
MKM from book to computer:
a case study

James H. Davenport?

Department of Computer Science, University of Bath, Bath BA2 7AY, England
J.H.Davenport@bath.ac.uk

Abstract. [2] is one of the great mathematical knowledge repositories.
Nevertheless, it was written for a different era, and for human reader-
ship. In this paper, we describe the sorts of knowledge in one chapter
(elementary transcendental functions) and the difficulties in making this
sort of knowledge formal. This makes us ask questions about the nature
of a Mathematical Knowledge Repository, and whether a database is
enough, or whether more “intelligence” is required.

1 Introduction

It is a widely-held belief, though probably more among computer scientists and
philosophers than among mathematicians themselves, that mathematics is a
completely formal subject with its own, totally precise, language. Mathemati-
cians know that what they write is in a “mathematical vernacular” [7], which
could, in principle be rendered utterly formal, though very few mathematicians
do so, or even see the point of doing so. In practice the mathematical vernacular
is intended for communicating between human beings, or more precisely, math-
ematicians, or, more precisely still, mathematicians in that subject. The reader
is meant to apply that nebulous quality of “common sense” when reading the
mathematical vernacular.

It turns out to be remarkably hard to write “correct” mathematics in the
mathematical vernacular. The problem is often with “obvious” special cases that
are not stated explicitly1, but which the knowledgeable reader will (and must)
infer. There are even errors in [2] of this sort — see [11] and equation (23). The
ninth printing of [2] contained corrections on 132 pages, and the Dover reprint
of that corrected a further nine pages.

In this paper, we will explore the problems of representing a small part of one
of the most well-known sources of mathematical knowledge: [2]. In particular,
we consider the problems of translating the relevant content of chapter 4 —
Elementary Transcendental Functions — into OpenMath [1, 13]. In this paper we
? The author was partially supported by the European OpenMath Thematic Network

and the Mathematical Knowledge Management Network.
1 The author recently had a problem with this, having set an examination question “if

α is algebraic and β is transcendental, is αβ always transcendental”? One student
answered in the negative, quoting the case of α = 0.

will be concerned with the semantic problems, rather than with the OpenMath
problems. It should be noted that there is concern within the computer algebra
community about the treatment of these functions in computer algebra [3, 17].

It should be emphasised that this paper is in no way a criticism of [2]. The
author is one of, probably literally, millions of people who have benefited from
this enormous compendium of knowledge. Rather, the point is to illustrate that
a book produced for other human beings to read, in days before the advent
of (general-purpose) computer algebra systems or theorem provers, implicitly
assumes knowledge in the reader that it is notoriously difficult to imbue such
systems with. We therefore ask how we can make such knowledge explicit.

2 The “Elementary Transcendental Functions”

These days2 these functions are normally considered to be exp and its inverse
ln, the six trigonometric functions and their inverses, and the six hyperbolic
functions and their inverses. For the purposes of this paper, we will class exp,
the six trigonometric functions and the six hyperbolic functions together as the
forward functions, and the remainder as the inverse functions.

The forward functions present comparatively little difficulty. They are contin-
uous, arbitrarily-differentiable, many–to–one functions defined from C (possibly
less a countable number of singularities) to C. While it is possible to extend
them to run from from the whole of C to C ∪ {∞}, [2] sensibly chooses not to.
The concept of ∞ is a difficult one to formalise (but see [4]), and, while R ⊂ C,
it is not the case for their natural completions: R ∪ {−∞,+∞} 6⊂ C ∪ {∞}.

The problem lies rather with the inverse functions. They are continuous,
arbitrarily-differentiable, one–to–many functions defined from C (possibly less
a countable number of singularities) to an appropriate Riemann surface. The
problem comes when we wish to consider them as functions from C (possibly
less a countable number of singularities) to C. The solution is to introduce
“branch cuts”, i.e. curves (though in practice we will only be considering lines
in this paper) in C across which the inverse function is not continuous.

Provided that they satisfy appropriate mathematical conditions, any line or
curve can be chosen as the branch cut. For example, ln, as one makes a complete
counter-clockwise circle round the origin, increases in value by 2πi. Therefore
any simple curve from the origin to infinity will serve as a branch cut. The
normal choice today3, as in [2], is to choose the negative real axis.

It is also important to specify what the value of the function is on the branch
cut. It clearly makes sense to have it continuous with one side or the other, and
the common choice, as in [2], is to choose the value of ln on the branch cut to
be continuous with the upper half-plane, so that −π < = ln z ≤ π. However,

2 Other trigonometric variants such as versine have disappeared. However, see section
5.

3 Though the author was taught at school to use the positive real axis, with 0 ≤
= ln z < 2π.

this choice is essentially arbitrary, and [16] would like to make the function two-
valued on the branch cut: ln(−1) = ±πi. This has the drawback of not fitting
readily with numerical evaluation.

One still might wish to “have one’s cake and eat it”. [15] points out that the
concept of a “signed zero”4 [14] (for clarity, we write the positive zero as 0+ and
the negative one as 0−) can be used to solve this dilemma, if we say that, for
x < 0, ln(x + 0+i) = ln |x|+ πi whereas ln(x + 0−i) = ln |x| − πi. However, this
is no use to computer algebra systems, and little use to theorem provers.

The serious problem with branch cuts is that they make many “obvious” re-
lations false. For example, exp takes complex conjugates to complex conjugates,
as exp z = exp z, so one might expect the same, i.e.

log z
?=log z, (1)

to be true of its inverse. Unfortunately, this is true everywhere except on the
branch cut, where z = z, and therefore log z = log z. These complications mean
that it is not a simple matter to codify knowledge about the inverse functions.

2.1 Encoding branch cut information

[10] points out that most ‘equalities’ do not hold for the complex logarithm, e.g.
ln(z2) 6= 2 ln z (try z = −1), and its generalisation

ln(z1z2) 6= ln z1 + ln z2. (2)

The most fundamental of all non-equalities is z = ln exp z, with an obvious
violation at z = 2πi. They therefore propose to introduce the unwinding number
K, defined5 by

K(z) =
z − ln exp z

2πi
=

⌈
=z − π

2π

⌉
∈ Z (3)

We can then rescue equation (1) as

ln z = ln z − 2πiK(ln z). (4)

Since we know that −π < = ln z ≤ π, −π ≤ =ln z < π. So the only places where
the K term is non-zero is when =ln z = −π, i.e. = ln z = π. Hence this equation
implicitly encodes the region of invalidity of equation (1).
4 One could ask why zero should be special and have two values (or four in the

Cartesian complex plane). The answer is that all the branch cuts for the basic
elementary functions (this is not true for, e.g. ln(i + ln z), whose branch cut is
z ∈ {et(cos 1 + i sin 1) | t ∈ (∞, 0]) are on either the real or imaginary axes, so the
side to which the branch cut adheres depends on the sign of the imaginary or real
part, including the sign of zero. With sufficient care, this technique can be used for
other branch cuts as long as they are parallel with the axes, e.g. ln(z + i).

5 Note that the sign convention here is the opposite to that of [10], which defined K(z)
as bπ−=z

2π
c: the authors of [10] recanted later to keep the number of −1s occurring

in formulae to a minimum.

3 Codifying ln

[2, p. 67] gives the branch cut (−∞, 0], and the rule [2, (4.1.2)] that

−π < = ln z ≤ π. (5)

OpenMath has chosen to adopt equation (5) as the definition of the branch cut,
rather than words, since it also conveys the necessary information about the
value on the branch cut, which the form of words does not. From equation (5),
one can deduce that the branch cut is {z | = ln z = π}, which should be the
same as {z | = ln z = −π}. However, it takes a certain subtlety to convert this
to z ∈ (−∞, 0], and maybe the branch cut should be stated explicitly, either
instead of equation (5) (but then how does one specify the value on the branch
cut?) or as well as it (in which case, how does one ensure coherence between the
two?). However, despite the discussion in the previous section, precisely what
formal semantics can one give to the phrase “branch cut”? Does it depend on
one’s semantic model for C and functions C→ C?

Currently, OpenMath does not encode equations such as equation (1) (since
they are false). There are various options.

1. Encode them with unwinding numbers, as in equation (4).
2. Encode them as conditional equations, e.g.

z /∈ branch cut ⇒ log z = log z, (6)

3. Encode them via multivalued functions (see section 6)

The unwinding number approach is attractive, and it could be used in the “un-
winding number approach” to simplification [8]. However, it would be useless
to a system that did not support the semantics of unwinding numbers, though
an “intelligent” database might be able to convert such an encoding into the
conditional one. The conditional equation approach might be helpful to theorem
provers, but the proof obligations that would build up might be unmanageable.
In this form, it does not say what happens when z is on the branch cut, but an
“else clause” could be added.

To state them in the “unwinding number” formalism, the following equations
seem to be a suitable “knowledge base” for ln, in addition to equation (4).

ln(z1z2) = ln z1 + ln z2 − 2πiK(ln z1 + ln z2). (7)

ln(z1/z2) = ln z1 − ln z2 − 2πiK(ln z1 − ln z2). (8)

The following is a re-writing of equation (3):

ln exp z = z − 2πiK(z), (9)

and we always have
exp ln z = z. (10)

It is harder to write equations (7) and (8) in a “conditional” formalism, since
what matters is not so much being on the branch cut as having crossed the
branch cut. A direct formalism would be

(−π < =(ln z1 + ln z2)) ∧ (=(ln z1 + ln z2) ≤ π) ⇒ ln(z1z2) = ln z1 + ln z2,

but, unlike equation (6), there is an input space of measure 0.5 on which this
does not define the answer. One is really forced to go to something like

−π < =(ln z1 + ln z2) ≤ π ⇒ ln(z1z2) = ln z1 + ln z2

=(ln z1 + ln z2) > π ⇒ ln(z1z2) = ln z1 + ln z2 − 2πi

=(ln z1 + ln z2) ≤ −π ⇒ ln(z1z2) = ln z1 + ln z2 + 2πi

which is essentially equation (7) unwrapped.

3.1 Square roots

It is possible to define
√

z = exp
(

1
2 lnx

)
. This means that

√
inherits the

branch cut of ln. Since this definition is possible, and causes no significant prob-
lems, Occam’s Razor tells us to use it. Equation (7) then implies

√
z1z2 =

√
z1
√

z2 (−1)K(ln z1+ln z2), (11)

and the same discussion about alternative forms of equation (7) applies here. It
is also possible to use the complex sign6 function to reduce this to

√
z1z2 = csgn (

√
z1
√

z2)
√

z1
√

z2. (12)

4 Other inverse functions

All the other forward functions can be defined in terms of exp. Hence one might
wish to define all the other inverse functions in terms of ln. This is in fact
principle 2 of [9] (and very close to the “Principal Expression” rule of [15]).

All these functions should be mathematically7 defined in terms of ln, thus
inheriting their branch cuts from the chosen branch cut for ln (equation
5).

6 The csgn function was first defined in Maple. There is some uncertainty about
csgn(0): is it 0 or 1, but for the reasons given in [6], we choose csgn(0) = 1.

7 This does not imply that it is always right to compute them this way. There may be
reasons of efficiency, numerical stability or plain economy (it is wasteful to compute
a real arcsin in terms of complex logarithms and square roots) why a numerical,
or even symbolic, implementation should be different, but the semantics should be
those of this definition in terms of logarithms, possibly augmented by exceptional
values when the logarithm formula is ill-defined.

In fact, it is not just the branch cut itself, but also the definition of the function
on the branch cut, that follows from this principle, since we know the definition
of ln on the branch cut.

[2] does not quite adhere to this principle. It does give definitions in terms
of ln, but these are secondary to the main definitions, and, as in the case of [2,
4.4.26]

Arcsin x = −iLn
(√

1− x2 + ix
)

|x2| ≤ 1, (13)

the range of applicability is limited. [15] suggested, and [9] followed, that equa-
tion (13) be adopted as the definition throughout C. This has the consequence
that

arcsin(−z) = − arcsin(z) (14)

is valid throughout C. No choice of values on the branch cut (compatible with
sin arcsin z = z) can make arcsin(z) = arcsin(z) valid on the branch cut: it has
to be rescued as

arcsin z = (−1)K(− ln(1−z2)) arcsin z
+ πK(− ln(1 + z))− πK(− ln(1− z)). (15)

Here we have a fairly complicated formula, and the conditional form

(z /∈ R) ∨ (z2 ≤ 1) ⇒ arcsin z = arcsin z (16)

(which does not tell what happens on the branch cuts, but there z = z) might
be simpler.

For real variables, the addition rule for arctan can be written out condition-
ally [6]:

arctan(z1) + arctan(z2) = arctan
(

z1+z2
1−z1z2

)
+

{π z1 > 0, z1z2 > 1
0 z1 ≥ 0, z1z2 ≤ 1
−π z1 < 0, z1z2 ≥ 1

(17)

For both real and complex variables, there is a representation [8] in terms of
unwinding numbers:

arctan(z1) + arctan(z2) = arctan
(

z1+z2
1−z1z2

)
+

πK (2i(arctan(z1) + arctan(z2)) .
(18)

It is also possible to write the law for addition of real arcsin of real arguments
in a conditional form:√

(1− z2
1)(1− z2

2)− z1z2 ≥ 0 ⇒ arcsin(z1) + arcsin(z2) = A (19)

(
√

(1− z2
1)(1− z2

2)− z1z2 < 0) ∧ (z1 > 0) ⇒ arcsin(z1) + arcsin(z2) = π −A

(
√

(1− z2
1)(1− z2

2)− z1z2 < 0) ∧ (z1 < 0) ⇒ arcsin(z1) + arcsin(z2) = −π −A,

where A = arcsin
(
z1

√
1− z2

2 + z2

√
1− z2

1

)
, but we have yet to find8 an un-

winding number formalism in terms of arcsin — there clearly is one in terms of
(complex) lns, which works out to be arcsin(z1) + arcsin(z2) =

−i

[
ln

(
iz1

√
1− z2

2 + iz2

√
1− z2

1 +

(−1)K(c2)

√
1−

(
z1

√
1− z2

2 + z2

√
1− z2

1

)2
)

+ 2πiK(c1)
]
,

where the correction terms are c1 = i(arcsin(z1) + arcsin(z2)) and

c2 = 2 ln
(√

1− z2
1

√
1− z2

2 − z1z2

)
.

When K(c2) = 0, the main ln is recognisably arcsin
(
z1

√
1− z2

2 + z2

√
1− z2

1

)
,

as required, but otherwise it is ±π − arcsin
(
z1

√
1− z2

2 + z2

√
1− z2

1

)
.

It is also possible to state correct relations between the inverse trigonometric
functions, as in [9]:

arcsin z = arctan
z√

1− z2
+ πK(− ln(1 + z))− πK(− ln(1− z)). (20)

No really new issues arise when looking at the other inverse trigonometric
functions, or at the inverse hyperbolic functions.

5 The case for ATAN2

It is common to say, or at least believe, that, for real x and y,

arg(x + iy) = arctan
(y

x

)
, (21)

but a moment’s consideration of ranges (a tool that we have found very valuable
in this area) shows that it cannot be so: the left-hand side has a range of (−π, π]
with the standard branch cuts, and certainly has a range of size 2π, whereas the
right-hand side has a range of size π.

The fundamental problem is, of course, that considering y
x immediately con-

fuses 1 + i with −1 − i. This fact was well-known to the early designers of
FORTRAN, who defined a two-argument function ATAN2, such that

ATAN2(y, x) = arctan
(y

x

) ?
±π. (22)

More precisely, the correction factor is 0 when x > 0, +π when x < 0 and y ≥ 0,
and −π when x, y < 0. For completeness, one should also define what happens
when x = 0, when the answer is +π/2 when y > 0 and −π/2 when y < 0.
8 The situation with addition of arcsin is complicated: see the discussion around equa-

tion (37).

This has been added to OpenMath, as the symbol arctan in the transc2
Content Dictionary. Use of this enables us to rescue the incorrect equation [2,
6.1.24] arg Γ (z + 1) = arg Γ (z) + arctan y

x (where x and y are the real and
imaginary parts of z) as

arg Γ (z + 1) ≡ arg Γ (z) + arctan(y, x) (mod 2π). (23)

We should note the necessity to think in terms of congruences.

6 Multivalued functions

Mathematical texts often urge us (and we have found this idea useful in [6, 5])
to treat these functions as multivalued (which we will interpret as set-valued),
defining, say, Ln(z) = {y | exp y = z} = {Ln z + 2nπi | n ∈ Z} (therefore
Sqrt(z) = ±

√
z) and Arctan(z) = {y | tan y = z} = {arctan(z) + nπ | n ∈ Z}

(the notational convention of using capital letters for these set-valued functions
seems helpful). It should be noted that Ln and Arctan are deceptively simple
in this respect, and the true rules for the inverse trigonometric functions are [2,
(4.4.10–12)]

Arcsin(z) = {(−1)k arcsin(z) + kπ | k ∈ Z} (24)
Arccos(z) = {± arccos(z) + 2kπ | k ∈ Z} (25)
Arctan(z) = {arctan(z) + kπ | k ∈ Z} (26)
Arccot(z) = {arccot(z) + kπ | k ∈ Z} (27)
Arcsec(z) = {± arcsec(z) + 2kπ | k ∈ Z} (28)
Arccsc(z) = {(−1)k arccsc(z) + kπ | k ∈ Z} (29)

where we have changed to our set-theoretic notation, and added the last three
equations, which are clearly implied by the first three.

[2, (4.4.26–31)] give equivalent multivalued expressions in terms of Ln, as
in table 1 (we have preserved their notation). To get the correct indeterminacy

Table 1. Multivalued functions in terms of Ln

(4.4.26) Arcsin x = −i Ln
[
(1− x2)

1
2 + ix

]
x2 ≤ 1

(4.4.27) Arccos x = −i Ln
[
x + i(1− x2)

1
2

]
x2 ≤ 1

(4.4.28) Arctan x = i
2

Ln 1−ix
1+ix

= i
2

Ln i+x
i−x

x real

(4.4.29) Arccsc x = −i Ln

[
(x2−1)

1
2 +i

x

]
x2 ≥ 1

(4.4.30) Arcsec x = −i Ln

[
1 + i (x2−1)

1
2

x

]
x2 ≥ 1

(4.4.31) Arccot x = i
2

Ln ix+1
ix−2

= i
2

Ln x−i
x+1

x real

from equation (24), it is in fact necessary to interpret z
1
2 as Sqrt(z) throughout

this table. The range restrictions are in fact unnecessary (as proved in [12]), and
it is possible (and consistent with the decisions in the univariate case) to accept
these as definitions.

One might think that the move to multivalued functions was a simplification.
Indeed many statements that needed caveats (unwinding numbers, exceptional
cases) before are now unconditionally true: we give a few examples below, where,
for example, Ln(z1) + Ln(z2) is to be interpreted as {x + y | x ∈ Ln(z1) ∧ y ∈
Ln(z2)}.

Sqrt(z1) Sqrt(z2) = Sqrt(z1z2)
Ln(z1) + Ln(z2) = Ln(z1z2)

Ln(z) = Ln z

Arcsin(z) = Arcsin z.

However, all is not perfect. Equation (20), which needed caveats (but only on
the branch cuts), now becomes the strict containment

Arcsin z ⊂ Arctan
z

Sqrt(1− z2)
, (30)

and the true identity is

Arcsin z ∪Arcsin(−z) = Arctan
z

Sqrt(1− z2)
. (31)

Note that it is not true that Arcsin z = Arctan z√
1−z2 : the right=hand side has

values alternately in Arcsin z and Arcsin(−z), and misses half the values in each.

6.1 Addition laws

[2] quotes several addition laws for the multivalued inverse trigonometric func-
tions. We give below (4.4.32–4).

Arcsin(z1)±Arcsin(z2) = Arcsin
(

z1

√
1− z2

2 ± z2

√
1− z2

1

)
. (32)

Arccos(z1)±Arccos(z2) = Arccos
(

z1z2 ∓
√

(1− z2
1)(1− z2

2)
)

. (33)

Arctan(z1)±Arctan(z2) = Arctan
(

z1 ± z2

1∓ z1z2

)
. (34)

Equation (34) is, as the layout suggests, shorthand for the two equations

Arctan(z1) + Arctan(z2) = Arctan
(

z1 + z2

1− z1z2

)
(35)

and

Arctan(z1)−Arctan(z2) = Arctan
(

z1 − z2

1 + z1z2

)
. (36)

It would be tempting to think the same of equation (33), but in fact Arccos(x) =
−Arccos(x), so the ± on the left-hand side is spurious. Modulo 2π, each of
Arccos(z1) and Arccos(z2) has two values, so the left-hand side has, generically,
four values modulo 2π. Therefore we seem to need (see the proof in [12]) both
values of ∓, and this is indeed true. The equation could also be written as

Arccos(z1) + Arccos(z2) = Arccos
(
z1z2 + Sqrt

(
(1− z2

1)(1− z2
2)

))
.

When it comes to equation (32), the situation is more complicated, but in fact
it is possible to prove (see [12]) that any containment of the form Arcsin(z1) +
Arcsin(z2) ⊂ Arcsin(A) must also have the property that Arcsin(z1)−Arcsin(z2) ⊂
Arcsin(A). So the equation should be read as

Arcsin(z1)±Arcsin(z2) = Arcsin
(
z1 Sqrt(1− z2

2) + z2 Sqrt(1− z2
1)

)
, (37)

with each side taking on eight values modulo 2π (counting special cases like
Arcsin(1) as a “double root”).

It is unfortunate that the desire to save space led the compilers of [2] to
compress equations (35) and (36) into equation (34), since the ± notation here
actually has a completely different meaning from its use in the adjacent equations
(32) and (33). For completeness, let us say that in [2, (4.4.35)] —

Arcsin z1 ±Arccos z2 = Arcsin
(

z1z2 ±
√

(1− z2
1)(1− z2

2)
)

= Arccos
(

z2

√
1− z2

1 ∓ z1

√
1− z2

2

)

the convention is as in (4.4.32), i.e. the equation cannot be split and
√

w means
Sqrt(w), whereas in [2, (4.4.36)] —

Arctan z1 ±Arccot z2 = Arctan
(

z1z2 ± 1
z2 ∓ z1

)
= Arccot

(
z2 ∓ z1

z1z2 ± 1

)

the convention is as in (4.4.34), i.e. the equation can be split.

7 Couthness

[9] introducted this concept. If h is any hyperbolic function, and t the corre-
sponding trigonometric function, we have a relation

t(z) = ch(iz) where c =

{ 1 cos, sec
i cot, cosec

−i sin, tan
. (38)

From this it follows formally that

h−1

(
1
c
z′

)
= it−1(z′). (39)

Definition 1. A choice of branch cuts for h−1 and t−1 is said to be a couth
pair of choices if equation (39) holds except possibly at finitely many points.

[9] show that, with their definitions (the definitions of [2] with the values on the
branch cuts prescribed) all pairs were couth except for:

arccos/arccosh Here equation (39) only holds on the upper half-plane (includ-
ing the real axis for <z ≤ 1);

arcsec/arcsech Here equation (39) only holds on the lower half-plane (includ-
ing the real axis for <z > 1).

However, [2, (4.4.20–25)] show that all pairs are couth in the multivalued case
(where equation (39) is interpreted as equality of sets).

8 Conclusion

This paper has, as is perhaps inevitable at this stage of Mathematical Knowl-
edge Management, posed more questions than it answers. For convenience, we
recapitulate them here.

1. Should we codify a branch cut, e.g. for ln as a direct subset of C, or via a
specification such as equation (5).

2. If the former, what formal semantics can we attach to the phrase “branch
cut”? Can one do this in a way independent of the specification of C and
C→ C?

3. What should be the correct encoding of false equations such as equation
(1): unwinding numbers, conditional or multivalued? How does one cope
with equations such as (7) and (8) in the conditional formalism — aren’t we
just rewriting the unwinding number formalism? Conversely, equation (16)
is distinctly simpler than equation (15), and equation (19) currently has
no unwinding equivalent. Should a Mathematical Knowledge Management
system (in this area) have to support more than one such encoding?

4. How do we support the restriction of these functions to (partial) functions
R → R? In this case most of the unwinding number terms or conditions
drop out. It is harder to see how the multivalued formalism supports this
restriction.
The obvious case where some caveat is still necessary is

√
z2 ?=z, where the

formalisms might be:
z ≥ 0 ⇒

√
z2 = z;

√
z2 = (−1)K(2 ln z)

z.

The second has the disadvantage of still introducing complex numbers, via
ln z when z < 0, though it could clearly be massaged into

√
z2 = (sign z)z.

5. It appears that, contrary to popular belief, the multivalued semantics are
not simply a tidier version of the univalued (branch cut) semantics: contrast
equation (20) and its conditional equivalent

(z /∈ R) ∨ (z2 ≤ 1) ⇒ arcsin z = arctan
z√

1− z2

with equation (31). Does this mean that we need two separate Mathematical
Knowledge Repositories for the two cases?

6. Can a Mathematical Knowledge Repository for these facts (either case, or
both cases) be simply a database, or must it be much more intelligent, pos-
sibly incorporating ideas along the lines outlined in [5].

We also deduce the following differences between the “Abramowitz & Stegun”
(A+S) era and the MKM era.

– In the A+S era, it was not necessary to specify the values of the functions on
branch cuts: numerical analysts for the most part did not care (but see [15])
since the branch cuts were of measure zero, and the intelligent reader could
choose the adherence most suitable to the problem. In the MKM era, both
computer algebra systems and theorem provers need to know correctly what
the answer is. For interoperability, they must agree on what the answers is
— see the examples in [9].

– In the A+S era, it was acceptable (maybe only just) to use the ± notation
to mean two different things: in the MKM era it is not, and the notation
should only be used (if at all) with A±B being shorthand for {a + b, a− b}
(or, in the set-valued case (A + B) ∪ (A−B)).

– A+S was ambivalent about whether it was talking about C→ C or (partial)
R→ R. Many of the formulae are stated with (unnecessary) restrictions to
the R case — see equation (13) and [2, 4.4.28] relating Arctan to Ln, which
restricts z to be real.

– In the A+S era “everyone knew” what a branch cut was. To the best of the
author’s knowledge, no computer algebra system or theorem prover does.

It is hoped that these thoughts, limited as they are to one chapter of one book,
will stimulate debate about the difficulties of managing this sort of mathematical
knowledge.

References

1. Abbott,J.A., Dı́az,A. & Sutor,R.S, OpenMath: A Protocol for the Exchange of
Mathematical Information. SIGSAM Bulletin 30 (1996) 1 pp. 21–24.

2. Abramowitz,M. & Stegun,I., Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. US Government Printing Office, 1964. 10th
Printing December 1972.

3. Aslaksen,H., Can your computer do complex analysis?. In: Computer Algebra Sys-
tems: A Practical Guide (M. Wester ed.), John Wiley, 1999. http://www.math.
nus.edu.sg/aslaksen/helmerpub.shtml.

4. Beeson,M. & Wiedijk,F., The Meaning of Infinity in Calculus and Computer Alge-
bra Systems. Artificial Intelligence, Automated Reasoning, and Symbolic Compu-
tation (ed. J. Calmet et al.), Springer Lecture Notes in Artificial Intelligence 2385,
Springer-Verlag, 2002, pp. 246–258.

5. Bradford,R.J. & Davenport,J.H., Towards Better Simplification of Elementary
Functions. Proc. ISSAC 2002 (ed. T. Mora), ACM Press, New York, 2002, pp.
15–22.

6. Bradford,R.J., Corless,R.M., Davenport,J.H., Jeffrey,D.J. & Watt,S.M., Reasoning
about the Elementary Functions of Complex Analysis. Annals of Mathematics and
Artificial Intelligence 36 (2002) pp. 303–318.

7. de Bruijn,N., The Mathematical Vernacular, a language for mathematics with type
sets. Proc. Workshop on Programming Logic, Chalmers U., May 1987.

8. Corless,R.M., Davenport,J.H., Jeffrey,D.J., Litt,G. & Watt,S.M., Reasoning about
the Elementary Functions of Complex Analysis. Artificial Intelligence and Symbolic
Computation (ed. John A. Campbell & Eugenio Roanes-Lozano), Springer Lecture
Notes in Artificial Intelligence Vol. 1930, Springer-Verlag 2001, pp. 115–126.

9. Corless,R.M., Davenport,J.H., Jeffrey,D.J. & Watt,S.M., “According to
Abramowitz and Stegun”. SIGSAM Bulletin 34 (2000) 2, pp. 58–65.

10. Corless,R.M. & Jeffrey,D.J., The Unwinding Number. SIGSAM Bulletin 30 (1996)
2, pp. 28–35.

11. Davenport,J.H., Table Errata — Abramowitz & Stegun. To appear in Math. Comp.
12. Davenport,J.H., “According to Abramowitz and Stegun” II. OpenMath Thematic

Network Deliverable , 2002. http://www.monet.nag.co.uk/cocoon/openmath/

documents/AS2.pdf

13. Dewar,M.C., OpenMath: An Overview. ACM SIGSAM Bulletin 34 (2000) 2 pp.
2-5.

14. IEEE Standard 754 for Binary Floating-Point Arithmetic. IEEE Inc., 1985.
15. Kahan,W., Branch Cuts for Complex Elementary Functions. The State of Art in

Numerical Analysis (ed. A. Iserles & M.J.D. Powell), Clarendon Press, Oxford,
1987, pp. 165–211.

16. Rich,A.D. and Jeffrey,D.J., Function evaluation on branch cuts. SIGSAM Bulletin
116(1996).

17. Stoutemyer,D., Crimes and Misdemeanors in the Computer Algebra Trade. Notices
AMS 38 (1991) pp. 779–785.

