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1 The classical and p-adic Langlands programme
— Buzzard

“p-adic modular forms seem to be becoming part of the p-adic Langlands con-
jecture.”

The Langlands programme seeks to relate certain algebraic things
(finite dimensional representations of Galois groups) with certain
analytic things (e.g. Banach space representations of Lie groups).

Within this, there are two aspects: a local story and a global story. We will
mostly look at the local story.

Let k be a finite field, e.g. Z/pZ, and G = GL2(k). What are the irreducible
complex representations of G? If �1, �2 : k∗ → C∗ are group homomorphisms,

then (�1, �2) give us a 1-dimensional representation of B =

{(
a b
0 d

)}
⊂ G.

Then IndGB(�1, �2) = ��1,�2
is a representation of G of dimension q+1 where q =

∣k∣, which is almost always irreducible, but sometimes splits as 1-dimensional ⊕
q-dimensional. There are also a few more “cuspidal” represnetations of dimen-
sion q − 1 which can be obtained from certain one-dimensional representations
of k′∗, where [k′ : k] = 2. This essentially deals with GL2(k).

What about GL2(R)? There are many natural infinite-dimensikonal repre-
sentations, e.g. Banach space ones, of GL2(R). Here the representatons are
almost always topologically irreducible. In fact these are all the representations.

Define a group W = WR by

0→ C∗ →WR → ±1→ 0

where j 7→ −1 and jzj−1 = z and j2 = −1 ∈ C∗. The 2-dimnesional semi-
simple (not necessarily irredicuble) represnetations of WR. Then there are two
cases.

∙ �(j) is diagonal. Then � factorsz through W ab
R ≡ R∗ and z 7→ zz and

�1, �2 are characters of R ∗ ∗.
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∙ If � is irreducible, then � = IndWR
c∗ �1. Then z 7→ zn for n ∈ Z, and

C∗ ≡ R≥0 × S1.

So the two-dimensional representations are parameterized by (�1, �2) or by
pairs (s, n).

In 1973, Langlands showed that if G is any connected reducive group over the
reals, e.g. GLn, SLn, Spn, O(a, b), U(a, b) etc.) then there was a “canonical”
map of irreducible Banach representations of G(R) [hard problem] into semi-
simple representations of WR into the L-group of G [easy problem], which is
surjective with finite fibres. Example: the L-group of GLn is GLn(C).

Q has a natural norm, but is not complete. One completion is R, but
there are other norms, with their own completions, e.g. p-adic (in which he
defined ∣p∣ = �) norms and completions Qp. Note that these are not connected.
Langlands conjectured that there should be an analogue of his theorem with R
replaced by Qp.

Theorem 1 (M. Harris, R. Taylor, 2000) There is a canonical bijection be-
tween the smooth irreducible representations of GLn(Qp) (on C-vector spaces)
and semi-simple n-dimensional representations of WDQp

into GLn(C), where
WD is the Weil–Deligne group.

Note that we still have some occurrences of C in this statement. What
happens if we change these as well, into some extension E of Qp.

Theorem 2 (Colmez, 2009) There is a canonical injection from semi-simple
representations of Gal(Qp/Qp) (into GL2(E)) into irreducible unitary p-adic
Banach spaces representations of GL2(Qp).

However, there is evidence that this is false for GL3. This raises the question
— “ do we have the right analogy of Langlands in this case”?

2 Codes on Graphs: Shannon’s Challenge and
Beyond — July L. Walker

Basic example is the Binary Symmetric Channel, with probability p of error
(either 0→ 1 or vice versa). Repeated transmission (e.g. three times, or five or
. . . ) will reduce the erorr rate, at the cost of reducing the data rate.

Theorem 3 (Shannon) Every channel has a capacity C such that for every
R < C there is a code of rate R and error less than �.

But the proof is probabilistic and non-constructive: Shannon’s challenge is to
find such codes.

A binary linear code of length n, dimension k and minimum distance d is a
k-dimensional subspace C of Fn2 such that any two distinct vectors differ in at
least d positions.
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Examples include Hamming codes (repetition is a special case), Reed–Solomon
codes (as in CD players, DVDs, Blu-Ray etc.), cyclic codes, algebraic geometric
codes.

In 1993, turbo codes were introduced. They come very close (in simulations)
to achieving Shannon’s bounds. Jin and McEliece (2002) studied the average
performance of turbo codes under maximum likelihood decoding (because it can
be done, not because it’s the real question). Hiowever, turbo codes have led to
a major change in coding theory.

Most codes can correct many more errors than the minimum distance, so
let’s shift to the average paradigm.

1960 Robert Gallagher’s thesis introduced low density parity check (LDPC)
codes. He was unable to simulate them effectively.

1990s Rediscovered, and, this time, simulated. Actually beat turbo codes.
MacKay–Neal, Sipser–Spielberg etc.

Let T be a (sparse, in practice) bipartite graph with vertices X ∪F . A configu-
raion is an assignment of 0,1 to the vertices in X such that each vertex in F is
adjacent to an even number of 1s. These codes come equipped with an iterative
message-passing decoding algorithm that is extrememly efficient and corrects,
with high probabilitytterns many more error patterns than are guaranteed by
the minimum distance.

1. Which LDPC codes perform well?

2. How can we design other LDPC codes that perform well? There are
heuristics like “large girth”, but in practice 6 is enough (no-one knows
why).

The decoding algorithm acts locally, so cannot distinguish betwene the original
graph and any unramified cover of the graph.

Definition 1 A graph cover pseudocodeword for T is a vector p of integers pi
such that there is some cover T̃ of T and a configuration on T̃ that assigns pi
ones to vertex i in T .

Some theorems characterise these, e.g. iff the monomial up11 ⋅ ⋅ ⋅u
pk
k occurs with

non-zero coefficient in a certain multivariate power series, normally of the edge
zeta function of the normal graph of T .

There are some sequences of LDPC codes that, at the limit, provably perform
at rates extremely close to Shannon capacity. But the evidence that individual
LDPC codes are good comes from simulations. The study of pseudocodewords
is based on an intuitive connection between the decoding algorithms and graph
covers. The performance of algebraically constructed LDPC codes is still not
entirely predictable.

The next challenge is Network Coding. The goal is to reliably transmit infor-
mation from possibly several sources through a possibly unknown and unreliable
network to possibly several sinks. Typical applications are the Internet, wireless
neworks, satellite communications etc. The butterfly example shows that the
network has to combine information within itself.
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3 The local of the real, complex and Zilber ex-
ponentials — Macintyre

1. If p(z) ∈ C[z], how many solutions does exp(z) = p(z) have in C?

2. If �1, . . . , �m, �1, . . . , �n, c1, . . . , cm, d1, . . . , dn ∈ C, when does
∑
cj exp(�jz) =

0,
∑
fj exp(�jz) = 0, have infoinitely many solutons in C?

1. Infinitely many unless p = 0, but if p ∈ R[z] only finitely many real
solutions (Hardy).

2. Unknown, but there is a conjecture of H. Spariro (1958), saying that there
must be a common factor of length at least 2. In the real case, again by
Hardy, neither can have infinitely many real zeros, unless identically zero.

So consider commutative rings with unit R, with a function E such that E(x+
y) = E(x)E(y) and E(0) = 1. We might (C) or might not (R) have periods. We
can get wild groups of periods via model theory (but not interesting). E-rings
form an equational class, so free E-rings on X exist, denoted [X]E . Similarly
k[X]E for any field k.

“If you assume Schanuel’s conjecture you can prove anything” —
Birch.

Let R have characteristic 0. Let � = {�1, . . . , �n} : �i ∈ R. Let

�̃ = {�1, . . . , �n, E(�1), . . . , E(�n)}.

Then tr. deg.(�̃)=linear dimension �.

Theorem 4 [x]E satisfies Schanuel’s conjecture.

Let k = R. Fix a system. Then the set Z̃ for which an X exists is the most
general set you can define. Implicit in Wilkie (1991), but false for C.

For any k satisfying SC, we get a dependence relation: � depends on Z̃ if
there is a system of equations for whcih � is the first coordinate of a solution.

A strong extension K >→ L is one where dimension does not drop. Assume
C satisfies SC. Then R >→ C is not strong since dimR(�) = 1. but dimC(�) =
0.

Zilber fields, and characteristic 0 E-fields which satisfy SC, have an infinite
cyclic group of periods and the morphisms are strong embeddings. These uiver-
sal domains are constructed by general nonsense (as could be done for algebraic
closures). But to give intelligible axioms is not general nonsense. These axioms
look like

If V is a variety over K and v ⊂ Kn× (K∗)n and . . . then V meets
{(x,E(x)) : x ∈ Kn}.
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If we ask for this meet to be generic, and that the closure of countable sets is
countable, then (Zilber’s “Steinitz”) there is a unique one in each uncountable
cardinal. Let1 ℬ be Zilber’s model of the categorical theory in cardinality 2ℵ0 .

Conjecture 1 (Zilber) ℬ ≡ C

C ∣= Hadamard (Analysis). ℬ ∣= Hadamard (Algebra).

Theorem 5 (SN (Schanuel Nullstellensatz)) If F ∈ K[x]E has no zero in

K, F = E(G) for G ∈ K[x]
E

.

1. C and ℬ have solutions for the same elements of [X]E and the set of such
elements is decidable.

2. Problem (Deligne) Is the set of 1-variable systems from [X]E solvable in
C decidable?

Suppose F and G have a common divisor of the same form . . . .

Q. Does � exist in ℬ.

A. In ℬ there is an � which is a generator of the periods, and we can distinguish
� from −�. Whether that answers your question is an interesting question.

Q.—JHD Is ℬ essentially what an algebraist thinks might be C?

A. Essentially.

4 How and how not to compute the exponential
of a matrix — Higham

Quoted Sengupta (Adv. Appl. Math 1998).

Theorem 6 (Cayley-Hamilton) If A,B ∈ Cn×n,, AB = BA and f(x, y) =
det(xA− yB) then f(A,B) = 0.

In general, we only quote consequences of this theorem.

1. p(t) = det(tI −A) implies p(A) = 0

2. . . .

Waltz’s method: Ck = (I + 2−kA)2k

— ill-conditioned.
Diagonalization: A = Z diag(�i)Z

−1, but this assumes diagonalizability.
Scaling and Squaring:

1. B := A/2s so ∣∣B∣∣∞ = 1

2. rm(B) = [m/m] Padé approximant to eB

1“We can’t call it Z, and Boris is Zilber’s first name!”
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3. X = r)m(B)2s ≈ eA

There are explicit formulae for the Padé approximant to eB : pm(x)/pm(−x)
where pm(x) =

∑
. . .. Can shiw that this produces the exact exponential of

some A + ΔA, where there is an explicit formula for ΔA. Moler & Van Loan
(1978) chose m = 6 and ∣∣2−sA∣∣ ≤ 1

2 . Higham (2005) uses symbolic computa-
tion, for various m ≤ 13. Produces a complicated formula for efficient evaluation
of a degree 13 matrix-valued polynomial.

Introduces the concept of over-scalring, e.g. in ( 1 b0 1 ) for very large
(say 108) b. There is a formula

exp (A11 A120 A22 ) = ( expA11

∫
. . . 0 expA22 ) (1)

where A12 occurs linearly in the off-diagonal element.

Lemma 1 If k = pm1 + qm2 with p, q ∈ N then

∣∣Ak∣∣1/k ≤ . . .

Hence we can use ∣∣Ak∣∣1/k rather than ∣∣A∣∣ in some of our conditioning es-
timates, and this basically solves over-scaling. Bottom line: no slower than
MatLab’s expm, and sometimes more accurate. However,the stability of the
scl;aing phase is still not well-understood.

Frechét derivative:

f(A+ E)− f(A)− L(A,E) = o(∣∣E∣∣).

For exponentials, L(A,E) =
∫ 1

0
eA(1−s)EeAsds, which is essentailly the same

term in (4). Used to be 538n3 flops, with Al-Mohy & Higham (2009) can use
symbolic differentiation of the algorithm to compute eA and the derivative in
48n3 flops.

Other problems are structured matrices (Topelitz etc.), and also the ned for
factorization-free methods for large sparse matrices, when we probably don’t
want exp(A), but the ability to compute exp(A)b for vectors b.

Q. What about tridiagonal, say?

A. Well, exp(A) is full, but decays away from the diagonal, so maybe we should
only compute the near-diagonal entries.

privately This is true even if the matrix is not diagonal-dominant: if it is,
then a binomial expansion will show this, but diagonal dominance is not
necessary.

5 Packing, energy minimization and exceptional
structures — Henry Cohn (Microsoft Cam-
bridge)

Why are some packings and structures more beautiful than others?
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n = 1 Trivial.

n = 2 Hexagonal.

n = 3 Hales 1998: not ethat there are various solutions, such as FCC, hexagonal
etc.

n > 3 Bounds only, and every dimension seems to be different, e.g. 8 is very
different. There has been a recent improvement on Keith Ball’s bound,
but in general the bounds differ massively. Cohn–Elkies have a slight
improvement on the classic Rogers’ bound. n = 24 and n = 8 the upper
and lower bounds seem to be equal, but this has only been proved to 30
decimal places.

The thompson problem: a bunch of electrons on the surface of a sphere. Packing
problems are a limiting case. As we vary the potential function, how do the
optimal configurations change? Four points on S2 always form a trtrahedron,
so we have universal optimality. Look at Coulomb on S2. With 43 points, we
have 21 parameters, but with 44 points, we have only one.

Let

Ef (C) =
1

2

∑
x,y∈C

f(∣x− y∣2)

We say f is completely monotonic . . . . There are universal optima for n =
2, 3, 6, 4, 12 (but not for the cube or the dodecahedron) on S2. For 5 points,
where are two possible configuration: poles and equilateral triangle on equator,
and north pole plus square in southern hemisphere (this is a one-parameter
family, based on the latitude of the square.

Conjecture 2 For any completely monotone potential, one or other of these is
optimal.

In 8 dimensions, the E8 root system (N = 240) is the optimal solution, and for
24, the Leech lattice (N = 196560). But there are no known configurations for
9 ≤ 9 ≤ 20. There is also an infinite family in dimension q(q3 + 1)/(q + 1) with
(q + 1)(q3 + 1) points (q a prime power).

Culd a computer discover these? They can discover the 600-cell or the E8

root system with no external guidance. We focus on the harmonic potential
function: r 7→ 1/rn/2−1 in Rn. We foudn two configurations (actually already
known): n = 10 has 40 points (Conway et al.) and n = 14 has 64 (doubly-
shortened Nordstrom–Robinson code). Actually recognising the configurations
is difficult, but careful reorganising of the points can show structure.

Proofs of universal optimality use linear programming bounds for potential
energy developed by Yudin. Potential energy depends only on the pair correla-
tion function. We have a natural constraint of non-negatibity, and Torquato–
Stillinger conjecture that for disordered packings in high dimension, these are
the only constraints on the pair correlation function. The dual linear program-
ming problem can say what the linear combination of the constraints is, which
is how Cohn & Kumar proved universal optimality.
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6 Topological complexity of definable sets — Vorob-
jov

We can define a semi-algebraic set (standard definition), and ask what upper
bounds are known on the total Betti number (sum of Betti numbers ) of such a
set. Studied by Petrovskii/ Oleinik c. 1950, Milner–Thom in the 1960s. If X is
algebraic, of degree < d in n-space, then

b(X) ≤ d(2d− 1)n−1

and for a semi-algebraic set with s inequalities

b(X) ≤ (csd)n,

These singly-exponential bounds, which are asymptotically tight, cannot be
proved by triangularization methods, since that will give us doubly-exponential
results.

Monotone Boolean combinations of only ≥ or only > again give b(X) ≤
(csd)n (Basu). V. Arnold Russ. Math. Surveys 57(2002) p. 833 describes the
connections to Hilbert’s 13th and 16th. problems. We might also be interested in
upper computational complexity bounds. Upper bounds on Betti numbers lead
to lower complexity bounds for algebraic computation trees [Ben-Or, Björner
etc.].

Two ways to generalize.

1. Use other functions (e.g. exponential polynomials, as Macintyre), or other
descriptions of complexity than the degree, e.g. # monomials. Here Pfaf-
fian functions are the key concept: see Khovanskii (1980), and fewnomi-
als (Khovanskii, Bihan–Sottile 2006), and sparse polynomials (Grigoriev,
Risler, 1980s) in terms of additive complexity. For each of thee classes
there is an analogy of Bézout’s theorem, which gives an upper bound on
the number of isolated solutions in terms of the descriptive complexity.

2. To sets defined more generally, e.g. with negation, or by quantifier elim-
ination = projections. So suppose we have arbitrary Boolean formulae
with s distinct polynomials. Then (Gabrielov–Vorobjov)

bk(X) ≤ (c�sd)n

where � = min(k + 1, n− k, s).
An o-minimal structure over the reals is a collection Sn such that

(a) All algebraic subsets of Rn are in Sn

(b) For every n, Sn is closed under Boolean operations, Cartesian prod-
ucts and projects on subspaces.

(c) The elements of S1 are the finisnint unions of points and intervals.
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Elements of Sn are called definable subsets of Rn. This generalizes semi-
algebraic, sub-analytic etc.

Let S be a union of an o-minimal family of closed sets S� : � > 0, such
that S�′ ⊂ S� for �′ > �. Let further each S� be an intersection of closed
sets S�,�. where . . . .

Definition 2 (Telescope) For 0 < m ∈ Z and 0 < �0 << �0 << ⋅ ⋅ ⋅ <<
�m << �m << 1 let T (S) = S�0,�0 ∪ S�1,�1 ∪ ⋅ ⋅ ⋅. In 2-D, m = 2 covers the
whole plane. << signifies “is sufficiently smaller than”.

Let S be a bounded set defined by a Boolean combinations of ℎ(x) = 0
and ℎ(x) > 0, such that S is the union of its disjoint sign sets. Get S� by
replacing ℎ(x) by ℎ ≥ � and each ℎ < 0 by ℎ ≤ −�. Furthermore, S�,� is
obtained by replacing ℎ = 0 by −� < ℎ < � as well. Then

�k : �k(T (S))→ �k(S); . . .

and isomorphisms, and rankHk(S) = rankHk(T (S)) and if m ≥ dim(S),
then T (S) ≃ S, and this proves the Gabrielov–Vorobjov result above.

Let � : Rn+r → Rn and Y = �(X) wher X is such a bounded semialge-
braic set defined by s polynomials. Then effective quantifier elimination
produces such a Boolean combination for Y , and implies

bk(Y ) ≤ (sd)cn
2r :

which is much worse than we had before, and does not generalise to Pfaf-
fians.

Gabrielov–Vorobjov–Zell lets us construct bounds without projection, and,
for f closed, subjective and o-minimal, we have bk(Y ) ≤

∑
p+q=k bq(Wp)

where Wp is the (k + 1)-fold fibred product of X.

If we represent X by X� and X�,�, then �(X�) and �(X�,�) represent �(X).
bk(Y ) ≤ ((k + 1)sd)c(k+nr), a much better result.

We can iterate this procedure over t blocks of alternating quantifiers, the
ith with ri variables,

bk(X) ≤
(

2t
2

dsnr1 . . . rt

)O(2tnr1...rt)

Note that (∃xP (x)) ∨ (∃xQ(x)) is ∃xP (x) ∨ Q(x), but not for ∧, where
we have to introduce new variables. But the bounds on Betti numbers
(replacing ∨ by ∪ etc.) are in fact the same for ∩ and ∪.

7 Renormalization of Interacting Diffusions —
den Hollander

Suppose we have a lattice of interacting diffusions, e.g. in statistical physics.
Renormalization consists of regarding a group of interacting diffusions as if they
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were a composite diffusion. Our success story consists of converting this vague
idea into real mathematics.

Systems of heierarchically interacting diffusions allow for a rigorous
renormalization analysis.

Use stochastic analysis and functional analysis.

dXi(t) =
∑
j∈ΩN

an(i, j)[Xj(t)−Xi(t)]dt+
√
g(Xi(t))dWi(t)

where S ⊂ Rd is the single-component state spoace, ΩN is the hierarchical
lattice of degree N ∈ N; An is the random walk transition kernel on ΩN ; g
is the single-component diffusion function and Wi are independent Brownian
motions.

Let S = [0, 1], and g ∈ ℋ satisfying

1. ℎ Lispschitz on [0, 1]

2. g(x) > 0 for x ∈ (0, 1)

3. g(0) = g(1) = 0.

Then

(Fg)(y) =

∫
[0,1]

g(x)�gy (dx)

where �gy is the equilibrium distribution of

. . .

Then F (ℋ) ⊂ ℋ, the solution to the eigenvalyue probvlem Fg = �g is the
one-parameter family g = cg∗ and � = 1

1+c (c > 0) where g∗(x) = x(1− x).

Theorem 7 (Wright–Fisher diffusion) limk→∞ fk(g) = g∗.

On the half-line, where we assume limx→∞ g(x)/x2 = 0, again the stochastic
part has been completed.

Theorem 8 (Feller’s diffusion) If limx→∞0 x
−1g(x) = c, then limk→∞ fk(g) =

cg∗, where g∗(x) = x.

7.1 What about higher dimensions?

Two main complications.

1. Only for special cases of g can we show that there is a unique weak solution.
The stochastic part of the renormalization programme has been carried
through only for these special cases.
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2. The analytic part of the renormalization programme suffers from the fact
that, in general, there is no explicit formula for the equilibrium distribu-
tion, and hence not one for the renormalization transform.

Special case: S ⊂ [0, 1]d (d ≥ 2) closed convex. Assume

1. ℎ Lispschitz on S

2. g(x) > 0 for x ∈ interior(S)

3. g(x) = 0 on the boundary.

Although the stochastic part is largely open, there is some progress on the
analytic part. Similarly for [0,∞)2.

The scaling behaviour of large space-time blocks depends on the asymptotic
behaviour of the single-component diffusion function near the boundary of the
state space. We see that several classical diffusions appear as local or global
attractors in this contexts.
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