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Notation

P(A) denotes the power set of the set A.
For a function f , we write graph(f ) for {(x , f (x)) : x ∈ dom(f )}
and graph(f )T for {(f (x), x) : x ∈ dom(f )}.

Convention
Where an underspecified object, such as

√
x, occurs more than

once in a formula, the same value, or interpretation, is meant at
each occurrence.

For example,
√

x · 1√
x

= 1 for non-zero x , even though one might

think that one root might be positive and the other negative. More
seriously, in the formula for the roots of a cubic x3 + bx + c ,

1

6

3

√
−108 c + 12

√
12 b3 + 81 c2 − 2b

3
√
−108 c + 12

√
12 b3 + 81 c2

,

the two occurrences of
√

12 b3 + 81 c2 are meant to have the same
value, similarly

3
√
−108 c + 12

√
12 b3 + 81 c2.



Notation continued

We use the notation A
?
=B to denote what is normally given in the

literature as an equality with an = sign, but where one of the
purposes of this paper is to question the meaning of that, very
overloaded, symbol.
We will often need to refer to polar coordinates for the complex
plane.

Notation
We write C ≡ X ×

polarY for such a representation

z = re iθ : r ∈ X ∧ θ ∈ Y .

z (and variants) is complex, x and y are real (often z = x + iy).



Examples
As statements about functions, we consider the following.

√
z − 1

√
z + 1

?
=
√

z2 − 1. (1)

√
1− z

√
1 + z

?
=
√

1− z2. (2)

log z1 + log z2
?
= log z1z2. (3)

arctan x + arctan y
?
= arctan

(
x + y

1− xy

)
. (4)

(1) is valid for <(z) > 0, also for <(z) = 0, =(z) > 0.

(2) is valid everywhere, despite the resemblance to (1).

(3) is valid with −π < arg(z1) + arg(z2) ≤ π.

(4) is valid, even for real x , y , only when xy < 1.



That’s curious: arctan is nice

(as a real-valued function, at least).

In fact there is a “branch cut at infinity”, since
limx→+∞ arctan x = π

2 , whereas limx→−∞ arctan x = −π
2 and

xy = 1 therefore falls on this cut of the right-hand side of (4).

This is also the branch cut that many symbolic integrators (used
to) fall over.



The (Bourbakist) Theory

In principle, (pure) mathematics is clear.

On dit qu’un graphe F est un graphe fonctionnel si, pour
tout x, il existe au plus un objet correspondant à x par F
(I, p. 40). On dit qu’une correspondance f = (F ,A,B)
est une fonction si son graphe F est un graphe
fonctionnel, et si son ensemble de départ A est égal à son
ensemble de définition pr1 F [pr1 is “projection on the
first component”]. [Bourbaki, Ensembles]

So for Bourbaki a function includes the definition of the domain
and codomain, and is total and single-valued. We will write
(F ,A,B)B for such a function definition.



Bourbaki meets (analytic) reality

The natural domains of definition of analytic functions are simply
connected open sets, generally referred to as “Cn with branch
cuts”. The table maker, or programmer, abhors “undefined”, and
extends definitions to the whole of Cn by making the values on the
branch cut ‘adhere’ to one side or the other, extending a definition
from D, a slit version of Cn, to the whole of Cn.
Rather than just writing Cn for the domain, we will explicitly write
D to indicate that it is an extension of the definition with domain
D.



The multivalued view

Analysts sometimes take a completely multivalued view, as here,
discussing our exemplar (3).

The equation merely states that the sum of one of the
(infinitely many) logarithms of z1 and one of the
(infinitely many) logarithms of z2 can be found among
the (infinitely many) logarithms of z1z2, and conversely
every logarithm of z1z2 can be represented as a sum of
this kind (with a suitable choice of log z1 and log z2).

[Caratheodory pp. 259–260] (our notation)

Here we essentially have
(
graph(exp)T ,C,P(C)

)
B.

But, of course, this is far from being a surjection!



The Riemann surface view

This is closely related to the multivalued view. This can be seen as(
graph(exp)T ,C,Rlog z

)
B, where Rlog z signifies the Riemann

surface corresponding to the function log z .
The Riemann surface view is discussed in [Bradfordetal2002,
Section 2.4], which concludes

Riemann surfaces are a beautiful conceptual scheme, but
at the moment they are not computational schemes.

The additional structure imparted by Rlog z (over that of P(C)) is
undoubtedly very useful from the theoretical point of view, and
provides a global setting for the next, essentially local, view.



The branch view: [Cartan1973]

p. 32 “The mapping y 7→ e iy induces an isomorphism φ of
the quotient group R/2πZ on the group U. The
inverse isomorphism φ−1 of U on R/πZ associates
with any complex number u such that |u| = 1 , a real
number which is defined up to the addition of an
integral multiple of 2π; this class of numbers is called
the argument of u and is denoted by arg u.” In our
notation this is

(
graph(φ)T ,U,R/2πZ

)
B.

p. 33 “We define

log t = log |t|+ i arg t, (5)

which is a complex number defined only up to
addition of an integral multiple of 2πi .” In our
notation this is ((5),C,C/2πiZ)B.



p. 33 “For any complex numbers t and t ′ both 6= 0 and for
any values of log t, log t ′ and log tt ′, we have

log tt ′ = log t + log t ′ (mod 2πi).” (6)

p. 33 “So far, we have not defined log t as a function in
the proper sense of the word”.

p. 61 “log z has a branch in any simply connected open set
which does not contain 0.”

So any given branch would be (G ,D, I )B, where D is a simply
connected open set which does not contain 0, G is a graph
obtained from one element of the graph (i.e. a pair (z , log(z)) for
some z ∈ D) by analytic continuation, and I is the relevant image
set.



An ‘Applied’ view

Applied mathematics is sometimes less unambiguous.

. . . when we say that f (x) is a function of x in some range
of values of x we mean that for every value of x in the
range one or more values of f (x) exist. . . . It will usually
also be required that the function shall be single-valued,
but not necessarily. [JeffreysJeffreys1956, p. 17]

So for these authors, a function might or might not be multivalued.



The table-maker’s point of view

This is essentially also the computer designer’s point of view, be it
hardware or software. From this point of view, it is necessary to
specify how to compute f (x) for any given x , irrespective of any
“context”, and return a single value, even though, in the text
accompanying the tables, we may read “only defined up to
multiples of 2πi” or some such.

(1) If we substitute z = −2, we obtain
√
−3
√
−1

?
=
√

3,
which is false, so the statement is not universally
true.

(2) It is impossible to refute this statement.

(3) If we take z1 = z2 = −1, we obtain

log(−1) + log(−1)
?
= log 1, i.e. iπ + iπ

?
=0, so the

statement is not universally true.

(4) If we take x = y =
√

3, we get π
3 + π

3
?
=−π3 , so the

statement is not universally true.



Differential Algebra
A completely different point of view of view is the
differential-algebraic one. Here

√
1− z is an object whose square

is 1− z , formally definable as w in C(z)[w ]/(w2 − (1− z)).
Similarly log z is a new symbol θ such that θ′ = 1/z , and so on for
other elementary expressions.

(1) The left-hand side is
vw ∈ K = C(z)[v ,w ]/(v2 − (z − 1),w2 − (z + 1)), and the
right-hand side is u ∈ C(z)[v ,w ]/(u2− (z2− 1)). But to write
the equation we have to express u2 − (z2 − 1) in K , and it is
no longer irreducible, being (u − vw)(u + vw). Depending on
which factor we take as the defining polynomial, the equation

vw = u (1′)

is either true or false, and we have to decide which. Once we
have decided which, the equation becomes trivially true (or
false). The problem is that, with the standard interpretations
(which of course takes us outside differential algebra), the
answer is “it depends on which value of z you have”.



(2) The analysis is identical up to the standard
interpretations, at which point it transpires that, for
the standard interpretations, vw = u is true for all
values of z . But, of course, this is what we were
trying to prove in the first place.

(3) Here we define θ1 such that ∂θ1
∂z1

= 1
z1

(and ∂θ1
∂z2

= 0),

θ2 such that ∂θ2
∂z2

= 1
z2

(and ∂θ2
∂z1

= 0) and θ3 such

that ∂θ3
∂z1

= z2
z1

and ∂θ3
∂z2

= z1
z2

. If we then consider
η = θ1 + θ2 − θ3, we see that

∂η

∂z1
=

∂η

∂z2
= 0 (3′),

which implies that η “is a constant”.

(4) Again, the difference between the two sides “is a
constant”.



Differential Algebra: “Constants”

We have said “is a constant”, since the standard definition in
differential algebra is that a constant is an object all of whose
derivatives are 0. Of course, this is related to the usual definition
by the following.

Proposition

A differentiable function f : Cn → C, all of whose first derivatives
are 0 in a connected open set D, takes a single value throughout
D, i.e. is a constant in the usual sense over D.

The difference between the two can be seen in these “corrected”
versions of (3) and (4), where the choice expressions are the
“constants”.



Equations with constants

log z1 + log z2 = log z1z2 +


2πi arg z1 + arg z2 > π

0 −π < arg z1 + arg z2 < π

−2πi arg z1 + arg z2 < −π
(3′′)

arctan x + arctan y = arctan

(
x + y

1− xy

)
+


π xy > 1, x > 0

0 xy < 1

−π xy > 1, x < 0

(4′′)
Equation (4′′) appears as such, with the correction term, as
[Apostol1961 p. 205, ex. 13].



The pragmatic (meta-)view

So, which view actually prevails?
The answer depends on the context, but it seems to the current
author that the view of most mathematicians, most of the time, is
a blend of “local” and “differential algebra”.
This works because the definitions of differential algebra give rise
to power series, and therefore, given “suitable” initial conditions,
the expressions of differential algebra can be translated into
algorithms expressed by power series, which “normally” correspond
to functions in some open set around those initial conditions.
Whether this is an ‘adequate’ open set is a more difficult matter.



A textbook example [Apostol1961 p. 189]

∫
2
√
x

√
x
dx =

21+
√
x

log 2
+ C (7)

(We ignore any problems posed by “log 2”.)
The proof given is purely in the setting of differential algebra,
despite the fact that the source text is entitled Calculus.
Translated into that language, we are working in C(x , u, θ) where
u2 = x and

θ′ = (θ log 2)/2u. (8)

(We note that equation (8) implicitly gives effect to Convention 1,

in that θ′ represents
(

2
√
x log 2

)
/2
√

x where the two occurrences

of
√

x represent the same object.) Similarly the right-hand side is
2θ
log 2 + C . Note that, having introduced 2

√
x , 21+

√
x is not

legitimate in diferential algebra, since the Risch Structure Theorem
will tell us that there is a relationship between θ and an η standing
for 21+

√
x , viz. that η/θ is constant.



A different point of view
It is possible to take a different approach to these functions, and
say, effectively, that “each use of each function symbol means
what I mean it to mean at that point”. This is completely
incompatible with the table-maker’s, or the computer’s, point of
view, but has its adherents, and indeed uses.
A classic example of this is given in [Henrici1974 pp. 294–8].
He considers the Joukowski map f : z 7→ 1

2

(
z + 1

z

)
and its inverse

f −1 : w 7→ w +
√

w2 − 1, in two different cases. If we regard these
functions as (f ,D,D ′)B and

(
f −1,D ′,D

)
B, the cases are as

follows.

(i): D = {z : |z | > 1}. Here D ′ = C \ [−1, 1]. The problem with
f −1 is interpreting

√
w2 − 1 so that

|w +
√

w2 − 1| > 1.
(ii): D = {z : =(Z ) > 0}. Here D ′ = C \ ((−∞,−1] ∪ [1,∞)),

and the problem with f −1 is interpreting
√

w2 − 1 so
that =(w +

√
w2 − 1) > 0.

We require f −1 to be injective, which is a problem, since in both
cases w 7→ w2 is not.



Hence the author applies (1) formally (though he does not say so
explicitly), and writes

f −1(w) = w +
√

w + 1
√

w − 1. (9)

(i) Here he takes both
√

w + 1 and
√

w − 1 to be uses of the
square-root function from [AbramowitzStegun1964], viz.(√

,C,C ≡ R+ ×
polar(−π

2 ,
π
2 ] ∪ {0}

)
B

. We should note

that this means that
√

w + 1
√

w − 1 has, at least potentially,
an argument range of (−π, π], which is impossible for any
single-valued interpretation of

√
w2 − 1.

(ii) Here he takes
√

w + 1 as before, but
√

w − 1 to be an
alternative interpretation:(√

,C,C ≡ R+ ×
polar [0, π) ∪ {0}

)
B

.

In Bourbaki-speak, of course, (f ,D,D ′)B is a bijection (in either
case), so

(
f −1,D ′,D

)
B exists, and the question of whether there is

a “formula” for it is not in the language.



Formalisations of these statements?

Of course, the first question is “which kind of statement are we
trying to formalise”.
This matters in two sense — which of the views are we trying to
formalise, and are we trying to formalise just the statement, or the
statement and its proof.
The question “which view” seems to be a hard one — when
reading a text one often has few clues as to the author’s intentions
in this area. Nevertheless, let us suppose that the view is given.



The (Bourbakist) Theory

In this view a function is defined by its graph, there is no language
of formulae, and the graph of the inverse of a bijective function is
the transpose of the graph of the original.
Therefore the task of formalising any such statements is the
general one of formalising (set-theoretic) mathematical texts.



The multivalued view

We use capital initial letters to denote the multivalued equivalents
of the usual functions, so Log(z) = {w : exp(w) = z}.
Here, an expression like (3) becomes

∀w3 ∈ Log(z1z2)∃w1 ∈ Log(z1),w2 ∈ Log(z2) : w3 = w1w2∧
∀w1 ∈ Log(z1),w2 ∈ Log(z2)∃w3 ∈ Log(z1z2) : w3 = w1w2, (10)

There is significant expansion here, and one might be tempted to
write

Log(z1z2) = Log(z1) + Log(z2) (11)

using set-theoretic addition and equality of sets, which looks
reassuringly like a multivalued version of (3).



However, there are several caveats.
The correct generalisation of log(z2) = 2 log(z) is

Log(z2) = Log(z) + Log(z) (12)

(note that Convention 1 does not apply here, since we are
considering sets of values, rather than merely underspecified
values) and not Log(z2) = 2Log(z) (which, effectively, would
apply the convention). Also not all such equations translate as
easily: the multi-valued equivalent of

arcsin(z)
?
= arctan

(
z√

1− z2

)
(13)

is in fact

Arcsin(z) ∪Arcsin(−z) = Arctan

(
z

Sqrt(1− z2)

)
. (14)

Conclusion
Translating statements about these functions to the multivalued
view is not as simple as it seems, and producing correct
translations can be difficult.



Multivalued continued

It might be possible to define a rewrite with constant expansion (a
“de Bruijn factor”)by defining new functions such as
AS(z) = Arcsin(z) ∪Arcsin(−z), but to the author’s knowledge
this has not been done, and would probably be a substantial
research project.
It would be tempting to wonder about the difficulties of translating
proofs, but, other than his and his colleagues’, the author has only
seen proofs which work by reduction modulo 2πi , and therefore do
not generalise to equations like (14), for which the author only
knows his own (unpublished) proof.
As has been said, we see little hope for formalising the more
general ‘Riemann surfaces’ version of this view.



The branch view

In this view, a function is defined locally, in a simply-connected
open set, and the statements made informally in mathematics are
true in this interpretation if they are true in the informal sense.
The first real problem comes in determining the side conditions,
such as “not containing 0”. For a fixed vocabulary of functions,
such as the elementary functions (which can all be derived from
exp and log) this can probably be achieved, but when new
functions can be introduced, it becomes much harder.
The second problem is to determine what such a suitable open set
is, and whether one can be found which is large enough for the
mathematical setting envisaged. This is often equivalent to the
problem of finding a suitable path, and the challenges are really
those of formalising traditional analysis.



The table-maker’s point of view: statements
For the elementary functions, there is an effective methodology,
implicit in [AS] and made explicit in [Corlessetal2000].

1. Choose a branch cut X for log, and this defines the value of
log(z) for z ∈ C \ X by integration from log 1 = 0.

2. Choose an adherence rule to define the value of log on X .
3. For each other function f , choose an expression for f (x) in

terms of log. Several such choices, and none are perfect.
4. As a consequence of step 3, write down the various

simplification rules that f (and other functions) must satisfy.
5. If one is unhappy with these results, return to step 3. Do not

attempt to rewrite the rules — this leads to inconsistencies,
with which tables have been (and alas continue to be)
bothered over the years.

Conclusion
In the table-maker’s view, statements about multi-valued
functions, if correct, are the same as usually stated. However, they
may require amplification, as in (4”) versus (4). At least näıvely,
such expansion may be unbounded.



The table-maker’s point of view: proofs

Proofs are a trickier matter. As far as the author knows, such
proofs were generally not published before the days of computer
algebra, though the table-makers certainly had intuitive
understandings of them, at least as regards real variables.

Conclusion
Producing (formal) proofs of such statements is a developing
subject, even in the context of a computer algebra system.
Converting them into an actual theorem prover is a major
challenge. Unfortunately, cylindrical algebraic decomposition, as
used here, does not seem to lend itself to being used as an ‘oracle’
by theorem provers.



Differential Algebra

The translation from well-posed statements of analysis into this
viewpoint is comparatively easy. There are, however, two
significant problems.

1. “Well-posed”, in the context of differential algebra, means
that every extension that purports to be transcendental really
is, and introduces no new constants. Hence every
simplification rule essentially reduces to “correct up to a
constant”, and beyond here differential algebra does not help
us, as seen with (4′′).

2. There is no guarantee that the expressions produced by
differential algebra, when interpreted as functions, will be
well-behaved. [LazardRioboo1990]



The pragmatic view

The fundamental problem with the pragmatic view is that it is a
hybrid, and the formalisms are different. Indeed, it is precisely this
difference that causes most of the problems in practice.
The pragmatist takes formulae produced in the
differential-algebraic viewpoint, and interprets them in the branch
viewpoint. In the branch viewpoint, every integral is continuous,
but there is no guarantee of this remaining true in the hybrid view
unless special care is taken.

Conclusion
The pragmatist’s view, while useful, is indeed a hybrid, and great
care must be taken when translated from one viewpoint to the
other.



Conclusions

We need to

1. Work out which view(s) we are adopting

* Difficult in retrospect

2. Formalise the view(s)

* Sometimes difficult

3. Formalise the translation between the views

* Always difficult


