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Chapter 1

6 July 2015

[AR14] [Arn03] [BDEW13] [Bro71] [Dav85] [ESY06] [Fau99] [FM13] [FSEDS10] [GR11] [JdM12] [Len99a] [Len99b] [MP14] [Pan00] [Pau98] [Str69] [SY12] [Yan98] [Zip79]

1.1 An Introduction to Finite Element methods:
Veronika Pillwein

A numerical method for finding approximate solutions to PDEs on non-trivial
domains. Divide the domain into geometrically-simple subdomains, and the so-
lutions are represented by locally-supported polynomials. objects. Uses NetGen
4.5 for the mesh generation.

1.1.1 1D example

The bound is quite short and nice, but the function being bounded is sev-
eral screens. This is partly because we are, dealing, separately, with two
pre-smoothing and two post-smoothing steps. See http://www.risc.jku.at/

people/vpillwei/sFLA — nice conjecture, but no proof.

Q Which CAD?

A Mathematica. Four variables, of degree ≤ 10.

Q The best bound?

A This is an upper bound because of the separation of the two steps. But I do
know that it is achieved.
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Chapter 2

7 July 2015

2.1 Ábráham

2.1.1 SAT problems

Just Booleans with no underlying theory.

Resolution: what JHD would think of as elimination. But this would have
combinatorial blow-up.

Enumeration: try a true, then ¬a true, within each, try b, . . .. Again this has
exponential complexity.

SAT Solving the DPLL algorithm.Decision, see if variables occor only posi-
tively or only negatively. If both, decide which (essentially enumeration).
Then Propagate the consequences of this decisions, look for a conflict,
then backtrack.

Next breakthrough is conflict-directed clause learning (CDCL). Roughly, use
resolution to analyse a conflict. Discover that (¬a∨¬d∨¬e) and (¬a∨¬d∨¬e)
combine and give a new clause ¬a ∨ ¬d.

2.1.2 Satisfiability Modulo Theories

Propositional logic is sometimes too weak. SMT-LIB has been a standard input
language since 20904. Competitions since 2005. SMP-COMP 2014 had 32 logic
categories and 20 solvers. Linear R had 6 solvers, non-linear R had 4. 67426
benchmark instances. Examples (in order of increaing expressivity) Array logic,
quanti

er-free integer/rational difference logic, quantiffer-free linear arithmetic; qf
nonlinear arithmetic. Quantifier-free FO formula goes via Boolean abstraction
and Tseitin’s transformation to a propositional CNF. This goes into a SAT
solver, which interacts worth the theory solver. The theory solver feeds back
SAT/UNSAT and lemmas.
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Example 1 ((x < 0) ∨ (x > 2)) ∧ (x2 = 1 ∨ x2 < 0). This then becomes (a ∨
b) ∧ (c ∨ d). The underlying theory solver might feed back ¬(x2 < 0), which is
treated as a new clause (JHD: rather like CDCL).

Gröbner bases, CAD, Virtual Substitution are already implemented in CAS.
But these are not SMT-compliant, i.e.

• work incrementally

• generate lemmas explaining inconsistencies

• be able to backtrack

Current implementations are not that, probably not available as libraries, and
generally not thread-safe. Usually, SMT-adoption is not trivial.

Example 2 SMT-RAT library of theory modules. https: // github. com/ smtrat/

smtrat/ wiki Has interval constraints, Simplex algorithm, Virtual substitution
[FCT11, PhD Corzilius] CAD [CADE24, PhD Loup, . . .]. Gröbner bases, but
only for simplification, not for true solving.

2.1.3 Virtual Substitution

The key idea is to replace an existential quantifier in favour of a finite disjunction
over parametric set points. ∃x, y : (y = 0∨ y2 + 1 < 0)∧ x− 3 ≤ 0∧ xy+ 1 < 0
Eliminate x gives tests x = −∞, x = 3, x = − 1

y + ε. Then we have ∃y . Fail

by failing y2 + 1 < 0, and this is independent of x, so the SAT-solver learns this
new clause.

Claims that this is not dissimilar from CAD, where we have projection/construction
as structurally similar. Various benchmark problems, often showing her sytem
best, but also z3 does best on the Metitarski test set.

Notes that the two communities are very disjoint: different journals, confer-
ences, tools and goals.

2.2 Software Snippets

2.2.1 Cloudmath

Idea is to use an interface with HTML5/GSS/javascript, whhc talks to the
CloudMathEngine and Plot server, and this talks as web services to Python,
SAGE, Octave, R etc.

2.2.2 Lacunary

The best factorisation (polynomial) algorithms we know are polynomial in
deg(f). Want objects in log deg f [Cuckeretal1998] [Len99a, Len99b] [KK05] and
more recent, for sparse polynomials. Note the split cyclotomic/noncyclotomic
factors. [Len99a, Len99b] has gap theorems, which says that factors of degree

https://github.com/smtrat/smtrat/wiki
https://github.com/smtrat/smtrat/wiki


≤ d must divide each part (split by gaps > γ(f, d)). Have various improve-
ments on this. Can handle polynomials of degree ≥ 1M in under three min-
utes.



2.2.3 Abbott

CoCoA founded by Robbiano in 1987, an=imed as a mathematician-friendly
tool. Gröbner bases, Hilbert series, ideals of points, more recently approximate
points, border bases etc. Three interfaces: CoCoaLib as a C++ software li-
brary with GMP-3 licence, the interpreter CoCoA-5, and an OpenMat-based
prototype server. Based on GMP.

CoCoA-5 Natural dynamically-typed syntax. Allows new types of rings (al-
gegraic extensions) and speaks about ring homomorhisms.

2.3 Mora

Claims that you can build a Buchberger theory for effective associate rings. [?].

Theorem 1 For an (associate but not necessarily commutative) ring with iden-
tity A, there is . . . .

Se let A be a left module over R, and it is effetcive if we are given sets v =
{x1, . . . , . . .} and V = {X1, . . . , Xm, . . .} such that . . . .

Then Π : Z〈< xi, Xj〉 → A and π : R := Z〈xi〉 → R. Termination requires
an additional condition.

Xixj =
i∑

l=1

π(alij . . .

and therefore Xixj can’t appear as a head term, as it’s reducible.

Theorem 2 (Zacharias’s Theorem) [BScTheis MIT1978] Canconical forrms
Ac Z(Z)m/I ≡ Zach(Z(Z)) . . ..

Theorem 3 (Spear’s Theorem) [Macsyma1977]. Tells us that a Buchberger
theory defined in a ting can be exorted to its quotients which allows us to impose
on A the “naural” Γ-valuation/filtrattion

T (·) : Am 7→ B(m) : f → T (f).

The Γ-graded ring G = G(A) coincides as a set with A, which is sufficient to
export Buchberger test/completion, but they don’t coincide as rings, as the mul-
tiplications don’t coincide. However, an old slogan says that inorder to proide
a Buchberger Algorithm on A, one just takes the one for G and modifies the
multiplication method.

Theorem 4 (Möller’s Theorem) [JSC1988] This says the same things (about
lifting) in a diferent way. A basis F is Gröbner iff each element u ina a minimla
absis of the mpdule ker(s) of the syzygies among the leading monomials M(gi)
lifts, via Buchberger reduction on G(u) to a syzygy U ∈ ker(G) among the gi.
A corollary of this is Janett–Scheier theorem that the lifted elements form a
Gröbner basis of ker(G).



2.4 Sturm

Hpof bifurcations in system biology and chemistry. Example of a gene regu-
lated bya protein. A quisi-steady state approximantion gives a reduced sys-
tem. Boulier et al. examine the existence. Maple implementatoin by El Ka-
hoiui/Weber, φn holds for some choice of parameters iff a Hopf bifurcation
exists. First consider ∃φn. Note that all variables are strictly positive (positive
QE). [CASC2013] for the Methylene Blue Oscillator: one large eequation, side
small-equations, and positivity condition. Decompose the large problem into
500 sub-problems. Does any one of these have a positive solution?

A still larger probem is MAPK [J. Comp. Phys. 2015] MBO is 7 variables,
degrees 4–9, 6000 monomials. This is 10/5–12,863000 monomials (30MB). This
takes 10s for finding positive/negative point, and 5s for exact solving. Reduce
takes 25s for reading/parsing. 2s to find “degree”. Size limit of 32MB in Maple
(used in differential lagebra part of chain) polynomials becomes a constraint.
Let supp+(f) be the support with positive coefficients, and supp− similarly.
Once we have a positive point and a negative one, can join witha line and use
intermediate value theorem.

2.5 Real root finding . . . : Naldi

A linear ,matrix is a polynomial matrix of degree 1. A(x) = A0 + x1A1 +
· · · + xnAn. Suppose the Ai ∈ |qm×m and are Hankel. Lyaponov stability if a
Limear Matrix Inequality (LMI). Hence a spectrahedron. ≥ 0 means “positive
semi-definite”.

The Hankel spectrahedra are integresting objects, include the Carathéodory
orbitope. Consider the loimear actio of SO2(R) on the space of homogeneous
quartics, then the convex hull of the orbit of F (X,Y ) = X4 is




x0 x1 x2

x1 x2 x3

x2 x3 x4


 ≥ 0; x0 + 2x2 + x4 = 0

Let Dr = {x ∈ Cn| rank(A(X) ≤ r}. Problem: compute one point in each
connected computent of Dr ∩Rn.

We use FGb to compute the Gröbner bases, Comparsion’s with Safey El
Din’s RAGLIB,

2.6 Near Optimal Subdivision Algorithms for
Real Root Isolation: Sharma

Subdivision methods: two predicates C0(I) says “there is no root”, C1(I) says
“exactly one root”. These have a variety of instantiations. Note that these
are partial: might say “no” even though the condition is true. Consider #T ,
the size of the tree, and the worst case arithmetic complexity at a node, which



is normally Õ(n). Typical bound on #T is O(log 1/σ) where σ is the root
separation bound. See [Dav85], [ESY06, SY12].

Subdivision plus Newton iteration is our remedy for clustering. There’s an
annulus around the cluster where this converges quadratically to the median
of the cluster.. See [Pan00] for predicates based on distance ot nearest root.
citeSagraloff2012a which has quadratic refinement..

Our result works for any instantiations. O(n log n) for Descartes C0 or
Sturm’s C1. Analysis is independent of root bounds: uses geometry of clus-
ters. If C∩C ′ 6= ∅, then either C ⊂ C ′ or vice versa. Ordinary clusers are found
by bisection, strongly separated clusters by Newton.

Use continuous amortization, Stopping function: given J , if ∃x ∈ J such
that w(J)G(x) ≤ 1 then either Co(J) or C1(J) holds.

2.7 Open Non-Uniform Cylindrical Algebraic De-
composition: Brown

First exposure of this new idea, even though CAD is old. Tarski formulae provide
implcit representations of semi-algebraic sets: not very helpful in general. Hard
to do isempty, for example. “Open cell” generalised the concept of a bax aligned
with the axes, x is still given as l < x < r, but y is between non-intersecting
algebaric functoins of x, x is terms of x, y etc. So an Open CAD is a weak
decomposition into these cells, which is cylindrical in the sense that

πk(Ci), πk(Cj) are equal or disjoint. (2.1)

Down in R1, pick a sample point in each open interval. Then lift and so
on. We do a lot of work before we ever reach a sample point in Rn. [JdM12]
given a point α and a formala F constructs a cell containing α in which F has
constant truth value. See [?]. This introduced merge: given a cell c 3 α, and
polynomiaal p, construct c′ ⊆ c containing α such that p has constant sign on
c′.

Aim is to discard (2.1). Start with the empty set of constraints, i.e. Rn, and
a random sample point. Keep merge, or move to an excluded cell if p has the
wrong sign. Far fewer cells and far fewer decision points in lower dimensions.
This is in some sense an adaptive algorithm. Has a good parallelism model as
well.

1. Q a queue containg Rn, 0

2. while Q nonempty

(a) Take a cell off the queue

(b) Add a constraint . . .

Example with linear polynomials. 5 in 4 variables has 233 cells, versus 50K with
QEPCAD. Nonlinear (slightly) 4 polynomials/4 variables has 4147 cells rather
than 447K,



Q Does this only handle conjunctions.

A Yes, for reasons of implementation.

Q Reuse?

A Yes, one has to check this. But the number computed (if you do this) is far
fewer than with straight CAD.

Q Complexity?

A No idea yet

Q For QE/CAD you need cylindricity?

A Yes, but these cells are relatively easy to project, and we need to resolve
overlaps.

Q (JHD) this is block-cylindrical.

A Yes.

2.8 Improving the Use of Equational Constraints:
England

Note Mccallum 1998/1999. 1998 is order in, order out, but 1999 PF (B) is order
in/sign out. Hnece 1999 doesn’t compose, and only supports one equational
constraint. McCallum 2001 does better. Note all these improve projection.

Lifting is nevertheless the most expensive stage. Hence we can lift only with
respect toequationaal contrraints (which involves discarding the idea that all
polynomials are equal).

The second idea is that our decomposition in a loer varable equationally
constrained consists of sectors (hence the EC can’t be true) and sections. The
secotors can just be lifted over trivially. Note that the resulting CAD will be
truth-invariant for the formula, but it may not be sign-invariant for any one
polynomial.

Example 3 Five variable,s but four equational contraints.We have 60 different
routes for designation, but only 113, 103 or 93 cells (three real possibilities), but
a sign-invarant CAD is > 1M cells, and one order-invariant is 150K or 11K.
Propragating all ECs gives 21K by default, and the correct designation can make
5633. Reular Chains does produce 137 cells.

We analyse #cells. m polynomails of degree d in n variables. Assume t equa-
tions. The degree-dependence doesn’t change. We replace m2n

by m2n−t

,
roughly speaking.

Note that this only works with primitive equational constraints. The prob-
lem with contents is that they are a disjunction, and it’s no longer true that
constrints are nonzero on sectors.



Q–TS Note that VTS makes a non-degeneracy assumption, which essentially
ignores equational constraints. I also feel that QE via CAD suffers from
the problem that it answers all questions.

A Indeed. [BDEW13] is going some way to solve this.

2.9 Real Quantifier Elimination by Computa-
tion of Comprehensive Gröbner Basis: Sato

Motivation is the Todai robot project. In GCS-QE we use the Real Root
Counting Theorem (Pedersen). σ(M l

p) = #({c ∈ VR(I)|p(c) > 0}) − #({c ∈
VR(I)|p(c) < 0}).

Add polynomials z2
i pi − 1, where zi is a new variable. Then we can count

solutions with pi > 0, but each zi gives a factor of 2 we need to remove (since
±zi).

In an example, the original GCS-QE would have polynomials of degree 24,
whereas we have degree 8.

We compute the saturation ideal I ′ of U with respect tothe pi, and this
reduces the dimension. We can also use a primary decomosition of I to remove
unecessary portions from I.

Have a concept of algebraic partitions if

1. union in S

2. Si ∩ Sj = ∅ if i 6= j.

3. Si = Vc . . .

We allows equations fi and inequalities pi and inequations qi. LetM be a real
symmetric matrix and χ(X) be its characteristic polynomial, with coefficients
ai. Let bi be the copefficients of χ(−X), so bi = ±ai.. As in RRC Theorem,
#(VR(I)) = σ(M l

I).

1. Introduce new variables |i,Wj .

2. Term order with these > X − k.

3. Consider fi, Z
2
j pj − 1,Wkqk − 1 as the new polynomials

4. . . .

Future work:

Q-ME This is in SYNRAC: is it available?

A Apparently yes

Q-TS You are assuming existential quantifiers and DNF. In general this is not
primitive recursive.

A For Todai examples this seems to work.



2.10 Business Meeting: MK chaired

2.10.1 New members to replace MK

• Dan Roche. I would like to consider what (small) changes we could make
to ISSAC.

• Frédéric Chyzak. Been in the community since 1990s.

2.10.2 Bids

Kaiserlslautern Decker et al. In the middle of Pfälzer Wald. 90 minutes
from Frankfurt airport, or 150 from Paris. Smalluniversity with strng
mathematics. Home of SINGULAR, group of about 40. Looking at a
registration of 250euros plus a banquet of 50. B&B rooms start at 54euros,
and there’s an even cheaper hostel. The mensa on campus is very efficient.

Q-JHD Inthe past people have said banquets should be inclusive.

A Noted

Q Dates?

A July sometime.

Jilin University, Changchun = “Long Spring” Prof Na LEI, Shugong ZHANG.
Have hosted three previous conferences. CM2013, NCA2015 (500 par-
ticipants). Suggest July 24–27 including tutorials. Was the capital of
Manchkou 1932–45, also PuYi’s last residence. Averages 23C, but rain-
fall is heaviny concentrated in June–August. Jilin has 8 campus and is
rated Number 8 in all Chinese universities. Many flights from China, also
Seoul, Tokyo, OSaka. Suggest using alarge local hotel with excellent con-
ference facilities. Suggest $300 regular, $150 student. Senior researcher
accommodation $100–120/night, students $80.

2.10.3 ISSAC 2015

74 submissions, 43 acceptances. At the low end of recent years. JSC special
issue: call probably in November.

16 people pre-registers: 30 SIGSAM, 31 Students, 49 non-SIGAM, 6 invited.
Now looking at 128. Only 19 people have ordered the paper proceedings, so we
have a few spare. Note that ACM takes 16%, and require a 7.5% contingency
(15% is the norm, so thanks for SIGSAM). Thanks also to Maplesoft and the
London Mathematical Society. Expect to make a small profit.

2.10.4 ISSAC 2016: Ilias

ISSAC 2016 at WLU in Waterloo. July 20–22. Tutorials before. Chairs
Abramow and Zima. PC Chair Xiao-Shan Gao. Treasurer Jacques Carette.
Proceeedings Markus Rosenkranz. We will be in the new Global Innovation



Exchange building at WLU. Due to be finished in September. Fields Institute
being approached for sponsorship, also Perimeter Institute.

2.10.5 Awards

It has been suggested that in future the Fachgruppe sponsors the Best Poster/Software
awards when in Europe, and SIGSAM when not in Europe. JAA also noted
that the PC had problems with the best student award, since “senior authors”
wrote unhelpful comments.

2.10.6 Results

Roche beats Chyzak 39–36. Kaiserslautern beats China 59–20.

2.11 SIGSAM Business—IK

Thanks to Matthew England for the new SIGSAM website.
Notes how important it is that CCA is referenced in Scopus etc.
Treasurer’s report. Note that the $10K SIGSAM pays ACM is (slightly) less

than the SIGSAM-related (ISSAC+CCA) revenue. Therefore the conference
charge etc. stays within SIGSAM.

Q Why not give some money back to ISSAC?

A A few years ago (2008) we were below ACM’s rules for minimal balances, so
this wasn’t feasible.

JHD A small support fund would have been very valuable, say $3000 (I do
mean $!). JHD to write proposal. General Approval.



Chapter 3

8 July 2015

3.1

Consider a basic semi-algebaric function, and optimising a linear function over
it. Polyhedron is linear programming. Consider the semi-definite representation
of the closure of the convex hull of S.

Also interestied in optimising a parametric linear function over a real alebaric
variety. c∗0 =

∑
xinS c

Tx for unspecified

3.1.1 Semidefinite representations

Not ethat
sup
x∈S

cTx = sup
x∈cl(co(S))

ctx

i.e. we are only interested in teh convex part (because linear!).
S ⊂ Rn is a spectrahedron if it is

S = {(x1, . . . , xn) ∈ Rn|A0 +
∑

Aixi � 0}

where the Ai are given symmetric matrices.
Note that the TV set is not a spectrahedron, but is a projected spectrahe-

dron.

Conjecture 1 (HelotonNie) Every convex semialgebaric set has a semidefi-
nite representation. Proved Schneiderer for n = 2

Can we characterise p|S ≥ 0 by sums of squares of polynomials. Let Σ2 be the
set of SOS polynomials.

Definition 1 The quadratic mudole generated by G = {gi} is

Q(G) := {σ0 + σ1g1 + · · ·+ σmgm}

where σi ∈ Σ2. Qk(G) when deg(σjgj) ≤ 2k ∀j.

17



So p ∈ Q(G)⇒ pS ≥ 0: when is the converse true? Suppose Q(G) satisfies the
Archimedean condition.

Definition 2 The kth theta body of G is

THk(G) := {x ∈ Rn|p(x) ≥ 0 : ∀p ∈ Qk(G) ∩R[X]1}.

TH1(G) ⊇ TH2(G) ⊇ · · ·. Putinir’s Positivstellensatz implies . . . .
Lasserre’s Semidefinitine Relaxations of cl(co(S)). Given y = {yα}, let Ly :

R[X]→ R bethe linear functions

Ly(
∑

α

qαX
α) 7→

∑

α

qαyα.

Moment marix
Mk(y)(α, β) := Ly(XαXβ) = yα+β .

Then definte kth Lasserre relaxation, and when Q(G) is Archimedean, the the
dual side of Putain implites

cl(co(S)) =
∞⋂

k=1

cl(Ωk(G)).

3.1.2 S not compact?

Shows an example where Ωk is very different (too large) and doesn’t help.

• Homogenisation

f̃(X̃) = X
deg(f)
0 f(X/X0) ∈ R[X̃]

• Lift S to a cone S̃i Then f(x) ≥ 0 in S ⇔ f̃(x̃) ≥ 0 on cl(S̃1).

We say S is closed at∞ of cl(S̃1) = S̃1 = . . . . This gives us a modified Lasserree

hierarchy Ω̃k(G̃) and modified Theta body.

3.1.3 Pointed Convex Cone

Closed and contains no lines. So assume S is closde at infinity and the convex
cone is pointed. Then [GuoWangZhi]

cl(co(S)) ⊆ cl(Ω̃k(widetildeG)) ⊆ T̃H · · ·

For pointed but not clsoed at infinity, then we get an example with T̃Hk = R2 6=
what it should be.

But “closed at infinity” depends on the actual generators of S, so is not
intrinsic.

Also shows that lack of pointedness might lead to non-convergence.



3.1.4 Parametric linear functions

Tarski–Seidenberg implies that the optimalvalue function is semi-algebaric. But
how do we compute Φ ∈ R[c0, c]. CAD, but limited to small n. KKT equations
for V being irreducible, smooth and compact in Rn [Rostalski,Sturmfels].

The dual Variety V ∗ is the Zariski closure of the set

{u ∈ Pn|u lies in the row space ofJac(V ) at x ∈ Vreg}.
Computing V ∗ [Rostalski,Sturmfels].

CT · · ·
For non-compact cases, the optimal value c∗0 might be infinte. Also, it might be
unattainable.

Introduce recession cone at he set of all vectors y.
If K is a convex cone, the the polar K0 = {c ∈ Rn|〈c, x〉 < 0∀x ∈ K}.

Theorem 5 ([GuoWangZhi]) . . .

Theorem 6 ([GuoSafeyElDinWangZhi]) Let V∗ ⊂ (Pn)∗ be the dual vari-
ety to the projective closure of V and C = cl(co(V ∩Rn)). If V is irreducibe,
smooth and 0+C is pointed, the V ∗ is irredcuble and . . .

In unpointed cases, the dimension of (0+C)o is strictly less than n.
There are bad parameters values, when . . . .

3.1.5 Conclusion

We have sown how to compute semi-definite approximations of a noncompant
semialgebraic set. Compute the optimal value functions when the feasible region
is noncompact.

Given a noncompact convex set C and a convex cone K,

• do there exist an affine subspace L ⊂ Rm and a lnear π : Rm → Rn . . .

• . . .

Theorem 7 (Yanniakis) The minimal m such that C has a Rm
+ -lift is equal

to the nonnegative rank of its slack matrix.

See the ISSAC tutorial by Moitra.

Theorem 8 (WangZhi) Let C ⊂ Rn be a polyhedron with at least two ver-
tices. The minimal m such that C has an Rm

+ -lift is equal to the nonnegative
rank of its extended slack matrix.

3.2 Software Snippets

3.2.1 Van Ciên Bui etc.

q-defined quasi-shuffle algebras. In Maple. Commands like Lyndonbasis.



3.2.2 Tropical Varieties: Yue Ren

For f = pax1 + pbx2 + 1, the initial term depends on the weightvector, and the
fact that this is linear isn’t essential. We still decompose (a, b) space into cones,
possibly with some tessentaion near the origin.

Tropical geoneters are also interested in the valuation of the coefficients,
which we do (SINGULAR) by means of a variable emulating the valuation.

3.2.3 Polynomial Homotopy Continuation on GPUs: Ver-
schelde

This is a SIMT (T=Thread) processing issue. Solution: the reverse mode of
automatic differentiation (AD) provides fle-grained paralllelism to evaluate and
differentiate all the polynomials in the homotopy, as needed for Newton’s mode.
Think of the monomial as the unit of data parallelism.

Acceleration compensates for double double and quad double processing (he
has libraries). We use K20C, and therefore need to keep 10,000 paths occupied.
In double precision (and real double double), we are memory bound. For others
we are compute bound.

phcpy is the Python scripting interface to PHCpack.

3.2.4 Kat the language of calculations: Mikus Vanags

function() { return x;} shows implicit parameter declaration. More soph-
isticated: function() { return y~-x;} or function() { return y-~x;} where
~ is the grace operator : postfix means move to end of implicit parameter list,
prefix means beginning.

Supports both push-button as in old calculator, or drag as in smartphone.
Note similarity with the implicit parameter notations $0 and $1 etc. in

programming languages

3.3

We generalise [RostalskiSturmfels] to the following.

• When V is nonsmooth and compan, dual varieties of regular locus and
sungular locus give Φ for generic γ

• The V is smooth and nocompact, dual valiety

We compute fintelu many paist (|Phi, Z) such that . . . .
Let V ∗ ⊂ Pn be the dual variety to the projective closure of V and Ch the

closuure of the convex hull of {V ∩Rn}.

Theorem 9 If V is equidimensianal and smooth . . . .



Write Φ = Φ0(c1, . . . , cn(cm0 + · · ·. Example in which Φ gives no information for
some value of γ.

Construct a one-dimensional C ⊆ V such that

sup
x∈V ∩Rn

f(x) = sup
x∈C∩Rn

f(x).

. Algorithm [GreuetSafeyElDin2014].

• Construct C

• S1

• S2

• S3

Poalr vareties [many]. A sequence of variaties {Wi} wheren Wn−i+1 is the

critical locus of . . . . We need modified polar varieties. W =
⋃d
i=1Mi whnere

Mi = Wn−i+1 ∩ V (X1, . . . , Xi−1). Algorithm[Greuetetal] Going through one of
S1, S2, S3 get a {Φi, Zi}, save this and Z := Zi + Pi and reconsider V (Z).

γ is bad if either Φi(c0, γ) = 0 or . . . 6≡ 0 ∧ Φi(c
∗
0, γ) 6= 0.

3.3.1 Singular case

V defined by x2
1 + x2

2 − 1)3 + 17x2
1x

2
2. Then the defining polynomial of V ∗ is

Φ1 := −c21c22 + c20c
2
1 + c22c

2
0. Let k − 1, vk = v.

1. Compute radical and equidimensional decomposition

2.

This terminates in a finite number of steps.

3.3.2 Conclusion

• How do we compute Φ when the feasible set is neither compact nor smooth.

• How to compute |Phi when the feasible set is a semi-algebraic set.

Q Non-linear objective functions? Where does it break down?

A We haven’t considered.

3.4 Probabiloistic Algorothm for Computing the
Dimension of Real Algebaric Sets: Bannwarth

Applications: in computationalal real algebaric dimension. Also in engineering,
dimension tells us degree of freedom [JinYang2002]. Collins can compute CAD.



Also [Vorobjov,Basu/Pollack/Roy,Koiran]. O((s+ 1)∆)O(d(n−d)). Output sen-
sitive, constantinthe exponent is huge, and no lnown pratcical improvements.

We propose a new algorithms for S defined by one polynomial equation.
Õ(m16(1 + ∆)3d(n−d)+5n+5). Probailistic algorithm. Efficient implementation.
Uses Gröbner bases rather than geometric resolutions. [HongSafey2012].

1. Random change of variables.

2. Compute boundary(πi(S))

3. Compute one point per component

4. lift the fibres.

Let S be defined by f = 0, and Sε be defined by f − ε = 0, and is a smooth set.

Wi = {x ∈ V |πi(T×V ) 6= Ci}Zar.

[SafeySchost2003]

Theorem 10 Let S be defined by f = 0. Vε the algebraic variety of f − ε = 0.
Wε, i be its polar variety, and πi projections onto x1, . . . , xi. Then in generic
coordinates . . . .

Note the polar variety is

f − ε =
∂f

∂xi+1
= · · · = 0.

Some details on avoiding infinitesimals.

1. Compute πi(V (Ii(f)) ∩Rn

2. One point per connencted component. Nearly always the most expensive
step — 90+%.

3. Testing fibres O(n4(n∆n + n4) . . .). Expensive when d = 0.

Complexity is worst when d ≈ n/2: very much shown in examples. Use FGb
and RAGLIB. Compares with CAD. This was nearly always ∞, but Series I/II
examples has some decent times, even beating the speakers’ for small n. He
blamed the linear change of variables.

3.5

Motivation consider tedrahedral die, but unfair. Aticiially asume p1 + 2p2 +
3p3 − 4p4 = 0. Do 10 trials. So what are the best estimates. This is max-
imise likelihood function.: maximinse

∏
pn1
i , or rather its logarithm. Then use

largange multiplies, and the search is for positive solutions. In a paremetric



version, the system has three complex solutions, but how often does it have
positive real solutions? This is the RRC problem. Use Maple2015.

[HostenKhetanSturmfels2005]. Agan system with unknown pi (real positive)
and λi (real,but not necessarily positive) with ui parameters. For egneric data,
there are finitely many complex solutions, the ML-degree.

Standard algoroithm

1. Compute disciminant variety

2. Compute cells determined by variety and number over each cell, e.g. CAD.

Unlike the general case, the discriminant variety of ML-problems are projective
varieties. The homogeneous polynomial that generates the reduced co-simension
1 component of the discriminant varioety is calle dthe data-discriminant of the
Langange likelihood equations. (We can’t prove it, but th codimension is in fact
always 1)

Example 4 F = u0p
2 +u1p+u0. J = 2u0p+u1. Elimitating p gives u2

1 + · · ·).
But this elimination is expensive.

Our algorothm.

1. Assumethe output is D(u + 0, u1, u2) ssume projection of evaluation is
evaluation of projection. Substtute ui = rit + si where ri, si random.
Then compute one-parameter eliminatoin ideadl. Do 100 times and guess
total degree. Similarly degrees in each variable.

2. . . .

In degre 2, with random models, seems 5 times better than standard algorithm.
In degree 3 standard in Macaulay always takes > 2hours, which ors is ≈ 100
seocnds: choice of stratgey doens;t seem tomatter much. With literature models,
we are much better, but Starategy 2 is much better than definiyely better.
Looking at memory pressure, we that Macaulay is using 19.64GB virtual, but
ours is 6GB. Real was 8GB.

For 3 × 3 symmetric model, get DXJ with 1307 terms, total degree 12.
This is the locus of multiple values. RAGlib says DXJ > 0 has six solutions,
DXJ < 0 has two. Note that the sign of the discriminant variety is not sufficient
information.

3.6 Sparse PolynomialMultiplication: Roche

We would like to multiply any polynomial in time linear in the size of the input,
but that’s not possible. Sparse polynomials mean the best we can hope for is
linear in input+output, but that’s not possibly either. Instead softly linear. For
dense polynomials, we have näıve. Can do Kronecker encoding, then mutliply
(softly linear), and extract.



Sparse is different. Quadratic will always work. Then there’s [Yan98], which
helps with the overhead. See also [MP14]. In the worst case one can’t do better
than quadratic, but there are special tecniques, e.g. [vanderHoevenLecerf2012a].

What about sparse interpolation. Evaluate at T >> #(fg) pints, multiply
and interpolate. But Big prime algorithms are too slow (in terms of degree).
How about small prime versions? Nontrivial.

By “structural sparsity” we mean where we would have non-zeros irrespective
of coefficients. Contrast with “arithmetic sparsity”, whch we can’t reach.

1. Estimate structural sparsity. Reduce to univariate by a Kronecker substi-

tution (fK), then make all coefficients 1 (fs). Compute1
(
fmod p
s · gmod p

s

)mod p′
,

If this is less than half dense, then we’ll guess that this is the structural
sparsity. If not, double p′ and try again.

2. compute structural support:
(
fmod p
s · gmod p

s

)mod p
. Check size of struc-

tural sparsity. Now encode exponents in the coefficients. Looks like this
gets you the product of exponents, but the sum, but (a`+ 1) · (b`+ 1) =
(a+ b)` (mod (`2 + 1))

3. compute arithmetic support (by trimming).

4. compute coefficients. Compute hp,q = (fK ·gK)mod p (mod q) for various
q.

Example: 1000 terms, 8 variables 64-bit coefficients and 32-bit coefficients.2

Computing the structural support is the most expensive step. Note that this is
a Monte Carlo algorithm.

A useful routine is sumset. We would like an efficient parallel algorithm!
Not yet impemented as sparse interpolation not interpolated. I think this mght
be practical for some cases.

3.7 DKSS: Lüders

De/Kurer/Saha/Saptharishi, based on Fürer’s algorithms.

• 64-bit machine with 64-bit word digits. Consider 0 ≤ a < Wn as a vector
of n words. C++ with some assembly. http://www.wrong.com/bignum

under LGPL licence.

• Quadratic

• Karatsuba

• Toom–Cook

• Strassen Let ω be a primitive n-th root of unity. The problem is that, as
n grows, we need more and more precision in coefficient ring.

1Notation means exponents modulo p.
2He had really nice graphics.



• Schönhage–Strassen In Z/(2K + 1)Z so ω = 2 is a primitive 2Kth root of
unity. O(N logN log logN). This is the standard for > 150K bits.

#words< 28 ordinary; < 152 Karatsuba; < 2464 Toom-Cook with k = 3; then
S–S.

3.7.1 DKSS

Use R = P [α]/(αm + 1) with P = Z/pcZ, where p = h · 2M + 1 is prime.
Select M = N/ log2N . Then do a length 2M FFT. 2M = −µ · 2m. interpret
as a 2m × µ matrix. Do µ legth 2m FFTs on the columns using α as root
of unity. Then perform “bad multiplications” on the coefficients Then do 2m
lengthµ FFTs. O(N logNK log∗N . Since input length is limited by memory,
we precompute the primes p (six of them) and generators of F∗p. Significantly
slower than S–S, 28–35 times slower, with the ratio graph being jagged. 80%
of the run-time goes onthe bad multiplications. 9% on the pointwise products.
Even at this length (28GB), we don’t recurse, as the largest coefficients were
195 words (hence TC3 was used here).

Fitting constants, cutover is N > 10104796

.
The underlying multiplication is slightly sparse, work maye ×1.9, we could

select the parameters more carefully, e.g. 30%. Montgomery reduction might
be worth 22%. Even all this would leave DKSS 8.5 times fster.



Chapter 4

9 July 2015

4.1 Algorithms for Finite Field Arithmetic: Schost

F2, Fp, note that Z/4Z is not a field. Occur everywhere: number theory, cryp-
tography, coding theory. How do these scale: F5, F510 , F5100 , F51000 , etc. All
finite fields are Fp[x]/Q(X) = {a0 + a1X + · · · + ad−1X

d−1}, but no canoni-
cal choice. assume p is given, and let’s not talk about normal bases, or Zech
logarithms, Conway multiplications.

4.1.1 Basics

Model. Fp given. In Fpd , represent as a d-vector. Polynomial meansO
(
(d log p)O(1)

)
.

Multiplication, division and XGCD are quasi-linear using FFT, assuming Q(X)
given.

For d = 2,we want a non-square. O(1) choices randomly, GRH says (log p)O(1).
In higher degreees, need ERH, on [Ivanyosetal]. There is work on special
primes[Rónyai, Shoup].

Need cooperation, e.g. if we want F54 and F56 . Note that if m|n then
Fp

n

↪→ Fpm . Essentially by polynomial remaindering. However, we don’t have
a linear-time algorithm here.

Slide from [DeSmitLenstra]. There’s a very complete design in MAGMA
[Bosma,Cannon,Steel]. See also PARI, NTL, FLINT.

4.1.2 Polynomial Arithmetic

Can write F116 either via a polynomial of degree 6, or two of degrees 3 and
2. In the multivariate representation, multiplication is OK, inversion/XGCD
more complicated, but complexity is still OK. In general have n variables, and
a triangular set of polynomials generating the ideal. But still no quasi-liean
algorithms for basic arithmetic.

Change of basis in almost-linear time [Umans,KedlayaUmans,PoteauxSchost]
in a boolean model, but this does not seem to be useful yet, as the O-constants
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build up.

4.1.3 Towers

Motivation: halving on an elliptic curve. Requires extracting two square roots.Hence
we build a tower of F

p2k
. Similar questions arrive by p-division [Couveignes,DeFeo],

hyperelliptic curves [GaudrySchost].
Forp ≡ 1 (mod 4), then, if x0 is not a square, then not only is x2−x0, but

also x4 − x0, x8 − x0 . . . , so tower is trivial. For a general ` 6= p, if x0 is not an
`th power, xl

i − x0 is irreducible ∀i. These are fibres of x 7→ x`.
In general, first go from Fp to Fp(ζ`) then grow Fp(ζ`2), Fp(ζ`3), etc. Can

reduce Fp(ζ`i) to Fp(xi) witha polynomail Qi computed by resultants.
Alternatively, use the rule-of-thumb that says that cyclotomic corresponds

to elliptic, as in Pollard’s p−1 and Lenstra ECM. Use isogenies as the equivalent
of x 7→ x`.Õ(`5+i).

Merging Fp2 and Fp3 , say. Merged product [BrawleyCarlitz]. If P had roots
ai and Q bi, let R =

∏
i,j(X − aibj). This can be compiuted via a resulatnt

[Shoup], or via Newton sums [Bostanetal].

Example 5 x = 1+
√

5
2 , y = 3

√
3. How to know x = 1

6 (xy)3 + 1
2 . Lnear al-

gebra, an dthis shouldbe turned into ideas with sequences: [Wiedemann], RUR
[Rouillier], sparse FGLM [Faugèreetal].

3-adic towers above F5: elliptic is better for i > 10. Embedding in degree
n(n+ 1). Embed and multmod are both experimentally very close to linear.

4.2 swMATH: Yue Ren

swMATH is an OpenAccess bibliographic database f mathematical software, as
a portal for developers and users. Inlcudes informatoin on # publicatoins citing
the software. Shows “Top 5 MSC categories for GAP” (by year) as an example
of what can be pulled out.

Based on zwMATH, formerly ZentralBlatt. 10K software packages, 90K
references out of zwMath. Note that swMath links into zwMath are available
even to non ZwMath subscribers.

Impremented at PostgreSQL database, and Django as a Web framework.
Currently rank articles by date, but want to improve on this, e.g. actual de-
scriptions before applications etc.

4.3 What’s new in Maple 2015

In fact, it’s technically 2015.1. 2015.0 was just Maple, whereas 2015.1 includes
the new MapleSIM. Large list of areas, so this is merely a slection.

Datasets Some free froma firm called Quantum, who also have a premium
access model. Example was oil price (he searched for OPEC crude), and



he assigned a filtered result to a Maple variable. This integrates with new
dataplot command, which is largelya new unified interface to a variety
of existing options.

Ployhedral Sets and a set of ExampleSets. Uses Fourier–Motzkin. Can do
the lattice object/faces/edges/vertices/bomm.

IterativeMaps Basically dynamical systems. Goes to compiled code, so fast.

Visualisations Cayley Graphs, Shading between cruves/surfaces.

mathApps Small teaching-oriented worksheets. Built via the new Explore

command, which has sliders etc.

Now for the meaty stuff.

Statistics e.g. RepeatedMedianEstimator. Also StudentStatistics, with a
version of Explore for random variables. Nice mixture of formulae and
displays.

Delay Differential Equations New in 015, via dsolve.o

Ordinals JG wrote this. Note that addition etc. are non-commutative.

Modular GCDs Two polynomials. 20 terms. Much faster.

Connectivity A data import command. Understands various formats.

4.4 On the sign of a trigonometric expression:
Koseleff

Motivatio: Chebyshev knot diagrams: e.g. x = T5(t), y = T6(t), z = T7(t). In
geneal, z = Tn(t+ φ), where φ is aphase. Want to know the sign o fthe crosing
when projected into plane. Work in Q[cos πn ]. et Mn bethe minimal polynomial

of cos πn . Claim that we can decide if = 0 on Õ(. . .).

Normally Tn(x) = cosn arccosx, Un(x) = sin(n+1)t
sin t where x = cos t. We

actually use Tn(x) = 2 cosn arccosx. Usual laws. Let 1, Ti be our basis for Z[x].
Let D be the transformation from Q[x] to be space of even-degree self-reciprocal
polynomials: D(P ) = XdegPP (x + 1

x ). All classical FFT-based complexity
results work in new basis. In principle need factorisaton of Mn, but in practice
square-free will do.



Chapter 5

10 July 2015: PASCO

5.1 Exploiting Tesla GPUs with MAGMA: Al-
lan Steel

CUBLAS

CUDA native code.

CUSPARSE

CPU Sandybridge 3.1GHz with 384GB memeory, always using one core for
comparisons. ATLAS.

GPU C2075 448 CUDE cores, 6GB. Tends to be 15 times faster than ATLAS

GPU’ Single K40. 2880 cores. 12GB memory, so 2–3 times faster than previ-
ous.

5.1.1 Dense Matrix Multiplication

Use floats/doubles, couple over to GPU and use CUDA_DGEMM. Use when abc ≤
220 ≈ 109: this is better than a choice based on a etc. separately. I have a
simple CUDA kernel to do the mod p reduction on GPUs. on the GPU.

For (mod 2) multiplication, use 4Russians (4 Ukrainians) method.Take a
block of m rows of B at a time, and use a look-uptable. d cme(2m+r) operations
on rows of B instead of rc

2 classical method. Magma’s CPU implementation
already uses AVX where available.

I have my own CUDA code, where m is fixed at 8. Avoids bit-fiddling and

• Set Up. Thread (i, j) writes the j-th word of combination i into a buffer
0 ≤ i < 256.

• Apply combinations. Thread (i, j) adds appropriate combinations of works
from the buffer.
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Choice of block sizes for the grids makes a big difference. Need to avoid writes
into global memory (slow).

Then do F2k

via Karatsuba. When a = b = c the GPU is 3.5–4.9 (depending
on 2-ness of a) faster than CPU, GPU’ is 10–12. For asymmetric matrices (F4)
get ×7 or ×20.

5.1.2 Dense F4

My version (MAGMA 2013) of [Fau99]. Look at everything as a dense matrices:
no polynomials as such. To compute T := B − AC−1D we have a dense buffer
with rows of [A|B]. To compute the echelon form, we use the recursive reduction
to matrix multiply [Str69]. GPU is a afctor of 3 faster for the whole process.

5.1.3 Solving 0-Dim: Evaluation Method

Given a 0-dim I ⊂ K[x1, . . . , xn], choose e : 1 ≤ e < k, take an e-tuple
(c1, . . . , ce), evaluate here, and compute GB of I ∪ {xi = ci : 1 ≤ 1 ≤ e}, Either
we guessed right (then read-off solution, or repeat guessing on next tranche) or
get {1} (bad guess).

[FS10] use GB techniques to solve minrank. See [Courtois2001] for chal-
lenges. A,B easy, C hard. [FS10] estimated 166.7 core-years. MAGMA2012 on
a CPU used 1637 seconds for a single instance. (dense F4 with [JouxVitse2010]).

Using Direct (FGLM) rather than evaluation was about ×150 on a CPU.
Also much less sensitive to #K. [FaugereMou2011] used Wiedemann to compute
the minimal polynomial of the representation matrix A. Coppersmith’s block
variation. Much faster in terms of memory access. To recover the vector use
[Pau98] version for K[x] of LLL.

So use dense F4 to get a grevlex basis (very suitable as input dense). Min-
Rank(7,9,4) is a (1547 + 4811)× 8K problem. [FM13] observe that many rows
are singletons, so compress to b << N rows (factor of 5). For Paulus, use
Buchberger (dense F4) for small polynomials. For largr ones, use [Thome2001]
Half-GCD-like version of Coppersmith’s algorithm.. Maps to fast matrix mul-
tiplication over K[x].

Time is dominated by data collection, memory by GB and K[x]-LLL.

5.1.4 Results

For r = 6 (largest) my solution time (with GPU and 1 core CPU) is ×10 faster
forthe GB part.

MinRank c is (n, k, r) = (11, 9, 8). oinors take 1280 seconds (GPUs don’t
help). 3025 polynomials each of total degree 9. GRlex GB is . . . , A is N×n with
N = 259545 and 23.42% dense. 38755 dense rows. Use 800 for Block Wiede-
mann blocking. (800×38755) by (. . .) takes 618seconds on CPU, 76.7 withGPU
and 28.1 with GPU’. Total times 202h/25.4h/15.1h. 60% Block Wiedemann,
40% dense F4.



Cyclic 10 takes 3806 seconds on CPU, 2632 on CPU+C2075. Katsura15:
CPU+C2075 is worth a factor of 2.

5.2

Working modulo m primes parallelises trivially.
FFT

1

n
F−1

(
[F(A,ω)�F(B,ω)], ω−1

)

1. Shuffle

2. Recurse

3. Butterfly

is the standard algorithm, but I found one text giving

1. Butterfly

2. Recurse

3. Shuffle

If we do the forwards operation with (2) and the inverse with (1), the shuffles
cancel. This saves memory as well as time.

Also gain 20–25% by better indexing into powers of ω, to take account of
recursive calls only using some powers.

CILK parallel implementation. In fact split into four rather than two, which
is worth another 20–25%. Doing more doesn’t help. Hardcoding the prime (idea
due to Montgomery) lets the compiler optimise division, again worth ×2. Can
multiply 1024M by itself using 2 63-bit primes, with 20 cores given us ×16 over
1 code. Even on one core, we are ×2 over Maple and Magma, which also run
out of space earlier.

Q Why not compare with FLINT, etc. Ditto, why not float representations of
primes?

A Didn’t do FLINT etc. Float’s won’t represent primes as large.

5.3 Parallel Sparse Interpolation: Roche

[Co-authored with two cadets, written since Jan 2015]
Looking at sample → black box → value. Actually the box is tweakable,

e.g. prime/extension field/. . . . Big prime [?]; [Zip79]; Small prime [Gro-
gorievKarpinski].



5.3.1 large prime

1. Choose q >> deg f

2. Find Primitive Roou of Unit ω

3. Evaluate f(1), f(ω), . . .

4. Berlekamp-Massey

5. Compute roots ζi (Lecerf claims improvements here).

6. Compute discrete logs of ζi

7. Solve transposed Vandermonde

3,6 are expensive, but parallelise well.

5.3.2 large prime

1. Repeat O(logD) times steps 2–4

2. Choose q >> max ci, p >> T

3. Evaluate f(z) (mod zp − 1)

4. save non-zereo coefficients/expoents

5. Correlate exponents between images

6. solve

Multivariate can be Kronecker, or variable-by-variable [Zip79] or [JavadiMona-
gan2010a] for parallel-by-variable.

We want to parallelise step 1. Diversification trick [GR11]. So as step 0 we
choose random prime q and random α ∈ Z/qZ. Heuristically we repeat d` logDe
times, and choose p ≈ kT , where `, k are determined experimentally, hence this
is now a heuristic. each process gets p, α, q and blakc box. Returned is a list of
triples (c? (mod q), e? (mod p), p). They come in sorted by primes, and we
then resort by coefficients and gather. Need a bound on degree and #terms.

Benchmark from [vanderHoevenLecerf2014]. Our algorithm on 1 core is
comparable, and gets a constant speed-up as we throw more cores at it (×4
on 6 cores).

Still need to improve k, `. Randomised Kronecker [AR14]. Also need to
check on better hardware.



5.4 Monagan

Compute G = GCD(A,B) in Z[x1, . . . , xn]. Use many primes (parallel), but
this is not enough. Let A and B be the cofactors, which we will compute. Let
G =

∑degG
i=1 gi(x2, . . . , xn)xi1 etc., and t = max(#gi). But note the content

problem. Note that the univariate GCDs are typically not the time sink.
Instead, consider G =

∑degG
i,j=1 gi,j(x3, . . . , xn)xi1x

j
2 etc., and s = max(#gi,j).

Content problems are now in two variables fewer (reducing to bivariate or uni-
variate, depending on number of variables). Since s is less than t (factor of 3
typically), we win.Inter

Need fast bivariate GCDs. Can interpolate y from univariate images until the
GCD stabilises (and check!). But [Bro71] interpolates G and A,B. Stop when
k > max(degy A,degy B, degy GA,degy GB). Nice graph, with an optimisatoin
looking for early stabilisation.

Also use FFT with small roots of unity. We evaluate/interpolate in blocks of
size j using an FFT of size j (j = 2, 4, 8, . . .). Use Cilk, dense recursive arrays.
The number of terms in each was 1.37M, so 10.5MB.

1. Allocate space

2. for dbnd/je batches in parallel

(a) Evaluate j images of the inputs into new space in Zp[x1, x2].

(b) Make j recursive call in parallel

(c) . . .

3. . . .

Space and allocation is quite a problem: as much pre-allocation as possible. 20
cores gets ×10–13, but because were using turbo mode, the maximum is 15.56,
not 20. Compared to Maple and MAGMA, even on one core out system is ×10+
better (but these are large dense problems) — even ×1000 over Magma.

5.5 Interatcive Computation and Outsourcing:
Roch

Distributed, heterogeneouus, hybrid etc. Various computing levels, also various
levels of trust.

What we want is oblivious algorithms: the same for any number of proces-
sors. The basic notions are work and deph — length of critical path.

1

Πave
max

(
W

p
,D

)
≤ Time(p,Π) ≤ 1

Πave

(
W

p
+D

)

Some schedulers reach 1
Πave

(
W
p +O(D)

)
. Work-stealing is the obvious imple-

mentation. This has interaction between idle and busy processors. If D is small,



there is comparatively little stealing: O(D) per processor with high probability.
hen both W and D this gives oblivious parallel algorithms.

Example 6 (Parallel prefix) Given a0, . . . , an), compute pi+1, ldots whenre

πi =
∏i
k=0 ak. Sequential is efficient, and cache-friendly.

Example 7 (Frievald’s verification) Verify a matrix product C = A · B,
where A etc. stored in cloud. Pick a u and check C.u = A · (B.u).

What about interatcion. Soundness: accept any valid proof. ??: reject (with
high probability) an invalid proof.

Example 8 (Graph (non)-isomorphism)

Any problem in PSPACE has a verifier, e.g. #SAT. The key tool is sum-check
protocol. Given a Boolean circuit Cn of detph δ that inmplements a function
with n input bits. Output= Sn =

∑
b1=0,1

∑
b2=0,1 · · ·

∑
bn=0,1 f(b1, . . . , bn). If

d = 2δ there are at most d useful gates. Theo: verifier interactively computer

Key 1 Arithmetization

• Transform Cn into C2
n over any field K with ∧ = ×, ¬(x) = 1− x

• Transform C2
n into CKn — gates + and ×

Key 2 Schwartz–Zippel.

n = 1 Computes S1 = f1(1) + f1(0).

Else compute Sn by induction.

• Verifier asks the polynomial h(y) to be prover

h(y) = sumb1=0,1

∑

b2=0,1

· · ·
∑

bn−1=0,1

f(b1, . . . , bn−1, y)

• The verifier recevies s(y) and checks s(y = h(y) by Schwartz–Zippel.

1.

2.

This can give us iterated sum certificates. S =
∑
i=0,n f(ai).. The verifier const

is the sumcheck protocol, and O(logm).

5.5.1 Matrix Multiplication

[Thaler Crypto 2003]

• Let A,B be n× n matrices in K with m = log2 n.

• A is a boolean functions {0, 1}m×{0, 1}m → K : A(i1, . . . , im, j1, . . . , jm)
. . .

Also interactive error corrcetion.



5.6 Parallel F4: Pearce

Buchberger’s Algorithm with classical division.

• repeated comparisons of the same monomials

• repeated searches for divisors of monomials

• polynomial data structure updates

F4 either eliminates or amortises these costs.

• Select a batch of syzygies: for S(f, g) put lcm /LM(f)·f and lcm /LM(g)·
g in P .

• determine all monomials and reducers

• Sort M and assign indices to monomials

• Perform 9sparse) Gaussian elimination

• new pivots are new leading terms 9add to Gröbner basis)

We wrote a small (30KB) library for Zp; p < 231 that does parallel sparse Gaus-
sian elimination in Cilk. We use simple data structures like arrays (“the CPU is
pretty smart”) and C libraries. Row format is length,index1,coeff1,index2,coeff2,. . . .
The reduction of each row is spawned as a Cilk task. Each thread uses its own
buffer to reduce. Rows are added to pivots via compare-and-swap, and may
nee to recompute if this fails. For cyclic-9 get ×15 for the GE on 20 cores.
Gaussian elimination is 85% of the time, but the overall speedup is only ×5
(and Amdahl’s Law says 6.6 is the limit).

Hence need to do better. Spawn the monomial×polynomial as a Cilk task,
with a sentinel to protect. In fact, this didn’t work out, and we expect we’ll
need a proper concurrent data structure.

Multi-modular computations. Tried using Maple’s Grid package. Again
Amdahl burned us over the Chinese Remainder. Good comparisons with Maples
FGb and old Magma, but Magma v2.21-4 has radically improved this. Over Q
Maple’s FGb is beating us: 101 seconds, while we are 298 on one core, and 105
on 16 cores.

5.7 Gröbner Bases over ANF: Syteenpass

Given I ⊆ K[x1, . . . , xn] wherne K = Q(α) is a number feild, how to compute
a GB of I.

Lett be an extra variable, f ∈ Q[t] is the minimal polynomail of α. S =
Q(α)[X], T = Q[X, t]. Fix a flobal product ordering�K= (�1,�2) onMon(X, t)
which is a product ordering. I ⊆ S corresponds to Ĩ ⊆ T . [Noro2006] noted
that lots of tkX get generates with reducibel tk get gernated. We use a differnet
approach.



Theorem 11 (Chinese Remainder) R be a Euclidean domain: m =
∏
mi

which are coprime

R/〈m〉 ≡ R/〈m1〉 ×R/〈m2〉 · · ·R/〈mk〉

So consider Ĩ modulo several primes Ĩp1 . Admissible–A if f is reducible and
square-free (and divides no l.c. or denominator). Suppose f (mod p)1 =∏rp
i=1 fi, and compute Gröbner bases for each fi, getting Gi,1 etc. We say that p

is admissible of type B of for all i 6= j, G̃i,p and G̃j,p have the same size and same

l.m. set. Then CRT these to give G̃p. [idreesetal2011a] defined “lucky” Then,
as there, we resort to majority voting. Use CRT and rational reconstruction to
produce a tentative GB over Q. Run a test in positive characteristic to check
whether a new prime. Use [Arn03], [Pfister2007] ro check that of Ĩ reducte to 0
w.r.t. G̃ and is G̃ is the reduced GV of 〈G̃〉, then OK.

With 32 cores, see 3–7× speedup. Generally beat Magma, but not always.
Why does this work? Finite fields, plus lower minimal element degree. And,

of course, we’re in finite field.
There was a debate other the best way to choose the primes. JHD suggested

taking 10 primes, fiding the best cycle shape (which is therefore probably fairly
common the the Galois group) and find mor ewith this shape.

5.8

5.9

5.10

Q

A



Chapter 6

11 July 2015

6.1 Numerical Dense Linear Algebra

DRAM performance grows by 23%/year on bandwidth, and Latency 5%. Flops/byte
is now well over 10.

Changing chip resolution: at 45nm, a DP FLOP is 100pJ, moving 1m on
chip is 6pJ. At 11nm, the FLOP drops to 10pJ, bu tthe moving costs don’t
change. [JHD: note that we’re reaching more transistors in same distance!]
[I/O Complexity: the red-blue pebble game: Kung 1981] Loook at citations:
peaked in 2013. Was called “I/O”, but now it’s cache etc., but the same issue.

On a 48-core machine, loooks at Cholesky invesion. MKL LaPack does very
poorly, e.g. on 15 threads 30 GFLOPs bersus 110 with perfect scaling from 1
core. ScaLAPACK does better, but not brilliantly.

Paralleise the update: easy and is the 2
3n

3 term. The factorization is hard
to parallelise. So with lookahead we try to hide it, by having all other cores
multiplying while one is factoring. In fact, it’s the other way round: there’s a
critical path of factorisatons in whihc the matrix multiplies can be hidden.

Vectorising Original LAPACK idea.

Blocking for L3 BLAS.

Libraries Please tune hard for hardware, and use. See also CUBlas and Alan
Steele’s talk: section

Autotuning Lot of heuristic searching work. Not my own area.

Variants see FLAME etc. right-looking enable sthe most parallelism, left-
looking minimises the number of write I/O, bordered variant is best for
schecking whether a matrix is SPD. Note that very variant has its inter-
esting areas.

Recursivity Enables Cache-oblivously system, [Gustavson IBM JRD 1997]
[Toldeo SIMAX 1997]
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Pipeline [vandeGiejnWatts: SUMMA Concurrency 1997] These use the outer
product version of MM algorithms. PUMMA broadcats rows, broadcasts
columns, then multiplies, and repeats. Showed a weak scalability example,
almost perfect.

2D Block cyclic Distribution The main idea behind ScalaPack. Each pro-
cessor has blocks from across the matrix, rather than, say processor 1
having just the top left corner, and thus running out of work.

Communcation lower bounds Study ordinary dense MM in the sequential
model. Assume two-levels of memory. Not allowing Strassen. Square

tile times 3.46
(

n3
√
M

)
− M . Lower bound (Ironyetal2002) 0.35

(
n3
√
M

)
.

[0.35 = 1/2
√

2]. Constraints for maximising number of multiplications

1. total number of reads/writes

2. must fit in cache at start

3. must fit in cache at end

Use Loomis–Whitney inequality. Let V ⊂ Z3 be a fniite set, then |V | ≤√
|Vx||Vy||Vz|. Hence

2β
n3√
M

+
2γ

3
n3,

where β, γ are communications and compttaion costs. Looks at Tianhe2
figures Shows thattheir achieved figure is very close to what he expects
from this bound (with on-overlapped communication).

Tile Algorithms Very low granularity, scale well. Need a DAG scheduler,
block data layout. About five independent developments in 2005–7. One
Blue Gene L, on a 1M × 50 matrix, get excellent strong scalability with
ScaLaPACK. But his ReduceHH (QR3) shows typically 2–3× the perfor-
mance.

Weird Work on Orsay/Toulouse/Bordeaux/Sophia, where in practice latency
is c/3.

Out-of-order scheduling Inversion is in three steps: look at the various DAGs.
They can merge very well, . Each has cricial path length 3d + O(1), an
dthe merged is also 3d+O(1), so the merged DAGs are a 3-fold win.

Also run-time schedulers Quark (Tenessee) etc. leads to PLASMA. Also
Kaapi from Grenoble, which also understands GPUs.

Heterogeneous I don’t do much, only CUBLAS.



6.2 High-Performance Implementation of the In-
verse TFT: Johnson

We want t utilise and extend SPIRAL to implement the TFT. We wnat to
benefit from SPIRAL’s autotuning flow. We used a 45nm Nehalem/Bloomfield,
4 cores, three levels of caches; L3 is 8MB shared at 40 cycles. [vdH04]. Constants
matter.

Aim that a hagh-level description should generate everything, e.g. one code
of mathematics should produce FFTW. Needs recursion. base cases and target
infrastructure. SPIRAL’s language SPL, (also Σ-SPL) and OL). Algorithms are
rules in SPL and OL. Do a lot of loop merging, vectorisation and parallelisation
ourselves, as compilers don’t (didn’t) seem that good.

Input

ModDFTn,p,ωrs
= (ModDFTn,p,ωr

⊗ Is)Tn
s (IR ⊗ModDFTn,p,ωs

)Ln
r

is our defintion.
Need [vdH04] do imeplement the TFT when not all terms are being com-

puted.

1. Apply the breakdown rule

2. Convert to Σ-SPL

3. merge loops

4. simplify indices

5. extract required recursion steps

Prime factor algorithms and Rader algorthms already implemented.
Parallel TFT and ITFT can do a few more arithmetic operations to get

better vectorisation. Use Montgomery multiplication, and SSE4 doesn’t have
division. Shows pretty small strircase effects, and practically ×2 as moves fomr
2 to 4 cores. We are as good as FFTW, and have successfully moved SPIRAL
to the fixed-point world. Note that Intel’s MKL now uses SPIRAL to generate
cosine transfroms etc. (in floating)

Note that relaxation, doing some “redundant” arithmetic to improve vec-
torisation etc. We are trying to produce a “decent” release of SPIRAL.

Q How long does this take?

A A couple of hours.

Q–JG In the floating world, don’t you need to worry about stability?

A Using stability as a cost function (for CT algorithms) doens’t see to change
things.

Q-MM One of the new AVX does 64× 64 7→ 128: are you using this?

A Starting to look at.



6.3 3-Ranks for strongly regular graphs: Saun-
ders

Primary motive: Dickson 316 matrix has a 3-rank of 141168 (Dimension 43046721.
The applicatoins are to strongly regular graphs. [WengQiuWangXiang2007].
useful for LLL-based recurrence candidate narrowing.

Fq = D ∪ −D ∪ {0}. D ∩ −D = ∅. Laplace Matrix Li,j =




−1
0
1

In our case, D = {x2 : x ∈ Fq}. q = 3e. 3-rank satisfies x3 − 42 − 2x + 1
experimentally,and this new result verifies this.

. Gaussian elimination is O˜(rn2), whereas we can do O˜(n2 + r3). Space is
also O˜(r2) rather than O˜(n2).

Youse’s thesis has a heuristic with certifier. Use 65 compute nodes with 4
Opteron 12cores. RPC and PyRO, and well as OpenMP on nodes.

6.4 Parallel Linear Algebra Dedicated Interface:
Sultan

This language, PALADin, is in LinBox. We have POSIX, or pthreads, or Win-
dows threas. Issues of portability, explicit synchronisation etc.

There are annotation-based such as OpenMP and SMPSS. Function class
based, such as TBB and Cilk++. xKaapi supports fork-join and dataflow par-
allel (work stealing).

In the state-of-the-art PLASMA-Quark librray we can see that we need
genericity and portability; performance and scalability, and a high level of ab-
straction. Need to handle unbalanced workloads well. Claim that the answer is
alangauge wirth multiple runt-ime systems plugins. We support

• OpenMP 3.x and 4.0 directives, such as OpenMP4 depend.

• TBB parallel_for etc.

• xKaapi via the libkomp library.

Our implementatoin is maro-based keywords. Tis avoids function-call over-
heads. Ther is a complementary C++ template meta-programming for loop-
cutting techniques.

PARFORID (it,0,n,SPLITTER,

T(it,begin()]=T1[it.begin()]+T2[it.begin()]

SPLITTER has a variety of methods:

• BLOCK_THREADS

• BLOCK_FIXED



• COLUMN_THREADS

• COLUMN_FIXED

• ROW_THREADS

• ROW_FIXED

• GRAIN_SIZE

• SINGLE (i.e. no cutting)

Also various fork/join strategies, such as PAR_BLOCK, and dataflow keywords.
Five strategies for MATMUL splitting.

TBB does not find the best cutting strategy (160 seconds), whereas we get
30 (ROW_THREADS) Again, native OpenMP does ×4 worse than when we specify
ROW_FIXED. Conversely ROW_TREADS is slightly worse than native.

For fork-join, all strategies are good when the matrix is very large, but
for smaller ones, it matters. Ditto xKaapi, but OpenMP does not handle the
recursion very well.

Our PLUQ does 35% faster than PLASMA-Quark’s dgetrf (k = 212).
MKL’s dgetrf has a disastrous cliff at N = 11000 — performance halves.

6.5 PASCO Business Meeting

PG took the chair as CP was on family business. He presented a budget for
PASCO 2015.

It was noted that we only had one participant forthe programming challenge.
FAS noted that we should do a follow-up exercise with past contestants. The
following points were made.

• In the future, AAECC (via Grégoire Lecerf) might well be willing to run
a special issue based on PASCO presentations.

• We need a Steering Committee. J-GD, MM, AK and PG volunteered.
They were empowered to co-opt any past PASCO chair.

• It would be good to have a more regular schedule, say every other year.
The Programming Challenge should also be announced a year in advance,
or at least at the first call for papers.

6.6 GPU Accalerated Path Tracking: Verschelde

Polynomial homotopy continuation methods. These are numerical computa-
tions, but double may not be sufficient. First results in this line in PASCO
2010. f is the system we want to solve, and g is the start system, then consider
essentially tf+(1−t)g. For quad double, see http://crd.lbl.gov/~dhbailey/
mpdist/qd-2.3.9.tar.gz [Hidaetal QuadDouble 2001]. Now ported to GPU.

http://crd.lbl.gov/~dhbailey/mpdist/qd-2.3.9.tar.gz
http://crd.lbl.gov/~dhbailey/mpdist/qd-2.3.9.tar.gz


Tracking one part is strictly sequential. So where does parallelism come
in? Polynomial evauations and differentiation. See polynomials as a sum of
monomials.

1. Common factors and tables of power products

2. Evaluate and differentiation sof produts of variables, via AD, takes 3n− 5
multiplications

3. Coefficient multiplicaton and term summations: order summation jobs by
number of terms to balance work.

Path tracker dxoes extrapolate/correct (Newton). See VerscheldeHu (HPCC
2015).

6.7 GPU-acceleration of Optimal Permutatoin-
Puzzle Solving: Ishida Naoaki

This is expensive as we are searching in the cayley graph of groups of puzzles.
Rubik’s cube is 4.33× 1019. So we want shortest-path finding: how?

Rubki’s diameter is 20 in half-turn metric, and 26 in quarter-turn metric.
Rubik has 8 corner cubies, etc. a state of the cube is 40 variables, 8 corners

and 12 edges, 100 bits. However, a better encoding uses 68 bits., for example
there are 8! possible curner positions etc. We use a table for state transitions
caused by a move.

Iterative Deepening Algorithms: depth-first path search. Have a “pruning
and distance” table. Require no repetitions of the same twist, and we fix the
order of twists about the same axis.

Toy example has 211 × 37×??? ≈ 1GB of state table. Can have about 500K
states/kernel. Need collaboration between CPU and GPU: CPU does some
breadth-first searching until has enough sub-problems to pass to GPU.

For small problems, e.g. 2x2x2 cube, depends drastically on distance func-
tion used. Removal of inappropriate moves tends to be worth ×10. Some
dependence on search length (on CPU?) and on threads/block, where 64 was
the optimal.

For the full Rubik’s cube, the CPU time seems to be dominant. We have a
tuning method, and are seeing ×25 speedup.

6.8 Sparse Multivariate Polynmial Division: Gastineau

≥ 16 cores.. Distributed format, sorted in some monmial order. School method
is repeated cancellation ny leading term. [Wang1996] synchronised all threads
between each quotient term. [MP11] parallel sparse using a binary heap. One
private heap per thread and a global heap with a lock.

Also various dense methods. Mathemagix is dense, but if the question is
sparse this uses much more memory.



We focus on exact division, as in Gauss-Bareiess. [GastineauLaskarCASC2013]
Considers an approach with no lock for doing the multiplication (Horowitz pp-
matrix). Model is basically single producer, multiple consumers, but the pro-
ducer can change.

The merge can be done by any fast sequential algorithm: Binary heap [Mon-
agan2009] for the pending part, and a tree with each node has 16 children (4
bits of exponent). Monagan’s memory is #Q+#B, but we are #(Q×B), which
could be worse.

Practically, Maple is very bad with more than 5–10 (depending) threads,
and we degrade slowly. On random polynomials, the tree method is very bad
whenthe sparsity is close to 1, but (in general) the heap method were geneally
better. We suffer from not having a dynamic switch between quotient heap and
remainder heap.. On a large NUMA1 and PMC, we get typically ×100 for 256
threads.

6.9 Cache oblivious sparse polynomial factoring
using the Funnel heap: Abu Salem

[CASC2014]. So how to we exploit delicate data strcutures to speed up algo-
rithms at scale. Also, why does cache oblivious help?

Consider f ∈ Fp[x, y]. We wnat to consider sufficiently sparse sparse poly-
nomials when N(f) has a few decompositions. We claimthatthe inner workings
of Hensel lifting remain oblivious to the sparssity of the input.

Hence we wish to consider a sparse model, distributed.

1. for i := 1 : k − 1

2. compute gi · hi
3.

When f is sparse the products are sparse, and the multiplications and additions
are memory bound.

So instead we will generalise the priority queue approach. gi =
∑
g
(i)
u etc.

In [CASC2014] in the worst case scenario, PQ-HL achieves an order of 10 over
previous.

Here we implement the priority queue as a Funnel Heap raher than a max
heap. Doe sinsert/delete in optimal I/O, and is cahce-oblivious. It reaoganise
sitself over updates, and identifies equal monomials (for free). There is a batched
mode for chaining.

The maximal element is that in S0,1 and A1. If S0,1 is full, we do a SWEEP
operation,. Insert and ExtractMax have an amortised cost.

[monaganPeace2009] chained replices outside the binary heap. We don’t
look for replacements outside S0,1.

15×–8× as expensive for non-local memory.



All monomials α that have to be excluded from the heaps are stored in a
static array D.

O

(
kgh

t′B
+
kg

τ
log log

kg

τ

)

where τ is the fraction of reduction in the size of the heap during chaining, and
τ ′ is . . . . τ = 1 reverts to the previous scheme.

Large random polynomials over F3: deg =2,000–20,000, terms up to 1M,
but very few (≤ 7) faces in Newton polynomial.

Claim this applies to any Hensel construction, or indeed any sum-of-products
construction.
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Symbolic Comp., 35:403–419, 2003.

[BDEW13] R.J. Bradford, J.H. Davenport, M. England, and D.J. Wilson. Op-
timising Problem Formulation for Cylindrical Algebraic Decompo-
sition. In J. Carette et al., editor, Proceedings CICM 2013, pages
19–34, 2013.

[Bro71] W.S. Brown. On Euclid’s Algorithm and the Computation of Poly-
nomial Greatest Common Divisors. J. ACM, 18:478–504, 1971.

[Dav85] J.H. Davenport. Computer Algebra for Cylindrical Algebraic De-
composition. Technical Report TRITA-NA-8511 NADA KTH
Stockholm (Reissued as Bath Computer Science Technical report
88-10), 1985.

[ESY06] A. Eigenwillig, V. Sharma, and C.K. Yap. Almost tight recursion
tree bounds for the Descartes method. In Proceedings ISSAC 2006,
pages 71–78, 2006.

[Fau99] J.-C. Faugère. A new efficient algorithm for computing Gröbner
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