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Chapter 1

3 August 2015

Opening remarks: 350 registered, biggest conference we have hosted here.

1.1 The Euclidean Distance of an Algebraic Va-
riety: Ottaviani

Theorem 1 (Spectral) Given a real n×n symmetric matrix A there exists a
diagonal D and U ∈ O(nR) such that A = U−1DU .

The i-th column of U is an eigenvector with eigenvalue λi.
Real matrices are a vector space with scalar product ABT .

Theorem 2 (Spectral) Decomposition of operators form (for physicists).

The variety of rank one matrices is the cone over the Segre variety P(Rm) ×
P(Rm). The Euclidean scalar product extends to the scalar product between
rank one matrices. Then by linearity this extends to any rank.

Theorem 3 Let ui be normalised eigenvectors of A. Then the critical points
of the distance function from A are λiui ⊗ ui

An analogue extends to unsymmetric m×n matrices A. The critical points are
singular pairs x⊗ y of vectors of A and in particular they are al real.

The number of critical points of the distance from general p ∈ iAn to X is
called the Euclidean Distance Degree of X (ED(X)).

The variety of rank one matrices is much better-behaved than general vari-
eties.

ED(X) = 1 ⇔ X is a linear space. Spheres have ED=2 and ED=2 implies
X is a sphere (if smooth), or a few other quadric cones.

Plane curves may have ED 2,3 or 4. 2 are circles or pairs of lines. See
Apollonius.
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Call the ED discriminant the locus of points u such that at least two critical
points of the distance from u coincide. The ED discriminant of plane curves is
a classical object, the evolute.

When an ellipse degenerates to a circle, the evolute disappears to a point.

Theorem 4 (Catanese-Trifogli) Let X be a variety with projective closure
XsubsetPn =]An ∪H∞. let dimX = m. The ED degree of a general translate
g ·X ⊂ Pn is

m∑
i=0

. . .Chern classes

But Chern classes cannot distinguish the circle from the ellipse, so we need X
to be transversal to the isotropic quadric.

If the desingularization map is linear, the the Catanese-Trifogli formula can
be applied with the Chern classes of the desingularization. In general we need
to replace Chern classes by Mather classes (tricky, no software).

Now replace the matrices with tensors.

Theorem 5 The critical pints of the distance from a tensor t to X correspond
to tensors (x1 ⊗ · · ·xd) such that t(x1, . . . , x̂i, . . . , xd) = λxi.

For (2,2,2) we have 6 critical pints but for (3,3,3) we have 37, which is more
than the dimension of the ambient space.

Symmetric tensors are polynomials.

1.2 The Optimal Littlewood–Richardson Homo-
topy: Sottile

This is all about Numerical Homotopy Continuation.

� Bézout Homotopy: optimal1 in the generic case

� Polyhedral homotopy. Optimal for Sparse systems with the BKK bound

� equation-by-equation with regeneration, as in Bertini

But enumerative geometry problems aren’t usually square, and are well below
BKK Bound.

For me classical 19th century work by specialisation is just homotopy in
reverse.

Consider Schubert problems. The set of linear spaces having position α with
respect to a flag of subspaces F is a Schubert variety XαF . We are interested
in counting points in

Xα1F 1 ∩Xα2F 2 ∩ · · ·XαnFn.

1In the sense of never following a redundant or dead-end path.
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Ravi Vakil’s interpretation of Littlewood–Richardson. Transforms the intersec-
tion of two Schubert varieties into a union of them. This is done via “checker-
board games” explaining how the flags interact. The aim is to end up with a
diagonal checker-board, which [JHD thinks] means we can read off the solutions.
He compares this with bubblesort. Simple example, then one where there are
two checker-board patterns.

There are three kinds of Homotopy.

� Geometrically constant (coordinate change)

� Simple Homotopy (subspace rotates with flag)

� Subtle Homotopy (read paper!)

FS/RV/Jan Verschelde met several times over three years to write this down in
terms of linear algebra. See [SVV10].

1.3 Sparse Gröbner Bases: the Unmixed Case:
Spaenlehauer

See ISSAC 2014. f1, . . . , fm ∈ K[x±1
1 , . . . , x±1

n ]. What exact solutions in (K \
{0})n. . By unmixed, we mean that 1 is a monomial and is a vertex of the
Newton polynomial of the set of monomials. [KipnisShamir1999,Joux2013] in
cryptology. Kushnirenko’s theorem states that the number of solutions is much
smaller than Bézout.

General strategy is a grevlex basisO(m

(
n+ d
d

)ω

) then FGLMO(nDEG3).

1.3.1 Semigroup algebras

An affine semigroup S is a finitely generated additive subsemigroup of Zn con-
taining 0 ∈ Zn and no non-zero invertible elements.

Then we get semigroup algebras (toric rings) Usual concept of admissible
ordering. ⟨LM(G)⟩ = LM(I) iff G is a Sparse Gröbner Basis of I.

LetM be a finite “generating set” of S (not necessarily minimal). rankM (Xs)
is the smallest integer k such that Xs is the product of k elements of M . The
rank of a polynomial is the maximal rank of its monomials.

Mimic F5 by replacing “degree’ by “rank” The same theorems apply, and we
can read off a sparse Gröbner basis from the row-echelon form of the Macaulay
matrix of rank d.

Shows huge (105) speedups in some examples over classical F5, less (80) in
other examples. Computing over a finite field.

Understand w.r.t. toric homogenisation: M (h) = {(s, 1) : s ∈M}. IfK[S
(n)
M ]

is Cohen–Macaulay, we have a theorem of Hochster . . . .
Then the complexity of the FGLM-equivalent can have a similar bound.

There is an extension of Fröberg’s conjecture in the Cohen–Macaulay case.
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In positive dimension this is not easy, as the “lcm” of two monomials is a
non-principal ideal. Might be related to [Stu95].

1.4 Algorithms for the Computation of Chern–
Schwartz–MacPherson Classes and the Eu-
ler Characteristic: Helmer

Consider subschemes of certain smooth complete toric varieties XΣ. Work over
k an algebraically closed field of characteristic 0. We will find χ (Euler) via
cSM . This has useful functional properties.

When V is a subscheme of ‘Pn the class cSM (V ) can bethought of as a more
refined version of the Euler characteristic since it contains the Euler character-
istics of . . . .

Need the Segre class. LetXΣ be an n-dimensional smooth complete toric
variety defined by a fan Σ. Let R be the graded coordinate ring (Cox ring)
of XΣ with irrelevant ideal B and assume that all Cartier divisors associated
to generating rays are nef (needed for counting purposes). Also one technical
assumption. We work in the Chow ring of XΣ.

Write the Chow ring as A∗(XΣ) ≡ Z[x1, . . . , vm]/(I + J) where I is the
Stabley–Reisner ideal and J is the ideal generated by all the linear relations of
the rays Σ(1).

Aluffi had an algorithm by blowups. Eklund/Jost/Peterson had a proba-
bilistic algorithm by saturation. We had one by counting points. Moe/Qviller
have one, with same nef-restriction.

Let I be an ideal in R homogeneous with respect to the grading on R. Choose
generators fi such that [V (fi)] = α ∈ A1(XΣ) for all i.

Cut with (the right) general hyperplanes until we get something zero-dimensional.
Claims stunningly better times for Segre classes (all in Macaulay 2). Can

do degree 12 in P16 (over a finite field of course). His Bertini timings are much
worse, probably an issue with his implementation, he said2.

How to get from Segre to CSM? There’s a formula (Aluffi) for hypersurfaces,
then use inclusion/exclusion. But this needs exponentially many computations.

1.5 Some Current Directions in Coding Theory:
Walker

Introducer: speaker is famous for book on Algebraic Codes.
Encoder is an injective map, the channel transmits a garbled version of this

codeword, which the decoder has to

2But a questioner made the same comment.
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Theorem 6 (Shannon) Every channel has a capacity c such that for all RC
and every ϵ > 0 there is a code of rate R such that the probability of error using
this code is < ϵ.

Hence “Shannon’s Challenge” — find this.

Definition 1 A linear code of length n, dimension k and minimum distance
d over F − q is a k-dimensional subspace C of Fn

q such that any two distinct
elements of C differ in at least d positions.

k

n
≤ 1− d

n
+

1

n
.

1.5.1 Reed–Solomon Codes

For k < n < q the Reed–Solomon Code of length n and dimension k over ‘Fq is
C − {(f(a1), . . . , f(an)|f ∈ Lk}.

1.5.2 Goppa

Suppose a curve X/Fq of genus g, P a set of points, G a divisor with supp(G)∩
P = ∅ Then ‘frackn‘ge1− d

n + 1
n − g

n .
The rank distance between two codes has distance 1

2 of the distance between
the matrices.

1.5.3 New developments

� Quantum codes. If C1 ⊂ C2 are linear codes of length n over F − q then
there is a quantum code such as . . .

� Locally recoverable codes, as in node failure in a cloud. Replication is an
expensive answer, so Facebook [TB14] uses Reed–Solomon (10/14 code:
10 data bits spread across 14 raw bits) with 40% overhead rather than
200% for replication. We want codes in which every symbol is a function
of a small number of others.3 [There was a debate over why 200% rather
than 100%: Speaker is quoting original paper. JHD subsequently: 100%
would be simple replication, but that’s not ECC at all. See also https://

storagemojo.com/2013/06/21/facebooks-advanced-erasure-codes/.]

� MIMO interference, as in neural nets.

Q Algebraic geometry codes?

3JHD’s memory of the original talk is this. In 2015 a Facebook data centre is 40PB, made
up of 1TB discs, so 40,000 of them. The Mean Time Between Failure of a disc is five year,
say 2000 days. So 20 discs fail a day. each disc failure means recovering the 13 copies, so we
are shipping 260TB across the backbone — as of course the replicas are in different racks.
Call it 11 TB/hour, or 3GB/sec. That’s 24Gb/sec, which takes up a large chunk of 40Gb
Ethernet. The speaker noted that disc sizes were growing faster than Ethernet bandwidth, so
the problem was getting worse.

11

https://storagemojo.com/2013/06/21/facebooks-advanced-erasure-codes/
https://storagemojo.com/2013/06/21/facebooks-advanced-erasure-codes/


A I doubt it will be used for channel encoding.

Introducer But see PQC.

Q–JHD (afterwards) Aren’t locally recoverable codes really saying that the
decoding matrix should be (uniformly) sparse.

A Essentially, yes. That’s why LDPC (Low Density Parity Check) codes work.

1.6 Advances in Software in Numerical Alge-
braic Geometry: Brake

Aim is to show developments since 2013. Defines this as “the use of numerical
tools to study and use zero-sets of polynomials”. Want a bridge, rather than a
wedge, with the symbolic tools4.

1.6.1 solvers

Bertini Interfaces with Macaulay2, Singular, MatLab. C under redevelopment
into C++. Uses MPI parallelism. Does Numerical Irreducible Decompo-
sition. Also doing bindings for Python scripts. Bertini 2 will be GPL3.

Hom4PS-3 Has automatic multiple precision, MPI Parallelism GPU acceler-
ation. Author: “Tropical geometry has inspired new . . . ”.

NAG4M2 Runs inside Macaulay2. Again Numerical Irreducible Decomposi-
tion

PHCPack Sage, Maple etc. Also GPU acceleration.

Polynomial System Solver This has mixed volume computations and sparse
condition numbers.

Liddell etc. are looking at “how do you know you’ve got all the real solutions.
Note also that lots of people are looking at GPU [VY15]. Quoted [GXD+14] as
his favourite weird application.

1.7 Critical Points via Monodromy and Local
Methods: Martin del Campo

The critical point is where the Jacobian has full rank, and rank[∇Φu(x)
T , · · · , ]‘lem.

These conditions are additive so can assume X is irreducible.
Note this re;ates to opening talk. The monodromy Group is the subgroup of

Sd generated by permutations arising from lifts of loops.

4JHD: see note 2.
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1. Find one critical point: we use witness sets.

2. Find random loops

3. Trace test

When should I stop? Sr−1‘subseteqSr‘subseteqS: when are we at S?

Theorem 7 ([Sommeseetal2003]) The trace of X with respect to ‘calLt is
affine linear on t. Moreover the coordinate-wise sum of any proper subset of
‘calLt‘cupX is not linear on t.

Once we have found all the critical points over ‘Cn for u we can find the critical
points for u′ by parameter homotopies.

1.8 A lifted square formulation for certifiable
Schubert calculus: Hein

Schubert calculus is the study of linear spaces incident to fixed linear spaces.

Example 1 (Four lines) Given four lines in P3, what are the lines that meet
all. Generically, two.

|w| = codimGr(a,n(XwF . Then a Schubert problem is a list of Schubert condi-
tions (wi) such that

∑
|wi| = dim(Gr(a, n)). In Plücker coordinates these are

heavily over-determined: problems for numerical methods.
Our [HHS12] primal-dual formalisation is square but adds a ton of new

variables.
So we lift the problem from the Grassmanian to a more general flag variety.

Example 2 Gr(3, 8): w = (3, 5, 8), then x must meet three conditions: dimx∩
F3 ≥ 1, dimx ∩ F5 ≥ 2 and dimx ∩ F8 ≥ 3 (trivial).

Theorem 8 (H–Sottile) This lifted formulation defines each XwFas a com-
plete intersection.

Dimension+—Equation—=—Variables—

Example 3 X(5,9,10)F ⊂ GR(3, 10). Deyerminental formulation has 45 degree
3 polynomials in 21 variables (10 linearly independent polynomials). Primal–
dual uses 21 bilinear polynomials in 39 variables. Lifted uses . . . .

13



Chapter 2

4 August 2015

2.1 p-adic Integration and Number Theory: Kim

Example 4 Polynomial equations in two variables. f(x, y) = 0 : f ∈ Z[x, y].
This is still an inaccessible problem. Call the solutions Xf (Q).

genus 0 Can parametrise all solutions: method of sweeping lines. x2 + y2 = 1

is
(

m2−1
m2+1 ,

2
m2+1

)
.

genus 1 Birch–Swinnerton-Dyer conjectures. There is1 a finite set S of solu-
tions such that all others can be generated from S by chord/tangent (el-
liptic curve arithmetic). The “algorithm” for finding S terminates if (the
relevant port of) the conjecture is true.

genus≥ 2 The solutions are finite (Faltings). But there is no known algorithm
for finding them. This is often known as “Effective Mordell Conjecture”.
We want C(f) such that all solutions have numerators/denominators bounded
by C(f). A precise enough version of the ABC Conjecture would yield
such.

• I am trying a non-Archimedean approach to this.

So I want to descibe X(Q) ⊂ X(Qp), via a non-Archimedean approach using
p-adic analytic equations. Sometimes write R = Q∞ and write Qv for a general
completion.

Example 5
∑∞

n=1 n! converges in any Zp. Open question: is it algebraic?

Qp = Zp[1/p]. If p ̸ |n, then n ∈ Z×
p . Zp has the topologyof a Cantor set: a fact

that is probably under-utilised.
X/Fp is a smooth projective variety. What is |X(Fp)|. Of course, we

can use brute force here. So assume X is liftwable, ie. assume there is a

1Mordell–Weil Theorem.
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smaooth projective scheme X/Zp such that X (mod p) ≡ X. Then Hi
cr(X) :=

Hi(XQp ,Ω
∗
XQp

) is the crysttaline cohooology. Then we have a Lefschetz trace

formula:
|X(Fpn)| =

∑
i

(−1)iTr[ϕ . . .]n.

Profound, but very hard to use. In fact, can use any Grothendieck cohomology
theory, in particular étale cohomology theory. But this is notoriously hard to
compute. Kedlaya noticed that crysttaline cohomology is much easier because
of the relation to differential forms.

Example 6 X hyperelliptic with affine model y2 = f(x) with f having odd
degree d. H0

cr
p(X) = Fp. The basis for the de Rham cohomology is {xkdx/y|O ≤

k ≤ d− 2}. Given any closed differential form, we can write it in terms of the
basis (Kedlaya has an algorithm for this). Then the action of ϕ in H1

cr(X) is
represented by the matrix (cij).

Note that
√
−1 exists in Q5,Q13 etc., even though /∈ Q.

Hasse–Minkowski Theorem, underpinned by Class Field Theory. There are
local reciprocity maps:

Recv : Q×
v ↼ Gal(Qp/Qp).

Having done the preliminaries, let us look at p-adic line integrals.

logp(x) =

∫ z

1

dt/t : Q∗
p → Qp.

For z ∈ 1 + pZp gives us a power series which converges. Then logp(u) =
1

p−1 logp u
p−1 Then define logp(p) = 0 and we get a group homomorphism:

logp : Q∗
p → Qp.

logp(z) = · · ·
as a consequence of local class firld theory.

Consider the connection ∇ . . . . The thing that actually matters is the paral-
lel transport operator T z

b = matrix. Sometimes known as Coleman integration.

Example 7 X = P1 \ {0, 1,∞}. Then ℓk(z) =
∑∞

n=1
zn

nl is only defined for
|z|p < 1, but we can do analytic continuation. This relates to the p-adic diloga-
rithm via usual equations (different proofs!).

There is currently a strategy in place for describing rational points X(Q) ⊂
X(Qp). This is “Arithmetic Chern-Simons theory”.

2.2 Fast Scalar Multiplication in Pairing Groups:
Ionica

Let E be a pairing-freindly elliptic curve over Fq wher r||E(Fq)| and r|qk − 1,
where k os the embedding degree. Then G ⊆ E(Fq) and G2 ⊆ E(Fqk).

e : G1 ×G2 → GT
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is thefundamental operation. We need both this and multiplication in G1G2.
We wuld like all this to be efficient!

Multi-sclar multiplication: [s]P + [t]Q. Write S and t in binary with bits
sitj . Precompute T = P +Q. For each bit we add one of P , Q andT .

GLV: Assumethere is an efficient endomorphism ϕ : E → E : ϕ(P ) = [λϕ]P .
Then this makes multiplication faster.

Example 8 Eα y
2 = x3+αx. Assume q ≡ 1 (mod 4), let i ∈ Fq with i2 ≡ 1.

ϕ : (x, y) → (x, iy) is an automorphism.

Then the GLS construction (2009). There is also 4-GLV if we have two endo-
morphisms ϕ and ψ with different eigenvalues. Store 16 points, but sve 3

4 of the
doublins (and 17

32 of the additions.
[LongaSica2009] require the eigenvalues to have good lattice reduction. Con-

sider GLS curves defned over Fq2 with CM by a small D → 2 endomorphisms
ψ2 + [1] = 0, ϕ2 + [D] = 0 for points over Fq2 .

Various friendly curves, e.g. KSS k = 18 uses 2-GLV in G1 and 6-GLV in
G2. No known one with 4-GLV in G1.

C1/Fq : y2 = x5 + ax3 + bx: Satoh curves. JC1 is the Weil restriction of

Ec/Fq2 : y2 = x3+27(3c−10)x+108(14−9c) where c = a/
√
b. D = 2D′ Gives

I2 : Fc/Fq2 → E−c/Fq2 . Vélu’s forumlae give this 2-isogeny explicitly. We also
have ID′ , again with Vélu. Then ‘phi22 ± 2 = 0 and ϕ2D′ ± D′ = 0 for points
defined over Fq2 . Table of Multiplication/Squaring counts showing, roughly,
20% improvement.

Recipe for constructing such curves.

1. Pick discriminant

2. Search for m,n

3. take Hilbert polynomial and get roots in Fq2

4. . . .

But these are not pairing-friendly. This requirement imposes additional con-
straints. Current work is applying these.

2.3 Pairings and Arithmetic: Schwabe

[Naehrigetal2013a] and other work. However, pairing-based software doesn’t
always depend on these for critical timngs. Pairing computation is often not
the bottleneck (any more). There is a widely used benchmark: http://bench.
cr.yp.to. Supports benchmarking of many primitives, but not pairing or other
group arithmetic. Filling this gap is our aim.

Need a C-API: bench does and everyone serious about performance wants
this. In theory, everyone writes multiplicative, but we write additively.
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Note that a major attack is via timing, so we are always interested in
constant-time software. [Osvietalk206] stole Linux dmcrypt AES key. [Brumley-
Tuveri2011] took a few minutes to teal OpenSSL ECDSA key over the network.

bgroup_g1e, bgroup_g2e, bgroup_g3e and bgroup_scalar. Parameters are
byte arrays, but pack and unpack are explicit. Scalar and multi-sclar multipli-
cation, but again constant time. Hashing versions into G1 and G2. Note that
the public and private versions are allowed to be different, since a datum should
never be both!

Also scalar arithmetic. This is not normally the bottleneck so only has
constant-time versions. Also no non-constant-time version of pairings, for same
reason.

Reference version is 254-bit BN curve ([Aranhaetal2011]) Reference C imple-
mentation and AMD-64 version. Points are in Jacobian coordinates. Doubling
is 2M+5S. This works for infinity as well. To make addition constant time, we
compute P +Q and 2P , then choose which (makes it expensive2!). Tried using
[Hı10], but these actually have other special cases, so are not truly constant-
time.

Bos–Coster algorithm.
Various figures: g1e_scalarmult: 347024 cycles. Pairing 2.6M cycles, but

pairing product (n = 2) is only 3.8M, not 2× 2.6M. Note that this shows that
simple “pairing count” is näıve.

Examples of how to use: they all fit on one slide. http://cryptojedi.org/
papers/#panda.

2.4 Applications of Numerical Algebraic Geom-
etry: Hauenstein

One question: how do we know that we have all the solutions?. Many engineers
wonder why?

See [BlekhermanHauensteinOttenRanestadSturmfels2012]. We had the cor-
rect calculations for a Hilbert SoS case. This was numerical, and correct,
whereas hand symbolic was wrong. [SommeseVerscheldeWampler2002]: For a
union of irreducible, the centripd of interstecion points moves linearly. This is
easy tosee for hypersurfaces. Showed example with 87K (but an exact number)
of points,

[HauensteunRodriguez] “fix” the trace test by taking linear slices in the Segre
embedding, so the condition here is linear,

Alt’s problem had 8652 solutions, but neded to add 23706 extra solutions to
get the verified trace test: 32358.

My favourite homotopy is local descent. Note that there is also modular local
solutions followed by reconstruction to verify. See [Campo-Rodriguez2015a].

Example 9 σ8(C
3×C6×C6) [ChiantiniMellaOttaviani2014] proved at least six

2There’s an internal-only version which only adds, for cases known to have P ̸= Q.
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solutions. Have verified it’s actually 6, or more precisely 528 ·8! = 6 ·8!+522 ·8!,
where the last element is terms at infinity.

[. . . ]Littlewood’s problem of sevn touching cylinders.
Bertini2 workshop May 23-25 at Notre Dame.

Q Suppose there is no solution.

A Gröbner then is often faster: run both/all and see which is first.

Q How do we argue for Bertini rather than Newton?

A Give examples where the convergence is so bad that a random choice will
fail: easy in high dimension. [GriewankOsborne]

2.5 Theta ranks for Matroids: Sanyal

[Change of title and subject given other talk.]
The minimal degree necessary for hi such that any linear l(p) ≥ 0 for all

p ∈ V a finite configuration. Lev(V ) depends only on facet-definiing linear
functions. Lev(V ) ≤ k ⇒ Th(V ) ≤ k−1 but the converse is not true. However,
if Th(V ) = 1, Lev(V ) = 2.

Matroid M = (E,B) has a finite ground set E, and B with B − 1, B2 ∈ B

∀e ∈ B2 \B2∃f ∈ B2 \B1 : (B1 \ {e}) ∪ {f} ∈ B.

Theorem 9 The following three are equivalent.

1. Th(M) = 1

2. M has no minor isomophic to four cases

3. M is constructed from uniform matroids by taking sums or 2-sums.

2.6 Exact Algorithm for Polynomial Optimisa-
tion: Safey El Din

F = (f1, . . . , fp) ⊂ Q[x1, . . . , xn], variety V , , G ∈ Q[. . .]. All degrees ≤ D.

G∗ = inf
x∈V ∩Rn

G(x)

In the worst case, G∗ is an algebraic number of degree Dn.

Example 10 [BaiZimmermann20112] suze optimisation of sextic polynmialsin
the number field sieve. Degree 12 162 monomials. Coefficents of bit size ≈ 254.
Output: 14 local minimizers very close and of large magintude, 200 digits needed
to distinguish these points.
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Quantifier elimination by CAD is doubly exponential and in practice limited
to n ≈ 4 There is DO(n) [BPR06]. The key tool is polar varieties. From
now on, we assume that G = x1 (this is wlog, since we just add another vari-
able/equation). Let πi : (x1, . . . , vn) → (x1, . . . , xi). Polar variety Wi−1 assici-
ation to (f1, . . . , f)p) and πi.

∧
fi = 0∧ truncated Jacobian =0. W1 ⊂ W2 ⊂

· · ·Wi with d = dimV (under regularity assumptions).
W1 is the critical locus of the restriction of x→ X1(x) to V . Let C′

i =Wi ∩
V (X1 . . . , Xi−1. Most of the time this has dimension1. The let ‘C′ =

⋃d
i=2 C′

i,
and most of the time this has dimension 1. It contains W1.

Let C =
⋃d

i=2(Ci −W1). Up to a generic linear change of coordinates in
X2 . . . , Xn), C has dimension at most 1.

[SafeyElDinSchost2004] has a topological invariance property.
Canuse symbolic homotopy or geometric resolution. This is quadratic in

intrinsic geometrical degree bounds and linear in cost of evaluation.

2.7 Optimality Conditions using Newton diards
and sums of squares: Sekiguchi

Theorem 10 ([Nie2013]) If a Hessian condition and some constraint qualifi-
cations hold at each global minimiser of (POP) the f − fmin = σ0 +

∑
σ2
i gi.

Let ∆(f) =
⋃
{α+Rn

+|α ∈ supp(f)}.

Theorem 11 ([Vasiliev1977]) If lots of conditions, then f has an isolate zero
at 0.

I am interested in analogous results. R[x] 1
2γ

= {f : deg(f) ≤ 1
2γ}.

Theorem 12 Sufficient conditions for f ∈
∑

R[[x]]2 are

1. Every vertex of Γ is even

2. . . .

3. . . .

Theorem 13 Let f2m be the lowest homogeneous part of f . If this is a sum of
squares (bounded by m) then f is a SOS in

∑
R[[x]]2 .

The problem is terms with odd degrees separately but even total degree. There
seems to be a Newton polygon-based technique for massaging these terms.

The key seems to be “binarily regular Newton polyhedron” conditions. Fu-
ture work includes asking what sort of Newton diagrams have this condition.
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2.8 Gap Vectors of Real projective varietes: Juhnke-
Kubitzke

Recall “p is non-negative” “sum of squares”. How are these related.

Theorem 14 (Hilbert 1888) Nonnegative p is a sum of squares if

1. p is bivariate (univariate non-homogeneous)

2. p is quadratic

3. p is of degree 4 in 3 variables

In all other cases, there exist non-negative polynomails that are not sums of
squares.

LetX be a real projective variety, I(X) its ideal, R = R[xi]/I(X), PX ,ΣX = . . .
When is P = Σ?

Theorem 15 Iff X(C) is a variety of minimal degree.

So we now ask when are the faces of PX and ΣX equal? For Γ ⊂ X, let P (Γ)
be the set of forms of PX that vanish on Γ. Let ΣX(Γ) be the forms of ΣX that
vanish on Γ.

Theorem 16 Let Γ be a finite set of points. Let Y be the prohection of X away
from Γ.

Definition 2 Γ is independent if

1. ⟨Γ⟩ ∩X = Γ

2. The points in Γ are projectively independent

3. ⟨Γ⟩ and X intersect transversally.

Then we want to cosnider the dimensions of these P (Γ). Le gℓ(X) = dimP (Γ)−
dimΣ(Γ) for 1 ≤
ell ≤??.

Suppose X has codimension c. Let ϵ(X) =

(
c+ 1
2

)
− dim I(X)2. Then

gc(X) = ϵ(X) and gc−1(X) = 0 if X is a variety of minimal degree, else ϵ(X)−1.
Also the gi are weakly increasing with i.

Let g be the vector of gℓ. g = 0 iff X is avariety of minimal dgeree. g has
only one non-zero component iff ϵ(X) = 1: then g = (0, . . . , 1).
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Chapter 3

5 August 2015

3.1 Algebraic Codes and Invariance: Sudan

This is an ex-coding theorist’s prespective.

3.1.1 Codes and Algebraic Codes

Linear codes over Fq. Encodingfunction E : FK
q → Fn

q . The associated code C
is the image of E.

Reed–Solomon: regard message as a polynomial, and evaluate at n points.
Reed–Muller: multivariate generalisations of Reed–Solomon. Algebraic–Geometric
Codes: the domain is the set of rational points of an irreducible curve.

3.1.2 Combinatorics of Algebraic Codes

Rate R(C) = k/n. Distance = δ(C) := minx ̸=y d(x, y).
Pigeonhole principle implies R(C)+ δ(c) ≤ 1+ 1

n . Note that Reed–Solomon
can be made to hit this bound exactly.

For Reed–Solomon and Reed–Muller, distance equates to scarcity of roots.
In higher dimension there is a lot of underpinning algebar/geometry Stichtenoth
etc.

It is true, non-trivial, that there are infinitely many algebraic-geometric
codes with R(C) + δ(C) ≥ 1− 1√

q−1 .

3.1.3 Algorithmics of Algebraic Codes

Want efficient encoding: matrix-vector product, ehcih is generally efficient.
Testing (“is it a code word”) is also easy. Decoding (with correction): given
r ∈ Fn

q find m with δ(E(m), r) minimal. This is not obviously easy. There
are codes for which decoding is NP-complete. Let U ∗ v denote coordinate-wise
product. For linear codes A,B ≤ Fn

q , define A ∗B = span{a ∗ b|a ∈ A, b ∈ B}.
For every known algebraic code C of distance δ there is acode E of codimension
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≈
′

delta2n sich that E ∗ C is a code of distance δ
2 . For Reed–Solomon this is

algorithmic. Call (E,E ∗ C) an error-locating pair.
Given r ∈ Fn

q .

1. Find e ∈ E f ∈ E ∗ C such that e ∗ r = f

2. Find x̂ ∈ C such that e ∗ x̂ = f — againa linear system

There is a solution to step 1 if dimE > |errors|.
A list decoding abstraction is an increasing basis sequence, such as xi for

Reed–Solomon.

3.1.4 Locality of (some) Algebraic Codes

This will become more challenging. Want to perform tasks in o(n) time. Notethat
we expect to corrects δ

2 errors.
Does correcting a linear fractio of errors require scanning the whole code?

does testing? Deterministically: yes, but probabilistially, not necessarily.
The codes I am talking about are less used in practice (yet) than the locally-

repairable codes of Section 1.5. Note that Reed–Solomon must require read-
ing at least k elements. Reed–Muller is better. RM [m, r, q]]{(⟨f(α)⟩α∈Fm

q
|f ∈

Fq[x1, . . . , xm] deg(f) ≤ r}. Restrictions of low-degree polynomials to lines
yields low-degree (univariate) polynomials. I have n

1+m -locality.
Locality implies small (local) cobstraints. Do these lead to local decoding:

No!. Reed–Muller has a lot of transitivity so we need to consider Aut(C).
If a code has l-local constraints and 2-transitivity the the code is l-locally-

decodable from O( 1l )-fraction errors.
Suppose my constraint is f(a) = f(b) + f(c) + f(d). To find f(x), we find a

random π with π(a) = x. Then f(x) = f(π(b)) + f(π(c)) + f(π(d)).
Recent progress /cpciteYekhannEfrmenko2006 3-locally decodable cods of

sub-exponentail ength. Not great, but best we can do.
[Koppartyetal2013] no(1)-locally decodable codes with R+ δ → 1.

3.1.5 Aside: Symmetric Ingredients

Message is a bivariate polynomial. Ecode f by evaluations of (f, fx, fy) and the
rate goes to 1 as we take more and more derivatives.

3.1.6 Conclusions

Q Many cnstructions require large q? How about q = 2

A Restrict to the small input (as in BCH), or use concatenation of codes, i.e.
code Fα

2 into Fq first.

Q Finite fields only for the degree testing??

A Yes.
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3.2 Root isolation: Yap

“near optimal” is a code word in this area. Root isolation means finding ϵ-
approximations, i.e. an ϵ-disc containing exactly one root. Distinguish

Global find all the roots

Local those in a given region.

3.2.1 selective history

Classical: Descartes etc.. Benchmark problem: isolate all roots of an inte-
ger polynomial F . Õ(d2l) [Schoenhage(unpubl),Pan]. Based on circle method
(global) but now have good bisection methods (local).

Three bisection methods.

1. Sturm. Non-adaptive; limited to polynomials.

2. Descartes; Collins–Akritas. This is the method of choice for Computer
Algebra [SM15]

3. Evaluation [BKY09, SY12] Does complex roots [SY11]

Note that representing analytic funtions is a problem. Also whereas we have
sqfr for polynmials we have no analogy. We need a replacement for the C1

(monotonicity) -predicate. Our tool here is Pellet’s theorem. We also need a
replacment for sign evaluation.

Given F : C → C, have F : C → C.. Should be conservative: F (B) ⊆ F (B),
and convergent.

For an analytic function, we want box functions fro all its derivatives.
We will change the problem into root clustering. Descartes etc. rquire only

simple zeros (in the box under consideration). To be unconditional, we allow a
k-cluster to be k simple roots, a k-multiple root, or inbetween.

A disc D is isolating for F if 3D \ D contains no roots. Then clusters are
either disjoint or containing. n roots have at most 2n− 1 clusters.

Root clustering problem: given a box B0 ⊂ C and find an ϵ-isolating system
of cliusters for B0.

3.2.2 Pellet Predicates

Given k ≥ 0, reals r,K ≥ 1

Ck(m, r;K) : |Fk(m)|rK > K
∑
i ̸=k

. . .

Lemma 1 (Pellet 1881) If Ck(m, r; k) holds then teh disc Dm(r) contains . . .

Theorem 17 (Darboux) F : D0 → C be anaytic in D0. . . .
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Box version of Pellet.
Ck(m, r;K) : . . .

Define firstC(B,n) to return the smallest k ∈ 0 . . . N such that D(2k · B) is
isolating. Then this gives a “split if necessary” algorithm. The problem is that
uses exact evaluation: C.

By “soft evaluation” we return A < B, A > B or 1
2A < B < 2A. If C

succeeds then C succeeds (but with different parameters)
Use Abbott’s improvement of quadratic to give Newton–Bisection processes.

If the multiplicity is k we use a k-step Newton.
We can’t analyse the analytic algorithm in general but in the case of poly-

nomials it is near-optimal.

3.3 Continuous Amortization: Intrinsic Com-
plexity for subduvsion-bsed ALgorithms: Burr

Prototypical: subdivision for real roots. Many multivatiate analogies.

1. How many subdivisions

2. bit complexity

Challenge is that the algorithm is adaptive. The tree varies in depth and max-
depth is not the appropriate measure. Width is often used. Condition numbes
are also used.

Definition 3 f : R → R≥0 is alocal size bound if

∀x ∈ RF (x) ≤ min
J∋x;C(J)false

w(J)

Doesn’t depend on onput interval. Measuses local worst-case complexity, We
can count the number of sibdivisions by integating the local size function.

Theorem 18 (BurrKramerYap) B(I, f) + 1 =
∫

2dx
F .

It matches or improves all known techniques.

Example 11 (Sturm) SSturm(J) = true iff J has 0 or 1 roots. So w(J) ≥
dist2I(x,R− roots(f)), distance to second-closest root.

Get an expression in terms of ln(αi+1 −αi) etc. DMM bound used for these
gives equivalent of best results in literature.

Let (X,µ) be a measure space. S a cllection of finite measure subsets of X.
Input: I ∈ S, and a stopping criterion. Local Size bound

∀xinR : F (x) ≤ −minJ∈S;J∋x;...µ(J)∑
J∈P

g(µ(J)) ≤ max

{
g(µ(i)),

∫
I

g(K · . . .)
. . .

}
Again, can match/improve literature’s bounds.
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3.3.1 Developments

Unequal-sized subdivisions. See [BC11]. Homotopy continuation subdivides the
time division. From their paper we know the (lower bound on) size of interval
that contains a point and he can regard this as a bound, and reconstruct their
research.

Continuous amortisation lead to intrinsic and geometric complexity bounds.
Our complexity results are in terms of the actual geometry of the roots.

[PlantingaVegter2004] subdivision-based curve approximation algorithm.

3.4 Davenport

3.5

Drew attention to Alicia Dickenstein conference August 2016.
The previous talk had a lot of resultants! Introduced by Sylvester.

Example 12 Square n × n system deg(fi) = di. Consider Res1,d1,...,dn(1 −
txi, f1, . . . , fn), the roots in xi.

What happens in the sparse world?
Consider n+1 polynomials in n variables where Ai ⊂ Zn being the support

of fi. What would we mean by sparse resultant? GKZ, Sturmfels. Given us ir-
reducibilty, homogeneities, extremal coefficients etc. but we lose some geometric
information.

Self/Galligo/Sombra in AJM2014. Want

Res{0a}.A1,...,An
(t− xa, f1 . . . , fn)

for all a ∈ Zn.
We define the resultant as the definitin equation of the direct image π∗W .

Example 13 A0 =1= A2 = {(0, 0), (0, 2), (2, 0)}.

Now the degree is always the mixed volume. We have a toric variety The classic
resultant is connected withtheChwo form of thsi variety. We use Rémond’s
resultant of cycles as a building block. LNM1752 2001.

Define ResX(F0, . . . , Fn) such that if |X| ∩ V (F0) cuts properly, te

ResX = ResX·Z(F0)

The Poisson formula works always with no strange exponents.
D’AndreaJeronimoSombra have generalised work of Sturmfels, which sim-

plifies a lot.
For systems with parameters, the degrees on the parameters are well-controlled.
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Chapter 4

6 August 2015

4.1 Algebraic Vision: Reka Thomas

problems in Computer Vision form the point of view of algebraic geometry
or algebraic methods in optimisation. Today I will present joint work with
Google. See book: Multiple View Geometry in Computer Vision. Hartley,R. &
Zisserman,A., C.U.P., 2000.

Definition 4 A camera is a (central projection) map from R3 to R2.

Example 14 (x, y, z) → ( fxz ,
fy
z ). But move to P3 → P2: have (x, y, z, 1) →

(fx, fy, z).

Now linear, so a camera is essentially a 3 × 4 matrix P of rank 3. The centre
of the matrix is the right kernel. Write P = [A|b]. If A is non-singular we say
that the camera is finite. Use ∼ to mean “equal in projection space”.

So P = K[R|t] where K is upper triangular with positive diagonal. R is the
rotation matrix. A camera is calibrated if we know K.

4.1.1 Fundamental Questions [HZ00]

1. Resectioning Given Xi ↔ x− i find P .

2. Triangulation Given Pi and xi find X that gets mapped to each xi

3. Reconstruction x
(j)
i find Pj and Xi.

In practice all data are noisy, se we need MLEs. Depends on the noise model.

4.1.2 Two View Geometry

Suppose x ∼ P1X, y ∼ P2X. There is a 3 × 3 matrix F of rank 2 such that
yTFx = 0: the epipolar equation. 7 degrees of freedom. If the cameras are
calirbated, ther is an essential matrix E: yTEx = 0 where E has five degrees of
freedom.
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Theorem 19 (Projective Reconstruction) Suppose yTi Fxi = 0. Then we
can resocnstruct 2 cameras and the world point Xi up to a projective transfor-
mation unless the Xi lie on a livne joining the camera centres.

Suppose we are given m correspondences (xi, yi) ∈ R2 ×R2: does there exist a
reconstruction.

Let a be the vectorisation of the matrix A.

R2 := {a ∈ P8
C : rank(A) ≤ 2 : dimension7degree3.

R1 := {a ∈ P8
C : rank(A) ≤ 1

F = R2 \ R1) ∩P8
R = fundamental matrices.

Let Z be the vectorisation of [xi ⊗ yi]. Then the question sis whether
kerR(Z) ∩ F ̸= ∅

rank(Z) = 9 No solution.

rank(Z) = 8 Compute a = kerR(Z). ∃F ⇔ rank(A) = 2

rank(Z) ≤ 7 The intersection is non-empty but it might be entirely in R1.

rank(Z) ≤ 5 Almost always have one: details.

rank(Z) = 6 Might or might not exist.

rank(Z) = 7 Might or might not exist.

Now what happens if we have calibrated cameras? σ1 = σ2; σ3 = 0. This is
a variety E [Demazure1988]. This is cut out by 2EETE − trace(EET )E = 0,
det(E) = 0. The complex E is a secant variety. Ec (Zariski closure) is irreducible:
dimension 5 and degree 10. So we ask if E ∩ kerR(Z) ̸= ∅.

Theorem 20 rank(Z) ≤ 4 → ∃E.

For rank 8 we just compute {A} = ker and check the Demazure equations. 5,6,7
are the hard cases. ∑

a2i,j = 4
∑

M2
i.j.k.l : M 2× 2 minors

There’s also a rotational formulation.
The real question is hard: what about the complex form? Rank 5 always

exists. For higher ranks we need the Chow form. Suppose V ⊂ Pn
C is irreduicble

if dimension d. Let L ⊂ Pn
C be a linear space of simension n − d − 1. Usually

V ∩ L = ∅. The Chow form of V , ChV (A) is a homogeneous polynomial in A
of degree (d+ 1)δ such that V ∩ L ̸= ∅ ⇔ L satisfies ChV (A).

Shows an example in Macaulay 2: [Nister2004] KTH PhD uses ad hoc tech-
niques on Demazure cubics. These days Gröbner trace techniques are used.
Kukelova’s thesis does this in Android ’phones!

[Sturmfels2014] Hurwitz form of a projective variety. V ⊂ Pn
C irreducible

of dimension d and degree δ. Intersect with L linear of dimension d. Expect
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δ points: when do we get fewer? This defines HV ⊂ GR(d,Pn
C). This gives

(Bürgisser) some useful information on the condition number of the reconstruc-
tion.

Example 15 (Rome wasn’t built in a day) Project at Washington to re-
construct Rome from all its images in Flickr. First problem is doing the match-
ing.

Q Real points?

A These are hard questions. Vision considers these problems solved in practice,
as they are reconstructing objects that exist!

4.2 Twisted Hessian Curves: Lange

Paper at http://cr.yp.to/papers.html#hessian, slides at https://www.hyperelliptic.
org/tanja/vortraege/20150806-squished.pdf. Note that Google does use
elliptic curve signatures. Note that we normally use large finite fields, and
Weierstrass forms. Note the problem with addition if P1 = ±P2, and special
cases of infinity: special cases imply timing risks and bugs.

Hence Edwards1 curves (example d = 30), where all points are equivalent.

(x1, y1) = (x2, y2) =

(
x1y2 + y1x2

1− 30x1x2y1y2
,

. . .

1− 30x1x2y1y2

)
.

We say that the addition law is strongly unified, i.e. it can be used for doubling.
For complete [no special caes at all] we need d to be a non-square, but this is a
property of d that is relative to the field. Doesn’t worry us too much, provided
we stick to the appropriate extension fields.

Note [CC86]: much neglected. For some reason they missed Edwards curves.

Weierstrass

Edwards

Jacobi Quartic

Hessian Credited to Sylvester by [CC86]. [JQ01] 2(x1, y1z1) = (z1, x1, y1) +
(y1, z1, x1). Claimed to be “unified”, but we still need to make sure that
we do a rotation for every addition.

We write H/k : ax3 + y3 + z3 = dxyz with a(27a − d3) ̸= 0. Use (0,−1, 1) as
the neutral element. Addition still fails for doubling. But we have a variant:
x′3 = z22x1z1 − y2x2y

2 etc. involving a. This is a complete addition law if a is
not a cube. If a is a cube, they have a strongly unified formulation.

There is a very efficient tripling (no use for constant time encryption, but
useful for signature verification etc.). Note that these curves have cofactor 3 in
the order and this is the first time this has helped. [BL95, But note there are
typos] on addition laws in standard formats.

1Today is Harold Edwards’ 79th birthday.
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Q Analogy for Edwards for hyperelliptic?

A Not known. We have tried, but end up with genus 3.

4.3 Computational algebraic number theory tack-
les lattice-base cryptolography: Bernstein

Note that the standard sales brochure for lattice-based is powerful.

Problem 1 (Short generator) Take a degree n number field K. Given the
principal ideal gØ find a short g.

Examples: Q, Q[i], Q[ζn], Q[
√
2,
√
3]. Need Ø which might or might not be

Z[θ], e.g. Q[
√
5] has Z[ 1+

√
5

2 ].
SVP is usually solved by LLL. But for large n, LLL finds short veectors, but

not the shortest, and the gap grows exponentially in n. BKZ doesn’t actually
solve this. [LaarhovendeWeger2015] ≈ 1.23n ([NguyenVidick2008] has ≈ 1.33n).

But we can exploit factorisation. Suppose we find α short but αØ ̸= gØ.
Hence produce a lot of short αiØ and do factor base work in the αØ/gØ. Only
interested in α with smooth factorisations.

Variation: just igore the gØ and factor αØ into small primes. Does every
prime have generators? Also compute Ø∗ via generators.

[SmartVercauteren????] “exponential time” quote.
There are n ring maps ψi : K → C. Defibe Log : K∗ → R∗ as (log |ϕi|),a nd

then LogØ∗ is a lattice of rank r1+r2 = 1. Use CVP to find elements of LogØ∗

close to Log gØ. Had a blog post about subfields and relevance. If we know
Log normk:F g for such an F . Then this constrains Log u to a shifted sublattie
of /LogØ∗: constraints are unit rank of F .

Example 16 ζ661 gives a maximal rank of 8 to be attacked.

Example 17 Q[
√
2, . . .] degree 210, means the whole problem is trivial. Admit-

tedly no-one’s proposed this field but all the old hardness arguments work for
it!

[Campbelletal2014a] shows a textbook attack on cyclotomics. The analysis is
bogus, but the algorithm is very fast. Plagiarised by [Crameretal2015], which
does the analysis correctly. [Song2015] produced a polynomial-time quantum
algorithm.

4.4 Encryption based on card shuffle: Lee

Consider block ciphers and the indistinguishability framework: adversary capa-
ble of making adaptive forward and backward queries.
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Example 18 Credit card numbers. Need to transform to/from bit strings, but
we’d rather have {0-9}16 transforms. Feistel networks are standard, but are
only secure up to 2n/2 queries for a sufficient number of rounds. Credit cards
are too small!

Consider card shuffle: a Markov process whose mixing time is the number of
rounds. We want it to be oblivious: trace one card ignoring the rest. Claims
the Thorp [Crypto2009] this is secure up to 2n/n queries for O(n2) rounds.

“swap or not” shuffle [Crypto2012] Chose a round key K ̸= 0 for {1, 1}3.
the cards at x, x⊕K are matched, and swapped or not as max(x, x⊕K). Can
view this as choosing permutations.

New construction “partition and mix”: For each elements, choose D − 1
distinct elements at random, and arrange elements in block. Need an “ϵ-alomst
D-uniform” partition, and thsi reduces the number of rounds by log D

1+ϵ .
But finding such partitions is not trivial.

Definition 5 A family of permutations on N elements in perfect D-wise inde-
pendent if it acts uniformly on tuples of D elements.

However, there are no non-trivial subgroups of Sn for n ≥ 25 which are 4-wise
independent.

Alternative technique via Hamming codes. Can extend to [2s−1, 2s−s−1, 3]-
Hamming, which is 2D−n-almost 2s-uniform. Claims 60 rouns rather than 450
for the SN-shuffle.

Conclusion: claims that this is useful for format-preserving encryption.

4.5 A class of constacyclic codes over Fpr+uFpr+
vFpr + uvFpr: Bandi

Classically we consider codes over finite fields. [Hammendsetal1994] initiated
study over rings. Various authors have studied the title ring. Apparently several
good codes have been produced over rings, better than over fields. Note that
u2 − v2 = 0 and uv = vu.

Let τ : (c0, . . . , cn−1) 7→ (δcn−1, c0, . . . , cn−2). Costacyclic means invariant
under τ for a suitable δ.

Let Rn = R[x]
⟨xn−(1+λu)⟩ . This is a local ring (but not a chain) with maximal

ideal ⟨. . ..
Can count all these constacyclic codes, and can produce the duals.

Q Why is this ring interesting?

A So far unexplored.

Q What about efficient decoders?

A Not solved, apparently.

Q Why 1 + λu.

A It’s a generic linear after scaling.
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4.6 Challenges in the Development of Open Source
Computer Algebra Systems: Decker

In charge of the Singular project since 2009. I learned to use computer algebra
via the original Macaulay. Numerical methods (e.g. Section 9.3) are important,
but not the only answer.

Report on OS software from the DfG priority project. Unlike 20 years ago,
methods from cmputer algebra are now firmly established in the toolbox of the
pure mathematician. A decisive feature of the current developments is that
more and more abstract mathematical concepts are being made constructive.
Algebraic geometry by itself is not sufficient.

In this project, Malle has considerably strengthened Cohen–Lenstra, and I
now call then Cohen–Lenstra–Malle. Demonstrates the Zbl citations for Singu-
lar by MSc categories. These days over half the citations are outside Algebraic
Geometry/Commutative Algebra.

Want to intertwine Singlaur, GAP and Polymake. I believe that Antic will
become a major tool in number theory.

4.6.1 First Challenge: Faster Algorithms

First need to convert curve into primary decomosition, hence factoring. Need
lots of algrotiths as there is no universal one.

Example 19 Phylogenetic modelling. Engelmann in Singular solved the prob-
lem: 26 CPU days and a GB with 416812 elements. Used a Hilbert-driven GB
computation.

Example 20 (Gröbner Bases over Number Fields) Use modular reconstruc-
tion, but choose primes such that the minimal polynomial factorises: many more
smaller problems. Note this is a highly parallel problem.

1. Coarse-grained. Comparatively easy.

2. Fine-grained. This needs thread-safe, but optimal, memory management.
A major project.

GAP Largely done: see HPC-GAP. Developer nowmoved to Kaiserslautern.

* Racing multiple algorithms. Needs Coarse-grained, and ParallelWaitFirst.
There is also ParallelWaitAll.

Note Villamayor’s constructive version of Hironaka. One major problem is
choosing the “right” order of blowups.

Example 21 (De Rham) Use the Weyl lagebra to compute the de Rham co-
homology of complements of affive varieties.
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But this needs the BGG correspondence [Bernstein–Gelfand–Gelfand]. Let V
be a vector space of dimension n + 1 with dual space W . S = SymK(W and
E =

∧
V . We grade S and E by letting elements of W have degree 1 and V

have degreee −1.
Shows a session. Starts with GAP’s SmallGroup(1000,93). Then calls

Singular from Gap, to get Tate resolutions.

4.6.2 Third Challenge: Making More of the Abstract Con-
centps Constructuve

Aim: Fourier–Mukai transforms and their generalisations.

4.6.3 Integration of Systems

One example already. Also shows interatcion with Polymake. Computes a
GIT-fun from Polymake and Sigular.

FLINT Important basic operations.

ANTIC fast number feild arithmetic.

HECKE an implementation of algebraic number theory in Julia.

Also tools in tropical geometry essentially a piece-wise linear version.

FAN computes tropical varieties, and trivial valuations.

ATINT Tropical intersection theory.

Shows an example involving Chow Rings and its TopChernClass.

Q How does this relate to SAGE?

A We want to conect systems together directly, rather than via the SAGE
kernel.

Q Representation Theory?

A GAP’s Chevy system does something, but also Cohen’s Lie.

Q Can you study memory-sharing as a Gröbern base problem itself.

A Not yet!

Q You showed many pictures: how do we produce them.

A These pictures were produced via Greuel’s Imaginary: you should install
these. surf.lib is the ray-tracing starting point.
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4.7 Primary Decomposition and Parallelization:
Schönemann

This is a basic tool. Computers are not getting faster, just more cores. Hence a
change of approach is necessary. Singular’s memory-management is very suited
to GB, but is not thread-safe. Hence more common to use communication rather
than memory-sharing. Classically: GB via CRT. Can use multiple threads
in one processor for matrix operations (F4-style), as the sub-division is well-
understood.

MathicGB (Roune) computes GB’s via a matrix of machine integers.
In general, have a multi-area scheme: some exclusive to a thread, some

shared and lockable.

Wu-Ritt

Gianni–Trager–Zacharias Here we add a pre-rpocessing step. We need di-
mension hence need a GB. Actually use a factoring GB, since this will
automatically contribute to the primary decomposition. In practice this
gets us most of the way very often. However, this also imposes inequa-
tions. Therefore should treat lowest-degree factors first. Use work-stealing
on the factors

Eisenbud–Huneke–Vasconcelos Theorem 21 If I ⊆ R = K[x1, . . . , xn]
. . .

We can’t yet parallelise the characteristic sets algorithm.
Factorising Gröbner is implemented, but not in parallel.
A good discussion on factoring, and JHDmentioned experience from [Dav87].

4.8 Criteria for Gröbner Bases: Gao

G is a Gröbner basis for I iff every polynomial h ∈ I is top-reducible by G.
Not algorithmically testable, hence the S-polynomial criterion. Hence LCM
criterion, [MMT92], then Faugère’s F4. [EderFaugere2014]: survey paper.

H := {(u1, ldots, um) ∈ Rm :
∑

uigi = 0}

is calle dthe syzygy module of {gi}. Want a term order ≺2 on Rm which is
compatible with the order ≺1 on R. [Fau02] the signature of v is min{lm(u) :
u.g = 0}. Reduce pairs (u, v) ∈ Rm × R by reducing the R part and tracking
the changes in Rm part. We only reduce (u1, 0) by terms of the form (u2, 0).

M := {(U, v) ∈ Rm ×R : u.g = v}

and have a concept of a string GB of M . Then the elements with zero R-part
are a GB for the syzygy module, and the projection onto R are a GB for the
original.
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If both v1v2 are non-zero then the J-pair consists of doing the S-polynomial
computation on both components. Let T = max(t1 lm(u1), t2 lm(u2)).

Theorem 22 (us) The following criterai are equivalient.

1. G is a strong GB for M

2. Every J-pair of G is covered by G.

[RouneStillman2012a] etc. all have rules about ”rewritable” when tlm(v2) ≺
lm(v1 and “added later tan” rule. The last is not mathematical.

Note that we only store the signature lm(u) not the whole u.

4.9 Modular Techniques in Computational Al-
gebraic Geometry:

Rational reconsruction is an old idea. Preimage under the Farey map. This
works as long as N is large enough, and none of the primes are bad.

1. Input modulo p is not valid

2. Algorithm fails (e.g. matrix not invertible)

3. Computable invariant is wrong (e.g. Hilbert polynomial). These primes
are usually Zariski-closed in Spec Z.

4. Computable invariant with unknown value is wrong: only solution is ma-
jority voting.

All (x, y) ∈ Λ which reconstruct correctly are in a straight line. If M (bad
primes) are small enough, Gauss–Langange will find the shortest vactor, and its
norm divides the bad primes (take these out).

Hence this algorithm.

1. Compute Ip

2. Reduce P according to majority vote on LM(U(p))

3. compute termwise CRT-lift

4. Lift U(N) to error-tolerant rational reconstruction

5. Test on a new random prime

6. Verify

7. If any stage fails, repeat

Example 22 I →
√
I + Jac(I) where

Normalisation: A is the integral close of A in its quotient field.
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Example 23 Curve I = ⟨x3 + x2 − y2⟩

Hence this algorithm.

1. Start from Ao = A and J

Theorem 23 (GrauertTemmert)

Theorem 24 (201) Suppose J =
√
Jac(I) = P1 ∩ · · ·P + r is a primary

decomposition, and A ⊂ Bi ⊂ A is the ring given by normalising Pi. Then
A =

∑
Bi.

Hence adjoint ideals.

Q Worst error fraction?

A Never occurs in practice! We actually start at laregst prime and work down.

4.10 Computing Integral Bases of curves in small
characteristic: Stillman

This is about embracing the bad primes. k is Fp or Fq, wth p small. f(x, y)
is an equation of a plane curve (think irreducible). Monic in y of degree n.
L; = k(C) = k(x)[y]/(f). Assume separble. Let Ø ⊂ L be the integral closure
of k[x] in L. Suppose P (x) ∈ k[x] is irreducible let Øp denote the integral closure
of k[x](P ) in L.

Ø is rank n free k[x]-module. Øp is a rank n free k[x](P ) module. If P 2

doesn’t divide the discriminant then ØP is trivial.

Definition 6 A partial basis of Øp is a set B =
{
1, g1(x,y)pd1

, . . .
}

where the gi

are monic in t of degree i, the fraction is integral over k[x], 0 ≥ d1 ≤ d2 ≤ . . ..
Let L(B) be the k[x](P )-span of B. B is a full basis if also L(B) − ØP . The
delta invariant at P is δp =

∑
di.

Example 24 F = y9(y − 1) + (x3 + x2 + 1)2y + (x3 + x2 + 1)3. 4 points in
singular locus (one over the base field,

Trager computed Ø via “round 2”. ALso [vH94] uses Puiseux series for large
enough characteristic. [LeonardPellikaan2003]. Montes algorithm.

If I can compute integral basis for Øx for f ′ ∈ k′[xy] with k′ a finite extensin
of k. . . . .

General idea g ∈ Øx iff gp ∈ Øx since

Øx = {g ∈ L|v(g) ≥ 0 for all valuations centred at x = 0}.

1. Start with a partial basis B of Øx which is Frobenius stable.

2. For the momemt, assume that k = Fp
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3. Let M be the n×n matrix pf σ w.r.t. B. Since L(B) is Frobenius-stable,
M is a matrix of polynomials

4. For c0, . . . , cn−1 ∈

σ

(
c− 0b0 + · · ·

p

)
. . .

5. Do this until L(B) =
{
g ∈ 1

xL(B)|gp ∈ L(B)
}
: Frobenius-stable.

* Nearly there: may need one more x.

6. Compute W1 the kernel of . . .

A singular point above 0 always leads to a fraction: quite often we can compute
these “for free”. f(x, y) = TS2 + xSU + x2V (x, y) where S, T, U ∈ k[y] and S
is square-free and irreducible factor of T of multiplicity ≥ 2 does not divide U ,
then we have precisely the right fraction.

4.11 SIAM AG Business Meeting

Jan Draisma chaired the meeting. Note that we have http://wiki’siam.org/
siag-ag/index.php/Main_Page. Note that you need to be added to the Wiki
by a member.

Conference numbers over the history: 307; 386; 350 (at this year). Biggest
AGs are 1500, 500 is probably median. Smilar size to Discrete Math. Note
SIAM fellows: 2014 Sturmfels and 2015 Charles Wampler.

4.11.1 AG2017: Anton Leykin (Georgia Tech)

Beginning of August 2016. Duration 4 or 5 days — previous meetings were 3 1
2

days, but this is 5. We have a big airport in Atlanta. 25 minute subway to
campus in 25 minutes. Many hotels in walking distance with discounted rates.

Q Can we avoid competing with MAA MathFest: we have last two times.

A Note that SIAM Conference is also around this time, and we can’t conflict
with that.

Q–Ottaviani MEGA is a conflict. A show of hands said that almost everyone
present had been at a MEGA. MEGA 2017 will be in Nice in June.

Alicia MEGA was even, but went to odd because of ISSAC.

JHD But ISSAC is now every three years in Europe. We can live with 2017,
but should think about 2019 if AG2019 should be in Europe. Note ICIAM
2019 is in Valencia.

All Also overlap with CRYPTO in Santa Barbara in late August.
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Sandra Possibly merge the two when AG is in Europe.

Sturmfels/JHD Motion for the leaders of AG and MEGA to discuss. Fortu-
nately there is intersection! Notably Jan Draisma himself.

* A poll showed that about half the room would be going to ICIAM 2015.

Note that we are recommending to SIAM that Georgia Tech be approved.

4.11.2 Also

2016 will be SIAM AM July 11-15 with AMS Invited Lecture by Sturmfels.
SIAM also has funding for summer schools.

We have 90 student members and 148 non-student. %age students is sligtly
lower than SIAM average. However student members (of the AG) have been
declining, attributable in part to a change in SIAM software. Academia is 84%,
whereas SIAM average is 75%. 75% maths departments, 10% CS and the rest
“other/none”. US is about 2/3 of the total.

4.11.3 SIAM J. Applied Algebra and Geometry

Note that it is not formally an AG journal. Proposalwokred on by FS and TT.
Proposal goes to SIAM Trustees this weekend.xs

Q Open Access?

A SIAM model (which itself is evolving).

Q Can we add “Applied Topology”?

A We should certainly reach out to that community.

Q Editorial board, process, terms etc.

A Being discussed. SIAM has guidelines.
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Chapter 5

7 August 2015

5.1 Progress Report on Geometric Complexity
Theory: Mulmuley

[Ikenmeyeretal2015a] is the main reference.

Problem 2 (The permanent verses determinant problem) The permanent
of an n×n variable matrix X cannot be approximated infinitesimally closely by
symbolic determinants of m × m matrices whose entris affice linear combina-
tions of the entries of X if m is polynomial in n. This strengthens Valiant’s
conjecture, but is reducible to looking for representation-theoretic obstructions.

Let G = GLl(C) wheren l = m2. Let λ : λ1 ≥ λ2 ≥ · · · ≥ λl ≥ 0 be a partition
and let Vλ(G) denote the Weyl module (irreducible representation) of G.

An obstruction (for given m and n) is a Weyl module Vλ(G) that occurs on
a certain G-orbit closure associated with the (padded) permanent but not on
the G-orbit closure associated with the determinant.

Conjecture 1 An obstruction exists if m = poly(n). This implies the truth of
the previous problem.

Let H = GLm(C) × GLM (C). Let ρ denote the natural monomorphism from
G to G = GL(Cm ⊗ Cm) = GLl(C). Given partitions λµπ, the Kronecker
coefficient Kπ

λµ is the multiplicity of the irreducible H-module Vµ(H)⊗ Vπ(H)
in he irreducible G-module Vλ(G) considered as an H-module via ρ. If λ is an
obstuction for given n and m then

1. |λ| is divisible by m

2. the height (numbe rof non-zero parts) of λ is ≤ n2

3. The rectangular coefficient kλδ(λ),δ(λ) vanishes.
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Note that these are necessary, not sufficient. But satisfying them is challenging
enough.

[Kirwan1984] the Kronecker cone for a given m is a polyhedral cone. BUt
[Burgisseretal] (λ, δ(λ), δ(λ)) lies in the Kronecker cone, so can’t be proved zero
this way. This shows we can’t use asymptotic techniques of algebraic geometry
and representation theory on the Kronecker cone used to show the existence of
vanishing rectangular Kronecker coefficients.

If Vλ(G) is an obstruction for given m = na and n, then the partition trible
(λ, δ(λ), δ(λ)) must be (ϵ, b)=exception in teh following sense: letting ϵ = 2/a
and b large enough: wher (, µ, π) is exceptional iff

0 kλµ,π = 0

1. µ = π = δ(λ)

2. height(λ ≤ mϵ

3. etc.

Hence our intermediate goal is to show that superpolynomiallly many excep-
tional partition triples (λ, µ, π) exist, as m → ∞, for any fixed ϵ > 0, with a
large enough constant b depending on ϵ.

Hard. Let’s relax condition 1 and just insist that µ = π, but not necessarily
rectangular.

Theorem 25 For an 0 < ϵ ≤ 1 there exists 0 < a < 1 such that, for all n, there
exist Ω(2m

a

) partition triples such that [various items which meet the relatxed
goals above].

The proof uses the theory of NP-completeness. It explicitly constructs the ob-
structions.

This theorem disproves the conjecture that KRONECKER is in P [unless
P=NP, I suppose]. Note that deciding positivity of Littlewood–Richardson.
coefficients is in strong P [Knutson;Tao].

Conjecture 2 (GCT6) There is a #P formula for the Kronecker coefficients.

This is the complexity-theoretic version of the clasical problem of finding a pos-
itive rule for the Kronecker coefficients. analogous to the positive Littlewood–
Richardson. rule.

All positive rules known so far for restricted classes of Kronecker coefficients.
(such as Littlewood–Richardson) are for subclasses of partition triplies of type
P.

The following result provides the first known instance of a positive rule for
Kronecker coefficients. for a subclass of type NP.

Theorem 26 There is a #P formula . . .
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The next aim is to extend this explicit proof strategy to . . . , but the problem
is the “GCT chasm”: the existing EXPSPACE versus P gap in the complexity
of derandomizing Noether’s Normalisation Lemma for explicit varieties.

Note that, in fact we only need rectangular Kronecker coefficients.

Q Can you explain NNL?

A Another lecture, but note that if we could solve permanent/determinant, we
should close the chasm.

5.2 Homotopy continuation versus Gröbner bases
for parametric systems: Leykin

Given ϕ ∈ K[px]m and V ⊂]Ap = Spec(K[p]) such that, for a generic p∗ ∈ V
the set of solutions ϕ−1(p+ ∗) is finite, “get” this set.

5.2.1 Gröbner Trace

This of a parametric or comprehensive GB of I = ⟨]phi(p, x)⟩. There is an open
Up ⊂ V and G ⊂ K[p, x] such that P (p∗, x) ⊂ K[x] is a GB for all p∗ ∈ Up.

But actually computing a comprehensive GB, so we use Gröbner trace ideas.
This is a procedure which evaluates the coefficients of G(p0, x) ⊂ K[x] for a
given p ∈ V , which are rational functions in p0. We only tae extensin when we
“solve”.

5.2.2 Parametric homotopy

Classically, V is the dense open subset of Ap. Generally

1. Take a generic (codim(V )-plane L ∈ Ap

2. Find a structured witness set

V (ϕ) ∩ (L×Ax) ⊂ Ap ×Ax

3. Given p0 ∈ V , pick a general L0 ⊂ Ap that contains p0

4. Deform from L to L0.

Example 25 (Vision) X is projected by three calibrated cameras R1 = I,R2, R3 ∈
SO3, and centers C1 = 0, C2, C3. There is related work (Kileel) on calibrated
trifocal varieties. Use the Cayley parametrisation of SO3, and two matrices
means six parameters. Write down a map

Proj(K[X,C])× SO3 × SO3 → (P2 ×P2 ×P2)4

in some affine charts. dim(C) = 23, dim(V ) = 24, ∂′phi is of full rank, so we
have a codimension 1 variety.
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A vision problem is minimal if a generic fiber ϕ−1(y) is finite and the number
of points and cameras is optimal. [HoltNetravali1995] for four points in 3 views,
|]phi−1(y)| = 1 for a generic view.

Homotopy Take a real line L1 ∈ Ay containng y1 witha known solution and
moving it to a real L2 containing y2 works often if Y1, , y2 are “not too far
apart”. Complex L1, l2 (in fact L1||L2) work even better. If single-path
tracking succeeds, homotopy takes ≈ 0.1 seconds. But using the whole
witness set (4000 points) is slow, and evaluation of ϕ and its derivatives
is the bottleneck: problem with Macaulay2 currently.

Gröbner Computation of ⟨ψ(y0, r) rank for exacty0 takes ≈ 1sec (unfeasible).

In Macaulay2 use GroebnerBasis by Roune, with Strategy=>"F4" option,
which beats Faugère’s F4.

5.3 Integral bases via localisationa nd Hensel
Lifting: ?Lapaigne

Let A = k[x1, . . . , xn]/I where I is a prime ideal. x ∈ Q(A) iff it satsifies a
monic equation. A = set of integral elements in Q(A).

Example 26 On y2 − x3, y/x is integral, but y/x2 is not — consider Puiseux
series around x = 0.

An integral basis is a se of k[x]-module generator sfor A.

Example 27 I = ⟨y3 = x2⟩. IB 1, y, y
2

x .

Factorisation is ring of Puiseux series. Therefore valuations and integral expo-
nents = minplaces γj vj(y).

So we localise at the various singular points. If Pi is a singular point, let

A
(i)
Pi

= APi Then
∑
A(i) = A.

Note that f ∈ k[x][y] can be factored in k[[x]][y]. But need to use CRT to
reconstruct the answer from the different fi.

Q Are the bases triangular?

A At the places Pi — yes. And at the end.

5.4 Gröbner Bases for Algebraic Number Fields:
Decker

JHD observes that this seems to be [BFDS15].
As I said yesterday, we are revisiting basic algorithms. Given I ⊆ K[xi]

where K = Q[α]. We think of Ĩ ⊂ Q[X, t] with f added. We know about
modular/CRT Grp̈bner bases.
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However, we also choose primes such that f factorises, so we have two levels
of CRT-ing. Let S = Q(α)[X] and T = Q[X, t]. Fix a global product order
≻K= (≻1,≻2). Given H = {gi(X,α)}.

Theorem 27 Let G̃ be the reduced GB of Ĩ wrt ≻K . Then if Ĩ ̸= 1 . . .

[Noro2006] observed that we get many tbXa which slow down the process. He
therefore went monic in Q(t)[X].

Open question for us: what is a “good” factorisation?

Definition 7 Take p dividing no (numerator or denominator) coefficient in the
input f . Also [presumably f sqfr]. Then p is admissible.

Let fip be the factors of f (mod p).

Definition 8 We say that p is admissible of type B if the sizes of G̃i,p and

G̃j,p coincide.

Definition 9 Let Ĩ be as above. Then p is lucky iff LM(G̃p) = LM(G̃). This
can only be etsted a posteriori.

Use majority voting [IPS11] and then use CRT and rational erconstruction to
produce a G̃.

Randomly chooose an additional prime p and check that Ĩp reduces correctly
an vice versa.

Theorem 28 ([Arn03, Pfi07]) If we are homogeneous, if Ĩ reduces to zero
w.r.t. G̃ and if G̃ is the reduced GB of ⟨G̃, then I is the GB required.

Table of experimental data. Magma is mostly slow/timeout (on his examples!).
New algorithm (on 32 cores) is significantly faster than the sequential non-
modular algorithm.

Q-JHD How many primes?

A 12 such that there are at least three factors of f modulo p, then 12 more
such and so on.

5.5 Tropical Homotopy Continuation: Jensen

Goal: mixed volume computation. a ⊕ b = max(a, b); a ⊙ b = a + b. Tropical
polynomials are piecewise linear. For f ∈ R[x1, . . . , xn], the “tropical hyper-
surface” is defined s T (f) := {ω ∈ Rn : maxi(ci + ⟨ai, ω⟩)} where its attained
twice.

Volume
∑
λiCi) is a polynomial, an dthe coeficients of

∏
λi os the mixed

volume. BKK: The number of solutions is . . . .
Why is this tropical? To compute the mixed volume of Newton polytopes

we find a subdivision of the Minkowski sum using a suitable lift.
Description of homotopy: divergence, collison do we find isolated solution?

ALl these problems arise tropically.

42



Input Polynomials

Output Isolated SOlutoins

Tropical variant

Input

Output

tart with knwon volumes and their tropical hypersufrtace, how does this evolve.
The regular subdivisons of conv(A1)+conv(A2) correspond to Cayley config-

urations. Wrte u ∼ v if they induce the same regular triangulation of conv(A).
Inspired by Gröbner fan ideas.

Question: which inequalities guarantee the existence of a given cell. Can we
treat each mixed cell separately? We track the cells as we change the coefficients.
As we evolve, cells can split, and paths can collide. We use Reverse Search ideas
[AvisFukuda].

Regeneration [HauensteinSommeseWampler2011]. First solve a linear sys-
tem. Do this for enough linear l1 and interpolate to solve f1 = l2 = · · · = ln = 0,
and continue. This is what to tropicalise.

I know the mixed volume of simplices = tropical lines. Shows an evolution
(note via discrete transformations) from this to desired state.

Note several competing ideas, including [Mal14] — first tropical method.
Shows Cyclic n. Li 2007 and Li 2011 (both use random floating-point lifts)
scale by ×8–9 as n increases by 1, Malajovich by 4–5, me 5–7. My parallel (16
threads) seems to be 4–11. To JHD, Malajovich’s times looked generally the
best.

Q–Malajovic? There are two algorithms in my paper: one guaranteed and
one random. Which one?

A I’m not sure.

* The times were actually from the “guaranteed” version of Malajovich.

5.6 Lattices over Polynomial Rings and Appli-
cations to Function Fields: Bauch

Let C/Fq be a smooth curve determined by yn + a1(x)y
n−1 + · · · an(x) = 0.

Hence Jac(C). For elliptic curves, Jac(E) ≡ E. In general, how do we do
arithmetic in Jacobians?

Consider F = F (c) := Fq[x, y]/(f). f assumed irreducible and separa-
ble. PF is the set of places of F/k. Let P0(F ) = P(F ) \ P∞(F ). DF =
{
∑

finite λPP : P ∈ P(F )}.
Denoting classes by [D], then [D1] = [D2] is dim(L(D1 −D2)) > 0.
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Let Ø′′
F = Cl(Fq[x], F ) the finite maximal order. Also ØF,∞. Write a divisor

as finite+infinite and represent a sum of two ideals
∏

Q∈PF,0
Q−aQ and infinite

equivalent.
Define degree of a rtonal function |a/b| = deg a − deg b. A basis is reduced

if ||a1b1 + · · · || = max |aibi| for all ai. There is a reduction algorithm.

Define || · ||D : F → −infty ∪Q by ||z||D = −/limP∈P∞(F )

{
vp)z)+vP (D)

e(P/∞)

}
.

Theorem 29 (ID, || · ||D) is a lattice., and a reduced basis has . . .

Let sm(D) := sm(D, || · ||D).

Definition 10 D1 and D2 are isomentric if same sm. Hence isomery class.

If I have an A-basis B)0 and an orthonormal B∞ then . . . .
If r ∈ R andD′−D+r(x)∞ Then this corresponds to the lattice xrID, ||·||D−

r). Theorem states number of arithmetic operations: O(n5(h(D) + n2Cf )
2 +

n5+ϵC2+ϵ
f log q.

Theorem 30 Let B be a set of F having n leements. It is aFq[x
−1](x−1)-integral

pasis of ØF,∞ iff F s w-semi-reduced.

So if we make our sums w-semi-reduced we have good arithmetic.

Q Plane curves only?

A So far yes.

5.7 On the Existence of Semi-Regular Sequences:
Hodges

These correspond to systems of equations that are the hardest to solve for
GB. Experimentally, most systems are. But we cant prove anything that cor-
responds to this. Systems of equations over a finite fields (generally F2).
pi(x1, . . . , xn) = βi. In genrla the ones in crypto are not smei-regular. See
[BardetFaugèreSalvyYung]. Intutively,the polynomials are as independent as
possible. Assume x2i − xi‘foralli.

Definition 11 Let λ1, . . . , λm ∈ B be a squence of homogeneous elements of
positive degrees di and I = (λ1, . . .). The sequence is smei-regular over F2 if ro
all i = 1, 2, . . . ,m

λi :

(
B

. . .

)
7→

The truncation of a power series is immediately before the first non-positive
coefficient.

Theorem 31 (Bardet. . . ) The sequence is semi-regular iff the Hilbert series

is

[
(1+z)n∏
(1+zdi )

]
.
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Data: 20 sets of homogenepus quadratics, for varous m,n. Most combinations
had 100% semi-regular. Can’t even prove they always exist.

Conjecture 3 1. For fixed m, the semi-regular tend to 0 as n→ ∞

2. As n → ∞ the proportoinof sequence so flength n that are semi-regular
tends to 1.

3. As n → ∞ the proportion of all sequences in n variables that are semi-
regular tends to 1.

Proved 1 and 3: no progress on 2.
Keep m = 1 and fix degree. Varies dramatically on whether n − d is odd

(often 100%) or even (sometimes 0%). If d = n, n−1 then all elements are semi-
regular. Can prove there are no semi-regular of degree d > n/3. If n − d = 2s

and

(
n
s

)
is odd, there are no semi-regular.

Conjecture 4 If n− d is odd, most sequences are semi-regular.

Have a result on when elementary symmetric polynomials are semi-regular. In
particular when d = 2k . . . .

Problem 3 Letπ(n, d) be the proportion of sequences that are semi-regular.
Show this → ∞.

Also, what about Fq?

5.8 New Results in Linear Cryptanalysis of DES;
Semaev

EK(Pi) = Ci is encryption. Assume a lot of Pi, Ci pairs.

Average number of sides in the final equation s/approx2rank(J)
∏N

i (−αi).
242 plain/cipher blocks and some approximations. Success probability seems

o be 0.89. Experimental verification for 8-round DES. Note that this isn’t limited
to DES. (But he doesn’t discuss how to find approximations.)

5.9 Enumeration and Gröbner Bases Methods
on Solving Generic Multivariate Polynomial
Systems: Yang

MQ(m,n, q) problem: find a solution to a system of m quadratic equations in n
variables over Fq. More precisely. For any probailistic Turing macjone A trying
to solve a MQ systems with randomly-drawn coefficients where m/n = c+ o(1)
and sub-expoential functions η(n), the probability that A returns the correct
answer in time η(n) is negligible. [Patarinetal].
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“If (name==Faugère) then use F5, else use F4 in Magma” (except that
Jintai Ding claims MutantXL).

For F2, brute force is often the best, otherwise anymptotically XL with
sparse solver is best and for large fields with c > 1 then XL with sparse solver
is often best.

XL was first suggested [Laz83], rediscovered by [Courtoisetal2000Eurocrypt].
Let T (D) = {} and T := |T (D)|. Multiply every equation by every monials as
long as degree ≤ D. Then solve linear equations.

If we expect 1 solution, we can use sparse solvers. Claims that you can
throw away rows at random (to get a sparse system) without losing solutions
[JHD: surely this is obvious: a row is an extra equation]. Claims that XL2
[CourtoisPatarin2002] — suppose that we only manage to eliminate the toplevel
monmials then multiply prepeatedly by others.

If we assume usual regularity conditions then #monomials= [tD]
(
(1− tq)n(1− t)−(n+1)

)
.

Also #free monomials equation.
Note that he is talking about generic equations, so this isn’t HFE etc.
Courtois+Pieprzyk overclaimed efficiency of ZXL in2002. [Bardetetal2004]

derives D = (0.0090 + o(1))n for F5. [Bettaleetal2008] suggest guessing 0.45
of the variables. [Bouillaguetetal2013] brute force attacks on F2 run very well
on GPU/FPGA. Claims that you may think GB overtakes enumeration at 200,
but we think the hardware effects actually moves this closer to 400.

Record holder for MQ challenge III (m/n = 2,F31) are us, using XL with
Wiedermann. 32 days on 64core AMD 6282SE (4 sockets) with 512GB RAM.

Conclusion: Brute Force is probably the best way even for quadratics, an
certainly for higher degrees.

5.10 Hodge Theory for Combinatorial Geome-
tries: Huh

Three fundamental ideas:

1. A matriod is apiecewise linear object — tropical linear space [Sturmfels].

2. Hodge structure on the cohooly of projective toic varieties produces fun-
damental combinatorial inequalities [Stanley]

3. g-conjecture for polytopes can be proved using the “flip connectivity” of
simplicial polytopes of given dimension [McMullen]

So consider a graph (vertices and edges). χg(q) =#numbr of proper colourings
of G with q colours. For a square we get q4 − 4q3 + 6q2 − 3q. always

a2i ≥ ai−1ai+1. (5.1)

Can build up graphs, which proves polynomiality etc. However, this doesn’t
explain (5.1), because this isn’t preserved under addition.

Matroids id a set of sets, which are called independent.
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1. every subset of an independent set is independent.

2. If A,B are independent, and |A| > |B| then there is an element of A which
adde to B keeps it independent.

n+ 1 size of M the ground set

r + 1 rank =

Not obvious to construct. Let G be a graph, base set is edges, and a set is
independent if it’s not a circuit. Of let A be a finite set fo vectors in V . Then
“independent” = “linear independent”.

Fano matroid is realisable iff char(k)=2 and non-Fani matriod iff ̸= 2. Non-
Pappus matroid is not realisable over any field. So ask how many matroids are
realisable over a field.

Conjecture 5 0% of matroids (limit as n → ∞ are realisable. Stated as an
easy exercise in an early book!

When k = Q realisability is Holbert’s 10th problem.

Conjecture 6 (Rota) Define χM (q) = χM\e(q)−χM/e(q) for a matroid. (5.1)
still holds.

Theorem 32 Any noncontant homogenepus polynomial h defeines a sequence
of milnor numbers µ0(h), . . . , µr(h) with the following properties:

1. µi(h) is the number of i-dimensional cells in a CW-model of the comple-
ment D(h) := {x ∈ Pr| . . .}

2. . . .

Consider the n-dimensional permutohedron, the convex hull of an orbit of the
symmetric group Sn+1.

In a recent work with . . . , we obtained inequalities that demonstrate Rota’s
inequality. Let X be a smooth projective variety of dimensionr, and k ≤
r/2. Let Ck(X) b ethe image of the cycle class map in H2k(X,Q). Then
Grothendieck’s conjectures say that

1. Hard Lefschetz: Any hyperplane class defines an isomorphism

2. Hodge–Riemann: any hyperplane class ℓ defines a definite form of sign
(−1)k . . .

PAk(M)R × PAk(M)R → Ar(M)R ∼ R

Any structure that has these is said to be “like a smooth projective variety”.
The toric variety of ∆M is in the realisable case, ‘Chow Equivalnt’ to a

smaooth projective variety. Itis tempting tothink of this as a Chow homotopy
(but when the base field is C, we must remember that it isn’t!).

For any two matroids on [n] with the same rank, there is a diagram of “flip”
from one to the other: each “flip” preserves the “Kahler package” above.

Define the cohomology . . . [he said “don’t read these slides!”].
Then his Main Theorem is indeed that Hard Lefschetz: and Hodge–Riemann:

are valid. So why does this imply (5.1)?
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Part II

ICIAM 2015
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Chapter 6

10 August 2015

6.1 Opening Ceremony

Attended by Vice-President of People’s Republic of China, Minister of Educa-
tion, President of the Academy of Sciences and President of Council of Tsinghua
University.

We are united in believing that our mathematics is applicable outside the
world of mathematics. Applied Mathematics might once have fitted into a
single syllabus, but those days are long gone. Our member societies include
Optimisation, Mathematical Biology, and Computer Science.

Over 3100 delegates as of this morning.

6.2 Prize Ceremony

Prizes are $5000, contributed by various societies, including the UK’s IMA,

Collatz Annalisa Buffa

Lagrange Andrew J. Majda

Maxwell Jean-Michel Coron

ICIAM Pioneer Björn Engquist

ICIAM Su Buchin Li Tatsien

6.2.1 Buffa by Volker Mehrmann

“The use of highly suphisticated mathematical techniques in computer simula-
tions” is the citation. Since 2004 Research Director CNR (Pavia), also ERC
Starting Grant.

First worked one electromagnetics: both analytic (Sobolev spaces) and a
general framework for coupled problems such as magneto-elesticity.
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Then isogeometric analysis. Can we bring the methods of splines and NURBS
as primitives in the discretisation of PDEs? First isogeometric GPL-licensed
code.

6.2.2 Majda by Felix Otto

I always went to his Courant lectures on turbulent convection. Went in three
years from Assistant to Full Professor at UCLA (1976–78).

“Remarks on the Breakdown of Smooth Solutions for the 3-D Euler Equa-
tions”. This paper asked the question “if something does wrong, what”? Local
existence theory doesn’t answer this. They show that ∇× u has to blow up.

“Absorbing Boundary Conditions for the Numerical Simulations of waves”
(with Engquist). Require the constions to be local and to lead to a well-posed
systems. Need pseudo-differential calculus for the locality. This comes up with
a clean communicable result: three conditions wih increasing angle of incidence.

6.2.3 Coron by Alastait Pitt

Prize is for “originality in applied mathematics”. “Highly sophisticated and
novel mathematical techniques.” Control Theory began with Maxwell’s own
apper “On Governance” (1860).

1992: fundamental paper in control systems. In finite dimensions, most
systems can be stabilised by time-varying feedback laws — “Coron’s return
laws”. Proof of controllability of Euler and Navier-Stokes, despite the fact that
linearised Euler is not controllable.

These controllers are now being used to regulate the Meuse in Belgium.

6.2.4 Engquist by Kako

Siminal qoek in numerical methods for wave propagation in unbounded regions
by introducing the absorbing Boundary Condition (ABC) or Radiating Bound-
ary Condition (RBC). The Essentially Non-Oscillatory (ENO) sheme is used in
industrail problems. Also Heterogeneous Multiscale method (HMM).

6.2.5 Li Tatsien by Yang

Major textbook, regarded as a model in China, and first two volumes translated
into English. Directs Chinese Undergraduate Contest in Modelling, which has
had a major influence on curricula

6.3 Revisiting Term Rewriting in Algebra: William
Sit

My co-authors ave used these ideas to characterize Rota-Baxter type poerators.
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k is a commutative unity ring (usually, but not always, a field). An algebra is
a free associative k-module. A rewritingsystem is a set v wirh a binary relation
→. A rule a → b is just a pair (a, b0. Wite → ∗ for the transitive reflexive
closure. Define a→ ∗b1; a→ ∗b2 as a fork, and if every fork

Theorem 33 (Newman’s Lemma) A terminating RS is confluent iff it is
locally confluent.

The symmetric closure of → is ↔.
Usual stuff on term algebras (largely skipped).
Fix a k-basis W of V a free j-module. For f ∈ V the support of f is the set

of w ∈ W appearng with nonzero coefficients in the basis-expression of f . We
are concerned with RS w.r.t. a fixed basisW . We therefore think of →⊂W×V ,
i.e. only basis elements get reduced by rules. Let T be the set of elements of
W that actually get rewritten. We extend the rewriting system from T to the
whole of V as →Π.

We say that the sytem is simple if t+̇v for all t→v.

Example 28 W1 = {xy, x, y}, W2 = . . .. Let Π = {x→ y}.

Lemma 2 1. f →Π g;

2. (f − g) . . .

3. . . .
Then certain inferences, bt counterexamples against all others.

Theorem 34 The following are equivalent. provided →Π is simle.

1. →Π is confluent

2. ↓Π is transitive

3. JHD couldn’t get this (12 items in all)

4.

There are three key arrows that require “simple”. (l) may not hold for non-
simple.

But “joinable” is not actually transitive. f and g joinable to g1x + z, g and h
to g2, and g1 and g2 aren’t joinable. But f and g are!.

A local base-fork is (ct→Π cv1; ct→Π cv2).

Theorem 35 If Π is lcolly base-confluent, it is base-confluent.

A minimal descebdant chain is the shortest from fron f to t.
“Every time one introduces a new concept of standard bases, one neds new

defintiins and theorems (but generally the same proofs) — Mora”. This should
simplify this problem.
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6.4 New effective differential Nullstellensatz: Richard
Gustavson

Is a system of polynomial partial diffential equations consistent?

Example 29 ux−vy = 0;uy−vx = 0; (uxx+uyy)
2+)vxx+vyy)

2 = 1. Simply re-
garding this as a polynomial system is consistent, but not when we differentiate.
How often?

Differential ring, and order(θ =
∏
∂iixi

) is
∑
ii. Let K{yi} be the ring of differ-

ential polynomials. Concept of “differentially closed”

Theorem 36 (Weak Differential Nullstellensatz) Let K be a differential
field of characteristic 0. For F ⊆ K{yi}, we have 1 /∈ [F ] iff. for all differen-
tially closed L ⊆ K, there is (ai) ∈ Ln such that f(a1, . . .) = 0.

Let F have derivatives of maximal order d and degree h. Let F (b) extend F
by all its derivatives up to order b. So an effective Differential Nullstellensatz
would be a bound b(m,n, h, d).

Example 30 F = {y′ − 1, yd} needs to differentiate d times. So b(11, 1, d) ≥ d

Extensions: b(m,n, d, h) ≥ dmnh

Theorem 37 (Sadik1985) A lower bound h2
r

where h = r + r
(

r−1
h−2

)
+ 8.

First upper bound is due to [Gri89]. Triple-exponential and first-order systems
only with a single derivations/ [GKOS08] Ackermann-based. [DJS15]

Theorem 38

k ≤ (nαT−1d)
2
O(n3α3

T
)

where αT =

(
α+ T
T

)
and T is to be defined.

Uses a lemma [Pierce2014]. [FS14] use this to produce a recursive construction

for T .t = t(mn(2ih)) as in Pierce. Define T = Tm,n
h with Tmn

h = 2t(m,n,(2ih)).

b(1, n, h, d) ≤ (n(h + 1)d)2
O(n3(h+2)3)

which is [DJS15] but allows for non-

constant coefficients. Shows some enormous figures form = 2, 3. T = 22
2520+520

+
· · · was one example. Have some improvements on [FS14].

6.5 Solving Polynomial Systems . . .

Gives an n-variable 0-dimensional system, the output should be isolating boxes,
and a Tt(X) ∈ Q[x] which defines the xi-values.

Example 31 In two-D . . .
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Lots of GB and RC methods.
LGP bivariate: do a shift such that t
Our system LUR requires a different shift. We produce a root candidate box

by interval methods.
For multivariates, first reduce to 2-D by resultants, Then isolate in 2D, and

produce candidate root intervals inR3, Shift such that two projections onto R2

are disjoint.

Q How do you construct a random sample with mutliple roots?

A Discriminants of surfaces (?).

Q-MMM How do you do n > 3?

A Complex description.

Q-MMM Regular Chains now has a C version.

A But doesn’t that require radicals? Not necessarily. A RC is always radical,
but can represent non-radical systems.

6.6 Computing Equilibria of semi-algebraic economies
using triangular decomposition and real so-
lution classification: Li Xiaoliang

[Joint work with Dongming Wang]
Multiple equilibria are a problem for classical theories of economics. Pi(uj , xk) =

0;Qi(uj , xk)σ0 where σ ∈ {<,≤, >,≥, ̸=}. Numerical problems have draw-
bacsk: instability, and are infeasible for multiple equilibria. [KublerSchmed-
ders2010] uses Shape Lemma, also papers that use numerical homotopy. “Our
methods are not new: we are rewriting RUR to make it accessible to econimists.
In practice redoing [KublerSchmedders2010] in regular chains rather than GB.

Example 32 x3 − 20y2 = 0; y2 − 2x− 1 = 0;x− y ̸= 0; 2x− y ̸= 0; y > 0.

1. Let x < y. Regular Chain for equalities (easy). T . Let T ∗ = Tx=x+y then
decompose and get a chain T1 and T2 where T1 is univariate in x and T2
is now linear in y. Can always get such a “quasi-linear” system.

2. Back-substituting the linear variables gives a set of constraints in x alone.

3. Use the modified Uspensky Algorithm to isolate the roots of all the inegual-
ities.

4. Then test sanple points to know which intervals satisfy the inequalities,
and then see where T1 has zeros.

But what abut parameters.
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Example 33 1. Let u < x < y. Get three regular chains now. T2 =
{ux, y2 − 1}. T1 is the “main branch”, i,e, greatest dimension.

2. Then again make a linear transformation.

3. Then need to define border polynomial which divides the patrameters space
into regions.

4. Take sample points of parameters space, and test these in the full system
as before.

Example 34 (Exchange Economy [KublerSchmedders2010]) u11(c) = 9c−
1
2c

2 u12(c) =
29
4 . . . [two parameters]. The sqfr BP has degree 25 and 249 terms.

There are three equilibria when R0 There is a small rgion in R2 where this
happens: probably not found by chance.

Example 35 (Duopoly) Customer can buy from A, B or neither. Customers
have identical preferences AssumeUA > UB > U0 > 0 are the utility functions
for owning A B etc.

Proposition 1 There is a Cournot equilibrium with fracR1R2 <
1
3
UA−UB

UA−U0
.

Original proof was opaque.

Q When did semi-algebraic equilibria occur?

A Papers cited, but in practice most are,

Q Have you encountered problems you can’t solve?

A Lots!

6.7 Triangular Systems over Finite Fields: Mou

Triangular iff mvars are distinct. Saturated ideal sat(T ) := |langleT ⟩ : (
∏r

i=1 Ii)
∞.

Definition 12 A triangular set is simple iff forall i = 2 . . . , n and aassociated
prime p of sati−1(T ), the image of Ti in (K[x1, . . . , xi−1/p)[xi] under the natural
homomorphism is square-free.

Note that (K[x1, . . . , xi−1/ sati−1(T ))[xi] is not necesarily a IFD. Nowever our
triangular representtation is a good representaton of algebraic extensions. So,
after decomposing F into triangulars, we decompose the triangulars into simple
sets. Hence by induction we want the “square-free” part of a polynomial in
(Fq(x1, . . . , xi−1]/ sat(Ti−1)[xi]. Quotes as not a UFD.

Note that sqfr over finite fields is harder [GT96].
In the 0-dim case we have “generalised sqfr decomposition”. Q

∏p1

i=1 P
i

where Q is a p-th power.
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For the positive dimensional-case we turn u into a parameter. [Kal98]. But
the computation of radicals in positive dimension and positive characteristic.
This is hard.

Note [Sei74] and the Condition P requirement, See also [FGT02].
What is a squarefree decomosition over an unmixed product of field exten-

sions? Iff all the images over the components are sqfr, and the components are
fields. We have anew algorithm

1. square-free decomposition plus D5

2. pth power identification: multiple derivations (new)

3. pth root extractuon via linear systems and Condition P

This is a new algorithms for simple decomposition.

Q Complexity result?

A Always hard for triangular systems. Also uses D5.

MMM We should have written up our D5 results. [DMSX06].

Q

A

6.8 Computing Decomposition. . .

Let K be a field. K the algebraic closure. K[x]/I a finite o-dim ideal.

Definition 13 Dec(I) = {σ ∈ Sn|F (tσ(1), . . . = F} is the decomposition group.

Example 36 F = (t1 + t3)(t2 + t4) has decomposition group F4

1. Dec(]langleT ⟩) is up to the Galois group of F [Anaietal1996]. O(n4).

2. There is an O(n3) algorithms by increasing chains of groups

3. We give a new algorithm: no complexity.

Proposition 2 Under the above conditions, dots

Definition 14 ZeroK(I) = {P1, . . . , PN} with

Definition 15 Si, Sj ∈ S are I-equivalent if Si = Sj. ∼I is an equivalence
relation.

Lemma 3 (4.5) The map Ψ : K[x]/I → is an endomeophism.

Lemma 4 Si ∼I Sj iff gi(λ) = gj(λ).
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Theorem 39 Let PI = {Bk ⊂ {1 . . . , n}|k = 1, . . . , s} with Bk = {n1, . . . , ns}
Then Dec(I) =

∏s
k=1 Sym(Fk)

New algorithm:

1. Compute a Gröbner basis of I

2. Compute each mxi

3. Compute the characteristic polynomial fi of each xmi

4. Construct the decomosition

5. use above theorem.

Application. ZeroK(ψσ(T )) ⊆)Zero(T ). Triangular decompsition of Cyclic-5.
Algorithms give 15 sets. We get a union o f three sets ψ1,4 etc.

Q You use GB - any chance of using triangular sets here?

A Somewhat confused

6.9 Solving Parametric Polynomial Optimiation
via Triangular Decompsoition: Changbo Chen

Applicaton: Ecological Driver Assistance System. The Model Predictive Con-
trol is basically solving lots of optimisation problems, but these are really one
parametric problem.

Minimise f subject to equations fi, inequalities gj ≤ 0. Note that it is
possible for optima to be at infinity.

CADs — naturally described by a tree. A strong projection algorithm
(Collins, Hong) may use too many polynomials, but a ewaker one (McCallum
etc.) may fail.

Introduce a new variable z to denote the optimal value, Add equatoinal
constraints z− f(umx) = 0 Eliminate x > z > u. Eliminate with equalities and
inequalities. Output the cells with smallest z value in each u-cylinder. Note
that this will tellus about caes where the minimum is not attained as well.

We also have [JHD missed this] to see whather the KKT condition is valid.
We need to exploit the structure of the MPC problem and the KKt condition
to combine this with RC-CAD.

Q–JHD Exploit structure?

A A lot of the conditions are linear, so could use Fourier–Motzkin.

Q–JHD But doesn’t RC-CAD do qute well in the linear case?

A Yes, but still does more work than we would like.
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6.10 Disovering Multiple Lyapunov Functions for
Switched Hybrid Systems: She

Two critical problems are safety verification and stability anaysis. Stability is
done by constructing transitions that are suually sued for safety verification. So
we will look at asymptotic stability.

Definition 16 A switched hybrid system has N subsystems (modes) For each
mode i there is an ODE ẋ = fi(x). The state space is X ⊂ Rn. Also there are
switching functions into different modes.

We want to use RRC to verify the existence of a multiple Lyapunov function.
The family {Vi(x) : i ∈ M} is called a multiple Lyapunov function. (each
vi(0) = 0 and . . . [Standard Lyapunov definition?]).

1. For each ode i

(a) Let Xi be
⋃ti

j=1{x|Ei,jx ≥ 0} Ei,j is an n× n matrix

(b) Let Vi be a quadratic form and write Vi(x=x
TPx . . .

2. Piece together.

So we use real root classification to under-approximate the constraints in out
theorem. Formulate these under-approximations as a semi-algebraic set.

The algorithm got very involved here. We have a set of semi-algebraic sets
from the various conditions. There is atheorm that states that,n if one satsifies
all these semi-algebraic sets, then it is a MLF.

Example 37 3D Eachs subsystem is asymptotically stable. The linearisation
has two eigenvalues with real part 0.. We gte anya nswer. MI can’t apply
becaus eof the eigenvalues, and SOS doesn’t terminate in five hours. As well as
efficiency, note that LMI and SOS use floating-point, so have inherent problems.

Note that QE could be applied, but is doubly-exponential, while this method is
an adaptive CAD where some variables can be eliminataed.

Q In RRC do you need to make a recursive call into the variety of the bor-
der polynomial. Since the RRC output is the truth outside the border
polynomial. [led to a discussion in Chinese with Changbo]

A Apparently use the “finder” interface. [??]

Q

A
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Chapter 7

11 August 2015

7.1 : Majda

Climate Science is an extreme Complex System. Probably 10M or more un-
stable directions with a huge sate space. We need both statistical and applied
mathematical skills together. We have to cope with model error: lack of physi-
cal understanding and inadequate resolution due to the curse of ensemble size.
The computational cost of genrating even a small number of ensemble members
is overwhelming.

Therefore we need uncertainty quantification (UQ) bounds for 1 and 2.
Therefore a new paradigm:

Rigorous
Math Theory

↙ ↘
Qualitative
or Quantitative
models

Novel
Numerical
Algorithm

↘ ↙
Crucial
Improved
Understanding
of Complex
Systems

7.1.1 Ex 1: TBH

[MajdaTomoleyevPNAS2000] on the Truncated Burgers-Hopf (TBH) equations.
Consider the finitie Galerkin truncation of inviscid Burgers equation. Statisticl
predictons are equipartition of energy. correlation scaling law (large scales decor-
relate more slowly), no separation of sclares. This is confirmed in sumulations
with 40 odes. The Hamiltonian is actually

∫
uLambda

3, not the energy (
∫
u2Λ).

We use thsi for dta assimilation as well.
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7.1.2 Ex 2: Lorenz 96 model
duj

dt = (uj+1 − uj−2)uj−1 − uj + F . epeeninDepending on the forcng value F
the system will exhibit completely different dynamic features. Can be weakly
chaotic, strongly chaotic or turbulent. Miros mid-latitude baroclinic waves along
midlatitude circle. nbergy of weather moves eastward but individual (Rossby)
waves move westward. Been used for UQ modelling.

7.1.3 Ex 3: MMT equation

iut = |∂x|1/2u+λ|u|2u− iAu+F . Consider focusing nonlinearity λ = −1. The
instability of collapsing solitons radiate energy to large scales.

If you try to run with too few modes, you lose energy. But he has a trick
(eddy terms) to restore this, and therefore beat the curse of ensemble size,

7.1.4 Stochastic Superparameterization

1. A general framework for stochasric subgridscale modelling with no scale
separation.

2. Success in a difficult test problem.

3. . . .

7.1.5 Extreme Events

[NeelinetalGRL2011] CO and CO2 distribution in the atmosphere has bit fat
tails compared with Gaussian. We want exactly solvable test models which
display intermittency. [MajdaGershorinPhilRS2013]. This model shows the
“exreme event” behaviour and fat tails that we observe.

[MajdaXinTongNonlineatirt2015] have a rigorous PDF which dislays inter-
mittency. Thes eoccur when the random mean flow U(t) gets close to a certain
resonant set.

7.1.6 Information Theory

We can look at Shannon Entopy. Relative entropy quantifies the lack of infor-
mation or model error in the statistics of uM relative to that of u.

What we’d like to do is take the current climate and compute the response
to forcing. Example of a perfect model and an imperfect one. They can predict
the cimate perfectly but get the response to forcing completely wrong.

Equilibrium statistical fidelity is a necessray condition. Combine the in-
formation theory with linear response theory in improving predictive fidelity.
Want a linear response operator calculated through correlation functions in the
unperturbed climate.
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7.1.7 Lessons for UQ and Failure of Polynomial Chaos

[MajdaBranickiDCDS2012] u̇ = (−γ+σγξ)u+f(t) where parametric uncertainly
is σγξ . . . . It is easy to solve exactly.

Both PC with 120 coefficients and MC with 50,000 smaples will fail to pre-
dictthe variance with any accuracy.

7.1.8 Inverse Problems and Data Assimilation

Swows sample points in Atlantic. Firts rigorous math theory [NanChenMa-
jdaNonlinearity2014JNLS2015] Inherent nonlinearity in measurement. Build
exact closed analytic formulae for the optimal filter for the velocity field. Prove
a man field limit at long tmes.

To recover incompressible flows need an exponential increase in the number
of tracers for reducting the uncertainly by a fixed amount.

We have a rigorous mathematical model with comparable high skill in re-
covering GB modes . . . .

7.2 Filerting

A two-step porcess involving statistical prediction of the state variables through
a forward operator followed by . . . .

Finite ensemblke Kalman filter (EnKF) often works well to estimate the
mean when ensemble size is much smaller than phase space. Why?

There is a surprising pathology with catastrophic filter divergence. For fil-
tering forced disspative systems such as L96, EnKF can explode to machine
infinity in finite time. [HarlimMajda2008]. Wellposedness of EnKF is an issue.

We need a priori estimates for . . . . We look for energy principles inherited
by the Kalman filtering scheme. We need modificatoin schemes for EnKF.

7.2.1 Madden–Julian Oscillation (MJO)

Starts in the Indian Ocean. Affects El Nino Australian and Asian monsoon
tropical cyclones and midlatitude predictability. Rossby wave trains from this
croos middle USA. This has slow eastward propagtion at 5 m/sec. Peculiar
dispersive relation dω

dl ≈ 0. MJO is actually an envelope of smaller-scale con-
vection waves. GCMs typically don’t adequately represent convectively coupled
equatorial waves and the MJOs.

Needs Nonlinear Laplacian Spectral Analysis. We apply this to datasets
106 in dimension. Four ideas: lagged embedding; machine learning; adaptive
weights; spectral entropy criteria.

Have a traiing period and predictive period for MJO1 and MJO2. hese both
have exreme events and fat tails.

We have observed variables and hidden variables for stochastic damping and
phase.
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We would like (and see) that our ensemble spread captures the long-range
forrecast uncertainty.

[MajdaStechmann2009PNAS] have a new model for the MJO, which caputes
all three features: as above plus horizontal quadrupole structure. Neutrally
stable interatcions between palnetary-scale lower-tropospheric moisture and . . . .

Minimal nonlinear osciallator model. Linearised primitive equations: equa-
torial long-wave scaling and Coriolis term: equatorial β-plane approximation.
Ad dymanic equation for convective activity.

2011-12 massive effort to study MJO. There fore replace the ∂ta = Γqa by
a stochastic jump process. We get ntermittent egenration of MJO events plus
organisation of MJO events into wave trains. We obsrve 39.7 days as average
duration. and our skeleton model predicts 34.8 days.

There are squall lines at 200km sclare CCW at 2000 km and MJO at 20,000
km, Why? [Majdo2007JAS]. Paper son multicloud Model Dynamics. Good
models run with 160km (v. coarse) resolution.

7.3 Grid and Grid Control Optimization in Eu-
rope — M2GI: Sax

Introduction: do you realise that the gas energy moves far more energy than
the electricity grid.

Speaker: Gas represents 25% of Europe’s energy/ 2/3 of this comes from
Norway or Russia. These costs 1Meuro/km. There will be shortfalls from NL
due to a recent court decision there. Shows pipeline network in Europe. Also
extensions into Algeria via Sardinia. Tunisia via Sicily, Morocco via Spain etc.
Also across the Black Sea from Ukraine to Turkey.

Open Gas Europe . . . lots of statistics. Mentions NorthStream from Russia
to Griefswald.

“yestrday, al their troubles seemed so far away” — gas was vertically inte-
grated, and mathematically the optimisation problem was soluble, Inthe 1970s
we wrote programs using physics, thermodynamics etc. Mathematically, these
used tools like Reynolds numbers, Darcy–Weisbach equation etc.

But the EU did not like the huge profst from trading, and forced the com-
panies to unbundle. This left “security of supply” no-one’s problem. 2009–15
have demonstrated the issues this causes (e.g. 2011 there was zero gas flow at
Waidhaus. which normally provides most of the gas for Germany). There were
also shortage/low temperaturs problems in February 2012.

Gas storage provides no security. The gas providers use their storage to
pursue profitable trading. Graph (in German) of the output of a porous reservoir
storage. Above a critical withdrawal (50%), the efficiency declines seriously.

Until 2014 network planning was more-or-less “y hand”. Scenarios were
simulated by standard software, but this was limited. Gas notwork operators
have obligations:

1. guarantee safe and reliable operation
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2. non-discriminatory

3. transparent

4. at competitive prices

5. refusal of access requires a well-founded justification.

Therefore an entry/exit model. Offered capacities. booked capacities, nomi-
nated capacities. Thetransport company has to guarantee that any combina-
tion of entry/exit points is technically feasible. Even is one assumes this is
reasonable, ths is not mathematically well-defined.

Therefore we have discrete decision, nonlinear equations giverning gas physics.
The MATHEON project ealt with optimisation of gas transport and stable tran-
sient modelling and simulation of flow networls.

We had a large research project ForNE: 10 universities and 10 employees
from Germany’s operator OGE. Book “Evaluating Gas Network Capacities”.

“With a little help from my friends” — our new target is a navigation system
for control sstem decision in avolatile gas market gered to 24–48 hour time frame.

MODAL AG was led by ZIB to offer the gas industry computing kernels
and a sustained researh effort. Funded by German Ministry of Educationa nd
Research but a lot of industry support. This closes the gap between research
and sueful deployment. ZIB’s past track record was important here.

Part of the gas in the network is used to supplythe energy for transport,
and therefore this should be minimised. A 10% reduction here is equal to one
nuclear power plant!

Notethat a permanent risk is that a decision taken in the past will lead to a
problem in the future. Such a solution [MODAL] would provide early warning
of problems/ Algorithms would be able to find solutions for control problems
that hmans can’t find. This should increase the capacty of the network.

M2GI “More Mathematics in the Gas Industry” is the only way of maximis-
ing the provision of freely allocatable capacity, of optimising the grid and grid
control to handle this . . . .

1. Research should be given the necessary time

2. Grass does not grow faster if you pull it

3. “a good start needs enthusiasm a good end discipline”

4. “Mathematics makes gas flow better”

7.4 Randomised ALgorithms in Linear Algebra:
Kannan

This means “an algorithm can toss coins” or “the data tosses coins”. i.e. average
case analysis. The second is not our concern. We want results that work for
every matrix. Examples:
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� Quick Sort 1960s

� Primality testing 1970s — only recently deterministic

� Routing 1980s: randomness to avoid congestion

� Convex sets and volume in the 1990s

� Matrix Algorithms — this talk.

The simplest form is to compte witha small sample of rows/columns. Mod-
erndata matrices can be massive. hence O(1) access to an entry cannot be
assumed.

We will prove error bounds on answers from a small sample. If fulldata
is unavailable, only a sample may be available. Netflix has prefernces of 105

customers on 105 products.
A related question is distributed data. Communication is expensive, so the

processors send sketches.

7.4.1 Setting

A is a large marix. How can I compute AAT . and more generally AB. Then I
might want SVD, Low Rank Approximation. Matrix Sketches. ensors: approx-
imation by sum of rank 1 tensors.

� No free lunch: approximate answers only.

� But we will prove error bounds for all input matrices.

||A||F =
√∑

i,j Ai,j , ||A||2 = max eigenvalue norm.

If the rank is j, to solve these problems with error ±ϵ||A||F , a sample of
f(k/ϵ) rows/colums will suffice, provided that they are picked in i.i.d. tri-
als, provided that the probability of picking a row/column is proprtional t its
squared length. f is a small polynomial. [FiezeKannan196] did SVD and Low
Rank Sampling. Many improvements.

Alternative Scheme, take a sample of entries, set others to zero, and compute
faster because of sparsity. Note that this doesn’t reduce matrix size.

Approximate AAT in O(n2) time. Uniform smpling of rows is no good —
what happens if all but one column of A are zeros. An unbiased estimator of
AAT X = 1

pj
(column j)(rown j). This is why we need squared length. Then

E(||AAT − est||F ) ≤ ||A||2F√
s

with s samples. [DrineasKannaMahoney].

Can we do better woth the spectral norm? E(||AAT − est||2). [Rudelson]

E(||AAT − est||2) ≤ c||A||F ||A||2√
s

. [Tropp] “User friendly tail bounds for . . . ”.

Suppose P is a probability distribution onRd. We want the variance/covarince
matrix of P Mi.j = EP (xixj). We really want error bounds for sinite smaple
size which depend on d alone. P might be log-concave like Gaussian, or uniform
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on a convex subset. So how many samples should we take for relative error ϵ?
M ≈ϵ M

′. We want

M ′ : |xT (M −M ′)x| ≤ϵ ||x||2∀x.

Let B be the pseudo-left inverse of A. V BA = I on the row space of A.
Let pj be proportional to the squared length of columns in BA. Draw s i.i.d.
sample colums of A according to pj and the W be the estimator of AAT based

on these columns. Then whp |xTATAx − XTWx| ≤ c
√
r√
s
xTATAxT . We get

relative error for every x provided s?c rankA.
Graph has n vertices. Pick O(n log n) sample of weighted edges such that

every cut has roughly(with ϵ) the same number of edges crossing it. Better
is a spectral sparsifier: find a sma;; subset B of eighted colmns of A such
thatAAT ≈ BTB. This is stringer than the cut sparsifier. THis can be solved
by preconditioning, but that takes time. [SpielmanSr5ivatsava] says we can
estimate the precoditioned probailities fast. Analogy is electriical resistance.

7.4.2 Matrix Sketching

Is a sample of rows sufficient? No.

Theorem 40 Let A be any m × n matrix and CE = an m × s sample of s
columns of A picked according to length squared. Ditto R but

√
s. Then their is

a s×′ sqrts matrix U such that E(||A− CUR||22) ≤
c||A||2F

... .

SVD. Sample A to get m× s C. Find the top k eigenvalues of CTC. Find the
top k left singular vectors U1, . . . of C. A

′ = projection of A only the span of
ui. Then E(||A−A′||2F ) ≤ best possible rank k approximination +. . . .

Data Handling – Pass Efficient Model. Sampling ALgorithms use a constant
number of passes. Pass 1 computes lengthsquared probabilities, and pass 2
samples.

Traditional SVD can find best approximation Ak of rank k to A. Note that
if A is a patient vs gene-expression matrix you say “principla component 1 is
3(patient 1)-4(10th patient) +· · ·” — would be better if the columns of the
approximating matrix were actual columns.

Can get an approximationA′ to A with error < (1 + ϵ)× best possible. We
want the probability of drawing an r-tuple of columsn withprobabiliyu propor-
tional to squared volumn pf the siplex they span.

Lemma 5 (Johnson–Lindestrauss) A fixed (notrandom) nit vector in Rd.

W a random k × d matriix. Then whp |Wx| ≈
√
K√
d
. The probability of failure

falls expoenntially in k. So o ensure this nolds simultaneously for N vectors,
need k > c logN .

But ther are ony ecd bectors in Rd of that norm, so with k > cd we get whp
∀x : |WAx|‘approx|Ax|.
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7.4.3 Distributed data

Matrix spread over many servers. Do we need to communicat ethe same random
projection to all servers? So instead use pseudo-random projectsions and just
distribite the seeds. These need to be k-wise independent.

Suppose r servers. server t has a n × d matrix A(t) with d > n. Find
a low rank approximation of A(1) + · · · with communication being a scarce
resourse. [emmeletal] have deterministic tight bounds. O( nd√

r
). We want to

allow randomness. We have O( rdkϵ ).

7.5 Numerical Solving for Parametric Polyno-
mial Systems with Constraints: Wenyuan
Wu

7.5.1 Computing Real Witness Points: Wenyuan Wu

. Note that lots of numerical work over C, then the critical point approach
started in symbolic computation [SafeyElDin]. We need a regularity assumption,
that the Jacobian is of full rank. Sometimes the plane/distance approach will
hit singular or ill-conditioned points. These are a compact set, so with high
probability we will miss them. In dimension > 1 we also need to know the
direction for path tracking. Also we need to determine the step size: need to
avoid “jumping”.

For a square system we need to estimatethe distance between two isolated
points. Suppose max{||∇Ji,j ||2} on unit ball is K(g).

Lemma 6 (Root Isolation) Let σ′
n+1 be smallest eigenvalue . . .

As far as direction determination is ocncerned, we need to incrase the smallest
signular value. This lads to an optimisation problem. ∆x = Hct√

... solves this

optimisation problem.
Shows an example with ncreasding σ.

� Suppose dimV]R(f) ism = n−k > 1 Let g(x0, . . . , xn) = {f, (
∑
x2i−1)/2}

when K(g) = 1 (rescaling).

� The diretcion is HCt Left J ⊕ T . . . .

� . . .

Define an expression for step size in terms of ρ. If Newton iteration converges
to z1 Then z1 is on the same component as z0 iff (?) dist(z1, z0) :< ωδ. If the
convergence point z2 is outside this ball, we may have had jumping. ρ ≈ 1.6 is
the appropriate value.

So we can ask now many prediction–corretion steps we need. Has a linear
plot of this against log10 σ.
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7.5.2 Numerical Solving Parametric Systems

Many applications, but symbolic methods don’t scale well (expression swell).
Numerical methods can take advantage of sparsity. The goal is to answer these
question for a 0-dim parametric system

1. Count how many connected cells in parameter space, and chooce a smaple
poit in each cell.

2. Membership tests for these points

3. Construct a path from a given point to a sample point.

Suppose we have solved a square system off-line and have solutions Sp at p. then
use real homotopy to follow a path from p to q. Consider the singular points
. . . .

Conside R[a.b.x1. . . . .xn]. Suppose we are only intereste din ome (physcial)
region of parameter space. Assuming convergence of Newton we areguaranteed
to stay on the same component, and parmetric homotopy works.

7.6 Algebraic attack and algebraic Immunity of
Boolean Functions: Lin

Compexity O(. . .).
Assume either that f has small degree, or

existsg :
deg(fg) small.

Definition 17 The algebraic immunity of f is ming ̸=0 deg g|fg = 0or(f+1)g =
0}.

We want functions with maximal AI. There were Carlet–feng constructions.
Need immunity against Fast Algebraic Attacks (FAA).

We can use LFSRl If fg = h with deg(g) low use Berlekamp–Massey to

eliminate h with E ≈
(

n
deg(g)

)
equations. A lot of symmetric function with

high AI are vulnerable to FAA.

Theorem 41 (Curtois2003) If e+d ≥ n then ther is a g ̸= 0 with deg(g) < e
and deg(fg) < e.

Want Perfect Algebraic Immune functions (PAI).
M. Liu et al. produce 2k-variable Carlet–Feng functions.
There are various suggestions of PAI functions on nearly such, with no proofs

only computer analysis.
Claims that algebraic attacks converts qualitative cryptanalysis into a quan-

titative approach. This is a unifirmmethod. So the problem is to construct such
functions.
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Q Any attacks based on sparsity, rather than degree?

A This could be a problem: there have been cases.

7.7 Davenport

See .

7.8 Extending Hybrid CSP with Porbability and
Stochasticity: Shuling Wang

Given by someone else.

Example 38 An aircraift

� flight pathis a sequence of line segments

� ideally should follow nomial path, but may deviate due to wind etc.

� If deviates, should fllow a correction heading

� The aircraft therfore acts as a continupus pkant, wirh stochastic influence,
and the flight control system acts as a discrete controller.

Hence we have a hybrid stochastic system.

There has been work on stochastic hybrid automata. Rachability anaysis is
usually done by probabilistic model checking or simulation. This is not scalable.
[Platzer] uses stochastic hybrid programs. Deductive-based verification, but
concurrency and communication are not supported.

Let F be a σ-algebra on Ω and P is a probability measure on (Ω, F ). Map-
ping X : Ω → Rn is an Rn-valued random variable if for each B ∈ B, we have
X−1(B) ∈ F . A stochastic process X is a function X : . . . .

Use Hybrid CSP [HeZhou1994]. Adds timings consructs continuous evolu-
tion and interrupts. It inherits ch!e and ch?e from CSP. We have P ||Q for
parallel composition.

Continuous evolution ⟨F (ṡ, s) = 0&B⟩ wher F is a differntal equation s is
a vector of variables and B is a Boolean expression. Timeout: langleF (ṡ, s) =
0&B⟩ ▷d Q continues for d time units, then becomes Q. P ⊔p Q is probabilis-
tic choice: P with probability p and q with probability 1 − p. Also adds a
“commnication interrupt” ▷|i∈I .

The semantics of SHCSP is defined by a set of transition relations. We can
prove that this is well-defined, i.e. evolution doe sbnot look nto the future and
evolution is a Markov process.
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Example 39 (Continued) Let θ(t) be

 −π/4 right
0 correct
π/4 left

be the angle cor-

rection.
Use {A;E}P{R;C} where A and R are the discrete pre/post-conditions, and

E and C the continuus assumptions and conclusions.

Ther are many inference rules. For example ⊔p-introduction (JHD wasn’t sure
of the details). The main one is stichastic continuous evolution.

Example 40 (continued) We apply the SDE rule. Then we define the dan-
gerous states. Our Booelan guard is f ≥ 0 ∧ LF ≤ 0.

7.9 An Application of QE to Automatic Par-
allelization of Computer Programs: Marc
MM

Supported by Chinese Academy of Sciences and IBM Centre for Advanced Sys-
tems: 2×CAS.

Our context is GPUs. Automatic generation may seem insne, but it makes
sense for many of the kernels in scientific computation. (dense linear/polynomial
algebra, stencil compilations). We focus on C→CUDA. Standard techniques
(polyhedron model) are inear,, but parametric

� Old-fashioned parallelism: loops map to loops.

� Polyhedron parallelism:: performa “god” change of coordinates for the
loops.

Dependence Analysis Transform the sequential object to a geometric ob-
ject in index space. [Feautrier]. This talk responds to [Grosslingere-
talJSC2006].

Parallelization Our real interest

Code Generation Important

Data is decomposed into segments, and the segment is given to a group of
threads.

So we have serial code executing on the CPU (“host”) and parallel parts
(“kernels”) executing on the GPU. Note that the threads are SIMD. Typically we
have many more thred blocks (logical program threads) than physical processors.
A threadblock has access to per-thread shared memory, and (slower) access to
the GPU main memory. Cache/main memory is a good analogy.

We propose the MCM (Many Core Machine) model as an abstract machine
model. [Haqueetal2015PARCO]. Let Z be the private memory size, Uthe data
transfer time, ℓ be the number of threads per thread block etc.
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Example 41 (DFT) Two algorithms: CooleyTukey and Stckoham. Get ex-
prssions for the ratio CT/S of work. span and paallelism overhead, e.g.

WCT

WS
=

4n(47 log2 nℓ+ · · ·
172n log2 nℓ+ · · ·

We should generate kernel code where ℓ etc. are parameters.

Example 42 (Dense Polynomial Multiplication) Change coordinates to cre-
ate concurrency: p := i + j. But this is not sufficient. Work is unenvenly dis-
tributed, and too many processors are implied. Hence rouping intothred blocks.

Use RegularChains:-QuantifierElimination on the system to eliminate
i, j to give us a program in terms of thrad block and thread index.

Most people believe that Fourier–Motzkin is doubly exponential O(n2
d

) coeffi-
cient operations, but in pratcice ideas from Linear Programming improve this.

Example 43 (Simplified LU) The main loop is updating the kth column of
L then the n− k columns of U .

INRIA had a MetaForl to CUDA translator for non-parametric code. We have
a preliminary parametric version.

Various tables showing sppedups for various thread block sizes (which really
matters). One problem isthat the CUDA compiler doesn’t do common sub-
expresion elimination, which hurts his comparisons at the moment.

7.10 Modular Techniques for Efficient Compu-
tation of Ideal Operation: Yokoyama

Given by Marc MM.

Full Methods for recovering the true result from its modular images are neces-
sary e.g. wanting a GB.

Partial Only do some of the computation based on modular techniques.

Cyclic-* took 14 seconds on F99981793 but 883 seconds over Q. 50 primes of 27
bits are necessary for a candidiate.

1. Compute modular images

2. Glue these together

3. Verify the candidate solution.

hree styles.

� CRA

� Hensel
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� hybrid, as in Gröbner trace

Marc MM shows his [not Y’s] standard Euclidean/CRT approach with early
discovery when degree doesn’t change. [Arn03] does the same, using h(d0) as
the compatibility test.

Then Y defines Pauer lucky and Hilbery lucky. Ned to check inclusion both
ways: one is easy as it’s reduction w.r.t. Gröbner basis.

Theorem 42 ([Arn03, Theorem 7.1]) If the situation is homogeneous . . .

Proposes a trace-driven [Noro] for using modular information to determine use-
less syzygies.

F4+trace 630 verification 140
Buchberger+trace 900 verification: 160

There were many more examples.

7.11 From lexicographic Groebner bases to tri-
angular sets: Dahan

See [Laz85]. Structure of a lex GB in two variables: exact division of the l.c.
w.r.t. y (essentially GianniKalkbrener for two variables). This observation can
in fact give us a triangular set.

What happens when n > 2? [Laz92] introduces LexTriangular via D5.
Moeller also had a Groebner version in 1992. Note that this in in Singular,
and has the advantage that it can handle non-radical ideals.

Lazard uses D5 to use “quasi-inverse” of the leading coefficients. Note that
this needs g.c.d. computation.

My theorem

1. ψ(gt) ̸= 0 ⇔ ψ(lc≤k−1(gt) ̸= 0

2.

3.

[Bec94] proved 3, but not the crucial 1. Has a division result for several variables
but requires zero-dimensionality and radicality, and is not as neat.

Example 44 Vanishing ideal of a set of points. x5, y4, x4y2z, y3z, x4z2, x2yz2 . . ..

gi =
∑

α∈A Lα)x, y)f1(x, y)f2(x, y, z) where the L are Lagrange interpolants.

Theorem 43 Let g, g′ ∈

1. . . .

2. If degz(g) < degz(g
′) then by Theorem 1, lcx(g)|lcx,y(g) and lcx(g′)|lcx,y(g′)

. . .
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By induction we can suppose that we only have two polynomials in two variables
(Triangular). But we might have many in three variables. Let h := g1

lcx(g)
;

gl(2) = q ...
... etc.

Is it possible to have more than three variables? Yes, but it’s tedious to
state.

7.12 Characteristic Set Methods for Solvig Boolean
Equations: Gao

Deciding whether a Boolean system has a solution is NP-complete. Butit has
many applications. [Shannon1946] stated that a good cryptosystem was “equiv-
alent to colving a certain systems pf simulatneous equations in many unknonws”.
Ther are logic approaches (SAT) and graph-theoretic (BDD) [Bryant1986]. Also
Gröbner basis [Courtois2000]. Approximate algorithms [Has88].

Definition 18 The r-approximation algorithms optputs Õ suich that 1
rO ≤

Õ ≤ O where O is the true optimal.

Various classes of NP-problems.

Any r-approx

r-approx beyond sone threshold

No r-approx

Most multivariate crypto systems are based on quadratic equations. [Has-
tad2001] shows it is NP-hard to approximate MAX-MQ in Fq for any ratio

q − ϵ. There is a polyomial-time algorithms with ratio q2

... .

Random assignment is a q + q2

qn/2−q
-approximation algorithm. Hence q is

basically the threshold.
Note [Wu 79] founding Mathematical Mechanisation. This has been applied

for algebaric equations, differential equations (Riit, Kolchin), difference equa-
tions [Gaoetal2009JSC]. What about finite fields?

Any triangular set can be made monic. Note that a chain may not have
zeros in Fq: See x

2 + 1 in F− 3.

Definition 19 A proper triangular set has . . .

Theorem 44 |Zeroq(P )| =
∑

triangular sets

Theorem 45 The bit-complexity of TDCS is O(ln) = O(2n log l) where l = |P|.

Compare O(P2n for exhaustive serch, and O(d2
n

) for Gröbner basis.
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Theorem 46 Algorithm MFCS — Multiplication Free. uses MF well-ordering
principle. Output Zeroq(P ) = Zeroq(T ) ∪

⋃
i Zeroq(Pi) where T is a [roper

riangular set.
Then the size of the polynomials is bounded by the size of the input. Bitwise

complexity is O(lnd+1
∑

P∈P term(P ).

Theorem 47 ([HSL14]) For a quadratic polynomial syste of m polynomials,
the bitsize complexity of MFSC is [the same as exhaustive search].

Examples of stream ciphers shows that MFCS ourperforms TDCS (always rund
out of time) or GB (always runs out of memeory).

Problem 4 (COOK at SAT 2004) If AB = I as Boolean matrices does
BA = I?

For n = 4 we take 0.2 seconds and Magma 2363; n = 5 we took 10 and Magma
overflowed. SAT took 800-2000. For n− 6 we take 166 seconds.

7.12.1 Aside

Theorem 48 Let hi ∈ K{yi} there is an algorithm to comoute satuated trian-
gular sets Aq := Ψq,1 . . .Ψq,lq such that

1. Zero(hi) =
⋃
Zero(Ψi)

2. Complexity is (merely) triply-exponential
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Chapter 8

12 August 2015

8.1 Stabilization of control systems: from water
clocks to rivers; Coron

Water clock (clepsydra) Hole at the bottom of a tank, and the height of the
water reflects time. But as the water flows, the flow rate decreases, so it’s
nonlinear. Ctesibius (3rd century BC) apparently invented a regulator:
none survive, but it is described in pseudo-Archimedes.

Watt’s regulator 1788: se Science Museum in London. Showed Watt’s origi-
nal drawing. Maxwell (1868) “on goovernance” was the first publication.
Shows the cart/inverted pendulum.

Definition 20 (Lyapunov) Let ye be an equilibrium

Theorem 49 If X is C1 and ye is an equilibrium point of ẏ = X(y) If the
eigenvalues of X ′(ye) have . . .

Theorem 50 (something about stability)

Problem 5 Can we ensure that we have stability, or asymptotic stability?

Definition 21 (controllabilty) Given states y0 and y1 can we move from one
to the other? For non-linear systems,, we need to be more careful: “small-time
local controllability” is the key idea.

We know no N&S conditions for STLC. If the linearised system is controllable,
then the nonlinear system is STLC by inverse mapping theorem.

Let [X,Y ](y) = Y ′(y)X(y) − X ′(y)Y (y). The Lie algebar rabk condition
at 0 is satisfied if {h(0) : h ∈ Lie{f0, . . . , fm}} = Rn. Let PM denote the
characteristic polynomial of matrix M .

Example 45 (Baby stroller) ẏ1 = u1 cos y3; ẏ2 = u1 sin y3.ẏ3 = · · · is con-
trollable but does not satisfy the bracket condition.
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Example 46 (Satellite Attitude) Need three actuators to make the linear
system controllable, but with two it is STLC, Again it does not satisfy the bracket
condition.

Need to enlarge the system to allow feedback to depend on time. His 1992
theorem.

Definition 22 The origina in locally continuously reachable in small time for
the control system if for every positive T there is ϵ > 0 such that . . .

Seems like a very strong property, but we know of no systems with asymptotic
stability that doesn’t have this.

If he is in dimension > 3 there is enough room for perturbations to avoid
any crossing, so his theorem is proved: that we have asymptotic stability.

8.1.1 1D hyperboic PDE systems

Various gates on the Meuse. V (t, x) is the velocity of the water at point s along
the river. Conserve mass and momentum. “Théorie du mouvement non perma-
nent des eaux . . . ” discovered when author was 74!. In genral yt+A(y)yx = · · ·
with boundary conditions on y. Note that there are many applications: see
forthcoming book.

Let X be a Banach space of functions from (0, 1) to Rn. Let λ1 = 4n
4n+1

and λ2 = 4n
2n+1 which perturbs the stable case (1,2), we get instability. Hence

we actually want robust exponential stable. given by a theorem of Silkowski, if
ρ0(K) < 1 then . . . . Chinese Theorem: If ρ∞(G′(0)) < 1 then dots.

For the nonlinear case, also need || · ||2. ρ0 ≤ ρ2. but for n ∈ {1, 2, 3, 4, 5}
we have equality (speaker; Voisin). Even for n = 2 they have eamples where
ρ2 < 1 but this isn’t enough to guarantee exponential stability.

8.1.2 La Sambre

One checks that for η ∈ (0, 1) there are nonlinear feedback laws such that
ρ∞(G′(0)) < 1. Shows pictures, and states that they are currently working on
La Meuse.

Note that when Maxwell wrote, there were probably 75000 Watt reguators
in England. There was only one pendulum regulator, but that’s what Maxwell
wrote about. To get convergence, you need an integrator. This we are actually
using on the rivers.

Q You mention robustness. What about robustness w.r.t. the model?

A Good question. Lyapunov theory doesn’t really handle this. But it can
handle any specified class of perturbations.
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8.2 Computational Progress in Linear and Mixed
Integer Programming: Bixby

Grötschel claims there are over 100K such programs running at any one time,
affecting all aspects of our life: e.g. buying an airline ticket.

Will talk mostly about the second (MIP), but this relies crucially on LP.

8.2.1 Linear

1947 Dantzig invents simplex, and talks about it. First use was 120 man-days
on desktop calculators.

1951 Used on computers at NBS

1960s commercially viable at oil companies, notably BP (still major users) etc.

1970s Interest flourished, but LP was hard.

1980s Thought this was as far as we can go. Airline model with 4420 con-
straints and 6711 variables was insoluble.

1981 IBM PC.

1984 [Kar84a, Kar84b] interior point methods.

1990s LP really took off. Simplex kept pace with primal/dual. 95% of problems
are still solved with simplex, not interior point. Popular new applications.

401640 constraints; 1584000 variables. All numbers on same Pentium 4: 2GHz.
My first CPLEX (1988) 29.8 days. CPLEX 5.0 (1997) 1.5 hours. CPLEX 0.9
(2003) was 59.1 seconds. The algorithm was Dantzig’s primal simplex algorithm.
Paper in Journal OR.

So today LP is considered a solved problem. Large (Millions) models can be
solved robustly and quickly. There has been no real research in LP algorithms
since 2004. The power industry still has big problems, and some mixed IP
problems finding the LP a bottleneck

8.2.2 Mixed Integer

Definition 23 The same (minimise CTx subject to Ax = b and l ≤ x ≤ u)
subject to constraints that some of the xj must be integer.

In 2012 we [Gurobi] sold to 200+ new customers acroos a range of industries
(e.g. “ATM provisioning”; “sports betting”).

Basic method is branch-and-bound. Relaxing the integer constraints leads
to an LP problem. Then take a variable that should be integer but isn’t, and try
both ⌊x⌋ and ⌈x⌉ (and then do LP on one fewer variable!). Always keep track
of upper bound (best solution we’ve found) and lower (LP solution). Difference
is the “gap”.
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The last thing I want you to do is believe that Bixby has said we can solve
these problems.

Example 47 (Schedule Generation Model) 157323 rows, 182812 columns,
If we can solve the fleet assignment problem for a given schedule, why not opti-
mise both? LP relaxation at root node was 18 hours. At 1710 nodes we found
first feasible solution with a gap of 3.7%. Took 92 days!

Example 48 (Real!) 44 constraints, 51 variables, maximisation. Immediately
get a solutions at −2186. After 1.4 days, 5.5GB tree, 32M B&B nodes, made
no progress.

Example 49 (Toy) Maximise x+ y+ z subject to 2x+2y ≤ 1; z = 0 x.y free.

Removing z = 0, or Euclidean reduction, do great simplification. Turning off
presolve on all current codes will run forever.

Example 50 (Real supply chain) Weekly model, daily buckets. Minimise
end-of-day inventory. Production (single facility), inventory, shipping (trucks)
to wholesellers (so demand is known). Initial modeling phase had a production
grouping requirement, and a bizarre truck requirement (union rules). Couldn’t
get feasible solutions. So how did the humans do it? They fixed the producibles
schedule first, and then solved in 1 hour (in 5.0; 4.0 wouldn’t). Cplex 11 (2007)
with Gomory fractional cuts took 0.63 seconds. So is the original problem solu-
ble? Yes – 100seconds, and is 20% better than the soluton found with scheduler
heuristics.

1954 Dantzig/Fulkerson solves a 420-city TSP with LP and cutting planes.

1957 Gomory’s cutting plane algorithms.

1960;1965 B&B formulated.

1969 BP does first commercial MIP.

1974 IBM’s MPSX/370; and Sciconic. These were LP-based MIP.

. . . Good old B&B remainded state of the art despite much theory (Padberg
cutting planes, Balas disjunctive programming)

1998 Choice of branching variables (see TSP ideas: we had been very näıve
here); lpsolve routines; cutting planes (Gomory’s “lesser” ideas).

Our test set has 1852 real-world MIPs from customers. We used pure defaults.
Best version→version improvements were 2.1→3.0 (Mature Dual Simplex LP:
factor of 5.5) and 6.0→6.5 (Mined the theory backlog: factor of 9.5). After this
we started solving real problems with “out of the box hits”. Total improvement
over 17 years 19990-2007 was 30, 000× in CPLEX. Since then in Gurobi we have
seen a further 38.6×. Combining these two gives us 1.1M×, i.e. ×1.8/year.

We see real problems with 1M rows/columns. 8% of models solved with gap
> 10%, 14% within < 10% and 75% optimal. Of the unsolved: 54 are blocked
by LP, 16 were tunable, and 37 were “other”.
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Figure 8.1: Bixby’s slide 37

Suppose you were given the 
following choices: 
}  Option 1:  Solve a MIP with today’s solution 

technology on a machine from 1991 
}  Option 2:  Solve a MIP with 1991 solution 

technology on a machine from today 

 Which option should you choose? 

}  Answer:  Option 1 would be faster by a factor 
of approximately 400. 

37 © 2015 Gurobi Optimization 

� Would you use today’s technology on a 1991 machine or vice versa? [Most
of the audience voted for modern computers and old software] Option 1
(today’s software on 1991 machines) wins by 400×. See Figure 8.1.

JHD observes that 1.8× every year is 5.8× in three years, whereas the
original Moore’s Law [Moo65] is ×4 in three years. Clearly a win for the
software/algorithms.

Q “Mixed Integer Rounding”?

A A simple idea for producing cutting planes.

Q What sort of time limit do people set in industry?

A We always customers what their criterion is. Often “overnight is fine”. Other
answers are “2 hours good; 5 minutes better”.

Q How do you find the improvements? There was a slide showing version-on-
version improvements. An older version of this slide was in [Bix10].

A 1998: literature. These days they come from practical problems, where we
notice a feature, see if it shows up in the library, then implement it. This
is a bag of tricks.

Q Thank you for your business model for helping researchers. What about
quadratic?

A We can handle quadratic RHS. We don’t see much of a demand for this.
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8.3 On Convergence of the Multi-Block Alter-
nating Direction Method of Multipliers: Yang

Subtitle: are there better methods for LP?
Minimise CTx subject to Ax < b and x ≥ 0. This is a data-driven model,

which neds to be solved fast in practice. Geometrically, the constraints are a
polyhedron, and the optimal plane has tobe found.

Markov decision processes provide a mathematical framework for sequential
decision making where decision outcomes are partly random and partly decided
by decision makers. At each time step, the process is in state i and the decision
maker chooses an ation j, The process responds by moving to a state and
producing a cost cj,i The probability of entering the next state in indepenednet
of history. Hence we can ask for an optimal policy for teh decision maker.

Howard [1960] formulated this as “policy iteration method”. ath-findng
methods are O9n

√
n) But the im is to avoid matric inversion.

Eraly work was the vonNeumann projection (see als Freund).
Subgradient method [Renegar2014] transforms the problem assuming we

know a feasible point with iteration complexity O(L1/2D/2). Also two-block
ADMM.

onsider minx∈Rmf1(x1) = · · · such that Ax = b We takethe augented La-
grangian function L(x1. . . . , xp, y) Do this or eahc xi, then update y. Conver-
gence was well-established when p = 1 or p = 2. What about p > 2? 2014 we

would an example that can diverge when p = 3 A =

 1 1 1
1 1 2
1 2 2

. Note that

ρ(A) > 1. Perhaps we only update y by some beta < 1 of the true value. For
p = 1. 0 < β < 2 (Powell 1969). Is there a good problem-independent β? No!

Random-Permuted ADMM. Each round, use a random permutation for the
order of updates. This seems ot owrk in practice,

Consider a square system of linear equations. After k rounds, we use a . . .

Theorem 51 If A is invertive, the expeted iterate ϕk converges ot the solution
linearly for any 1 ≤ p ≤ n.

We can show that the “expected update matrix” 1
n!

∑
σMσ has radius < 1.

Difficulty in proof as few tools for spectral radius of nonsymmetric matrix.
Showed examples of converges for large weakly Laplacian linear systems.
Consider the nonseparate quadratic problem to maximinse tTHx + cTx.

Then if each block converges, the whole converges.
So why multiblock? Consider the homogeneous and self-dual linear prgo-

ramme to find x., y, s) with Ax− bτ = 0; −AT y−s+ cτ = 0; bT y− cTx−κ = 0;
eTx + τ + eT s + κ = 1 (x.τ, s, κ) ≥ 0. Where the three blocks (x, τ), y, (s, κ)
are alternately updated.

Also, consider the logarithmic barrier function as objective. Gradually re-
duce µ to 0 as in interior-point methods.

Note that ADMM is easily implementable on a distributed platform. Min-
imise cTx Rather minimise qi(xi) independenently, then update x′

0 := max( 1
m

∑
xi, 0)
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1. Can we characterise the convergence rate? We have proved results about
expectation.

2. can RP-ADMM convergence be “with high probability”?

3. Can we extend to more general convex optmisation?

4. So are there better LP algorithms out there?

8.4 Bounded-degree SOS Hierarchy for Polyno-
mial Optimisation: Lasserre

LP- and SDP-certificates of positivity.
With f ′in′R[x] and K := {x ∈ Rn : gi(x) ≥ 0.j = 1, . . . ,m} being a

compact semi-algebaric set. We are looking at the global minimisation problem.
To prve this, we need to prove positivity of f ≥ f∗. Can this be done effectively?

Real Algebraic Geometry helps. Such certificates exist, and are amenable to
practical computation (note that Positivstellensätze for more general functions
are not so amenable).

Theorem 52 (Putinar’s Positivstellensätz) If K is compact and satisfies
a technical Archimedean assumption and f > 0 on K then

f(x) = σ0(x) +

m∑
j=1

σi(x)gj(x) (8.1)

where the σi are sums of squares.

Note that this theorem has no bounds on the degrees. Testing this (in bounded
degree) is an SDP.

We can write K as {x : gi(x) ≥ 0; (1− gj(x)) ≥ 0}

Theorem 53 (Krivine-etc.) If K is compact and in that form, then

f(x) =
∑
α,β

m∏
j=1

gj(x)
αi(1− gj(x))

βi (8.2)

This is solving an LP.
Many applications: generalised moment problem. This can be used to ap-

proximate set with quantifiers: {x ∈ B : f(x, y) ≤ 0∀y : (x, y) ∈ L} for example.
We impose the constaint deg(σjgj) ≤ 2d in (52) to get element d in the SDP

hierarchy, or same in (8.2).
This has been useful in problems of modest size, or larger if sparse. The

SDP-hierarchy has been used in combinatorial complexity.
Note that our statement didn’t distinguish between convex and nonconvex.

and we can add Booleans by x(1 − x) = 0. However, the class of (easy) SOS-
convex1 problems is recognised as convergence occurs at the first level of the

1The Hessian factors as SOS.
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hierarchy. For general convex problem convergence always happens. The SOS-
hierarchy dominates other lift-and-project hierarchies (i.e. best lower bounds)
for hard 0/1 combinatorial problems, Note this doesn’t occur for LP-hierarchy.

Theorem 54 (MarshallNie) Let x∗ ∈ K be a global miniimiser and assume

1. The gradients ∇gi(x8) are linearly independent

2. struct complementarity holds

3. second-order sufficiency conditions hold at (x∗, λ∗)

then

Therefore Putinar certificates are a generalisation. However, SDP-solvers have
size constraints.

Can we do better. Assume that gj ≤ 1 on K (rescaling if necessary) and
that {1, gj} generates R[x]. Then remember Lagrangian relaxation.

Q-EK I agree that you get a certificate with a good backward error. But is
this meaningful? Only if the input problen is well-conditioned.

A Agreed the the certificate is not exact.

8.5 Smaller SDP for SOS Decomposition: Bican
Xia

See [DX14]. It is known that SOS decomposition can be reduced to SDP, so
in principle has a symbolic solution. We know that numerical SDP solvers can
solve large SOS problems, and has available iplementations.

Definition 24 SOSS(p,Q) means that p has support Q and is a sum of squares.

This is equivalent to finding a positive semi-definite matrix M such that p(x) =
QT (x)MQ(x) where Q(x) is the vector of monomials corresponding to Q. Let
SOS(p.Q be any algorithms that solves this.

We find two classes of polynomials wher the original SOS proble can be
transformed into smaller ones, and ways of detecting nn-SOS problems.

Between steps 1 and 2, we find check for evident non-SOSness, then check
for a splitting.

Define the Newton polytope N(p) to be the convex hull . . . .

Definition 25 For a polynomial p =
∑
cix

alphai and T ⊂ Rn denote by
Proj(p.T ) the result of deleting

Theorem 55 If P is OS, then Proj(pF ) is SOS for even face F of N(p).

Definition 26 p is convex cover polynomial if there are some pairwise disjoint
faces Fi of N(p) such that S(p) =

⋃
Fi.
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In this case the problem decomposes.
In fact every convex cover polynomial is a split polynomial. If a polynomial.

is split, then the SDP-matrix can be block-diagonalised.
States his Theorems 3 and 4, analogous to previous but for split polynomials.

Proposition 3 Suppose Q has SOSS(p,Q) for a polynomial p. Then if p is
SOS, the α ∈ Q+Q for all α ∈ S([).

This gives us a quick negative check. After this check, we check for split polyno-
mials, and solve them separately. Note that split polynomials may split further.

SQR(k, n, d, t) is the sum of squares of k polynomials of n variables with t
terms of degree at most d.

Various timing data: the check rejects all non-SOS polynomials very quickly.

Q–SMW Your non-SOS polynomials are very special. g21+g2
∑n

i=1 xi+100g23+
100.

A We need the +100 to ensure the constantterms is not zero.

Q Which SDP solver?

A My student implemented this. The real point is the reduction.

8.6 Applications of homogenisation in SDP re-
laxations of polynomial optimisation: prob-
lems: Feng Guo

We want checkable conditions to veify non-negativity: NP-hard. For SDP pro-
gramming the pimal problem: supW −Tr(CW ) s.t. Tr(AiW ) = bi and W ≥ 0.
WT −W . Also dual problem. Spectrahedron {(x) ∈ RnxTA.x ≥ 0 and pro-
jected spectrahedron. Let Σ2 be the set of sums of squares. Let Q(X) . . . .

The Archimedean condition is equivalent to saying that S is compact. Shows
an example of non-compact S with Putinar’s Positivstellensätz failing.

So homogenise each generator to get S̃> or S̃≥ depending on what condition

we impose on x0. f(x) ≥ 0 on S iff f̃(x̃) ≥ 0 on cl(S̃)> We say that S is closed

at infinity if cl(S̃>) = S̃>. Detecting this is an open question.

8.6.1 Minimise a rational function

Mininise: r∗+ = min p(x)
q(x) . This is maximise r such that p(x)− rq(x) > 0.

Example 51 max 1
x2
2+1

which is not achievable, but is after homogenisation

(i.e. at infinity).

8.6.2 Semi-Infiite Polynomial Programming

minx∈X f(x) subject to G(x, u) ≥ 0∀u ∈ U . Problems when U is not compact.
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8.6.3 Convex hulls of semialgebraic sets

Projected spectrahedron. Let P be the set of support hyperplanes of S and
M ]{(1.x) : x ∈ Rm}. {1} × cl(co(S)) = P ∗∩ M .

Problems in the noncompact case. {x1 ≥ 0;x21 − x32 ≥ 0}. Need a modified
Lasserre’s relaxation. We perspectively prject to X0 = 1. We assue S is closed
at ∞ and . . . .

8.7

Two tasks: compute zeros, and check whether we have an approximate zero.
Given a complex polynomial, we cantake real and imaginary parts.

Example 52 f1 = x2 − 2y, f2 = y2 − x, f3 = x2 − 2x2y − 2y. Then P0 = (00)
is a zero of F1, f2, and we can get P1 by Newton. But when we add F3. We are
going to consruct a square system containing all zeros of Σ, preserving reguar
zeros: f =

∑
f2i and ∂f

∂x
∂f
∂y : solve for the derivatives and f − r in Q[x, y, r).

For such a square system, we can use homotopy and a posteriori certificaton.
Many deflation techniques for multiple zeros.

Theorem 56 P is a simple zero of Σ iff (P, 0) is a simple zero of the square
system ∆ = {D1(f), . . . , Dn(f), f − r}.

He gave a proof. Emphasised that, although the total degree has doubled, the
computation is not much greater.

Theorem 57 Given Σ ⊂ Z[X] and (P, r0) is a zero of ∆ within the root sepa-
ration bound

Showed an example with [Tsigaridasetal2010a] version of DMM bound of 10−138

while true answer is 2.5. Hence he claims that the certified simple zeros from
Theorem 1 of ∆ are with high probability the zeros of Σ.

Would like to look diretcly at multiple zeros in Theorem 1.

Q-Mourrain You could also consider f3 − r in the extended system.

A Not sure that the proof works.

Q You proof considers ATA, so squares the condition number. Have you eplored
this?

A No.

Q Why the slack variable?

A So that the Jacobian isn’t zero.
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8.8 Algebraic boundaries of convex sets: Sinn

Consider a polynomial optimisation: problem: minimise ℓ over {gi(x) ≥ 0}.
The optimal value function maps the coefficients of ℓ into the minimum value.
By Tarski, thisis semi-algebraic.

A convex set is semi-algebraic iff its dual is. The dual of C is the set of
supporting hyperplanes of C. C = dual(dual(C)). The algebraic boundary ∂aS
of s is the Zariski closure in ′An of its boundary in the Euclidan topology. The
optimal value function satisfies Φ(−Ψ(−alpha1, . . . , αn),−alpha1, . . . , αn) = 0.
hwer Φ is the defining polynmial of the algebaric boundary of the dual convex
body.

Recall normal cone to x ∈ ∂C is NC(x) = {ℓ ∈ (Rn)∗ : ∀y ∈ Cℓ(y) ≥ ℓ(x)}.
There’s also a dual variety: Zariski closure

{[H] ∈ P(V ∗) : [H] is tangent to X at a regular P ∈ Xreg}.

Biduality for irreducible varieties.

Definition 27 An extreme point of C is a point x such that if x = 1
2 (y + z)

with y, z ∈ C implies y = z = x.

Theorem 58 Let Z ⊂ ∂aC
0 be an irreducible component. Then Z

∗
is an ir-

reducible subvariety of Exa(C) the Zariski closure of the extreme points. Z
∗ ∩

Ex(C) is Zariski dense in Z
∗
. Assume Y ⊂ Exa(C) and Y ∩Ex(C) is Zariski

dense in Y . Then Y
∗
is . . .

Theorem 59 Let C ⊂′ Rn be a convex compact semi-algebraic set with 0 in
its interior. Suppose that every irreducible compact of ∂aC is smooth along ∂C.
Let Z ⊂ Exa(C) be an irreducible subvariety such that Z

∗
is an irreducible

component of ∂aC.
If codim(Z) = 1 . . .

Shows a semi-algebraic description of the “hard cases”. See [Sinn2015 Re-
searchinthe Mathematical Sciences 2(2015)]

8.9 Symbolic-numeric Methods for Linear and
Integer Programming: Steffy

Linear Programming and MIP. 0/1 variables here. See Section 8.2. We use
SCIP and SoPlex from ZIB — open souce and within an order of magnitude of
commercial. Notethe problems of lfoating point, and we may only get “nearly
feasible” solutions. Note that VLSI verification really cares about correctness.
Ther are also poorly sclaed/conditioned problems, some biological systems.

Note that the dual solution provides an optimality certificate. Simplex also
allows for fast re-optimisation (needed in MIP). QSopt_ex does nuerical simplex:
checked exactly, then increase precision if necessary. Well-tried examples of
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iterative refinement for linear systems, in mixed precision. an apply these ideas,
but need to do the dual problem as well.

Near singularities. we keep adding nearly parallel planes. so ill conditined.

Q Mixed nonlinear systems?

A The solution may not be rational any more.

8.10 Problems on Symbolic Computation of Poly-
nomial Equations inWavelet ANalysis: Bin
Han

For ϕ, ψ1, . . . , ψs ∈ L2(R) define an affine system AS(ϕ, ψ1, . . . , ψs). Affine
systems can have dilates and shifts.

Need to construct tight framelets from Filter Bank. Haar Orthonormal
wavelet ϕ = χ[0,1] and ψ = χ[0,1/2] − χ[1/2,2]. Also Shannon and Daubchies
wavelets.

Common characteristics are that we have linear equations from the approx-
imations, and we also get total degree two equations.

Conjecture 7 (Since 1988) Real-valued orthogonal filters a having arbitrary
high linear-phase moments and smoothness sm2(a).

Current stasus lpm(a) = 5; sm(a) ≈ 2.449. Note that we would want sm(a) >
2.5 for a C2 function ϕ.

A d× d matrix M is called a dilaton matrix if it is an integer . . . .

Problem 6 Construct a finitely supported 1D real-valued orthonomral M-wavelet
finter a such that sm(a) is large and a is symmetric.

Can prove it doesn’t exist for M = 2. For m = 3 sm(a) ≈ 2.06. For M = 4
sm(a) ≈ 2.53.

If M =

(
1 −1
1 1

)
then we have a problem with 36 unknowns — unsolved.

Also a sOS problem. For a given A, find filters U1, . . . , us such that

|û1(ξ)||2 + · · ·+ |ûs(ξ)||2 = v̂(ξ)

where v̂ = · · ·.
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Chapter 9

13 August 2015

9.1 Without Mathematics and Supercomputing,
no Effective Risk Reduction of Natural Dis-
asters: Qing-Cun Zeng

Natural disasters cost many lives and much economic damage. 22% windstorm,
flood 35% etc., 85% being meteorological in all. 53% of the deaths were caused
by meteorological disasters.

In China, Great King Yu (21st C BC) led his people is controlling rivers.
We should emphasise that there have been great progress in the last 50 years in
risk reduction of natual disasters.

Typhoon/Hurricane Galveston (1900 Sept 8) kill6-8K people. 1992 Hurri-
cane Andrew was tracjed by satellite, but Numerical Weather Preddiction
could only given 24 hours warning. Sandy (2012) we had five days warn-
ing(better NWP, sending and assimilation). In China, storm Rammasun
was monitored by Chinese satellite. NWP successfully prdicted the track.
Landfall warning 36 hours in advance. No life was lost, but neverthe-
less direct econmic loss 26GYuan. NWP predicted heavy rain in Beijing
oin2013, but several people wer killed. The NWP did not predict the
quantity of rain (beat all records). Also the civil emergency system was
not good enough.

Gave a six-step action plan (including verification and lessons learned). But
the first stage, prediction, is key. Remote sensing needs to be inverted to find
physical quantities, e.g. water vapour desnity from radiation. Thisis a Fredholm
integral equation of the first kind. E/U of the solution requires g(z′),W ∗ z, z′)
to satisfy certain constraints. Also ill-conditioned.

Weather prediction is compliicated. There is mass conservation for atmo-
spheric water (in three phases), cloud formation and evolution (very compli-
cated), lower boundary conditions (kinematic, geometrcal and physical), and
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upper boundary conditions (what is the upper boundary?) All fluzes (except
radiation) → 0 and z → ∞. Then their initial conditions. Wellposedness was
proved by Chinese scientists for linearised equations. For the nonlinear model
we do not have stability. Meteorologists call tc the “predictability” — the point
after which prediction becomes impossible.

9.1.1 Computing Problems

1. Numerical Prediction. Note that von Neumann proposed numerical weather
prediction, hence NWP and Computers have a common father. The two
have grown up together! [Richardson: “Weather Presdiction by Numerical
Processes” 1922] had a FEM formulation. This didn’t succeed, because the
equations were too simplistic, and computational resources inadequate.
Shows a graph of ECMWF forecasting accuracy, and notes that storm
warnngs from regional centres are 3-days, which is adequate.

4D data assimilation was proposed by a French meteorologists in 1987.
We can be proud of what we have done, but should do more to improve
the disaster prediction. Need to iprove resolution (akss for a grod size
of 500m-1000m!!), This would require morepowerful computers. We also
need numerical (quantitaive) predictions of disasters, e.g. water flow. This
requires a high-resolution ground model. Note that there are very irregular
and complicated boundary conditions.

2. Visualisation. There is an optimisation problem: minimise (cost of ac-
tions) + (losses prevented). This requires real-time regulation, and the
ability to explain to policy-makers.

Q How do we cope with the chaos caused by nonlinearity?

A Ensemble prediction.

Q–JHD Can we really achieve this incrase in resolution globally? Should we
not be looking at local resolution?

A We need more powerful computers. [JHD fears he did not explain the ques-
tion well enough]

9.2 Software and applications for polynonial ho-
motopy continuation: Leykin

Q What is the meaning of “algebra” in Chinese?

A I have been told it means “substitution mathematics”.

Q Ask your students what algebra means.

A In Arabic it means “the union of broken parts”, or possibly “bone setting”.
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Example 53 Have a target [polynomial] system F , and a simple system G with
the same number of solutions, Then consider H(x, t) := (1 − t)G(x) + tF (x).

Hence dx
dt =

(
∂H
∂x

)−1 ∂H
∂t . But there may be numerical issues, and problems with

targeting singular solutions. There is also the issue of certification1.

Software can even describe positive dimensional solutions (numerical algebaric
geometry (PHCpack, Bertini, NAG4M2) but we won’t talk much about this.

LetK = C (occasionally ′R). Solve parametric problems for generic paraneters.
Given Ψ ∈ K[p.x]m and V ⊂ AP = K#p suchthat for a generic p0]inV . we
have finitely many solutions.

If you wanted to solve this non-numerically, we could look at parametric or
comprehensive Gröbner bases. This very expensive.

1. Take a generic codim(V ) plane O

2. Find a structured witness set V (Ψ) ∩ (L×Ax) ⊂ Ap ×Ax.

3. Given po ∈ V pick generic L0

4. Deform L to L0

Example 54 (Computer Vision) Point X is projected on to three calibrated
cameras, with local coordinate frames I,R2, R3. Use Cayley parametrisation of
SO3 (six parameters for two SO3 instances). We have a rational map from
the space of configurations (dimension 23) to V the space of views (dimension
24). n fact the pre-image has cardinality 1 [HoltNetravali1995]. Proof (uses
[MorganSommese1989]): compute a Gröbner base in Macaulay (pre-M2) and
prove the number of points in the fibre is constant, therefore 1.

Notes that the GB solution is used in practice (Android ’phones). But takes
1second. With homotopies we have singularities, but when we are not too far
from the reference solution, we are at 100ms, and could make 1ms. The bottle-
neck is the cmputation of Ψ and its derivatives, which is done via an SLP.

Example 55 (Definite Representations) f ∈ C[x, y, z] of degree d. Deter-
minental map Φ :M → F . [Nui1968] the set of hyperbolic polynomials is closed
in F , contractible and path-connected [good news for homotopy!]. Follow Nui’s
paths (avoid singularities).

Q How do you choose the parameters, and can you identify the bad ones.

A In practice it is hard [impossible for the vision problem] to identify the bad
points, as you need to invert a rational map.

Q How big a problem can you solve?

A Millions of zeros if necessary. But note the vision problem, for example, only
has one realistic solution.

1Claims that there is a difference between “verification” and “certification”.
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9.3 Bertini 2.0 and BertiniLab: Software for solv-
ing polynomial systems numerically: Bates

BertiniLab is a MatLab interface! But I’m not going to talk much about this.

1. This talk is numerical, but I believe in a mixed approach for many cases.

2. There’s much other good software besides Bertini.

3. This is a software development talk, not algorithms.

In BertiniLand, we go from t = 1 to t = 0 [arguments about density of floating
point numbers etc. can be made, but it’s just a feature]. Bertini was written in
the basement of the Students’ Union at Notre Dame. Bertini how has some AI:
autochanging other tolerances as you change one.

BertiniLab was written for a specific user.
alphaCertified will certify (in the sense of alpha theory) solutions.
Paratopy uses parameter homotopies and parallelism: using Bertini as the

core engine. Does summary statistics.
BertiniReal — see Schost’s ideas. Uses Morse-theoretic ideas to project

critical points down, and look at the fibres over special points. It can produce
MatLab .fig files and STL files [3D printers]: hence polynomial system →
pretty solid.

We have money from “Advanced Cyber Infrastructure” branch of NSF for
Bertini 2. 1.5 people → 10! More modular, GPL licencing, regression tests etc.

Q–EK LinBox took a long time to incorporate software from elsewhere: but
eventually includes R+. What are your numerical analysis plans?

A We use Python for Numerical LA, and BOOST.

Q Also, it took us far too long to join SAGE.

A That’s where I get the most flak about our licence. We’re happy to join
anyone.

9.4 Computing mixed volume . . . in quermass-
integral time: Malajovich

See http://www.labma.ufrj.br/~gregorio/papers/beijing/pdf
Mixed volume (Minkowsky). Take n convex objects in n dimensions. V (A1, . . . , An) =

1
n!

∂n

∂ti
V il(t1A1 +

′ cdots)

Similarly Steiner formula: V ol(A+ ϵB3) = V ol(A) + Sϵ+ πKϵ+2 + 4π
3 ϵ+

3.
Quermassintegral: V (A,A,B3) = 3S. V (A,B3, B3) = 3πK.

Theorem 60 (BKKh) he generic number of roots in (C×)n of f1(x) = · · · = 0
is n!V (Conv(A1), . . . , Conv(An)).
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To be contrasted with Bézout, which is for dense polynomials. Note that the
“Bézout\BKKh” roots are in general degenerate, so bad news for homotopy.

Legendre transform of a 7→ bi(a) if ξ 7→ λi(ξ) = maxa∈A aξ− bi(a). Tropical
semi-ring: (R∪ {∞}.+ .max) [That’s what he wrote, but h said the other way
round, which seems better]. Tropical limit: limr→∞ eτ...

∑
. . ..

Mixed cells are dual to the solutions ξ of the tropical polynomial system.

Theorem 61 With probability 1, the algorithm2 computes the mixed volume
and produces all the initial points in time bounded by O(T + T ′) arithmetic
operations, where [he suddenly changed into a software demo!] and

1. with probability 1. vd ≤ n!V (A1, . . . , Ad−1, A,B
n, . . . , Bn)

2. . . .

Shows a graph of T against measured time, which does look linear. Note that
there is non-trivial numerical analysis involved here to translate the theorem
into implementation. At times I need to move to quad computation.

9.5 Classifying Polynomial Systems Using the
Canonical Form of a Graph: Yu

Polynomial
∑

α∈A cαx
α. Homotopy from a binomial system to this. Shows

PHC Web Interface. We have 16 cores of CPU and two K20c nVidia cards.
Want to store various supports A to facilitate re-using stored results. But how
do we store a support in a way that allows for commutativity etc.

Therefore want a unique key.

Definition 28 Two polynomial systems are isomorphic if

1. they have the same dimension and number of equations

2. there is a permutation of variables and one of equations that takes one to
the other.

Hence think of variables as root vertices, pointing to powers, and hecne to
monomials, Then can use standard graph tools.

Q What’s the connection to graph isomorphism?

A In general graph isomorphism is hard, but . . . .

Q Look at Maple’s technology: this very rapidly finds a match.

A Need one to be invariant over variable names.

JHD/Dan Roche Maple’s is not invariant over variable names.

Q-Dan Do you solve the user’s system or the one in the database?

unclear discussion.
2It is a randomised algorithm.
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9.6 Labahn

Our solutions are invariant under symmetry groups. Why is there a set of
dundamental invariants (?for the system, or for the solutionspace).

Action: G × Kn → Kn. See [Gat90], [FaugereSvartz2013a], [HL12]. [Hu-
bertLabahnMathComp].

Definition 29 G is diagonalisable if ∃R : R · G ·R−1 is diagonal.

Recall also the structure theorem for abelian groups. Also Hermite normal form
for matrices. which we can make canonical.

Example 56 Invariant under x1 → x2 → x3. Write as diag(ω, ω2, 1).

It’s harder when the system is invariant, but not the individual polynomials.
We want to extend from abelian groups to soluble ones.

9.7 Arnold

Compares dense and sparse representations: dense has fast arithmetic. The
support of a polynomial is the set of exponents of its non-zero sums.

Definition 30 The sumset A⊕B = {a+ b : a ∈ A.b ∈ B}.

Definition 31 The structural support of f · g is supp(f) ⊕ supp(g), and the
structural sparsity is | supp(f)⊕ supp(g)|. That is, “ignoring cancellation”

Theorem 62 Ther is a randomised algorithm that, with probability > 0.99 com-
putes h = f · g on Õ(Sn logD + T logC) whre C is a bound on the coeffcients
and D > maxd degxi

(f · g).

Note also [ColeHanharan2002] have a Las Vegas algorithm Õ(T logC log2D).
Note that “grade school” is as ggos at it gets when there’s no collisions. But

squaring is a classical case where there is collision. Also composition of sparse
polynomials.

Define hmod p to be h (mod xp − 1). Hence we can define “collision” of
terms when we use mod p. Say p is “good” if there are no collisions, and “OK” if
less than half the terms collide. If we knew the number of terms in the sumset,
we could produce probability estimates. So guess the size as 2, 4, 8, . . ., pikc pG
and pOK according to such estimates and [check for sanity].

See [AR15] for the details.

9.8 Computing Approximate GCRDs of Differ-
ential Operators: Giesbrecht

Note that we don’t have unique factorisation. GCRD is the right question for
joint solutions of differential equations.
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Problem 7 [Approximate GCD]Find f̃ and g̃ such that deg gcd(f̃ , g̃)) > 1 and
||f−f̃ ||
||f || , ||g−g̃|

||g|| small.

Lots of alternatives, but this is the definition we shall generalise.
GCRD dates back to [Orr1933]. [li1997] hd a subresultant theory for gener-

alised Ore polyomials. Aim was to merge these with [CGTW95].
However, it is not obvious that the question is even well-posed. Nee to define

norms correctly, then can generalise Problem 7 precisely. Clear denominators
and use[Kaltofenetal2006] to clear approximate contents.

Think of the differential Sylvester matrix S. The degree on the exact GCRD
is the nullity of this matrix. Then inflate S to Ŝ with numerical coefficients and
do a reduced rank calculation here.

We can set this up as an optimisatoin problem, and then ask whether Φ
attains its minimum. We can also ask whether Newton iteration is going to
converge. Use ideas from [Kaltofenetal2007Unpubl].

Theorem 63 Define the set of possible solutions: impose that lcx(lc∂(h)) = 1.
Then if the set is non-empty, the infimum of the error is attained.

Also σv — the smallest singular value of the inflated Sylvester matrix — is some
measure of3 the condition number.

Q Does your unstructured perturbation take you to an inflated Sylvester ma-
trix?

A Not necessarily, but near enough. Then the Newton iteration should take
you back.

Q–EK Approximate factorisation?

A Future work.

9.9 European Research Funding: ERC andMath-
ematics

9.9.1 Bourguignon

ERC is a bottom-up individual-based pan-European comptition with host insti-
tutions in EU/Associated Countries. 15% of referees are outside the EU. There
is an independent Scientific Council4 with its own executive agency.

Starting 2–7 years5 post PhD. Up to 1.5M+0.5(large facilities)

Consolidator 7–12 years post PhD. up to 2M+0.75

3Still needs more work.
4Just had an
5Throughout, women can automatically cliam 18 months extra/child: men if they can

prove they had leave of absence.
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Advanced Up to 2.5M+1

Proof of Concept Reserved for people who had already have an ERC grant.

ERC gets 17% of the EU Science Budget. 1.6Geuro this year, i.e. approximately
1000 grants. 2/3 of grants go to people between 30-40.

About 27% of the postdoc money used here goes to non-EU citizens. Note
that these grants are portable (which ensures they are well-treated by hosts!).
8% of ERC grants go to PIs who are not European6. Success rate this year
should be about 15% (up on historical).

During FP7 supported 4300 of which 237 in Mathematics. Last year 35/937
were mathematicians (decrease in proportion, which is slightly worrying). 2
Fields Medals and 3 Nobel Prizes went to ERC holders.

9.9.2 China

Ma [Sugaku Tushin 12(2007) 1]. Mathematics has a special fund (Tianyuan)
and staus in China. But there are many funding schemes. Shows basic
funding graph 1999-2009.

We are very happy with the improvements over the bast ten years. “Na-
tional Centre for Mathematics and Interdisciplinary Sciences (CAS”. Launched
24 November 2010 as part of Innovation 2020 initiative.

from Shandong But in China there is a problem for counting [evaluating nu-
merically?] people, especially in universities. It tends to be numbers of
papers and grant income.

Chan: President HKUST We have a separate system. I was also an AD at
US NSF including mathematics.

NSF Funds 62% of the US mathematics basic research. Increased need
to show societal relevance. Mathematicians do not participate as
enthusiastically in the big inter-disciplinary programmes (Big Data
etc.) as I think they should. Also there’s more private money: Simons
is about 25% of the size of NSF’s DMS.

Shows graph of NSF’s funcing” flat until 1984, climbing until 2002,
then flat.

NSF does fund Oberwolfach for American participants.

HK UGC is 65%, RGC is 9%, rest private etc.

Institutes Mathematics is cheap, and institutes are cheaper than obser-
vatories.

Chinese NSF Shows 1986–2015 cumulative figures. Also figures for 2015.
Tianyuan had 700 proposals but only 31 awards. In 1989 Tianyuan was
1M RMB/year, but now it is 25M/year. In the early days this was used

6Must spent at least half of the year in a (given) European Laboratory.
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partly for grants, partly for “other matters important for the development
of mathematcsi”, but now all on this second task. There is an Academic
Leading Group of the Tianyuan Fund. Administered by an office in CNSF.

9.9.3 Evaluation in ERC

There is a five-minute video ob ERC website which she recommends everyone
to see.

Schemes ERC Grants: see J-PB.

Implementing Agreement Chinese researchers hwo are active holders on
NSFC grants can be part of ERC teams for 6-12 months: NSERC covers
international travel, ERC grants cover subsistence etc.

Enrique (Chair of Math Panel) Round 1 expects a 3:1 cut. Evaluates B1
and the CV. The Panel is 12–14 people. Four panelists will read your
application. The key task is to envisage an ambitious major research
theme, incorporating a team of several people. Diagrams about research
group organisation help: you need both focus and to be understood by a
large range of people.

Volker Mehrmann My grant is Maths/CS/Engineering, but there is no longer
an interdisciplinary panel. This means that you have to make it in your
own field first (see previous).

Maria Esteban: Chair Step 1 is only by panel members (but can ask other
ERC panels). The second stage is external referees. At least four external
reviews as well as the panelists. But the panel determines the ranking.

Carillo Starting and Consolidator have an interview as well. These are ob-
tained before the interview. A lead reviewer is nominated for each candi-
date.

9.9.4 Past Grantholders

Annalisa Buffa I applied to the first round of ERC Starting Grants. “Inno-
vative compatible discretizations for PDEs”. This was a new and exciting
topic. This was my chance to build a team. Complicated diagram of
people, grants (one researcher got an ERC consolidator grant) and desti-
nations.

Martin Hairer Consolidator Grant just before Fields Medal. So I had recently
developed a theory of regularity structures to give meaning to stichastic
PDEs that were previously thought to be ill-posed. Ann Math.; Invent.
Math. etc. Hence the aim was to understand cross-over between regimes.
Phase coexistence is one example.
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As well as hiring a range of postdocs from different disciplines, I am organs-
ing workshops, which is very easy at Warwick. I have been pleasantly sur-
prised by the application process (and Warwick’s research support staff).
The interview (being shuffled from waiting room to waiting room) was the
strangest part of the experience. The ongoing adminstration has been eas-
ier than I had feared, in particular changing the start date. Had problems
with the University of Warwick’s Housing system and the ERC’s double
charging rules.

Coron Spoke about nonlinear control, where the nonlinearity is important. I
was at the Institut de France, with no teaching, but this was running out.
How else to avoid teaching? Apply for an ERC Advanced Grant. More to
the point, PhD students (2) and postdocs (which are very hard to get in
France: these were my first). The administration is not very heavy.

Q Is there a right of respond to referees?

J-PB There is a formal “redress” process (about 2%), and we are always trying
to make the reports of the panels helpful. The names of the referees are
not revealed.

Q Suppose you have a string track record, but with to change area. The referees
might not take account of this

J-PB This is something I stress in the briefing to panel members. The Panels
do take risks like this.

Q Can an ERC grant holder and I (non-EU) write visits to each other into our
grants?

A Yes.

Q Interviews are known to reinforce gender bias.

A We had 18% of women applying in Mathematics (which is above the EU
average), but the success rate did not match this. In the past women did
less well than men at stage 1, but better at stage 2. This year it was about
even.
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Chapter 10

14 August 2015

10.1 Applied Mathematics for Business Decision
Making: the Next Frontiers: Kempf

Speaker is Chief Mathematician at Intel.
Every area has its core problems, which take years, decades, centuries to

solve. Consider Weather Forecasting (Section 9.1) for example. This has inter-
esting mathematics, and is important for humanity.

10.1.1 Background

The human brain has changed little since 200,000BC. First steps were fire,
domestication of plans and animals, then the industrial revolution.1 Observed
that even in inflation-adjusted $, companies have grown bigger. 1900 Standard
Oil was $1.4G ($70G in 2015), 1955 GM was $10G ($100G in 2015) but Sinopec
is $500G.

Note that intuition lives in the earlier parts of the brain. Good intuition
comes from structure, repetition and feedback. But business decisions tend not
to fall into this category.

Intel has gone from 2300 transistors in 1971 to 6.5G today. Question: do
computers belong on this timeline.

10.1.2 Problem

When the Chief Mathematician (speaker) goes into a room full of Vice-Presidents,
they don’t take his word for it: they want to apply their “business intuition”.

1713: Nicholas Bernoulli and the Saint Petersburg Problem was the start
of “perfect rationality” and the Expected Utility Hypothesis. But see Herbert

1JHD notes that writing, arithmetic etc. were omitted.
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Simon’s research (Nobel Prize in Economics) “Models of Bounded Rational-
ity”. Daniel Kahneman (2002 Nobel) claims that humans have biased bounded
rationality. See his book “Thinking Fast and Slow”.

Overconfident professionals sincerely believe they have expertise act
as experts, and look like experts. “You have to struggle to remind
yourself that they may be victims of an illusion” — Kahneman.

But: how biased are we, and what can we do about it.

10.1.3 Towards a solution

Human techniques.

1. Heuristic search with paper/pencil

2. Heuristic Search with a Spreadsheet

3. Optimisation with a strong technique (CPLEX)

4. Automation with a strong technique

Solutions

1. Over-riding intuition

2. More recently, implicitly using intuition

3. Now, explicitly using intuition

Example 57 (A new (Intel) factory) Building (clean rooms) costs $2G; equip-
ment $6G2. If I give you the flow, characteristics of the equipment, can you
decide how much equipment is needed? Note that there’s re-entrant flow —
machines used repeatedly in the process.

Traditional methodology was divide and conquer: cost each machine type
separately. Problem is that all the equipment is independent, but the flow is not.
Hence we now do a discrete event simulation (warm it up for a year of simulated
time, then run for two years). Typically end up with a set of equipment that
costs less but actually produces more.

Example 58 Lead time for equipment is growing: current 4Q-5Q. But fore-
casting is getting harder (1D–2Q). So what is your demand forecast? If we
order equipment to hit the upper forecast, we risk using $300M unfulfilled, If we
hit the lower forecast, we risk unfulfilling $3G of sales. So current strategy is
to buy from the lower bound, with options (including paying for long-lead-time
sub-assemblies) for more.

2[Hsu21], admittedly six years later, claims $5–20G, and quotes a single extreme ultraviolet
lithography (EUV) machine that costs more than $100 million.
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I am confident telling any group at Intel that using our tools will halve your
decision time (I normally get 5×–10×) and get a 5% better solution (I expect
10%–15%).

Then we should recall “the wisdom of crowds”. Consider “Guess the weight”
contests — the mean is generally closer than any individual forecast. Note that
we hear 1:1 from our customers. Linear regression of forecast/actual purchase
has r=0.78. There’s a “Bass Model” for technology diffusion. This reduces our
average forecast error by 25%.

Also set up a “prediction market” internally for our experts to buy “shares”
in forecasts. 6 of 11 quarters are ±5%, 10 of 11 are ±10% — pretty good.

A large range of possible projects, with inter-relationships. Key concept
is the “efficient frontier of non-dominated Portfolios”. Then use “elimination
by aspects”. First one is budgets — in line with plans. Then look at “prod-
ucts/projects in all”, in none etc. Then resources (by skill set) etc. Then market
balance.

Executives are irrationally overconfident in their decisions. Application of
analytics to exclude or employ intuition can yield better/faster decisions.

But what we are doing at Intel is only the tip of the iceberg! Call for young
mathematicians to do more research here.

10.2 Developments in Computer Algebra Research
and the Next Generation: Yokoyama

“Heuristic Counting of Kachisa–Schaefer–Scott curves”: JSIAM Letters 6(2014)
pp. 73-76.

Consider elliptic curve cryptography. Note that you can draw a curve in
R2, but looked at over a finite field it’s a set of dots. Given P and Q, can we
compute n such that Q = n× P .

Pairing-friendly curves. Supersingular. Miyaji-Nakabayaski-Takano, Barret-
Naehig are the ones that interest us.

Q(y) =
C

deg q+ deg r+

∫ y

2

1

(log c)2
dx.

Use Hosten-Thomas’ algorithm.
Computed various examples from isl.

10.3 Lattice-based Analysis and Their Applica-
tions in Public Key Cruptanalysis; Moro-
zov

Note [Cop96] and [HerrmanMay2008] if we know some bits of p. [Bloemer-
May2003] if some bits of d are known.
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Other side-channel attacks. Suppose Ni = piqi and suppose pi share bots.
Once studied by Faugère.

Lemma 7 ([HG97]) If ||g(X1x1, lgots,Xnxn)|| > N√
ω

then the root is exact.

1. Collect polynomials with root x0 modulo Nm

2. Construct a lattice with coefficents gi(xX) as basis vectors. Thel LL
reduce

3. If X < N1/3 this is an exact solution.

What we are doing: improve Sarkar-Maitra and revisit [Pengetal??].

10.3.1 SarkatMaitra

Suppose pi share a certain number of MSB. Then gcd(N1, N2+(p1−p2)q2, . . .) =
p1. We onbserve that u

(0)
i contains a large prime q1 determines by N1.

Theorem 64 Suppose p − 1 have αn bits (qi have (1 − α)n bit) pi share γn
bits. Then N1, N2 can be factored in polynomial time if [condition on α, γ].

10.3.2 Pengetal

Based on [MayRitzenhofen]. When γ < k
k−1α the reduced basis doesn’t actually

contain the required vector. They use [HerrmanMay2008]
Apparently these two produce the same bounds. This works in the case of

balanced moduli (α = 0.5). 512/512 bits needs 460 shared bits: lattice has
dimension 105 and takes 2000 seconds.

10.4 Mansfield

See also work of Hubert. She really put moving frames on a rigorous basis for
symbolic computation. I need a Lie group. G×M →M is a regular free action.
The elements of the group foliate the space, and there is a unique element of G
that moves m to m′. ρ :M → G by

Solve ϕj(g · z) = 0 for j = 1/ldotsdimG. Solve this and invoke Implicit
Function Theorem.

If I(zi) are the canonical invariants for z = (z1, ldots, zi) and F (z1, . . . , zn)
is an invariant, then we have a replacement rule

F (z1, . . .) = F (g · z1, . . .) = · · · .

Example 59 (difference) un+k 7→ ũn+k = λun+k + ϵ Φ : ×un = 1,×un+1 =
0. λ = − 1

un+1−un
and µ. But I(un+k) has a fixed base point, which is not what

I want. End up with a matrix in λ, ϵ independent of n.

98



In anything, we end up with too many invariants. In the differential case, the
components of the Maurer–Cartan matrices are (almost) generating.

The point is to be able to solve for the invariants without solving for the
frame.

“multispace” is a manifold that contains the jet bundle, but also local lattice
embeddings. Regard jet space as equivalent classes, and a function as equivalent
to its Lagrange interpolation. Hence the points we interpolate have to be in
general position. If points coalesce, we have points with multiplicity: ultimately
interpolation becomes Taylor series.

10.5 Binomal Differnce Ideal and Toric Differ-
ence Variety: Yuan

In the algebraic case, these are well-studied. [EisenbudSturmfels1996].
A lattice is a mobule in Z[x]n. Note not a PID so may not have HNF. (f1, . . .)

is a GB iff a generalised Hermite form. (F, σ) is a difference field. Assume F
algebarically closed. If p =

∑
cix

i write ap =
∑

(σia)ci . Ratio of σ-monomials
is a Laurent σ-monomial. Hence Laurent σ-binomial:.

We can define a partial character ona lattice Lp is a homomorphism onlt F ∗.
Let I(ρ) = [Yf − ρ(f)|f ∈ Lp]. Get a difference ascending chain.

Theorem 65 f is a reduced GB with [A] ̸= [1] iff A is a reguar and coherent
difference ascending chain iff A is a characteristic set of [A].

An ideal is reflexive of ρx ∈ I ⇒ ρ ∈ I. Also Perfec and prime. We can define
Z-saturated also x-saturated (xf ∈ L⇒ xinL), and saturated if it is both.

Example 60 F = Q(
√
3) and p = y3−1. {p} = [p, yx−1−1] if σ(

√
−3) =

√
−3

and {p} = [p, yx−2 − 1] otherwise.

Theorem 66 If I(ρ) is perfect, then Lρ is N -saturated; if Lρ is x,M -saturated
then ;dots.

Can characterise reflexive closure of T and perfect closure.
Similar results in the non-Laurent case.
Torilc σ-deals and varieties. A toric variety is a σ-variety parameterized by

σ-monomials.

Theorem 67 (equivalent) 1. X ≡ Spec(Q{M}) wherne M ⊂ Z[X] is . . .

Theorem 68 The σ-Chow form of Xα is the σ-sparse resultant with support
α.

Algorithms to compute the saturations (in both directions). [Gaoetal2014aArXiV]
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10.6 Differential Algebar and the muduli space
of products of elliptic curves: Freitag

This is really about conjectures coming from Diophantine Geometry. X is a
family of sets (typically subvarieties of a fixed variety) and F a subset of special
sets. Fa are special points. If V ∈ X contains “many” special points implies
U ⊂ V is positive dimensional and special.

Example 61 V = Cn; X is { irreducible algebaric subsets of V }. F is pA
where p ∈ Tor(V ). . . .

Also Manin–Mumford conjecture is of this form.
Recall j-function.

Definition 32 a function f which is anlytic on some domain is automorphic
if

1. . . .

Theorem 69 (Ax–Lindemann–Weierstrass) If the ai are linearly indepen-
dent over C, their exponentials are algebarically independent.

For “algebraically dependent” if ai = g(aj) we will say thatj(ai), j(aj) are
modularly dependent. Note that j satisfies a third-order differential equation.

Theorem 70 (Pila) Let W ⊂ C The ai are modularly dependent iff the 3n
functions are algebraiclly dependent.

step 0 Let f(t)]inMer(U) The Kolchin closure of Iso(j(f(t))) is given by
{x|χ(x) = Sδ(f(t))}.

Step1 By Nishioka’s theorem; j(f(t)) is generic on this set.

Step 2 Shelah reflecting principle. Le A ⊂ B ⊂ M and tp(a/b) be a forking
extension of tp(a/A). Thnen cb(a/B) ⊂ acl({di}i∈N) where the di form
an indiscernable sequence.

Step 3 By Pila, linearly dependent → algebraically dependent.

step 4 If we could assume di = j(git) for gi ∈ GL2(R) we would be done.

Step 5 Siedenberg. Let K = Q(u1, . . . , un) be a differential field generated
by n elements over Q and letK1 = K(v) be a simple differentual field
extensin of N . SUppose U ⊂ C is an open ball and ι : K → and . . . .

Suppose Y ⊂ Xa × Xb and Y cnnot prokect ontpo both Xa and Xb. then we
say Xa ⊥ Xb.
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10.7 Differential Chow Varieties Exist: Wei Li

Algebraic Chow Variety. Let V =
∑
siVi be a d-cycle in Pn. The Chow form of

V is a aunique polynomial F (ui,j) =
∑

ω cωMω(ui,j) such that F (ui,j) = 0 ⇔ V

bigcapdi=1

(∑
j ui,jv− = 0

)
̸= 0.

Example 62 A line in P3. The Chow coordinates are then Plücker coordinates
in this case.

For an affine variety, the Chow variety may not be closed.
Differential Chow Form[GaoLiYuan2013]. Consider a sufficiently saturated

U |= DCF0 and An ≡ Un. Hence differential Cow coordinates.
Proved that these differential Chow varieties exist when g = 1. We will now

show that these exost for all (d, h, g,m). Use various ingrediat=ents, especially
differential characteristic sets. Need a prolongation sequence τl : functors for
the category of algebraic varieties in An to the category of algebraic varieties
in An(l+1). ∇l : V → τl(V ) — differential point.

A component of a differential variety with maximal Kolchin polynomial is
called a generic component.

Need toprove results about what, relative to DCF0, is definable in families.
Butit is open whether primality of radical ideals is definable in families.

We proved that C1 is a constructible set, with a 1-1 map to δ-Chown(d, h, g,m).
Is there a more natural construction (this one used a lot of model theory!).

Also the Ritt problem!

Q Do you know any one example?

A We know ones in dimension 1, not in higher dimension.

Q Is there any conjecture that can imply the Ritt problem?

A No!

10.7.1

10.7.2
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