ricg +∇2V ≥ Kg for m = e−vvol, and the upper bound N
on dimension.

Synthetic theories (going beyond the weighted Riemannian setting) emerge
from diffusion operators and . . . . Need Gromov–Hausdorff convergence for met-
ric spaces. By Gromov’s precompactness theorem, geometrically m.m.s. can
arise as (measured) Gromov–Hausdorff limits of Riemannian manifolds Mn.

3.1.4 Curvature–dimension

Bakry–Émery theory. Bochner identity

1

2
∆g|∇f |2 − 〈∇f,∇∆gf〉 = |Hess(f)|2 + Ricg(∇f,∇f).

In the case M = ∞ we get gradient contractivity and Logarithmic Sobolev
inequality as well as Transport inequalities.

In the Riemannian setting, the link between Ricci curvature and displace-
ment convexity in P2(X) goes back to work of many. Relies in (K,N)-concavity.

A key idea is to average these inequalities along the geodesics selected by
the optimal transport problem..

The CD theory (unlike B–É) has stability w.r.t. measured Gromov–Hausdorff
convergence and its variants. B–É is more “Riemannian”.

Theorem 21 Assume that (Xn, dn,mn) are CD(K,∞) and m-GH converge to
(X, d,m). Then the Cheeger energies, heat flows and Laplacians all converge as
well.



3.2 Lai-Sang Young: Dynamical systems evolv-
ing

Time evolution of systems. Began with Poincaré. Geometric/qualitative theory
of ODEs. Foundations: Ergodic theory (probabilistic approach), KAM theory
for quasi-periodic systems, Hyperbolic theory for chaotic systems. From the
1970s on, the field has matured and diversified. So this lecture is five snapshots
of my work

3.2.1 Entropy, Lyapunov exponents and fractal dimension

Cantor set Λ is invariant set of f(x) := 3x (mod 1).

HD(Λ) =
log 2

log 3
:

2=degree of branching complexity

3=derivative of map
. (3.1)

Entropy is a measure of predictability of dynamical events. Let α = {A1, . . .} a
partition of X. The degree of uncertainty H(α) = −

∑
i µ(Ai) logµ(Ai).

hµ(T ) = sup
α

[
lim
n→∞

H(a|
n∨
i

T−1α

]
.

Lyapunov exponents are the rates of separation of nearby orbits.

λ ∗ x, v) = lim
n→∞

1

n
log |Dfnx (v)|.

Theorem 22 There are “partial dimensions” δi such that hµ(f =
∑r
i=1 λiδi

and dim(µ|Wu) =
∑r
i=1 δi. This generalises (3.1).

3.2.2 Correlation decay and geometry

Geometry may be hyperbolic

(
2 0
0 1

2

)
, elliptic

(
cos θ − sin θ
sin θ cos θ

)
or parabolic(

1 1
0 1

)
,

Known since the 1970s that for purely hyperbolic equations, the decay was
exponential. Markov tower construction provides a unified view for a class of
dynamic systems with identifiable source of nonhyperbolicity.

3.2.3 Observable chaos

Chaotic behaviour = instability = rapid separation f nearby orbits = positive
Lyapunov exponents. By “observable” we mean positive Lebesgue measure.
Saddle fixed points are not observable for example. Strange attractors [but
note this phrase has no formal agreed definition] are observable.



SRB constructed a measure µ s.t. for every continuous φ : U → R,

1

n

n−1∑
i=0

φ(f ix)→
∫
φdµ

for Lebesgue a.e. x ∈ U . Existence of such measures provide observable chaos.
Consider a generic supercritical Hopf bifurcation. A pair of complex eigen-

values cross the imaginary axis at µ = 0. Define twist number τ = =k1(0)
−<k1(0) .

where ż = k0(µ)z + k1(µ)z2z + k2(µ)z2z2 + · · · .

Theorem 23 Setting . . . Then for |τ | · ||πcκ(0)|| ·µ−1/2 large enough, there is a
positive Lebesgue measure set of T >> 1 for which the flow map Φm,T has . . . .

This can explain shear-induced chaos, where the chaos is induced by external
forcing magnifying shear in nonchaotic systems.

3.2.4 Applications 1: dynamics of infectious diseases

This looks at networks divided into nodes which are healthy (and suscepti-
ble), infected etc. Question is effectiveness of response. Not directed at any
specific disease. Suppose the strategy is isolation, with imperfect implemen-
tation. Identify affected individual with probability p, τ days after infection.
Quarantine duration κ, and need to add (have done) latency etc. Let S/I/Q
= fraction health/infected/quarantine. System of delay–differential equations.
β=transmission rate and gamma is recovery rate. Get a C1 semi-flow on
C = C([−τ − κ, 0],R3). r = βm

γ is the disease reproductive number. r < 1
implies disease dies out.

Theorem 24 Suppose (S, I,Q) = (1, 0, 0). Contained if ε > 1 − 1
r where ε =

pe−γr. In particular need p > pc = 1 − 1
r . τ < 1

γ log p
pc

tells what speed of
quarantine we need.

Table for various diseases. Note for smallpox, pc = 0.79. Can look at endemic
states, but in practice p, τ improve over time.

3.2.5 Applications 2: Dynamics of the brain

The brain is a structured dynamic network of 1011 neurons. I also expect
biological systems to provide the sort of impetus that celestial mechanics did
100 years ago. I look at primate visual cortex. Eyes connect to LGN to visual
cortex. Retina and LGN are tiled with cells that are excited when receptive field
goes from dark to light (or v.v.). Once in the cortex the interaction between
neurons first produces edges, and then recognises shapes, motion etc. We only
have partial knowledge of this dynamical system, so we have an inverse problem
of deducing the system from experiments. There’s a major area of networks
of interacting dynamical systems. Chaos doesn’t make much sense, should look
for emergent phenomena. We should also look at competition of subpopulations
with “opposing” actions. This is predator/prey and much else.



3.3 Peter Scholze: Period maps in p-adic geom-
etry

Introduction: Arrived at Bonn U. aged 19, BSc in 18 months and MSc in further
18.

Does a (system of) polynomials have integer solutions. We can do R, and
(mod p) (and then p-adic). Classic tool is to study these. p-adic geometry
started in the 1960s by John Tate.

A period map takes the moduli spaces of curves etc, into a Flag Variety,
e.g. Pn, Gr(d, n) etc. A complicated map from a complicated space to a simple
space.

3.3.1 Over C

We have a Hodge structure (H,H × C = F 0 ⊇ F 1 ⊇ · · · ). Hi(X) ⊗Z C '
Hi

R(x) = Hi(X,OX 7→ Ω1
X 7→ · · ·ΩdX)).

Example 12 (Elliptic Curves) Compact Riemann surface of genus 1. Sub-
groups of C quotiented out by the two periods. Period domain P1(C) \ P1(R)
and fundamental domain.

Shimura varieties.

3.3.2 Period maps for p-adic

Locally, over C the period maps had power series, and the coefficients (if nice)
were rational or algebraic. So we can consider these p-adically. They only
converge on small discs. There is no global maps that unify these.

Example 13 (Elliptic Curves) Fix E0 over Fp.

D ' S = {E/Cpwith reductionE0{⊂ {allE/Cp}.

If E0 is ordinary, log maps to A1
Cp
⊆ P1

Cp
. For supersingular . . . .

Again we remove P1(base), this gets Drinfeld upper half-plane.
There is a duality of local Shimura varieties. (G,µ, b) ∈ B ∗ (G,µ) the basic

(not supersingular) case. The dual space is (Ǧ, µ̌, b̌)

3.3.3 p-adic Hodge Theory

Always degenerates, without Kähler. Problem: Hn
R(x) 6∼= Hn

et(X,Zp) ⊗Zp Cp

(same dimension, so isomorphic, but not canonically so).
The there is a Hodge–Tate spectral sequence

Hi(X,ΩjX)⇒ Hi+j
et (X,Zp)⊗Zp

Cp



3.3.4 Existence of global period maps

Hodge–Tate period maps. πHT : S̃ → Flag.

Example 14 (Elliptic Curves) E/Cp + H ∗ 1(E,Zp) ∼= Z2
p →πHT P1

Cp
. If

you’re on an Igusa curve, the image is constant for a long time, but not always.

This leads to a p-adic of Riemann’s theorem. This says that the Hodge–Tate
period map is “elliptic curves E 7→ p-divisible group”.

“No torsion in cohomology of Shimura varieties” (not literally true!). The
“generic” part of Hi(ShΓ,Fl) is concentrated is degree dimShΓ. “generic”
means we localise at “generic” maximal ideal of the Hecke algebra.

3.3.5 Galois Representations

For any system m of Hecke eigenvalues in Hi(XΓ,Fp) there is a unique contin-
uous semisimple Galois representation pm : Gal(F/F)→ GLn(Fp).

3.3.6 Converse Theorem

Theorem 25 Let F be a CM field.

1. Let E be an elliptic curve over F . Then Sato–Tate conjecture, meromor-
phic continuation of L(E, s)

2. Let Π be weight 2 cuspidal automorphic representation for O2/F implies
Ramanujan conjecture

3.4 Special Event

Note the theft of a Fields medal. Videos to police and local media. SM presented
a replacement Fields Medal, noting ironically that the GA had just decided that
no-one could receive more than one Fields medal.

Recipient: if I were destroyed by such small events I wouldn’t be here. One
side-effect has been that many more people have heard of the Fields medal.

3.5 Figalli: Property of Interfaces in Phase Tran-
sitions via Obstacle Problems

Example: ice melting.

Problem 3 (Stefan) Cylinder containing ice and water, with a free boundary.
Also boundary conditions. θ(t, x) is temperature, assumed 0 is the ice. ∂iθ = ∆θ
i the water. ẋ(t) = −∇θ on the boundary — Stefan condition

Duvaut’s transform: u(t, x) =
∫ t
o
θ(s, x)ds Then u ≥ 0 and ∂tu ≥ 0. u solves

the parabolic obstacle problem ∂tu−∆u = −χ(u>0).



Q1 Regularity of u. Can we classify the limits of these functions. x0 is a regular
point if, up to a sqq (?) of radii . . . . Also singular points. Is that all?

Q2 Regularity of the interface ∂(u > 0).

To simplify the analysis, we look at the stationary problem.

3.5.1 Elliptic obstacle

∆u− χ(u>0);u ≥ 0. This minimises minv≥0

{∫
ω

1
2 |∇v|

2 + v : V |∂Ω = f
}

.

Theorem 26 (Weiss1999) Let n = 2 Then

||u(· · · ) ≤ Cr2

Recently extended to n ≥ 2 but < Cr2| log r|−s.

Theorem 27 (Us) Use a different method.

• For n = 2 Σ1 ⊂ C2 curve

• for n ≥ 3

(a) Σn−1 = Σgn−1 ∪ Σan−1 where

• Σgn−1 [“g=generic”] is also a subset of C1,1 surface

• Σan−1 [“a=anomalous”] is small.

(b)

Does Σan−1 actually occur? Also are the estimates best possible.
Answers Yes/Yes.

Example 15 Consider an axially-symmetric, reflection-symmetric problem. At
the origin, C1 is the best you can get, not C1,α for any α.

3.5.2 Parabolic Obstacle

This looks like a trivial extension, but we are still struggling.

Theorem 28 (In progress) Let u solve the parabolic obstacle problem in R+×
Rn. Set Σt := {singular points of ∂ . . . }.

3.6 Raghavendra/Steurer: high-dimension esti-
mation via sums-of-squares proofs

see proceedings article with ??



3.6.1 Steurer

Problem 4 (Estimation) Given output Y of a randomised process with input
X∗, to recover (approximately) X∗.

Example 16 (Clustering) Given a lot of Yi, each of which is a perturbed xj,
recover the xj : j = 1 : m. WE are given m, but not the mapping Y 7→ X.
There’s a nice matrix formulation, PCA says X∗ is a rank-1 matrix etc. Note
generalisation to Tensor PCA/

Best known guarantees until recently:

statistical Θ(log k) but exponential time.

computational O(k1/2) polynomial time.

Meta-algorithm: sums of squares. There are strong limitations of SOS for tensor
PCA, which might imply that the gap is inherent.

Let Ω ⊂ Rn be the set of possible signals (inputs). Given Y = X ∗+W fro
X∗ ∈ Ω and W Gaussian. Need this to be ε-identifying, i.e. the true X∗ is at
most ε-away from the true one.

Let S = {X ∈ RN |p1(X) ≥ 0, . . . , pm(x) ≥ 0}. A degree-` sum of squares
proof of the statement ∀X ∈ S, q(X) ≥ 0, by expressing q =

∑
rj(x)2

∏
pi of

degree at most `.
In the context of clustering, our polynomial constraints are W = Y −X ∈

Rd×n “looks Gaussian”, i.e. ∀t ≤ ` the moments match.
The meta-algorithm says that the existence of low-degree proofs directly

implied efficient d`
2

algorithms. So make ` ≈ log n. A key ingredient is the
stability of the mean of the Gaussian under restriction.

3.6.2 Raghavendra: a lens on average case complexity

Tensor PCA. Given a 4-tensor T : [n]4 7→ R, T = λ · x⊗4 + W , and the
goal is to recover x ∈ Rn. Depends on signal–noise ratio, and conjecture a
sharp transition. A sum-of-squares lower bound almost always implies no known
algorithm. For tensor PCA, recently shows that degree of SoS depends on SNR.

A natural way to recover x is to maximise T (x) =
∑
i,j,k,l xixjxkxl =

〈T, x⊗4〉. A related problem is injective norm certification. Given a random
tensor can we bound how much signal it might have.

Standard ε-net algorithms shown ||T ||inj = O(
√
n), but this isn’t efficient:

best we can do efficiently is O(n). This is via x⊗2Ax⊗2, where A is a n2 × n2

matrix.
Use symmetry of x⊗2.
More simply

1. Compute a M (k) whose entries are polynomials of input

2. Compute the spectrum of M (k)



Theorem 29 If an SoS algorithms succeeds robustly, then the simpler algo-
rithm succeeds.

This can be used to produce lower bounds. This has been done by hand, e.g.
for random CSPs and k-clique.

Pseudocalibration

Don’t forget the planted distribution. Here the SOS is feasible, as we have
planted the solution. So we have a function F : tensor→ solution. Approximate
it by low-degree polynomials, and apply to the null case.

This recovers many existing constructions. But it’s all conjectural.

Conjecture 11 If low-degree < D SoS semi-definite algorithms distinguishes
two distributions, iff low-degree polynomials degree D log n) do that.

3.7 Poonen: Heuristics for the Arithmetic of El-
liptic Curves

Work with many others.
y2 = x3 + Ax + B properly scaled over Z. ht(E) = max(|4A3|, |27B2|).

E≤H := {E : ht(E) ≤ H}. |E≤H | ≈ H5/6. MW theorem, and torsion is fully
understood [Maz77]. Conjecture finite rank initially, but Cassels queried this.
[RS00] would imply quadratic twists of a fixed E have rank ≤ 8. But there are
greater ranks. [Granville2006publ2014] suggested all but finitely many twists
have r ≤ 7. [Watkins2015] suggests all but finitely many are ≤ 21.

We produce the same result by a very different method. We are trying to
get a model for the complete package (rank, Selmer, Shafarevich–Tate groups).

0→ E(Q)

nE(Q)
→ Seln(E)→X[n]→ 0.

Setting n = pe and taking a limit gives results.

Conjecture 12 The probability for the density of dimSelpE = s is
∏
j≥0(1 +

p−j)−1
∏

j = 1s p
pj−1 .

Compatible with all known results. But this is only an upper bound. Should
look at Selpk and its limit.

0→ E(Q)⊗ Qp

Zp
→ Selp∞ →X[p∞]→ 0.

3.7.1 Models for X[p∞]

1. Define A ∈Mn(Zp)alt



2. view each A

3. Sample A

4. take the distribution of coker(A).

5.

Compatible with Goldfeld conjecture: 0 50%, 1 50%, > 1 0%.

3.7.2 The Model

1. choose n to be an integer of size about η(H) of random parity.

2. Choose random AE ∈Mn(Z)alt,≤X(H)

3. Define random variables X′
E := (cokerA)tors and rk′E = rkZ kerA

* These should model X(E) and rkE(Q) respectively.

With probability 1, this gives us H20/24 for rank 0,1, H19/24 for rank 2 etc. and
Ho(1) for rank 21, and only finitely many for rank > 21.

Elkies can prove infinitely many of rank ≥ 19, and one of rank 28.

3.7.3 Fix torsion subgroup?

Then we can use this model as well.
For function fields the rank can be arbitrarily large. For number fields, can

be arbitrarily large (but maybe still finite for any fixed field). Example are
anticyclotomic, or multiquadratic fields. These curves all come from subfields,
rather than truly defined over the large field. If we exclude these, then it might
still be true.

3.7.4 Higher dimension

Fix dimension and degree of number field. MW still applies.
Fix g. By restrictions of scalars and Zarhin’s trick, one reduces to considering

one algebraic family Fg of principally polarised abelian varieties over Q. Then
define some height. The number of such varieties is bounded by a polynomial
in H. We assume there’s a similar algebraic model, and if it applies, the same
model works.

3.8 MoMath etc.

Various talks. MoMath is only one in North America. They actually brought
two square-wheeled tricycles which are on tour in Brazil.



3.9 V.V. Williams: A Fine-Grained Approach
to Algorithms and Complexity

[Wil18]1 The general question is “how fast can we solve problems in the worst
case”. Tf,A(n) is the maximum number of basic operations that algorithm A
needs to compute f on inputs of size n. O(n) is asymptotically optimal assuming
you’re going to read the input. 1956 Letter Gödel to von Neumann asked how
strongly one could do better than exhaustive search. Despite all the research
elsewhere, in some areas not much progress for many years.

Example 17 (k-SAT) m clauses, n variables. Basic search is 2n. Best known
are O

(
sn−

cn
k md

)
Example 18 (Longest Common Subsequence) Given two strings on n let-
ters, find a subsequence of both strings of maximal length. Applications in ge-
netics. Best known is O(n2/ log2 n).

Definition 1 A hard problem is one for which the obvious algorithm is (bad)
T (n) and there’s no known T (n)1−ε.

Theorem 30 For any c > 1 there are problems solvable in O(nc) bot not in
O(nc−ε) for any ε > 0.

But we don’t know how to do this for most realistic practicable.
PvNP, and most people believe P 6= NP .

Theorem 31 ([Coo71]) For k ≥ 3 k-SAT is NP-hard.

This doesn’t quite meet the goals of Definition 1, but we use a similar methodol-
ogy. My hardness hypothesis will be that H requires h(n)1−o(1) time on inputs
of size n on a RAM.

Then I show that an O(q(N)1−ε) algorithm for problem Q would imply a
h(n)1−δ) for H.

Conjecture 13 (ETH) Exponential Time Hypothesis. There exists a δ >
0 such that 3-SAT cannot be (worst case) solved in < 2δn time. Call this least
δ s3.

Conjecture 14 (SETH) Strong Exponential Time Hypothesis. limn→∞ sn =
1.

Three problems: Orthogonal Vectors, 3Sum and ASPS [All Pairs Shortest
Paths].

1https://eta.impa.br/dl/194.pdf.

https://eta.impa.br/dl/194.pdf


3.9.1 Polynomial Many-One Reduction

A is reducible to B is there is a polynomial time R that transforms any instance
x of A into R(x) of B such that A(x) = 1 ⇔ B(R(x)) = 1. But this is coarse-
grained.

Turing reduction: solve A by polynomially many appeals to a B oracle.
Again coarse-grained.

Definition 2 A is (a, b)-reducible to B if ∀ε > 0∃δ > 0 and an O(a(n)1−δ)
time algorithm that can solve A on instances of size n making call to an oracle
for B with query lengths n1, . . . , nk such that

∑
i b ∗ ni)1−ε < a(n)1−δ.

This is basically transitive.
Graph of many problems under this. Many n3, n3 relating APSP to many

other graph problems, including second shortest path. Also “Negative Triangle”
[in a weighted complete graph].

Since 2010 there has been great work in this area. Fine-grained space com-
plexity, also approximability questions. Also what about average case?

Q Matrix Multiplication?

A People believe n2. Such algorithm would do all sorts of things.

Q How close is this to real computers.

A Maybe we need a better model, and you would also care about the constants.

Q These all have integer exponents.

A Not a restriction. There are n2.5 problems as well.

Q-JHD

A The following problem n a graph with coloured vertices: ∃?(c1, c2, c3) :6
∃triangle coloured(c1, c2, c3). This is a super-problem that all three of
mine reduce to.

3.10 Kayal: the quest for a polynomial that is
hard to compute

Formally an arithmetic circuit, where addition gates compute λ1x1+λ2x2. Care
about depth (amount of parallelism) and number of nodes. We know (based on
[Sha49]) that almost all are hard to compute, but we can’t get even close to
this. (n · log d)ω(1) is what we’re looking for. Look at MAJORITY (easy) and
CLIQUE: ∑

S∈

 m
m/2


∏
i,j∈S

xi,j ,



thought to be hard. Also PERMANENT, which is believed to be hard, even
though it’s very like DETERMINANT, which is easy to compute.

IMMnd := Tr(X1Ẋ2 · · · ·Xd) where the Xi are symbolic matrices. There’s
an obvious D&C method on d. Split int chunks of size t = d2/∆, where ∆ is the

desired depth. Size . . . . Part of a general depth-simulation result: sO(d2/∆).

3.10.1 Strategy

Suppose #Steps(f)=nO(1). Then apply depth-reduction,and f =
∑s

Ti where

each Ti is a product of O(
√
d)-degree polynomial and s is nO(

√
d).

Theorem 32 Explicit {fn : N ≥ 1} with n = d2 such that s ≥ NΩ(
√
d).

Close but not quite.
Associate a matrix M(g) to every polynomial g such that rk(M(Ti)) is small,

Linearity M(αf + βg) = αM(f) + βM(g) and rk(M(fn)) is large. We would
need to add a large number of M(Ti) to attain the large rank.

To do this, we find a geometric property GP of V (Ti), and express GP in
terms of the rank of a big matrix. Note that a large upper triangular submatrix
implies full rank. If the columns of M are almost orthogonal, the M has large
rank.

If T is a product of low-degree polynomials, then the variety of a union of
low-degree hypersurfaces, so lots of high-order singularities. Hence V (∂kT ) has
lots of points.

Let V = V (f1, . . .) be a variety, and G` a set of degree-` polynomials. G`(V )
those that vanish at each point of V . Let I`(V ) = {(a1f1 + · · ·+amfm)degree ≤
`} ⊆ G`(V ).

Theorem 33 (Hilbert) If V has dimension r, I`(V ) has asymptotic dimen-

sion

(
n+ `
n

)
−Θ(`r)

But we need to improve on this.

Theorem 34 ([FLMS14,KS15]) IMMn,d with n = d10 then s ≥ nΩ(
√
d).

which is a bit worrying as IMM is easy to compute.
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4.1 Coifmam: Harmonic analytic geometry

C(f)(z) := fΓ(z) =
∫

Γ
f(ζ)
ζ−z . Then S = C(I + C − C∗)−1 where C∗ is a pertur-

bation of C. We want to use these techniques to discover intrinsic coordinate
systems for data clouds.

Think of a million samples o fa molecules. Conceptually, we have a 106×106

matrix, and can look for the eigenvalues. The number we need is (at least) the
number of states we are looking for. These eigenvectors are intrinsic, and provide
a “universal library” of functions for building relevant models.

But a fundamental question is “what is the distance between two subsets of
Rn?”. Classically minmaps ||x− f(x)||. An alternative is via filtering. In terms
of the clouds, machine learning will do nothing: we need to organise the data.
We regard each point z as a question, with C(f)(z) the answer.

4.2 Kronheimer/Mrowka: Knots, three-manifolds
and instantons

Definition 3 A knot K is an embedding of the circle in R3 with no self-
intersections. Links are a set of knots.

Example: 16n-63441, one of 1.3M 16-crossing knots.
Study the fundamental group of R3 \K.

Theorem 35 (Dane’s Lemma) A knot is the unknot iff fundamental group
is abelian.

Hence try to map π1(R3 \K into G with a non-abelian image. We have shown
that SO(3) is a sufficient G: dihedral groups don’t work for 17 knots. In
particular we map meridians to elements of order 2.
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Example 19 (5,7 torus knot) To every meridian curve we associate a point
on 2-sphere RP2. Nice graphics.

Theorem 36 If K is a non-trivial know, the non-RP2 part of the representa-
tion is non-trivial.

4.2.1 Three-manifolds and SO(3)

See instanton Floer Homology.{ρ : π1(M) → SO(3)} gives I(M). These ρ are
flat connections in principal SO(3) bundles over M . We actually work with
SU(2) bundles. But SU(3) → SO(3) has kernel {−1, 1}. Hence [w] is an
obstruction.

For gauge theory, we want all connections, not just flat ones. Flat con-
nections are critical points of Chern–Simons connection: CSA =

∫
M
tr(A ∧

dA + 2
3A ∧ A ∧ A). Gradient flows are instantons, solutions of Yang–Mills

(d/dt)A = − ∗ (dA+A ∧A).

4.2.2 Back to knots

4.2.3 Now looks at spatial graphs

We consider only trivalent graphs. A bridge is an edge such that there exists a
plane which intersects this edge only. WE are interested in bridgeless graphs.
Still look at embeddings into SO(3) mapping meridians to order 2 elements.
Again get a representation variety R(G). Again use Floer’s packaging via Morse
theory to give an “Instanton Floer Homology” J#(G). F.d. vector space over
Z/2. If G is bridgeless, this is non-empty.

These are connected by Tait colourings of the graph (edges) where each
vertex has all three colours. Let Tait(G) be the number of such. The snark is
the smallest graph with no Tait colourings. ρ1 : π1(R3 \G)→ V4 correspond to
Tait colourings, dim J#(G) ≥ Tat(G) for planar graphs.

Conjecture 15 This holds for all graphs.

Conjecture 16 Equality holds for planar graphs.

Note that Conjecture 16 + non-vanishing implies the four-colour theorem. Tait-
colouring the edges is equivalent to four-colouring the regions, and effectively
the mapping between Tait colourings and 4-colourings is the multiplication table
of V . Note that all proofs of the 4CT have required computer assistance.

4.3 Catherine Goldstein: Long-term history and
ephemeral configurations

Poincaré: Mathematics is the art of giving the same name to different things
(Science and Method, 1908); his example was “loop” (? and “uniform conver-
gence”).



Note that 70s/80s, when much of this started, were a time of societal change,
when science was being challenged. Note that how mathematics is circulated,
evaluated have changed. Note that Fermat didn’t write on Diophantus, he wrote
on a commentary on Diophantus.

Also need to reflect on “discipline”, “school’ etc. Looks at original Jahrbuch
classification.

Example 20 Did Charles Hermite invite Hermitian forms? Pictre of the fa-
mous, “reactionary” Hermite. But shows young Hermite, who had dropped out
of Polytechnique as he didn’t want to become a military engineer.

Theorem 37 A definite quadratic forms with n+ 1 variables, determinant D.

Then ∃ n+ 1 integers with 0 < f <
(

4
3

)n/2
D···

Applications to simultaneouse approximation of algebraic numbers. Also proved
that forms of determinant 1 are sums of squares for dim ∈ 2 . . . 6. This was
based on his reading of Gauss’s classification of binary forms. These two were
actually closely related by Hermite. Sent to Jacobi who published these in Crelle.
He wrote to Jacobi, explaining mathematics as a science of classification “just
as descriptive natural history”.

Hermite started with A =
∑

4 x
2
i . Prove Adividesα2 + β2 + 1. This gives a

form of determinant A4,and we apply his theorem.
Then (1855) he considers forms over two complex numbers, Avv0 +BV w0 +

B0v0w + Cww0.
So he didn’t “invent” then: he detected them!

Segre was all his life in Torino, but closely connected to Klein. Many transla-
tions from German were organised by him. Notes of Segre published on web site,
which have examples of Hermitian forms. But only reference is von Staudt Ge-
ometrie der Lage 1847+supplements. Main aim was to remove all measurement.
But this wasn’t complete. However, von Staudt’s work went to Karl Culman (at
ETH’s predecessor) and his book Graphical Statics (draw lines on the blueprint
itself rather than revert to a separate page of calculations). Drawing of Maths
of Eiffel tower.

Risogimento and unification let to both a return to Romano-Greek scientific
roots, but also a growth in engineering schools, and much geometry teaching.
Segre wrote to Hurwitz drawing attention to him work. But note that at this
time abstract geometry was not axiomatised. Hermitian forms were now geo-
metric objects. Immense graph of papers and links (partly citations, but also
choice of journals, citations, etc.

Note the common connections with classification programs.
As well as links etc., we need to understand discontinuities. General theories

(Kuhn, Lakatos) don’t really seem to apply.



4.4

4.4.1

set theory functions
topology continuous functions
differential geometry smooth functions
Algebraic geometry polynomial functions

Affine variety = zero set. We can ask does it have solutions: depends on
the field: t21 + t22 + 1 = 0 for example. We assume now that K is algebarically
closed, and that varieties are irreducible. Vanishing sets of polynomials define
Zariski topology. Rational maps, birational maps. If x ∈ X can assume x on
an anaffice neigbouthood. Birational alalmaps can remove varieties over C,

4.4.2 Algebraic Varieties

Fano: KX anti-ample; Calabi–Yau if Kx if trivial.

Conjecture 17 Each smmoth projective variety is brational to a projective Y
with good singularities s.t.

• Y admits a Fano fibration

• Y admits a CY fibration

• Y is canonicallly polarised.

Known in dimension 1, 2. Then Miminal Model Program (MMP). Problem
is finding Y . A sequence of birational transfromations designed to make the
canonical divisor as positive as possible. divisor contractions or flips. No flips
in dimenson 2, and dimension 3 was Mori’s work.

Conjecture 18 Termination; Abundance (when it stops Y satisfies Conjecture
17)

Known fro 1..3, and ≥ 4 in the general case.
For a smaooth projectiveW , the vector spacesH0(mKW ) = {rational functionsα|Div(α)+

mkW ≥ 0}∪{0}. say so much about the geometry of W , for m ∈ X. This gives
rise to canonical rings.

Also need to prove that flips exist in dimension ≥ 4.

4.4.3 Fano varietes

Theorem 38 (Borisov–Alexeev–Borisov (BAB) Conjecture) For each d ∈
N, ε ∈ R>0 the set {X|Xε− ldFano of dimension d} is bounded.

Example 21 For n ≥ 2 consider E ⊂Wb →t X0. where

Xb is the cobe over the rational curve of degree n



Wn is obtained by blowing up the vertex

E is the exceptonal curve.

Then X is 2
nFano.

MMP is open over finite characteristic. Note that we don’t have complete
resolution of singularities. Also arithmetic schemes. This connects with Manin’s
Conjecture, Lang’s Conjecture etc.

4.4.4 Also

Let X be a variety with god singularities. f : X → Z be a surjective projectie
morphism with connected fibres. We say X is aon over Z if KX is anti-ample
over Z. I the global case with dimZ = 0 then X is a usual Fano variety. In the
fibration case with 0 < dimZ < dimX then f is a Fano fibraton who general
fibred are usual Fanos. The birational case with dimZ = dimX is open

4.5 Wormald: Asymptotic Enumeration of Graphs
with Given Degree Sequence

Why count

Proving existence by counting Properly 4-coloured 6-regular graph. It can-
not be three-coloured becaus eof triangles. If we forbid triangles? No.
Indeed even forbidding ≤ k cycles for any k doesn’t work.

Panbiogeography

Counting by degrees used fro random graphs Wigner’s semicircle law for
eigenvalues of a random d-regular graph asD →∞ (extending [McKay1981]
for fixed d). Sandwiching Gn,p ≤ R ≤ Gn,p′

Structure of the Giant Component of Gn,p. [Bollobas1984] has asymptot-
ically 2εn vertices, and we proved the distribution is normal.

So what results do we have?
[Read1958] number of 3-regular graphs on n verstices.g3(n) ∼ (3n)!e−2

(3n/2)|288n/2 .

Further progress depends on Bollobas’ “configurations”. Formulae for graphs
with small degreee d1, . . . , dn. We have work of degrees ∼ cn with deviation
O(
√
n).

d := M1/n average degree

λ := d/(n− 1) edge density

γ2 :=
∑

(dj − d)2/n2 (scaled variance).



Conjecture 19 (Binomial Conjecture) Degree sequence of G(n,m) is asymp-
totically independent binomials Bin(n− 1, p) subject to the sum being 2m. [p =

m/

(
n
2

)
]. Also degree sequence of G(n, p) . . . subject to the sum being even, even

when p̂ has a certain, tight, almost normal, distribution close to p.

This would easily produce a lot of known results.
Last year showed the conjecture holds for all densities. Invovles work on

“double edges”. [Mckay1985] estimates |Ci|
|Ci−1| using switching, so the distribu-

tion is asymptotically Poisson.
A new method compares numbers of graphs with different degreee sequences

Rab(d) = g(d−ea)
g(d−eb) . Seems to require very accurate estimation of products. Esti-

mate ratios by “degree switching”. But switching might create double edges or
loops, and need to disallow these. There is work on d-regular graphs, and they
extend to bipartite graphs. Working on hypergraphs.

Latin rectangles are edge-coloured bipartite graphs.

Q Latin Squares?

A Doesn’t seem to go that far.

4.6 Atiyah: The Future of Mathematical Physics:
New Ideas inn Old Bottles

Abel Prize Lecture.
Begin with π. Importance of groups and Lie groups. Noted that Sophus Lie

was first to push for an Abel Prize. Most important formul: e2πi = 1 (Euler).
But there’s a quaternionic analogue. Mentioned von Neumann, for whom Type
I was Integer, Type II was Real.

Topology “Gang of four”: Hirzebruck Atiyah, Bott, Singer.
Also Cartan (Henri), Serre, Grothendieck.
Unification: Gel’fand, Langlands, Penrose.
Witten, Octonians and M-Theory.



Chapter 5

Math Aspects of CS: 6
August

5.1 Jasmine Mathew: Hamilton Decomposition
of Knodel and Fibonacci Graphs

Definition 4 A decompisitionof graph G is a collection {Hi} of non-empty
subgraphs such that Hi = 〈Ei〉 for some non-empty subset of G(G), Ei pairwise
disjoint. If each Hi is a cycle, we call the decomposition a cycle one. Also
Hamilton.

Consider Kn,n. Connect (0, j) to (1, j′) when j − j′ ≡ k (mod n). Call such
edges a k-jump. The collection of all r-jumps is a perfect matching. Cann it
Gr. Write [r, l] := Gr ∪ Gl. For example G0 ∪ G1 is a cycle, but g0 ∪ G2 is a
union of two cycles. [r, l ' [0, l − r] for r < l gcd(m,n) = d iff [0,m] is the usin
of d cycles of lenngth 2n

d . Shows C12 decomposition of K6,6.
The Knodel graph Wd,n has vertices (i, j) with 0 ≤ j ≤ n−1

2 . Let r =
2k − 1, l = 2k+1 − 1: “consecutive dimensions”. Then [r, l] ' [0, 2k] so is
Hamilton iff n is odd.

Fd,2n is decomposable deending on congruence conditions.

5.2 Kumar: Two-stage hyper-chaotic system based
image encryption in Wavelet packet dimain
for wireless communication systems

Claim that we can generate random sequences through hyper-chaotic system.
Need a fast secure algorithms. Claims that this works at the speed fo 4G.
ẋ = a(y − x) + u; ẏ = −xz + cy; . . . is our hyperchaotic system. Essentially all
vapourware. Some examples - encrypted image looks totally random.
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5.3 Firer: Generalized free-column Distances for
Convolution Codes

Context is ECC. |m| = m, |§| = x, f : M → X is an injection. Rate r =
logm/ log x. Normal setting Fnq .
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6.1

6.1.1 Expanding graphs

Cheeger constant of X := (V,E) a graph. min
{
|E(W,W )|

min(|W |,|W )
|∅ 6= W ( V

}
. X is

ε-expander if h(x) ≥ ε.

Proposition 1 (Pinkser) Random k-regular graphs are expanders

First exhibited construction [Margulis1970] If Γ = 〈S〉, |S| < ∞ has Kazhdan
property (T) then {Cay(Γ/N ; s)|N / Γ} is an expander.

Expansion ≈ Spectral Gap, i.e. A = AX is adjacency graph, eigenvalues
k = λ0 > λ1 ≥ · · · ≥ −k (symmetric so all eigenvalues real), then X is ε-
expander iff λ1 < k − ε′ [JHD he wrote ε′ with no explanataion].

[Alon–Boppa] λ1 ≥ 2
√
k − 1 + on(1). A graph is Ramanujan if all other

eigenvalues are bounded by 2
√
k − 1.

In the 80s look at Γ(I) \ PGL2(F )/K where F is a local field. and K is a
maximal group. and Γ(I) is the congruence subgroup of an arithmetic group Γ.
Depends on Deligne, Drinfeld, proofs of Ramanujan conjecture.

In general we fix k and ε, and want |V | → ∞. The Zig-Zag product helps,
but recent “interlacing polynomials” techniques are non-constructive.

6.1.2 High Dimension Theory

CS: hypergraphs, mathematicians simplicial complexes. A (d + 1)-uniform hy-
pergraph if a collection of subsets of V all of size d+ 1 [d = 1 these are edges in
a graph!]. There are lots of options for “higher-dimensional expander”, not
all equivalent. Ramanujan complexes become quotients of the Bruhat–Tits
buidlings Bd(F ) associated with PGLd+1(F ) as above. They satisy suitable
optimal spectral gap bould (as in Alon–Boppana), Base don [Laurent] Lafforgue
generalizations of Ramanujan conjecture.
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Theorem 39 (Boros–Füredi) Given P ⊂ R2 with |P | = n ∃z ∈ R2 which is

convered by
(

2
9 − o(1)

)(n
3

)
of the

(
n
3

)
triangles determined by P . Later, 2

9 is

optimal.

Theorem 40 (Barany) Fix d. ∃cd s.t. ∀P ⊂ Rd with |P | = n ∃z ∈ Rd which

is covered by at least cd

(
n

d+ 1

)
simplices from P .

Let X be a d-dimensional simplicial complex. We say X has the geometric
(resp. topological) ε-overlapping property if ∀f : X(0) → Rd nad ∀f̃ affine
(resp continuous) extension f̃ : X → Rd, there exists z ∈ Rd with zc covered
by ε-fraction of the images of X(d).

Theorem 41 (Gromov 2010) ∆
(d)
n has the topological ε-overlapping property.

Look at d = 1 and assume X is ε-expander. Take z ∈ R such that 1/2 of the im-
ages are more (say A) and 1/2 less than z. As X is an expander, E(A,A) is large
and we overlapping property. In fact “expander” is stronger than topological
overlapping.

Theorem 42 ∀d exists bounded degree (every vertex in contained in a bounded
number of simplices) simplicial complexes of dim d with geometric overlapping.
But these are not topological.

Proof: either random or Ramanujan. We can now do it with bounded (but
10100) degree, but starting in dim d+1 which give us dim d topological expanders.
dim d+ 1 is still open.

There’s also “coboundary expanders”. We need notation. Erdős–Renyi ran-
dom graphs: edges with probability p, threshold for connectivity = vanishing of
cohomology. Do the same for triangles etc. Replace connected by vanishing of
cohomology. Relates to PCP Theorem.

Question 8 Is there a random model than will give coboundary/topological ex-
panders? Maybe not? Analogy with Mostow/Margulis rigidity.

6.2 Nalini Anantharaman: Delocalization of Schrödinger
eigenfunctions

6.2.1 History/Physics

1913 Bohr’s model — momentum quantised; J = nh : n ∈ N. Explains
hydrogen (only)

1917 Einstein “Zun Quantensatz von Sommerfeld und Epstein”. These only
work for “‘type A” — today we say “completely integrable”

1923 de Broglie wave/particle duality.



1925 Still can’t do anything elses so Heisenberg, where physical observables are
operators (matrices)

1925 Schrödinder equation i}dψdt =
(
− }2

2m∆ + V
)
φ

But Though the theories are mathematical equivalent, they are not physicaly
equivalent.

1950s Wigner on heavy nuclie couldn’t diagnalise S, so took random matrices.

1980s Simulation. Models of billiards: calssical φt : (x, ξ) 7→ (x + tξ, ξ). But
Q: i}dψdt · · · .

All Asymptotic.

Conjecture 20 (Bohigas. . . ) The spectrum of the quantum system resembles
a large random matrix.

Conjecture 21 (Quantun Unique Ergodicity) Studhy |ψ(x)|2

Conjecture 22 Show that ψ(x) resembles a Gaussian process.

Progress only on Conjecture 21.

Definition 5 (Quantum Variance)

V arλ(K) =
1

N(λ)

∑
λk≤λ

|〈ψk, e · · · 〉| .

Get control by the L2 norm. There is a result of hers that iplies, in constant
negative curvature, the support of µ has dimension d = dimM .

6.2.2 Toy models

These tend to be discrete. Instead of studying } → 0, we let dim → ∞. Look
at k-regular graphs. Let G be a (q + 1)-regular graph. If F : V → C, then
∆f(x) =

∑
y∼x(f(y)− f(x)) is the equivalent of the Laplacian. The adjacency

matrix is N×N , so can compare with Wigner. Also there is the random regular
graph model.

Assume GN has “few” short loops (= converges to a tree in the sense of . . . ).
Shows examples which seems to match McKay’s Law.

Also examples with Ramanuan graphs, and Cayley graphs.

Theorem 43 (Bauerschmidt+others) Let d = q + 1 ≥ 1020, Then for the
Gn,d-model, with large probability as N → +∞, the small-scale McKay law holds.

It’s hard to get the quantifiers right here.

Theorem 44 With probability 1− o(1) as N → ∞ on ehas, for all eigenfunc-

tions φ
(N)
i , for all diameters R > 0 the distribution of φ

(N)
i |B(x,R) when x is

chosen uniformly at random in V (GN,d) is . . .

Note that these don’t apply to triangulations of surfaces, because of the “few
small loops” assumption!



6.3 Arora: Mathematics of machine learning and
deep learning

Note 2001 and 2010 Gödel prizes. Also author of a wonderful book.
Various gains, e.g. games and medical images, and getting close with trans-

lation and driving. This is not explicitly imitating human intelligence, instead
it is creating machines that improve from experience and interaction. So we are
asking Newton-like questions “what does it mean to . . . ”.

6.3.1 Mathematical Formulation of ML

Learning patterns from data, e.g. curve fitting. For example, inflation versus
unemployment in Japan: data points and Philips curve. Boyle’s Law was de-
termined originally by fitting a surface. Given a dataset of reviews [text] and
ratings. Try to predict rating from a new text T . Note that we’ll only get
an approximate model. Linear model might be

∑
words w ∈ Tθw where θ is

the sentiment score. Trivial least-squares fit. Got a student to do this,and
θlove = 1.1 etc.

Definition 6 Machine Learning is the task of finding a function mapping input
to outputs, given data. We have a function with tunable θ ∈ Rd.

Still aim at min `(θ) =
∑
i

(
fθ(X

(i)
1 )− Y (i)

)2

. There are other definitions for

the loss function. Then test the model on new data X2. Standard rule is “train
on 80% and test on 20%”.

Fourier analysis allows you to learn a function. The problem is that it’s
practically infeasible. But exponential in #samples, and n. Hence training in
terms of gradient descent. θ ∗ (y + 1) = θ(t) − η∇(`). Where η is the “learning
rate”, say 0.01. Note that real-life ` might well be non-convex: ouch! In practice
many tricks.

Deep learning is alternations of linear (multiply by a matrix) and non-linear
transformations, which is v 7→ max(v, 0). Back propagation is basically a clever
application of the chain rule. Why does it work? Linear enough to implement,
non-linear enough to be powerful.

6.3.2 ML in action

Reviews “That’s not how we do it”. Word order matters. We already know
what words mean. Unsupervised learning. Take a large corpus (Wikipedia),
and try to predict from adjacent (say last five words). “Baby word2vec”
[Mikolovetal2013a]. θ ∈ R300: semantic vector. Pr[w|w1 . . . w5] ∝ exp( 1

5

∑
i〈vw, vwi〉).

For semantic vectors, cos(v1, v2) relates to “similarity”.

Sequential decision-making framework e.g. games, but most decision the-
ory. Assume tree of moves, and opponent stochastic. Use a “move evalu-
ation function”, which is an ML result.



6.3.3 Towards mathematical understanding of deep learn-
ing

Last few years: me and others. Key questions.

1. When/how does it work?

2. Why deep, not shallow (can be thousands of layers)

3. Why doesn’t training overfit (#parameters >> # training). Current deep
models can achieve 0% loss on random data [Zhangetal2017a].

We know non-convex optimisation is NP-hard. This is a black box, as we lack
any mathematical explanation for “why is this bunch of pixels a dog”. NB: Deep
Learning is a great way to motivate kids about calculus. Note that ∆ 6= 0 implies
there’s a descent direction, but large∇2 means this varies a lot. offconvex.org.
We would like the direction of movement to be positively correlated with the
direction to the global minimum (Lyapunov).

Theorem 45 ([EldanSmair2016a]) There exist a function computable by a
depth d+ 1 circuit of size S which is not approximable by a depth d 2 function.

[+ChenHazan2018a] can replace l4 regression by a depth-2 linear net. This
accelerates optimisation.

A popular conjecture is that, on realistic data, the net’s parameters are
constrained — by problem or training – be be on a manifold of much lower
dimension. Examined VGG19. Properly-trained nets have “noise stability”:
add Gaussian η to output x with |η| = |x|. Shows that the effect drops rapidly
with number of layers. |Mx|/|x| >> |Mη|/|η|. So the distribution of singular
values in a filter of VGG19 is a few large eigenvalues. “Nearly low-dimensional”.

6.3.4 Conclusion

Note that imitation doesn’t always work, e.g. airplanes. He also claims that we
have very little idea at an operational level of how humans think.

“I am optimistic that deep learning methods can be mathematically under-
stood and/or simplified”

6.4 Donoho: From Blackboard to Bedside

Gauss Prize Lecture. Many acknowledgements.

6.4.1 Congressional Briefing

I am going to say much of what I said in my Congressional briefing. Also how
did we go from Maths articles in 2006 to products in 2017.

offconvex.org


His wife had brain surgery as a teenager (visible dimple), which has always
affected his son, who became a neurosurgeon and has conducted the same op-
eration. At a poor hospital with major waits for MRI scans. The MI takes 90
minutes, which can waste a person-day of surgical team time.

Also talked about prostate cancer. We don’t have good techniques to identify
the aggressive subtype accurately. MRI-guided 3D biopsy is ×5 more accurate
that alternatives. Example of man who had 10 standard biopsies all missing.
Late treatment cost $600K rather than early $50K. Hence MRI can really make
a difference.

GE Hypersense (recently approved) is ×8 faster. Another 3+1D example is
25 seconds rather than 6 minutes.

Note that this is both personally and financially relevant to Congress.
One heartbeat rather than 9 for a child’s scan.
“Federally funded mathematics played a key role”. In particular some of the

pioneers of compressed sensing (Terry Tao) were federally funded.
In 106 dimensional space. Consider a cone with a 104-D apex. The chance

of a 9 × 105 plane slices the cone is very small. Equivalently, to recover 1
1000×1000 image with 104 nonzero wavelet coefficients only needs 105 elements.
40M MRI/year in the USA, at say $500 each = > 100× Federal maths funding.

6.4.2 Tech transfer

Why so quick? The Maths was very welcome. There’s a very active MRI
research community. The community believed that speedups were possible (ex-
periments). But people needed the certainty of the maths. Lustig’s slide in
MRI-speak.

• Study compressible signals with sparsifying transforms

• Undersample incoherently w.g. with quasi-randomness (uniform in the
Grassmanian)

• Non-linearly reconstruct by promoting sparsity

6.4.3 Conclusions

CS could have been arrived at in many way. ε = k/N , δ = n/N



Chapter 7

8 August 2018

7.1 Naor: Metric Dimension Reduction: A Snap-
shot of the Ribe Program

Metrics that arise as a result of optimisation problems, optimal transport met-
rics etc. In fact a more tame world is normed spaces. These are in 1:1 corre-
spondence with ??.

Phenomenon discovered by Ribe, analogy between “nice spaces” and real-
world spaces.

Finite dimensional linear properties of normed spaced are actually metric
properties in disguise.

Example 22 There is a constant c > 0 such that, for every n, for any unit
vectors x1, . . . , cn one can find signs εi such that

||
∑

εixi||X ≥ c 3
√
n.

This is an f.d. property of infinite-dimensional normed spaces.

Theorem 46 (Ribe) Let X and Y be normed such that they are homeomor-
phic as metric spaces with f , then . . . .

7.1.1 Local Theory

Started by Grothendieck, James, . . . .
The study of isomorphic f.d. linear properties of normed spaces. All norms

on Rn are equivalent, so this is essentially a quantitative theory. The Ribe
theorem says that there is a hidden dictionary that translates linear properties
that a priori only makes sense for normed spaces, into metric spaces. Formulated
by Jean Bourgain.
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Theorem 47 ∃ a metric space (M,d,) such that for no (X, dX) of nonpositive
curvature there is an f : M → X satisfying

∀x, y ∈Mω(dm(x, y)) ≤ dX(f(x), f(y)) ≤ Ω(. . .).

“Dimension reduction” in one of the most important issues being tackled in
statistics, machine learning etc, We look at this from a geometric point of view.

Example 23 Given any 109 vectors in R1000000000, there are vectors yi ∈ R329

such that |xi − xj | and |yi − yj | are within a factor of two, ∀i, j.

When dM (x, y) ≤ ||f(x)f(y)||X ≤ alphadM (x, y): “X embedded in M with
distortion α”. We ask whether we can do this, and aim for log n embeddings of
spaces of dimension apparently n.

Recall definition of expanders. |{{u, v} ∈ E : {u, , v}∩S 6= ∅ . . .}|What is the

average distance between people in this hall? All required

(
N
2

)
calculations.

So I impose the structure of 3-regular graph on the audience. Then I average the
distances along the edges only. I want 100% certainty. Claims that, imposing
the graph in advance, the audience can’t defeat this. Claims this is guaranteed
to work within O(1) iff the graph is an O(1)-expander.

What is special about Euclidean geometry? The classical notion of an ex-
pander is “expander w.r.t. a Hilbert space”. Clearly we need an expander (else
can be defeated), the iff is a property of Euclidean metric. There are apparently
nice metric spaces that do not admit any expander!

Theorem 48 Any O(1) expander w.r.t. a Hilbert space is an O(log n) expander
. . . .

Hence any O(1-expander does not admit a Lipschitz embedding into dimension
no(1) that preserves the average distance.

7.1.2 Geometric Graphs

Connect any two points of ||x, y|| < 1 to get G. Then if k isn’t large, the
existence of graph means either that the average distance in V is small, or G is
not an expander and we get a “partition” of the space. Hence the

Question 9 (Nearest Neighbour) Given D consisting of n points in Rk.
Given a new point, what is approximately the nearest point of D? Can we do
this in sublinear time?

Q from speaker to self What happens outside l1, l2, l∞?

7.2 Williamson: Representation Theory and Ge-
ometry

A representation is faithful if the map is injective. {Sn − sets}/isomorphism is
subgroups of Sn under conjugation. S3 permutes coordinates of |R3, so invariant



spaces are “all equal” — L and ”sub to zero” L. Hence R3 = L ⊕H. But in
characteristic 3, L ⊂ H.

If representations are matter, simple representations are atoms, and semi-
simple is “elements don’t interact”.

Fourier series are related to S1, and Harmonic series to SO(3).
This subject looks like algebra,but the deepest theorems have geometric

proofs, often via invariant forms.

Theorem 49 (Maschke) Any representation V of a finite group G over R or
C is semi-simple.

Example 24 SU2 =

{
A =

(
a b
c d

)
|AA∗ = I, det(A) = 1

}
, unit quaternions.

Natural representation on C2.

Verma modules is an attempt to systematise these calculations. Has a basis
space indexed by N: {v0, v1, . . .}. Move from vi to vi−1 by λ − i, so if λ ∈ N
we get a split.

g s a complex semi-simple Lie algebra, h ⊂ g a Cartan subalgebra, and W
the Weyl group, acting on h as a reflection group.. So g = sln(C), h = diagonals
is an example. ‘weight” λ ∈ h corresponds to a Verma module ∆λ. Ha a unique
simple quotient Lλ, the simple highest weight module. In the sl example, λ /∈ N
gives Lλ = ∆λ, and λ ∈ N gives a finite dimensional Lλ

Conjecture 23 Kazhdan–Lusztig, 1979]

|∆λ| =
∑
µ

Pλ,µ(1)[Lµ].

Pλ,µ are Kazhdan–Lusztig polynomials, and only depend on W .

First proved in the 1980s geometrically. Janzten conjecture says the graded
multiplicity in Pλ,µ(v) and this again has a geometric proof Beilinson–Bernstein
in the 1980. Algebraic proofs of point ?? by author+ in 2014/2016.

Weyl groups ⊂ (mostly =) reflection groups ⊂ (vast difference) Coxeter
groups. H := R/(RW+ ). d is the number of reflecting hypersurfaces in hR.
There is an open cone K ⊂ h∗R.

Conjecture the KL polynomials have positive coefficients, again we have an
algebraic proof (2013).

7.2.1 Modular representations

The analogy of KL is the Lusztig conjecture. Problem is that we don’t have
signature any more.

Conjecture 24 (Lusztig)

|∆̂λ| =
∑
B

qA,B(1)[L̂B ].



True for large p (depending on the root system), e.g. p > 1100 for SL8 (we would
like p > 8!). But I have proved (2013) it’s false for primes growing exponentially
in the rank

We can now work with pqA,B as a o-KL polynomial.
Let V be a simple representation of Sn over Q. Reduce modulo p to get mod-

ular representation Fp ⊗Z V . So what are its multiplicities of simple modules?
We only know or partitions with 1 or two rows

Conjecture 25 (Billiards) Illustrated with a video, which implies that the be-
haviour of the coefficients of these p-KL polynomials are given by a dynamic
system.

7.3 Lubich: Dynamics, numerical analysis and
some geometry

“Numerical Analysis works with algorithms on the real numbers, or their com-
puter surrogates”. Two major questions.

1. How can numerical methods be constructed that respect the geometry

2. What are the benefits of a structure-preserving algorithm

Consider Hamiltonian systems. Then (1) is Hamilton–Jacobi theory. H(p(t), q(t)) =
H(p(0), q(0)) – i.e. energy conservation. Now what happens if we do Euler
methods with step size h.

pn+1 − pn
h

= −∇qH(pn+α, qn+β)

with α, β ∈ {0, 1}. α = β = 0 is explicit Euler, α = β = 1 is implicit Euler,
α 6= β in symplectic Euler. Applying to solar system, both implicit and explicit
add spiral behaviour, but, even with h 7→ 10h, the symplectic do much better.

Thanks to the numerical experiments of the last two decades, we
now know that the motion of the planets in the Solar System is
chaotic — Laskar 2013.

Explicit Euler energy grows, implicit decays, and symplectic is oscillated around
the true value, again even with h 7→ 100h.

Let y = (p, q), so ẏ = J−1∇H(y) with J =

(
) I
−1 0

)
. Consider the time

flow map φt : y(0) 7→ y(t). Dφt(y)TJDφy(y) = J : symplectic property of φ
and we want this preserved, hence these Euler methods. They were implicit
in Hamilton–Jacobi, Numerical utility spotted in an unpublished preprint [de
Vogelaere 1956], but published research only 1983, 1985 etc.

Note that a numerical solution is an exact solution of a modified problem,
an asymptotic series in h. For a symplectic integrator applied to a Hamiltonian
system, each of the perturbation terms on a Hamiltonian vector field, fj(y) =



2D models in statistical mechanics
Quantum groups
temperature q = 0
Crystal Bases (199o) “q = 0” to all q
Global bases
LLTA theory multiplicative properties
Quiver Hecke Algebras Cluster Algebras
Monoidal categorifications of cluster algebras (2018)

J−1∇Hj(y) [Moser1968] locally and [E. Hairer1992] globally. 2nd half 1990s
showed that errors grow only linearly, and near-preservation of KAM-tori.

But the backward error analysis needs hΩ << 1. What happens when not?
Example of a nonlinear oscillator chain of springs. There’s global conserva-

tion of energy, but transferred from spring to spring.

NF Standard solution

MFE Modulated Fourier Expansions in time. Embed the original system in
a high-dimensional system. qt(t) ≈

∑
k z

k
j (t)ei(k·ω)t with slowly-varying

modulation functions zkj . Now use [E. Noether1918] to show that there
are invariants. [FermiPastaUlam1955] was trying to address these points.
Despite the fact that backward error analysis doesn’t work, we can explain
stability using the MFE process.

7.3.1 Dynamic low-rank approximation

Huge time-dependent matrices. A(t) ∈ Rm×n Explicitly for solution of matrix
ODE Ȧ = F (A). Approximate A by low-rank matrices A(t) ≈ Y (t) = USV
where S is a small invertible matrix. Y is then in a low-rank manifold M .
Modern idea in NA, but [Dirac1930] had it.

However, S might be ill-conditioned and S−1 features. This obstruction
is geometric, 1

σr
is the curvature of M at Y . So we split the tangent space

protection.
PY Z = ZV V T − UUTZV V T + UUTZ.

This reproduces rank-r matrices exactly, admits convergent error bounds that
are independent of singular values. It is so robust because in each substep, the
approximation moves along a flat sub-manifold, by analogy with a ruled surface.

7.4 Kashiwara: Crystal Bases and Categorifica-
tions

Chern Medal lecture.
q = 0 is absolute zero and something marvellous should happen.



Uq(g) is the C(q)-algebra generated by . . . . I thought it would have mar-
vellous structure at q = 0 but couldn’t find any. Not in Uq(g), but in Uq(g)-
modules.

LetK = C(q), V aK-vector space, (LB) is a local basis of (LB)isalocalbasiso
at q = 0 if

• L is a free Ao-modulo of V such that V = K × L

• B is a basis of the C(q)-space L/Ql.

(LB) is a crystal basis of B if

• (L,B) is a local basis cxd

• . . .

At q = 0 this complicated module structure becomes Combinatorics → Crystal
Bases → Representation Theory.

7.4.1 Global bases

7.4.2 Quiver Hecke Algebras

{(R(n)} is called the quiver Hecke algebra (KLR-algebra) associated with (Qi,j),j∈I .
Let R(n)-gproj be the category of finite generated projective graded R(n)-
modules. R(m)-gmod f.d. over k.

K(R − gmod) is the Grothendieck ground of R-gmod. [M ] = [l] + [N ] iff
P → L→M → N → is exact.

7.4.3 Cluster algebras

At q = 1, A1(n) ' D[c] is commutative. Hence we’d expect b(Aq()) to have
nice multiplicative properties. Hence a conjecture (Berentstein–Zelevinsky. But
Leclerc gave a counterexample (to the last clause). He conjectures rest are still
true. Fomin–Zarevsky defined cluster algebras. Start with an initial cluster,
ad apply “mutation” controlled by exchange matrix B̃ = (bij)ij Seed C =
{X1, . . . , Xr}

7.4.4 Monoidal categorification

Assume Cartan matrix symmetric. Let (C,⊗) be an Abelian monoidal category.
A simple S ∈ C is real iff S⊗S is simple. Monoidal cluster {Mi}1≤i≤r is a finite
let withMi⊗Mi = m⊗Mi. µk({Mi}1≤i≤r) = (M1, . . . ,Mk−1,M

′
k,Mk+1, . . . ,Mr)

where M ′k is . . . , is a mutation at k.



7.5 Pham Tiep: Representations of Finite Groups
and Applications

Representation theory started in correspondence Frobenius–Dedekind.
G = Sn the irreducible characters of G correspond to partitions of n. χλ ←

λ ` n. Irreducible representations correspond to strict partitions: λ = (λ1 >
λ2 > · · · ) `. What is the asymptotic?

Problem 5 Given simple G and Field F,

1. determine δp(G) and

2. classify irreducible FG-representations of degree up to δp(G) .

Conjecture 26 (Alperin) |{ isomorphism classes of irreps of G over FG
}| =. . . .

Conjecture 27 (McKay1971) F a finite group and p a prime P ∈ Sylp(G)
There exists a bijection {χ ∈ Irr(G)|P 6 |χ(1)} ↔π {φ ∈ Irr(Ng(p), . . .}

Proved for various families of groups.
[MalleSpa”ath216] proved McKay conjecture for p = 2. Various results of

the from “if all simple, then all groups”. In particular need AWC-good. True
for Lie(p), Alt, Spor, but still need Lie′(p), e.g. PSLp(q) : p 6= q.

Problem 6 Given a simple group G and F

1. Determine smallest non-trivial degree δp(G) and

2. Classify . . .

Problem 7 Let S be a finite simple group, 1 6= g ∈ S.

1. find an explicit, and as small as possible 0 < γ = γ(g) < 1 such that
|χ(g)|
χ(1) ≥ γ . . .

2. . . .

Fomin–Lulov case of Sn.
[Thorne2012a] defines the concept of “adequacy”. If P 6 ||G|, then G is

adequate. If p ≥ 2n+ 2 then p is adequate.

Theorem 50 (Thompson1981) If G < GL(. . .) . . .

I proved Thompson’s conjecture holds with C = 1184036. conjecture it’s in the
100s.

Applications to non-commutative Waring. w(x, y) = xyx−1y−1 is the Ore
conjecture, now proved. w = xNyN where N = paqb and produce of two prime
powers. proved. w = xNyNZN where N odd. Proved. Also results on random
walks on groups.



7.6 Kohlenbach: Proof Theory

Origins in Hilbert’s Programme. “Establish that uses of higher noneffective/transfinite
(“ideal”) principles I on proofs of combinatorial/finitistic (“real”) propositions
P can be eliminated, at least in principle.” In principle, Gödel means that this
is impossible in full generality.

Shift of emphasis (Kriesel ≥ 1951) use proof theory to extract new informa-
tion from proofs of existential statements. Example: unwinding Littlewood’s
proof of π(x)− li(x) by unwinding RH ∨¬RH. Also bounds on Roth’s theorem
(first polynomial bounds).

Look at ‘unwindings’ (‘proof minings’) in analysis. Appropriate choice of
representations of analytical objects suggested by the interpretations is crucial.
There are interesting proofs that use WKL but allow for WKL-elimination doe
to their logical form: uniqueness statement (∈ ∀ → ∀).

About 2000, started to apply to abstract spaces, such as “Let X by a Banach
space, C ⊂ X, T : C → C is nonexpansive . . . ”. Numerous applications in fixed-
point theory, convex optimisation, nonlinear semigroup theory etc. The finitary
proof-theoretic analysis often generalises to geodesic settings (Hadamard spaces
etc¿).

If Aω[X, [[·]]] proves a statement, then . . . . Works in metric, hyperbolic,
CAT() etc. In the meta theorem, one can add a nonstandard boundedness
axiom ∃ − UBX . Even though it’s false, it leads to correct effective bounds.

Example 25 A polynomial rate of asymptotic regularity in Bauschke’s solu-
tion of the zero displacement conjecture. Previously known only for N = 2 or
Fix(T ) 6= ∅. Proof uses lots of abstract analysis, This is a ∀∃ statement. Logical
metatheorems therefore guarantee the extractability of a uniform rate of asymp-
totic regularity which only depends on ε > 0, N ∈ N and majorants of XinH
and the projections.

Example 26 (Proximal Point Analysis (PPA)) H a real Hilbert space, A :
H → 2H a maximally monotone function. FγA : −(Id+ γA)−1 be the resolvent
of γA for γ > 0. Then zerA = Fix(Jγ∂f ).

Theorem 51 (Mean Ergodic Theorem) X Hilbert space, f : X → X linear
and ||f(z)|| ≤ |z||∀Z. An(z) := 1

n+1

∑n
i=0 f

(I)(x) for n ≥ 0. Then for every
z ∈ X, the sequence (An(z))n converges.

We can say that (An(z)) admits at most · · · fluctuations. There are also non-
linear ergodic theorems.

Q Interactive Theorem Proofs?

A “Interactive” is the key. There is Coq work in this area. But currently pretty
toy when fully automated, e.g. “

√
2 exists”.



Chapter 8

9 August 2018

8.1 Kalai: Noise Stability, Noise Sensitivity and
the Quantum Computer Puzzle

JHD missed the first part (Hotel checkout). See [Kal18].

8.1.1 Second Part

Model 4 is computation (Boolean circuits). Generated by NOT and AND, which
are complete for classical computing. Copy slides from Widgerson@ICM2006.
Multiplication is easy (polynomial time), but factoring is not known to be (the
slide quoted exp(

√
n), but speaker said exp( 3

√
n)), and we all believe that not.

P

NP and conjecture NP 6= P .

Shor shows quantum factoring is O(n2).

Note that the quantum class is different: Q \NP, NP \Q, Q \ co-NP, co-NP \Q
are all (conjecturally) different.

Model 5 is quantum computing. A qubit is a unit vector in C2. Then the
state of an n-qubit is in (C2)⊗n. Gates are now unitary transformations. IBM’s
70-qubit computer uses 7 different types of gates. “measuring” is exactly a
probability distribution.

Model 6 is noisy quantum computing. Every qubit is corrupted with prob-
ability t at each cycle, and each gate might produce a “nearby” transformation
with probability t.

Theorem 52 (Threshold: various 1995) If t is small enough, noisy quan-
tum circuits allow universal quantum computing.
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8.1.2 Permanents, Determinants and noise sensitivity of
boson sampling

Model 7 is boson sampling. Given a complex n × n matrix with orthonormal
rows. Sample sub-multisets of columns according to the absolute value-squared
of permanents. Quantum computers can perform boson sampling. Fermion
sampling is sets rather than multisets.

Model 8 is noisy boson sampling. Given a matrix A, sample (
√

1− tA+
√
tG)

where G is a normalised complex Gaussian n×m noise matrix.

Theorem 53 When the noise level is constant, distributions given by noisy
Boson sampling are well-approximated by low-degree Fourier–Hermite. Hence
can be approximated by bounded-depth polynomial-size circuits.

Theorem 54 When the level is larger than 1
n . . . see Figure 8.1.

Fermion is well within P . When we introduce noise, the difference between
boson and fermion sampling vanishes, and both are inside bounded-depth com-
putation, and indeed a subset known as . . .

8.1.3 The Quantum Computer Puzzle

NISQ = Noisy Intermediate Scale Quantum systems. Major experimental efforts
are aimed at demonstrating “quantum supremacy” using pseudo-random cir-
cuits and building good quality quantum error-correcting codes. Surface codes
are a major component.

Conjecture 28 Theorems 53 and 54 extend to all NISQ systems, and to all
realistic forms of noise. For a wide range of noise levels, NISQ systems are
very sensitive to noise, with a vanishing

Hence we predict

1. For a larger amount of noise, you will get robust experimental outcomes
but they will represent low-degree polynomial distributions which are far
away from the desired noiseless ones.

2. For a wide range of smaller amounts of noise, the outcomes will be chaotic.
This means the resulting distribution will strongly depend on the fine
properties of the noise,

3. The effort required to control i qubits to allow good approximations for
the desired distribution will increase exponentially, and will therefore fail
[Guess ≤ 20]

4. In the NISQ-regime, gated qubits will be subject to errors with large
positive correlation. And so will any pair of entangled qubits. This will
lead to a strong correlation of noise.

We will know by ICM 2022/2026.



Figure 8.1: Illustration of Theorem 54



8.1.4 Predictions

We have the following (at least as claims).

1. Quantum supremacy requires quantum error correction

2. Quantum supremacy is easier than quantum error correction

Hence Quantum supremacy is impossible. Related to high-dimensional ex-
panders.

Note that classical computation requires error correction as well, but this is
supported by very low-level computation, e.g. majority.

(A) Probability distributions described robustly by NISQ devices can be de-
scribed by low-degree polynomials LDP is well inside AC0. See second
photograph.

(B) Asymptotically low-level computation devices cannot lead to superior com-
putation.

(C) Achieving QS is easier than achieving quantum error-correction.

So wait for the experiments!
Various possible laws.

0 Every quantum evolution is noisy (violates Quantum Mechanics, so dis-
card it).

1. Time dependent noisy quantum evolutions are noisy

2. Noise (above the level allowing QC) is a necessary ingredient n modelling
local quantum systems.

3. Quantum observables are noise-stable in the sense of Benjamini–Kalai–
Schramm [BKS99].

Problem 8 Study noise-sensitivity.

1. Prove that the crossing event in 3D percolation is noise-sensitive.

2. Study noise-stable versions of various models.

3. Study the math and physics above the fault-tolerance threshold.

4.

Problem 9 . . .

Final Note — SESAME: a third-generation synchrotron located in Jordan, part
of a regional collaboration.



8.2 Jordan: Optimization, Computation and Statis-
tics

Modern statistics has provided new challenges for optimisation. The comput-
ing platforms have changed (hence changing practical algorithms). I think
ML/DL/AI/ etc are all poor buzzphrases for “algorithmic decision-making un-
der uncertainty, in large-scale networks and markets”. Note that von Neu-
mann/Kolmogorov etc. could not have answered “are you a mathematician or
a computer scientist.

8.2.1 Introduction

• gradients (Hessians are too hard)

• stochastics

• acceleration (out of Russian school: Nesterov et al.) [Nes83]

Problem 10 Escape saddle-points (in large dimension, and efficiently). We
escape down a strictly negative eigenvalue.

“Bad local minima” were the problem of the 1980s. This has gone away as such,
but many such implies many saddle points.

Theorem 55 Asymptotically, gradient descent will avoid saddle points, but
may take exponential time.

Stochastic gradient descent can escape saddle points in polynomial time.
Basic gradient descent: minx∈Rd f(x) via xt+1 = xt−η∇f(xt). The number

of iterations is independent of the dimension.
Many real world problems are nonconvex, but have probably a single global

optimum. E.g. PCA.
First Order Saddle Points. Assume f is `-smooth (or gradient Lipschitz).

∀x1, x2, ||∇f(x1)−∇f(x2)|| ≤ `||x1 − x2||.
Another assumption: f is p-Hessian gradient Lipschitz iff

∀x1, x2, ||∇2f(x1)−∇2f(x2)|| ≤ p||x1 − x2||.

Theorem 56 PGD with η = O(1/`) and proper r, find ε second order station-

ary points in Õ
(
`(f(x0)−f∗

···

)
in time O(log4 d). [I believe the log, but the 4 is

an artefact of the proof].

Question: does Nesterov-style acceleration help you move faster past saddle-
points? This requires a better understanding of acceleration.



8.2.2 Part II: Continuous Time

Newton differentiated, Laplace integrated and optimised. Physics uses both.
Numerically, we have FE and Monte Carlo. Optimisation has probably not
done as well.

Classical gradient descent xk+1 = xk − β∇(f(xk)) achieves a O(1/k) con-
vergence rate.

yk+1 = xk − β∇(f(xk)) (8.1)

xk+1 = (1 + λk)yk+1 − λkyk. (8.2)

Other two-phase descents now. O(1/k2) convergence rate for convex f . Here
λk is an explicit function of the other problem parameters. In particular, ac-
celerated gradient descent is not a descent algorithmthe function values can
oscillate.

This is discretisation of Ẋt = −∇f(Xt). Nesterov becomes Ẍt − 3
t Ẋt +

∇f(Xt) = 0.
L(x, ẋ, t) = eγt+αt(Dh(x) + e−αt . . .). Then Euler–Lagrange equation

Ẍt + (ealphat − α̇t)Ẋt + e2αt+βt
[
∇2h(Xt + e−αt · · ·

]
Under ideal scaling, E-L equation has convergence rate O(e−βt). βt = log t gives
classical gradient descent, βt = log2 t gives Nesterov etc. Note that these all
follow the same path. What about βt = t?

8.2.3 Symplectic Integration

Discretisation that reflects the physical laws.
Shows his graph following Nesterov, but he can increase the step length

whereas Nesterov goes unstable. In this case, ×5. But we cheated and added a
gradient flow term to the symplectic integrator.

8.2.4 Acceleration and Saddle Points

AGD is not a descent algorithm. If we lift to phase space, AGD is nearly a
descent algorithm.

AGD is ẍ+ θ̃ẋ+∇f(x) = 0. Seven line algorithm with 4/5=Nesterov, 2/3
is a perturbation step.

Theorem 57 Perturbed AD converges as Õ
(
`1/2ρ1/4(f(xo)−f∗

ε7/4

)
.

8.2.5 Acceleration and Stochastics

Some negative theorems, but I think irrelevant, as focused on overdamped dif-
fusions.

Overdamped Langevin MCMC for an SDE dxt = −∇ · · · . Very recently
some guaranteed results in Total Variation, 2-Wasserstein or KL-divergence.



We look at underdamped. Quadratic improvement. So far been assuming
U(x) is m-strongly convex. New line of work on “convex outside a ball”, e.g.
mixture models. Ito calculus allows us to reduce to 1-D case.

Haven’t said much about statistics. We don’t have the population risk, only
the sample risk. We can find a zeroth-order that finds ε-SOSP of F if ν ≤ e1.5/d
which is provably optimal.

See my blog on AI. I am as cautious about AI as the previous talk was on
Quantum.

8.3 Lafforgue: Global Langlands parameteriza-
tion and shtukas for reductive groups.

L/number fields↔ analogy↔ L/function fields↔ L/l-adic sheaves↔ analogy
L/D-modules ↔ Conformal field theory.

Ring is commutative unitary ring. A number field is a finite extension of Q.
GLn(Q). The vector space of automorphic forms is L2(L,C) where L =

GLn(Z)/GLn(C).
A place of a global field is a norm, and the completion of F for such a norm

is called a local field, Either R for the Archimedean norm being | · |, or p-adic
Qp.

8.3.1 Idea of proof of theorem

Assume N is empty. We construct a commutative algebra B of “excursion
operators” containing all the Hν . Need the `-adic cohomology of the stack of
shtukas. Similar to Betti cohomology but has coefficients in Q` or Q`.

8.4 Closing Ceremony

121 years after the first, in ETH, ICM comes to the Southern Hemisphere. 630
travel grants to mathematicians from 73 countries, also 155 Brazilian appli-
cants from 22/27 states. Just over 3000 registered participants including 238
accompanying. 40% Latin America 20% Europe, 14% North America. 5000
schoolchildren as well.

8.4.1 ICM 2022: Saint Petersburg

Visa-free arrival with ICM Registration tag (also free public transport with it)
as with World Cup. Local support for young Mathematicians. ICM Satellites
there or in Baltics. 2022 will be Year of Mathematics in Russia.
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