
Contents

List of Figures 9
0.1 List of Algorithms . 12
0.2 List of Open Problems . 14

1 Introduction 19
1.1 History and Systems . 21

1.1.1 The ‘polynomial/calculus’ side 21
1.1.2 The ‘group theory’ side 22
1.1.3 A synthesis? . 22

1.2 Expansion and Simplification . 23
1.2.1 A Digression on “Functions” 26
1.2.2 Expansion . 27
1.2.3 Simplification . 28
1.2.4 An example of simplification 30
1.2.5 Equality . 31

1.3 Algebraic Definitions . 32
1.3.1 Algebraic Closures . 35

1.4 Some Complexity Theory . 35
1.4.1 Complexity Hierarchy . 37
1.4.2 Probabilistic Algorithms 38

1.5 Some Maple . 39
1.5.1 Maple polynomials . 39
1.5.2 Maple rational functions 39
1.5.3 The RootOf construct . 40
1.5.4 Active and Inert Functions 41
1.5.5 The simplify command . 42
1.5.6 Equality . 42

2 Polynomials 45
2.1 What are polynomials? . 45

2.1.1 How do we manipulate polynomials? 47
2.1.2 Polynomials in one variable 47
2.1.3 A factored representation 52
2.1.4 Polynomials in several variables 53

1

2 CONTENTS

2.1.5 Other representations . 55
2.1.6 The Newton Representation 59
2.1.7 Representations in Practice 60
2.1.8 Comparative Sizes . 62

2.2 Rational Functions . 63
2.2.1 Canonical Rational Functions 63
2.2.2 Candidness of rational functions 64

2.3 Greatest Common Divisors . 65
2.3.1 Polynomials in one variable 66
2.3.2 Subresultant sequences . 70
2.3.3 The Extended Euclidean Algorithm 72
2.3.4 Partial Fractions . 74
2.3.5 Polynomials in several variables 74
2.3.6 Square-free decomposition 76
2.3.7 Sparse Complexity . 77

2.4 Non-commutative polynomials 79
2.4.1 Types of non-commutativity 79
2.4.2 Noncommutativity and Division 80

3 Polynomial Equations 81
3.1 Equations in One Variable . 81

3.1.1 Quadratic Equations . 81
3.1.2 Cubic Equations . 82
3.1.3 Quartic Equations . 84
3.1.4 Higher Degree Equations 84
3.1.5 Reducible defining polynomials 85
3.1.6 Multiple Algebraic Numbers 86
3.1.7 Solutions in Real Radicals 87
3.1.8 Equations of curves . 87
3.1.9 How many Real Roots? 89
3.1.10 Thom’s Lemma . 93

3.2 Linear Equations in Several Variables 93
3.2.1 Linear Equations and Matrices 94
3.2.2 Representations of Matrices 94
3.2.3 Matrix Inverses: not a good idea! 96
3.2.4 Complexity . 100
3.2.5 Sparse Systems . 102
3.2.6 Over/under-determined Systems 102

3.3 Nonlinear Multivariate Equations: Distributed 103
3.3.1 Gröbner Bases . 106
3.3.2 How many Solutions? . 109
3.3.3 Orderings . 111
3.3.4 Complexity of Gröbner Bases 113
3.3.5 A Matrix Formulation . 117
3.3.6 Example . 119
3.3.7 The Gianni–Kalkbrener Theorem 121

CONTENTS 3

3.3.8 The Faugère–Gianni–Lazard–Mora Algorithm 124
3.3.9 The Gröbner Walk . 127
3.3.10 Factorization and Gröbner Bases 132
3.3.11 The Shape Lemma . 133
3.3.12 The Hilbert function . 135
3.3.13 Comprehensive Gröbner Bases and Systems 135
3.3.14 Coefficients other than fields 137
3.3.15 Non-commutative Ideals 138

3.4 Nonlinear Multivariate Equations: Recursive 139
3.4.1 Triangular Sets and Regular Chains 139
3.4.2 Zero Dimension . 140
3.4.3 Positive Dimension . 141
3.4.4 Conclusion . 144
3.4.5 Triangular Sets and Gröbner Bases 145
3.4.6 Complexity Bounds . 145
3.4.7 Regular Decomposition 146

3.5 Equations and Inequalities . 146
3.5.1 Applications . 147
3.5.2 Real Radical . 148
3.5.3 Quantifier Elimination . 148
3.5.4 Algebraic Decomposition 150
3.5.5 Cylindrical Algebraic Decomposition 153
3.5.6 Computing Algebraic Decompositions 156
3.5.7 Describing Solutions . 159
3.5.8 Complexity . 163
3.5.9 Further Observations . 164

3.6 Virtual Term Substitution . 166
3.6.1 The Weak Case . 166
3.6.2 The Strict Case . 167
3.6.3 Nested Quantifiers . 168
3.6.4 Universal quantifiers . 169
3.6.5 Complexity of VTS . 170
3.6.6 Higher Degrees . 170
3.6.7 How many real roots . 170

3.7 Conclusions . 171

4 Modular Methods 173
4.1 Matrices: a Simple Example . 174

4.1.1 Matrices with integer coefficients: Determinants 175
4.1.2 Matrices with polynomial coefficients: Determinants . . . 176
4.1.3 Conclusion: Determinants 177
4.1.4 Linear Equations with integer coefficients 177
4.1.5 Linear Equations with polynomial coefficients 178
4.1.6 Conclusion: Linear Equations 178
4.1.7 Matrix Inverses . 179

4.2 Gcd in one variable . 179

4 CONTENTS

4.2.1 Bounds on divisors . 180
4.2.2 The modular – integer relationship 181
4.2.3 Computing the g.c.d.: one large prime 183
4.2.4 Computing the g.c.d.: several small primes 185
4.2.5 Computing the g.c.d.: early success 187
4.2.6 An alternative correctness check 188
4.2.7 Conclusion . 188

4.3 Polynomials in two variables . 190
4.3.1 Degree Growth in Coefficients 190
4.3.2 The evaluation–interpolation relationship 192
4.3.3 G.c.d. in Zp[x, y] . 194
4.3.4 G.c.d. in Z[x, y] . 194

4.4 Polynomials in several variables 197
4.4.1 A worked example . 199
4.4.2 Converting this to an algorithm 201
4.4.3 Worked example continued 202
4.4.4 Conclusions . 206

4.5 Further Applications . 207
4.5.1 Resultants and Discriminants 207
4.5.2 Linear Systems . 207

4.6 Gröbner Bases . 209
4.6.1 General Considerations 211
4.6.2 The Hilbert Function and reduction 212
4.6.3 The Modular Algorithm 214
4.6.4 Conclusion . 215

4.7 Conclusions . 217

5 p-adic Methods 219
5.1 Introduction to the factorization problem 219
5.2 Modular methods . 221

5.2.1 The Musser test . 221
5.3 Factoring modulo a prime . 224

5.3.1 Berlekamp’s small p method 224
5.3.2 The Cantor–Zassenhaus method 226
5.3.3 Berlekamp’s large p method 227
5.3.4 Other Methods . 228
5.3.5 Complexity Theory . 228

5.4 From Zp to Z? . 229
5.5 Hensel Lifting . 231

5.5.1 Linear Hensel Lifting . 231
5.5.2 Quadratic Hensel Lifting 233
5.5.3 Quadratic Hensel Lifting Improved 236
5.5.4 Hybrid Hensel Lifting . 236

5.6 The recombination problem . 238
5.7 Univariate Factoring Solved . 240
5.8 Multivariate Factoring . 242

CONTENTS 5

5.8.1 Bivariate Complexity . 242
5.8.2 A “Good Reduction” Complexity Result 244
5.8.3 Sparsity Results . 244
5.8.4 The Leading Coefficient Problem 246

5.9 Other Applications . 247
5.9.1 Factoring Straight-Line Programs 247
5.9.2 p-adic Greatest Common Divisors 247
5.9.3 p-adic Gröbner Bases . 248
5.9.4 p-adic determinants . 250

5.10 Conclusions . 250

6 Algebraic Numbers and Functions 251
6.1 Representations of Finite Fields 253

6.1.1 Additive Representation 253
6.1.2 Multiplicative representation 254

6.2 Representations of Algebraic Numbers 255
6.3 Factorisation with Algebraic Numbers 256
6.4 The D5 approach to algebraic numbers 257
6.5 Distinguishing roots . 257

7 Calculus 259
7.1 Introduction . 259
7.2 Integration of Rational Expressions 261

7.2.1 Integration of Proper Rational Expressions 261
7.2.2 Hermite’s Algorithm . 262
7.2.3 The Ostrogradski–Horowitz Algorithm 263
7.2.4 The Trager–Rothstein Algorithm 264
7.2.5 Simplest Form? . 267

7.3 Theory: Liouville’s Theorem . 268
7.3.1 Liouville’s Principle . 270
7.3.2 Finding L . 271
7.3.3 Risch Structure Theorem 273
7.3.4 Overview of Integration 274

7.4 Integration of Logarithmic Expressions 276
7.4.1 The Polynomial Part . 277
7.4.2 The Rational Expression Part 277
7.4.3 Conclusion of Logarithmic Integration 278

7.5 Integration of Exponential Expressions 280
7.5.1 The Polynomial Part . 283
7.5.2 The Rational Expression Part 284

7.6 Integration of Algebraic Expressions 286
7.7 The Risch Differential Equation Problem 287

7.7.1 The Denominator . 288
7.7.2 The Numerator . 289

7.8 Worked Examples . 289
7.8.1 First example . 290

6 CONTENTS

7.8.2 Second example . 292
7.9 Other Functions . 294

7.9.1 Other Elementary Functions 294
7.9.2 Integrands beyond “Elementary” 294
7.9.3 Examples . 295
7.9.4 Beyond Liouville’s Principle 297
7.9.5 Non-Liouvillian Functions 298

7.10 The Parallel Approach . 299
7.10.1 An example . 300
7.10.2 The Parallel Approach: Algebraic Expressions 302

7.11 Definite Integration . 302
7.12 Other Calculus Problems . 302

7.12.1 Indefinite summation . 302
7.12.2 Definite Symbolic Summation 303

8 Algebra versus Analysis 305
8.1 Functions and Formulae . 305
8.2 Branch Cuts . 307

8.2.1 Some Unpleasant Facts 307
8.2.2 The Problem with Square Roots 308
8.2.3 Possible Solutions . 308
8.2.4 Removable Branch Cuts 311

8.3 Fundamental Theorem of Calculus Revisited 312
8.4 Constants Revisited . 312

8.4.1 Constants can be useful 313
8.4.2 Constants are often troubling 313

8.5 Integrating ‘real’ Functions . 313
8.6 Logarithms revisited . 315
8.7 Other decision questions . 315
8.8 Limits . 318

8.8.1 A Definite Integral . 318
8.9 Further Developments . 319
8.10 What if I wanted to work with R 319

A Algebraic Background 321
A.1 The resultant and friends . 321

A.1.1 Resultant . 321
A.1.2 Discriminants . 324
A.1.3 Iterated Operations . 324

A.2 Useful Estimates . 325
A.2.1 Matrices . 325
A.2.2 Coefficients of a polynomial 326
A.2.3 Roots of a polynomial . 327
A.2.4 Root separation . 329
A.2.5 Developments . 329

A.3 Chinese Remainder Theorem . 332

CONTENTS 7

A.4 Chinese Remainder Theorem for Polynomials 333
A.5 Vandermonde Systems . 334
A.6 More matrix theory . 336
A.7 Algebraic Structures . 337

B Excursus 339
B.1 The Budan–Fourier Theorem . 339
B.2 Equality of factored polynomials 340
B.3 Karatsuba’s method . 342

B.3.1 Karatsuba’s method in practice 343
B.3.2 Karatsuba’s method and sparse polynomials 344
B.3.3 Karatsuba’s method and multivariate polynomials 344
B.3.4 Faster still . 344
B.3.5 Faster division . 345
B.3.6 Faster g.c.d. computation 346

B.4 Strassen’s method . 346
B.4.1 Strassen’s method in practice 348
B.4.2 Further developments . 348
B.4.3 Matrix Inversion . 349

B.5 Exact Division . 350
B.6 Faster g.c.d. computations . 350

B.6.1 General Idea . 350
B.7 Cyclotomic Polynomials . 351

C Systems 355
C.1 Axiom . 355

C.1.1 Overview . 355
C.1.2 History . 355
C.1.3 Structure . 356

C.2 Macsyma . 356
C.2.1 Overview . 356
C.2.2 History . 358

C.3 Maple . 358
C.3.1 Overview . 358
C.3.2 History . 358
C.3.3 Data structures . 358
C.3.4 Heuristic GCD . 361
C.3.5 Conclusion . 361

C.4 MuPAD . 362
C.4.1 Overview . 362
C.4.2 History . 362

C.5 Reduce . 363
C.5.1 Overview . 363
C.5.2 History . 363

D Index of Notation 365

8 CONTENTS

Bibliography 367

Index 402

List of Figures

1.1 KORDER in Reduce . 25
1.2 Converting Monte Carlo to Las Vegas 39
1.3 expand in Maple . 40
1.4 normal in Maple . 40
1.5 An example of Maple’s RootOf construct 41

2.1 A polynomial SLP . 57
2.2 Code fragment A — a graph . 58
2.3 Code fragment B — a tree . 58
2.4 DAG representation . 59
2.5 Tree representation . 59
2.6 Maple’s Original Polynomials . 61
2.7 Maple’s New-Style Polynomials 61
2.8 Subresultant p.r.s. algorithm . 71

3.1 Program for computing solutions to a cubic 83
3.2 Program for computing solutions to a quartic 84
3.3 x3 − x2 illustrating Thom’s Lemma 94
3.4 Gianni–Kalkbrener Algorithm . 122
3.5 Algorithm 13 . 127
3.6 Algorithm 14 . 128
3.7 Body of Algorithm 15 . 131
3.8 Cylindrical Decomposition after Collins 156
3.9 y3 − 7 y2 + 14 y − x− 8: Thom’ Lemma 160
3.10 y3 − 7 y2 + 14 y − x− 8: indexing 161

4.1 Diagrammatic illustration of Modular Algorithms 173
4.2 Diagrammatic illustration of Algorithm 17 184
4.3 Algorithm 18 . 186
4.4 Diagrammatic illustration of Algorithm 18 187
4.5 “Early termination” g.c.d. code 188
4.6 Algorithm 19 . 189
4.7 Diagrammatic illustration of Algorithm 21 195
4.8 Algorithm 21 . 195

9

10 LIST OF FIGURES

4.9 Diagrammatic illustration of g.c.d.s in Z[x, y] (1) 196
4.10 Diagrammatic illustration of g.c.d.s in Z[x, y] (2) 196
4.11 Diagrammatic illustration of sparse g.c.d. 202
4.12 Algorithm 22: Sparse g.c.d. 203
4.13 Algorithm 23: Inner sparse g.c.d. 203
4.14 Algorithm 24: Sparse g.c.d. from skeleton 204
4.15 f from section 4.4.3 . 204
4.16 g from section 4.4.3 . 205
4.17 Algorithm 26 . 216

5.1 Diagrammatic illustration of Hensel Algorithms 219
5.2 Algorithm 27; Berlekamp for small p 226
5.3 Algorithm28: Distinct Degree Factorization 227
5.4 Algorithm29: Split a Distinct Degree Factorization 228
5.5 Algorithm 30 . 232
5.6 Algorithm 31 . 233
5.7 Algorithm 32 . 234
5.8 Algorithm 33 . 235
5.9 Algorithm 34 . 237
5.10 Algorithm 35: Combine Modular Factors 239
5.11 Overview of Factoring Algorithm 241
5.12 Algorithm 37 . 243
5.13 Algorithm 38 . 246

6.1 Non-candidness of algebraics . 252
6.2 Algebraic numbers in the denominator 252
6.3 An unspecified field in Maple . 254
6.4 Primitive elements in Maple . 255
6.5 An evaluation of Maple’s RootOf construct 256

7.1 Algorithm 41: IntLog–Polynomial 278
7.2 Algorithm 42: IntLog–Rational Expression 279
7.3 Algorithm 43: IntExp–Polynomial 283
7.4 Algorithm 44: IntExp–Rational Expression 284

8.1 A Riemann surface example: log 310
8.2 plot3d(C, x =-4..4, y=-4..4): C from (8.20) 314
8.3 Graph of apparent integral in (8.22) 316

C.1 Axiom output . 356
C.2 Axiom type system . 357
C.3 Macsyma output . 357
C.4 Maple output . 359
C.5 Tree for A, B corresponding to table C.1 360
C.6 Tree for A, B corresponding to table C.2 361
C.7 MuPAD output . 362

LIST OF FIGURES 11

C.8 Reduce output . 363

12 LIST OF FIGURES

0.1 List of Algorithms

1 Miller–Rabin primality testing . 38
2 Euclid . 67
3 General g.c.d. 69
4 Subresultant p.r.s. 71
5 Extended Euclidean . 72
6 General extended p.r.s. 73
7 Bivariate g.c.d. 74
8 Sturm Sequence evaluation . 91
9 Buchberger . 107
10 Gianni–Kalkbrener . 122
11 Gianni–Kalkbrener Step . 122
12 FGLM . 124
13 . 127
14 Extended Buchberger . 128
15 Gröbner Walk . 129
16 Modular Linear Equations . 178
17 Modular GCD (Large prime version) 183
18 Modular GCD (Small prime version) 186
19 Modular GCD (Alternative small prime version) 189
20 Content . 194
21 Bivariate Modular GCD . 195
22 Sparse g.c.d. 203
23 Inner sparse g.c.d. 203
24 Sparse g.c.d. from skeleton . 204
25 Farey Reconstruction . 209
26 Modular Gröbner base . 216
27 . 226
28 Distinct Degree Factorization . 227
29 Split a Distinct Degree Factorization 228
30 Univariate Hensel Lifting (Linear Two Factor version) 232
31 Univariate Hensel Lifting (Linear version) 233
32 Univariate Hensel Lifting (Quadratic Two Factor version) 234
33 Univariate Hensel Lifting (Quadratic version) 235
34 Univariate Hensel Lifting (Improved Quadratic Two Factor version) 237
35 Combine Modular Factors . 239
36 Factor over Z . 241
37 Multivariate Hensel Lifting (Linear version) 243
38 Wang’s EEZ Hensel Lifting . 246
39 Trager–Rothstein . 265
40 Integration Paradigm . 270
41 IntLog–Polynomial . 278
42 IntLog–Rational Expression . 279
43 IntExp–Polynomial . 283
44 IntExp–Rational Expression . 284

0.1. LIST OF ALGORITHMS 13

46 resultant . 322
47 Chinese Remainder . 332
48 Chinese Remainder (Polynomial form) 332
49 Chinese Remainder for Polynomials 333
50 Chinese Remainder (Multivariate) 334
51 Vandermonde solver . 335
52 Vandermonde variant solver . 336

14 LIST OF FIGURES

0.2 List of Open Problems

1 Algebra of O . 37
2 Sparse gcd (strong) . 78
3 Sparse gcd (weak) . 78
4 Roots of Sparse Polynomials . 92
5 Roots of fg + 1 . 92
6 Modern comparison of Minor Computations 102
7 Sparse Gröbner Bases . 114
8 . 116
9 Complexity of the FGLM Algorithm (I) 125
10 Complexity of the FGLM Algorithm (II) 125
11 Coefficient growth in the FGLM Algorithm 126
12 Compare FGLM and Gröbner Walk 132
13 Better treatment of division . 147
14 RAG Formulation 1 . 155
15 Not all CADs are outputs of our algorithms 165
16 Complexity of VTS . 170
17 Central open problem in fewnomial theory 171
18 Matrix Determinant costs . 177
19 Extending Mignotte to g.c.d. 181
20 Improving Landau–Mignotte for g.c.d. 185
21 Alternative Route for Bivariate Polynomial g.c.d. 191
22 Which is the Better Route for Bivariate g.c.d.? 196
23 Bad reductions in Zippel’s algorithm 206
24 Modular Gröbner Bases for Inhomogeneous Ideals 215
25 Reconstructed Bases might not be Gröbner 215
26 Factoring modulo p . 229
27 Evaluate [vH02] against [ASZ00] . 240
28 Better Choice of ‘Best’ Prime . 240
29 Low-degree Factorization . 240
30 p-adic Gröbner bases . 249
31 Algebraic Numbers Reviewed . 257
32 . 267
33 Monomial order in integration . 290
34 Primitive integration . 295
35 Crossings of factored polynomials . 341

Preface

About the Subject

Computer Algebra, as a subject, is precisely what it says: getting computers
to do algebra. Having been envisaged by Ada Countess Lovelace in her de-
scription of Babbage’s Analytical Engine, the field started in the 1950s, with
two MSc theses [Kah53, Nol53] published independently in 1953 on the prob-
lem of differentiation, and calculations in group theory [Has53]. This points
to the fact that “algebra” is to be interepreted broadly, as any part of math-
ematics that can be done symbolically, including large amounts of calculus,
geometry and logic. The field rapidly developed sophisticated systems to do
these calculations, some of which, such as REDUCE [Hea05] and MACSYMA,
have had their 50th birthdays, whereas new ones, such as SageMath and its
Web version CoCalc, arise as well. Computer Algebra is often part of wider
systems, such as Wolfram Alpha or the Symbolic Math toolbox of MATLAB.
Nevertheless, it remans somewhat of a mystery, and is often treated as a black
box understood by a few gurus. A conspicuous example is FORM (https:
//www.nikhef.nl/~form/aboutform/aboutform.html), which is specialist in
high-energy physics. [vH23], subtitled “Maintenance of FORM, the 1980s soft-
ware that’s used for the field’s hardest calculations, rests almost entirely with
one septuagenarian physicist”, illustrates the problem well.

The author has been involved in computer algebra research since 1970, going
on to do a PhD at Cambridge in integration, whose code is still part of the
Reduce system. After teaching computer algebra in France, he and colleagues
wrote the first general textbook in 1986 [DST86]. In those days, the systems ran
on mainframes and needed substantial explanation. The world is very different
these days, and systems can be accessed from websites etc., and the time is ripe
for a different textbook. This book focuses on the principles, rather than any
specific system, and the general principles of the algorithms rather than the
details of the implementations, though various “folklore” ideas are documented
here for the first time.

Drafts of this book have been used to teach computer algebra to undergrad-
uates in the University of Bath and in Zhejiang University, and parts are taken
from material used at KTH. However, it is also intended for independent study,
or to answer questions like “I wonder how the system does that”.

15

https://www.nikhef.nl/~form/aboutform/aboutform.html
https://www.nikhef.nl/~form/aboutform/aboutform.html

16 LIST OF FIGURES

Table 1: Specific Prerequisites
Chapter(s) Subjects
3.2.1 Matrices
4,5 Modular arithmetic
7, 8 Calculus

When it comes to modular arithmetic, we will use the convention that the “mod”
operator has lower priority than other operators, so that

a ∗ b+ c (mod d) is (a ∗ b+ c) (mod d).

About the Book

This text is under active development, especially due to comments from col-
leagues, notably the Bath Mathematical Foundations seminar that listened to
an explanation of section 4.4, and students on the course CM30070 — Computer
Algebra at the University of Bath. David Wilson (now at Facebook) has been a
most helpful recorder of errors during this, and he and Matthew England (now
at Coventry University) have signalled several problems. David Stoutemyer
(Hawaii) has been a very helpful reader. I am grateful to John Abbott (Genoa)
for the polynomial f on page 220, and for the encouragement of people at CICM
2010 to write Chapter 8. Figure 3.8 and the subsequent discussion owes much
to Chris Brown (US Naval Academy) and Matthew England (Coventry Univer-
sity). I am grateful to Professor Vorobjov for the material in Excursus B.4.3.
Professor Sergei Abramov (Russian Academy of Sciences) has been a helpful
reader. As always when I write, I am grateful to David Carlisle for his TEXnical
wisdom.

It is probably best cited as “J.H. Davenport, Computer Algebra. http:

//staff.bath.ac.uk/masjhd/JHD-CA.pdf” with a date.

Mathematical Prerequisites

This book has been used to support teaching at the University of Bath to both
Mathematics and Computer Science Students. The main requirement is “math-
ematical maturity” rather than specific facts: some specific pre-requisites are
listed in Table 1. If the students are not familiar with the O notation, it would
be as well for the lecturer to explain this, at whatever level of sophistication
is appropriate: this book is pretty unsophisticated in its use, and all that is
needed is in section 1.4.

http://staff.bath.ac.uk/masjhd/JHD-CA.pdf
http://staff.bath.ac.uk/masjhd/JHD-CA.pdf

0.2. LIST OF OPEN PROBLEMS 17

Changes after Academic Year 2021–22

13.4.2022 Updated §B.3.1 to reflect [BHK+22].

20.6.2022 Added reference to [RS22] at start of calculus chapter.

Changes in Academic Year 2021–22

2.10.2021 Various updates to the Introduction.

2.11.2021 Inserted the index, which seems to have been omitted.

7.11.2021 Added note at end of previous page about precedence of mod. Miss-
ing closing parenthesis in equation in Observation 13. Also fixed page
reference for Index in ToC.

27.11.2021 Added Algorithm 20 to index under content. Also improved de-
scription of it. Slightly improved description of plex Gröbner base at
(3.38).

?.12.2021 Added definition of quasi-variety. Added footnote 7 (page 227).

?.12.2021 Added definition of solving degree (page 115.

18 LIST OF FIGURES

Chapter 1

Introduction

Computer algebra, the use of computers to do algebra rather than simply arith-
metic, is almost as old as computing itself, with the first theses [Kah53, Nol53]
dating back to 1953. Indeed it was anticipated from the time of Babbage, when
Ada Augusta, Countess of Lovelace, wrote

We may say most aptly that the Analytical Engine weaves alge-
braical patterns just as the Jacquard loom weaves flowers and leaves.
[Ada43]

In fact, it is not even algebra for which we need software packages, computers
by themselves can’t actually do arithmetic: only a limited subset of it. If we ask

Excel1 to compute eπ
√
163−262537412640768744, we will be told that the answer

is 256. More mysteriously, if we go back and look at the formula in the cell, we

see that it is now eπ
√
163−262537412640768800. In fact, 262537412640768744 is

too large a whole number (or integer, as mathematicians say) for Excel to han-
dle, and it has converted it into floating-point (what Excel terms “scientific”)
notation. Excel, or any other software using the IEEE standard [IEE85] repre-
sentation for floating-point numbers, can only store them to a given accuracy,
about2 16 decimal places.3 In fact, it requires twice this precision to show that

eπ
√
163 ̸= 262537412640768744. Since eπ

√
163 = (−1)

√
−163, it follows from deep

results of transcendental number theory [Bak75], that not only is eπ
√
163 not

an integer, it is not a fraction (or rational number), nor even the solution of a
polynomial equation with integer coefficients: essentially it is a ‘new’ number.

1Or any similar software package.
2We say ‘about’ since the internal representation is binary, rather than decimal.
3In fact, Excel is more complicated even than this, as the calculations in this table show.

i 1 2 3 4 . . . 10 11 12 . . . 15 16
a 10i 10 100 1000 1. . . 0 . . . 1. . . 0 1011 1012 . . . 1015 1016

b a-1 9 99 999 9999 9. . . 9 . . . 9. . . 9 1012 . . . 1015 1016

c a-b 1 1 1 1 1 . . . 1 1 . . . 1 0
We can see that the printing changes at 12 decimal digits, but that actual accuracy is not lost
until we subtract 1 from 1016.

19

20 CHAPTER 1. INTRODUCTION

Definition 1 A number n, or more generally any algebraic object, is said to be
transcendental over a ring R if there is no non-zero polynomial p with coeffi-
cients in R such that p(n) = 0.

With this definition, we can say that eπ
√
163 is transcendental over the inte-

gers. Transcendence is a deep mathematical question with implications for the
decidability of computer algebra, see page 317.

We will see throughout this book (for an early example, see page 70) that
innocent-seeming problems can give rise to numbers far greater than one would
expect. Hence there is a requirement to deal with numbers larger, or to greater
precision, than is provided by the hardware manufacturers whose chips under-
lie our computers. Practically every computer algebra system, therefore, has
a package for manipulating arbitrary-sized integers (so-called bignums) or real
numbers (bigfloats). These arbitrary-sized objects, and the fact that mathemat-
ical objects in general are unpredictably sized, means that computer algebra
systems generally need sophisticated memory management, generally garbage
collection (see [JHM11] for a general discussion of this topic).

But the fact that the systems can deal with large numbers does not mean
that we should let numbers increase without doing anything. If we have two
numbers with n digits, adding them requires a time proportional to n, or in
more formal language (see section 1.4) a time O(n). Multiplying them4 requires
a time O(n2). Calculating a g.c.d., which is fundamental in the calculation of
rational numbers, requires O(n3), or O(n2) with a bit of care5. This implies that
if the numbers become 10 times longer, the time is multiplied by 10, or by 100,
or by 1000. So it is always worth reducing the size of these integers. We will
see later (an early example is on page 173) that much ingenuity has been well-
spent in devising algorithms to compute “obvious” quantities by “non-obvious”
ways which avoid, or reduce, the use of large numbers. The phrase intermediate
expression swell is used to denote the phenomenon where intermediate quantites
are much larger than the input to, or outputs from, a calculation.

Notation 1 We write algorithms in an Algol-like notation, with the Rutishauser
symbol := to indicate assignment, and = (as opposed to C’s ==) to indicate the
equality predicate. We use indentation to indicate grouping6, rather than clut-
ter the text with begin . . . end. Comments are introduced by the # character,
running to the end of the line.

4In principle, O(n logn log logn) is enough [AHU74, Chapter 8], but no computer algebra
system routinely uses this, for it is more like 20n logn log logn. However, most systems will
use ‘Karatsuba arithmetic’ (see [KO63, and section B.3]), which takes O(nlog2 3 ≈ n1.585),
once the numbers reach an appropriate length, often 16 words [SGV94].

5In principle, O(n log2 n log logn) [AHU74, Chapter 8], but again no system uses it rou-
tinely, but this combined with Karatsuba gives O(nlog2 3 logn) (section B.3.6), and this is
commonly used.

6An idea which was tried in Axiom [JS92], but which turns out to be better in books than
in real life.

1.1. HISTORY AND SYSTEMS 21

1.1 History and Systems

The first recorded use of computers to do computations of the sort we envisage

was in 1951 [MW51], where 180
(
2127 − 1

)2
+ 1, a 79-digit number, was shown

to be prime. In 1952 the great mathematician Emil Artin had the equally great
computer scientist John von Neumann perform an extensive calculation relating
to elliptic curves on the MANIAC computer [ST15, p. 132]. In 1953, two theses
[Kah53, Nol53] kicked off the ‘calculus’ side of computer algebra with programs
to differentiate expressions. In the same year, [Has53] showed that algorithms
in group theory could be implemented on computers.

1.1.1 The ‘polynomial/calculus’ side

The initial work [Kah53, Nol53] consisted of programs to do one thing, but the
focus soon moved on to ‘systems’, capable of doing a variety of tasks. One early
one was Collins’ system SAC [Col71], written in Fortran. Its descendants con-
tinue in SAC-2 [Col85], QEPCAD [Bro03]7 and TARSKI [VEB18]. Of course,
computer algebra systems can be written in any computer language, even Cobol
[fHN76]. SCHOONSCHIP [Str74] was originally written in IBM709x assem-
bly language, then translated to the CDC 6600 series at CERN, and then the
IBM/360 series at the U.K.’s Rutherford Appleton labs [Str79]. The original
author, Martinus (Tini) Veltman, won the Nobel Prize for Physics8.

However, many of the early systems were written in LISP, largely because
of its support for garbage collection and large integers. The group at M.I.T.,
very influential in the 1960s and 70s, developed Macsyma [MF71, PW85]. This
system now exists in several versions [Ano07], even on mobile ’phones9. At about
the same time, Hearn developed Reduce [Hea71, Hea05] and this system is still in
use: indeed Redlog, built on Reduce, won the NRA (Nonlinear Real Arithmetic)
contest at SMT 201710. Shortly thereafter a group at IBM Yorktown Heights
produced SCRATCHPAD [GJY75]. This group then produced AXIOM [JS92],
a system that attempted to match the generality of mathematics with ‘generic
programming’ to allow algorithms to be programmed in the generality in which
they are conventionally (as in this book) stated, e.g. “polynomials over a ring”
as in Definition 22.

These were, on the whole, very large software systems for the day11, and
attempts were made to produce smaller ones. muMATH [RS79] and its successor

7Also now available on mobile ’phones: https://sites.google.com/site/

maximaonandroid/.
8[Wol21] says “So far as I know it all started from a single conversation on the terrace

outside the cafeteria of the CERN particle physics lab near Geneva in 1962. Three physicists
were involved. And out of that conversation there emerged three early systems for doing
algebraic computation. One was written in Fortran. One was written in LISP. And one was
written in assembly language”. The LISP one was Reduce [Hea71, Hea05], and the Fortran
one was Ashmedai [LR76].

9https://sites.google.com/site/maximaonandroid/, and is distributed, in its Maxima
variant, as part of Sage.

10http://smtcomp.sourceforge.net/2017/results-NRA.shtml.
11The author could only test his Ph.D. programs, written in Reduce, at night.

https://sites.google.com/site/maximaonandroid/
https://sites.google.com/site/maximaonandroid/
https://sites.google.com/site/maximaonandroid/
http://smtcomp.sourceforge.net/2017/results-NRA.shtml

22 CHAPTER 1. INTRODUCTION

Derive [RS92] were extremely successful systems on the early PC, and paved
the way for the computer algebra facilities of many high-end calculators. Much
of the work on “compact computer algebra” is described in [Sto11b].

Maple [CGGG83] pioneered a ‘kernel+library’ design, now common in these
systems.

The basic Maple system, the kernel , is a relatively small collection of
compiled C code. When a Maple session is started, the entire kernel
is loaded. It contains the essential facilities required to run Maple
and perform basic mathematical operations. These components in-
clude the Maple programming language interpreter, arithmetic and
simplification routines, print routines, memory management facili-
ties, and a collection of fundamental functions. [MGH+03, p. 6]

The kernel has grown over time, notably to incorporate the POLY representation
(page 61).

1.1.2 The ‘group theory’ side

Meanwhile, those interested in computation group theory, and related topics,
had not been idle. One major system developed during the 1970s/80s was CAY-
LEY [BC90]. This team later looked at Axiom, and built the system MAGMA
[BCM94], again with a strong emphasis on genericity. Another popular system
is GAP [BL98], whose ‘kernel+library’ design was consciously [Neu95] inspired
by Maple.

The reader may well ask ‘why two different schools of thought?’ The au-
thor has often asked himself the same question. The difference seems one of
mathematical attitude, if one can call it that. The designer of a calculus system
envisages it being used to compute an integral, factor a polynomial, multiply
two matrices, or otherwise operate on a mathematical datum. The designer of
a group theory system, while he will permit the user to multiply, say, permuta-
tions or matrices, does not regard this as the object of the system: rather the
object is to manipulate whole groups (etc.) of permutations (or matrices, or
. . .), i.e. a mathematical structure.

1.1.3 A synthesis?

While it is too early to say that the division has been erased, it can be seen that
MAGMA, for example, while firmly rooted in the group-theory tradition, has
many more ‘calculus like’ features. Conversely, the interest in polynomial ideals,
as in Proposition 35, means that systems specialising in this direction, such as
SINGULAR [Sch03b], Macauley [BS86] or COCOA [GN90], use polynomial
algorithms, but the items of interest are the mathematical structures such as
ideals rather than the individual polynomials. These ideas are now mainstream:
Maple now has a PolynomialIdeals package on similar lines.

1.2. EXPANSION AND SIMPLIFICATION 23

1.2 Expansion and Simplification

These two words, or the corresponding verbs ‘expand’ and ‘simplify’ are much
used (abused?) in computer algebra, and a preliminary explanation may be
in order. Computers of course, do not deal in mathematical objects, but,
ultimately, in certain bit patterns which are representations of mathematical
objects. Just as in ink on paper, a mathematical object may have many rep-
resentations, just as most of us would say that x + y and y + x are the same
mathematical object.

Definition 2 A correspondence f between a class O of objects (generally we
think of the abstract objects of mathematics) and a class R of representations is
a representation of O by R if each element of O corresponds to one or more ele-
ments of R (otherwise it is not represented) and each element of R corresponds
to one and only one element of O (otherwise we do not know which element of O
is represented). In other words “is represented by”, is the inverse of a surjective
function f or “represents” from a subset of R (the “legal representations”) to
O.

Notation 2 When discussing the difference between abstract objects and com-
puter representations, we will use mathematical fonts, such as x, for the abstract
objects and typewriter font, such as x, for the representations.

Hence we could represent any mathematical objects, such as polynomials, by
well-formed strings of indeterminates, numbers and the symbols +,-,*,(,).
The condition “well-formed” is necessary to prevent nonsense such as)x+++1y(,
and would typically be defined by some finite grammer [ALSU07, Section 2.2].
With no simplification rules, such a representation would regard x-x as just
that, rather than as zero.

Definition 3 A representation of an abelian monoid (i.e. a set with a 0, and
an addition operation) is said to be normal if the only representation of the
object 0 is 0.

If we have a normal representation f , then we can tell if two mathematical
objects a and b, represented by a and b, are equal by computing a-b: if this
is zero (i.e. 0), then a and b are equal, while if this is not zero, they must be
unequal. However, this is an inefficient method, to put it mildly.

Observation 1 Normal representations are very important in practice, since
many algorithms contain tests for zero/non-zero of elements. Sometimes these
are explicit, as in Gaussian elimination of a matrix, but often they are implicit,
as in Euclid’s Algorithm (Algorithm 2, page 67), where we take the remainder
after dividing one polynomial by another, which in turn requires that we know
the leading non-zero coefficient of the divisor.

Definition 4 A representation is said to be canonical if every object has only
one representation, i.e. f is a bijection, or 1–1 mapping.

24 CHAPTER 1. INTRODUCTION

With a canonical representation, we can say that two objects “are the same if,
and only if, they look the same”. For example, we cannot have both (x+1)^2

and x^2+2x+1, since (x+ 1)2 = x2 + 2x+ 1.

Definition 5 A representation is said to be locally canonical (with respect to a
certain context) if every object whose introduction does not change the context
has only one representation, i.e. f (restricted to non context-changing expres-
sions) is a bijection, or 1–1 mapping.

The meaning of “context” here depends on the system being used: we give some
examples.

Maple In Maple’s standard expression-tree representation (see Section 2.1.7.3)
the order in which commutative sums and products are stored is that of
first encounter. Hence, after typing cos(a)+sin(b), a subsequent entry
to sin(b)+cos(a) will print as cos(a)+sin(b), but in a frest system
it will print as sin(b)+cos(a). The same effect can be demonstrated
with polynomials, but we have to use enough variables and large enough
exponents to fall outside the remit of the improved POLY representation.
Hence the entire history of the computation, inlcuding logically irrelevant
parts, determines the context.

Reduce In Reduce, the command KORDER can be used to change the order in
which variables are stored: see Figure 1.1. Note that the order of printing
doesn’t change: this is controlled by a separate command ORDER. Hence,
if we are looking at internal representations, a KORDER command changes
the context, but ORDER doesn’t. The converse is true if we are looking at
printed representations.

It is possible to build any normal representation into a locally canonical one,
using an idea due to [Bro69]. We store every computed (top-level) expression
e1, e2, . . ., and for a new expression E, we compute the normal form of every
E − ei. If this is zero, then E = ei, so we return ei, otherwise E is a new
expression to be stored. This has various objections, both practical (the storage
and computation time) and conceptual (the answer printed depends on the
context, i.e. the past history of the session), but nevertheless is worth noting.

Another example of locally canonical representations is at page 86. Note
that no guarantee is made about comparing expressions in different contexts.

Definition 6 ([Sto11a, Definition 3]) A candid expression is one that is not
equivalent to an expression that visibly manifests a simpler expression class.

In particular, if the “simpler class” is {0}, “candid” means the same as normal,
but the concept is much more general, and useful.

Example 1 (Examples of Candidness) 1. Consider A := x2−1
x−1 . This

looks like a fraction of polynomials.

1.2. EXPANSION AND SIMPLIFICATION 25

Figure 1.1: KORDER in Reduce

But if we cancel the g.c.d. (e.g. normal in Maple) we get B := x + 1, which
visibly is (manifests in the words of the definition) a polynomial, which is
simpler than a faction of polynomials.

2. Consider C := sin2(x)+cos2(x). This looks like a trigonometric expression
that depends on x.

But in fact it is equivalent to D := 1, which is visibly independent of x and
has no trigonometry: a simpler class.

So A and C are not candid, while B and D are.

In particular, if a candid expressions contains a variable v, then it really de-
pends on v. Untyped systems such as Maple and Macsyma could be candid in
this sense12: typed systems like Axiom have more problems in this area, since
subtracting two polynomials in v will produce a polynomial in v, even if the
result in a particular case is, say, v − (v − 1) = 1, which doesn’t in fact depend
on v.

Candidness depends on the class of expressions considered as ‘simpler’. Con-
sider

F : x 7→ x−
√
x2 (1.1)

(viewed as a function R→ R). It might be tempting to consider F to be zero,
but in fact F (−1) = −2. In fact, F can also be written as x 7→ x − |x| or

12See section 2.2.2 for other aspects of candidness.

26 CHAPTER 1. INTRODUCTION

x 7→
{

0 x ≥ 0
2x x ≤ 0

. Is (1.1) therefore candid? It depends on the definition of

“simpler”.
Since practically everyone would agree that {0} is a simple class, candid

expressions are automatically normal, but need not be canonical (see (1.1)),
so this definition provides a useful intermediate ground, which often cöıncides
with näıve concepts of “simpler”. We refer the reader to [Sto11a] for further,
very illustrative, examples, to section 2.2.2 for a discussion of candidness for
rational functions, and to sections 7.3.2 and 7.3.3 for a discussion of candidness
in integration theory.

We should note that ‘candidness’ is not always achievable. One possible
requirement would be “if the final value is real, then no complex numbers should
be involved”, but this is not generally possible: at (3.10) we see that the three
real roots of x3 − x can only be computed via complex numbers. In this case,
they have simple expressions (0, +1, and −1), but that is not true in general:
consider x3 − x− 1

1000 , whose roots are

1
60

3
√

108 + 12 i
√

11999919 + 20 1
3
√

108+12 i
√
11999919

,

− 1
120

3
√

108 + 12 i
√

11999919− 10 1
3
√

108+12 i
√
11999919

+

i
√
3

20

(
1/6

3
√

108 + 12 i
√

11999919− 200 1
3
√

108+12 i
√
11999919

)
,

− 1
120

3
√

108 + 12 i
√

11999919− 10 1
3
√

108+12 i
√
11999919

−

i
√
3

20

(
1/6

3
√

108 + 12 i
√

11999919− 200 1
3
√

108+12 i
√
11999919

)
.

1.2.1 A Digression on “Functions”

In colloquial mathematics, the word “function” has many uses and meanings,
and one of the distinctive features of computer algebra is that it plays on these
various uses.

In principle, (pure) mathematics is clear on the meaning of “function”.

On dit qu’un graphe F est un graphe fonctionnel si, pour tout x, il
existe au plus un objet correspondant à x par F (I, p. 40). On dit
qu’une correspondance f = (F,A,B) est une fonction si son graphe
F est un graphe fonctionnel, et si son ensemble de départ A est égal
à son ensemble de définition pr1 F [pr1 is “projection on the first
component”].

[Bou70, p. E.II.13]

The present author’s loose translation is as follows.

We say that a graph (i.e. a subset of A×B) F is a functional graph
if, for every x, there is at most one pair (x, y) ∈ F [alternatively
(x, y1), (x, y2) ∈ F implies y1 = y2]. We then say that a correspon-
dance f = (F,A,B) is a function if its graph F is a functional graph
and the starting set A is equal to pr1 F = {x | ∃y(x, y) ∈ F}.

1.2. EXPANSION AND SIMPLIFICATION 27

So for Bourbaki a function includes the definition of the domain and codomain,
and is total and single-valued.

Notation 3 We will write (F,A,B)B for such a function definition. If C ⊂ A,
we will write (F,A,B)B |C , “(F,A,B)B restricted to C”, for (G,C,B)B where
G = {(x, y) ∈ F |x ∈ C}.

Hence the function sin is, formally, ({(x, sinx) : x ∈ R},R,R)B, or, equally
possibly, ({(x, sinx) : x ∈ C},C,C)B. But what about x + 1? We might be
thinking of it as a function, e.g. ({(x, x+ 1) : x ∈ R},R,R)B, but equally we
might just be thinking of it as an abstract polynomial, a member of Q[x]. In
fact, the abstract view can be pursued with sin as well, as seen in Chapter 7,
especially Observation 18, where sin is viewed as 1

2i (θ − 1/θ) ∈ Q(i, x, θ|θ′ =
iθ). The relationship between the abstract view and the Bourbakist view is
pursued further in Chapter 8.

1.2.2 Expansion

This word is relatively easy to define, as application of the distributive law, as
seen in the first bullet point of Maple’s description of the expand command.

• The expand command distributes products over sums. This is
done for all polynomials. For quotients of polynomials, only
sums in the numerator are expanded; products and powers [in
the denominator13] are left alone.

• The expand command also expands most mathematical func-
tions, including

In any given system, the precise meaning of expansion depends on the underlying
polynomial representation used (recursive/distributed — see page 54), so Maple,
which is essentially distributed, would expand x(y+1) into xy+x, while Reduce,
which is recursive, would not, but would expand y(x+ 1) into xy + y, since its
default ordering is ‘x before y’.

Expansion can, of course, cause exponential blow-up in the size of the ex-
pression: consider (a + b)(c + d)(e + f) . . ., or sin(a + b + c + . . .). The second
bullet point of Maple’s description can lead to even more impressive expansion,
as in

expand(BesselJ(4,t)^3);

(just where did the number 165888 come from?) or

expand(WeierstrassP(x+y+z,2,3));

13See Section 1.5.2.

28 CHAPTER 1. INTRODUCTION

1.2.3 Simplification

This word is much used in algebra, particularly at the school level, and has
been taken over by computer algebra, which has thereby committed the sin of
importing into a precise subject a word without a precise meaning.

Looking at the standard textbooks on Computer Algebra Systems
(CAS) leaves one even more perplexed: it is not even possible to find
a proper definition of the problem of simplification [Car04].

Let us first consider a few examples.

1. Does x2−1
x−1 simplify to x + 1? For most people, the answer would be

‘yes’, but some would query “what happens when x = 1”, i.e. would
ask whether we are dealing with abstract formulae, or representations of
functions. This is discussed further for rational functions on pages 63 and
306, and in item 5 below.

2. Assuming the answer to the previous question is ‘yes’, does x1000−1
x−1 sim-

plify to x999 + · · ·+ 1? Here the fraction is much shorter than the explicit
polynomial, and we have misled the reader by writing · · · here14.

3. Does
√

1− x
√

1 + x simplify to
√

1− x2? Assuming the mathematical
validity, which is not trivial [BD02], then the answer is almost certainly
yes, since the second operations involves fewer square roots than the first.

4. Does
√
x− 1

√
x+ 1 simplify to

√
x2 − 1? This might be thought to be

equivalent to the previous question, but consider what happens when x =
−2. The first one simplifies to

√
−3
√
−1 = i

√
3 · i = −

√
3, while the

second simplifies to
√

3. Note that evaluations result in real numbers,
though they proceed via complex ones. Distinguishing this case from the
previous one is a subject of active research [BBDP07, CDJW00].

5. Assume we are working modulo a prime p, i.e. in the field Fp. Does
xp − x simplify to 0? As polynomials, the answer is no, but as functions
Fp → Fp, the answer is yes, by Fermat’s Little Theorem. Note that, as
functions Fp2 → Fp2 , say, the answer is no.

In terms of Notation 3, we can say that

({(x, xp − x) : x ∈ Fp} ,Fp,Fp)B = ({(x, 0) : x ∈ Fp} ,Fp,Fp)B ,

but({
(x, xp − x) : x ∈ Fp2

}
,Fp2 ,Fp2

)
B ̸=

({
(x, 0) : x ∈ Fp2

}
,Fp2 ,Fp2

)
B .

Now we give a few illustrations of what simplification means to different audi-
ences.

14The construct · · · is very common in written mathematics, but has had almost (but see
[SS06]) no analysis in the computer algebra literature.

1.2. EXPANSION AND SIMPLIFICATION 29

Teachers At a course on computer algebra systems for teachers of the French
‘concours’, among the most competitive mathematics examinations in the
western world, there was a round table on the meaning of simplification.
Everyone agreed that the result should be ‘mathematically equivalent’,
though it was less clear, prompted by example 1, exactly what this meant.
The response to example 2 was along the lines of “well, you wouldn’t ask
such a question”. The author wishes he had had examples 3 and 4 to hand
at the time!

The general consensus was that ‘simplification’ meant ’give me the an-
swer I want’. This answer is not effective, in the sense that it cannot be
converted into a set of rules.

Whether this is an appropriate approach to pedagogy is outside the scope
of this book, but we refer the reader to [BDS09, BDS10].

Moses [Mos71] This is a seminal paper, but describes approaches to simplifi-
cation rather than defining it. Inasmuch as it does define it, it talks about
‘utility for further operations’, which again is not effective as a definition
for top-level simplification, though it’s relevant for intermediate opera-
tions. However, the principle is important, since a request to factor would

find the expression x999 + · · · + 1 appropriate15, whereas x1000−1
x−1 is in a

field, and factorisation is not a relevant question.

Carette [Car04] He essentially defines simplification in terms of the length of
the result, again insisting on mathematical equivalence. This would regard
examples 1 (assuming Q(x), so that the expressions were mathematically
equivalent) and 3 as simplifications, but not 2, since the expression be-
comes longer, or 4, since we don’t have mathematical equivalence.

Stoutemyer [Sto11a] sets out 10 goals for simplification, one of which (Goal
6) is that

Default simplification should produce candid [Definition 6] re-
sults for rational expressions and for as many other classes as is
practical. Default simplification should try hard even for classes
where candidness cannot be guaranteed for all examples.

Candid expressions tend be the shorter than others (x10−1
x−1 etc. being

an obvious family of counter-examples), so this view is relatively close to
Carette’s, but not identical (see also page 64, item 2).

Numerical Analysts A numerical analyst would be shocked at the idea that
x2 − y2 was ‘simpler’ than (x + y)(x − y). He would instantly quote an
example such as the following [Ham07].

15In fact, knowing the expression came from that quotient would be relevant [BD89] to
factorisation algorithms, but that’s beside the point here.

30 CHAPTER 1. INTRODUCTION

For simplicity, assume decimal arithmetic, with perfect rounding
and four decimal places. Let x = 543.2 and y = 543.1. Then
x2 evaluates to 295100 and y2 evaluates to 295000, so x2 − y2
becomes 100, while (x+ y)(x− y) evaluates to 108.6, a perfect
rounding of the true answer 108.63.

Furthermore, if we take x = 913.2 and y = 913.1, x2 − y2 is
still 100, while the true result is 182.63.

This is part of the whole area of numerical stability : fascinating, but
largely outside the scope of this text.

One principle that can be extracted from the above is “if the expression is zero,
please tell me”: this would certainly meet both the teachers’ and Carette’s
views. This can be seen as a call for simplification to return a normal form
where possible [Joh71, Ric97].

Maple’s description of the ‘simplify’ command is as follows.

• The simplify command is used to apply simplification rules
to an expression.

• The simplify/expr calling sequence searches the expression,
expr, for function calls, square roots, radicals, and powers. It
then invokes the appropriate simplification procedures.

• symbolic Specifies that formal symbolic manipulation of ex-
pressions is allowed without regard to the analytical issue of
branches for multi-valued functions. For example, the expres-
sion sqrt(x^2) simplifies to x under the symbolic option. With-
out this option, the simplified result must take into account the
different possible values of the (complex) sign of x.

Maple does its best to return a normal form, but can be fooled: for example

RootOf
(
Z 4 + b Z 2 + d

)
− 1/2

√
−2 b+ 2

√
b2 − 4 d ,

which is actually zero (applying figure 3.2), does not simplify to zero under
Maple 11.

Because simplification may often require expansion, e.g. to take (x−1)(x+1)
to x2 − 1, the two are often confused, and indeed both Macsyma and Reduce
(internally) used ratsimp and *simp (respectively) to denote what we have
called expansion.

1.2.4 An example of simplification

This section is inspired by an example in [Sto13]. Consider

(cos (x))
3

sin (x) + 1
2 (cos (x))

3
sin (x) + 2 (cos (x))

3
cos (2x) sin (x) +

1
2 (cos (x))

3
cos (4x) sin (x)− 3

2 cos (x) (sin (x))
3−

2 cos (x) cos (2x) (sin (x))
3 − 1

2 cos (x) cos (4x) (sin (x))
3
.

(1.2)

1.2. EXPANSION AND SIMPLIFICATION 31

Typing this into Maple simply collects terms, giving

3
2 (cos (x))

3
sin (x) + 2 (cos (x))

3
cos (2x) sin (x) +

1
2 (cos (x))

3
cos (4x) sin (x)− 3

2 cos (x) (sin (x))
3−

2 cos (x) cos (2x) (sin (x))
3 − 1

2 cos (x) cos (4x) (sin (x))
3
.

(1.3)

combine(%,trig), i.e. using the multiple angle formulae to replace trigonomet-
ric powers by sin / cos of multiples of the angles, gives

3
8 sin (4x) + 1

4 sin (2x) + 1
4 sin (6x) + 1

16 sin (8x) . (1.4)

expand(%,trig) (i.e. using the multiple angle formulae in the other direction)
gives

4 sin (x) (cos (x))
7 − 4 (cos (x))

5
(sin (x))

3
, (1.5)

which is also given by Maple’s simplify applied to (1.3) (simplify applied to
(1.4) leaves it unchanged). Mathematica’s FullSimplify gives

2 (sin(3x)− sin(x)) (cos(x))
5
. (1.6)

However, an even simpler form is found by Eureqa16:

(cos(x))
4

sin(4x). (1.7)

We note that (1.4) and (1.5) are the results of algorithmic procedures, pushing
identities in one direction or the other, applied to (1.3), while (1.6) and (1.7)
are half-way positions, which happen to be shorter than the algorithmic results.

1.2.5 Equality

To understand the difficulties that computer algebra systems have with equal-
ity, we need to remember the difference between objects and representations
(Definition 2. These difficulties are discussed for compter algebra systems in
[Dav02] and for computer proof systems in [GKS15],

Notation 4 We use =O to stand for equality of (mathematical) objects, and
=R for equality of representations. By slight abuse of notation, we will also
regard =O as a relation on R, meanng “the mathematical objects denoted by
these two representations are the same”. For a given computer algebra system,
we use =CA to stand for equality in that system, e.g. =Maple.

Example 2 Hence, in terms of “ink-and-paper” representations, (x + 1)2 =O

x2 + 2x+ 1 but (x+ 1)2 ̸=R x2 + 2x+ 1.

16http://creativemachines.cornell.edu/eureqa. However, we should note that Maple
(resp. Mathematica) has proved that (1.5) (resp. (1.6)) is equivalent to (1.2), whereas Eureqa
merely claims that (1.7) fits the same data points as [a finite sample of] (1.2). Nevertheless,
Eureqa’s capability to find a short equivalent in essentially Carette’s sense [Car04] is impres-
sive, and in any case, knowing what to prove, any algebra system can prove equivalence.

http://creativemachines.cornell.edu/eureqa

32 CHAPTER 1. INTRODUCTION

In terms of relations on R, i.e. subsets of R×R, =R⊆=O, i.e. if two represen-
tations are equal, the corresponding mathematical objects are equal.

Definition 7 (Definition 4 restated) A representation is said to be canoni-
cal if =O is the same as =R.

What properties might we want =CA to have?

Reflexive Since =R is reflexive, this will be achieved if =CA⊇=R, as it should
be.

Symmetric This is pretty easy to achieve.

Transitive This is more difficult. If =CA does more sophisticated processing
than =R, it might recognise that a =CA b and b =CA c, but fail to recognise
that a =CA c, especially if b is significantly simpler than a and c.

Congruence If a =CA b, we would like f(a) =CA f(b). If the system’s rep-
resentation of f(x) is just the uninterpreted f(x), this is relatively easy
to achieve. If the implementation of f is more sophisticated, this may be
harder to achieve.

Strictly speaking, what we have stated is unary congruence, and we
really want binary congruence. i.e. If a =CA b and c =CA d, we would
like f(a, c) =CA f(b, d), and in general congruence of all arities. The same
remarks apply.

Soundness This is “if =CA says that two things are equal, then they are”: in
symbols =CA⊆=O. This is a property we should always have: if there’s
a counterexample,then two objects, which are mathematically not equal,
are declared equal by =R.

Completeness This is “if two things are mathematically equal, then =CA says
so”: in symbols =CA⊇=O.

Unfortunately, completeness is impossible in general, essentially as a conse-
quence of the Gödel Incompleteness Theorem.

Neither =O nor =R is appropriate for “pedagogical equality” as needed in
mathematical education software: see [BDS09, BDS10] for a discussion of this.

1.3 Algebraic Definitions

In this section we give some classic definitions from algebra, which we will return
to throughout this book. Other concepts are defined as they occur, but these
ones are assumed.

Definition 8 A set R is said to be a ring if it has two binary operations + and
∗, a unary operation − and a distinguished element 0, such that, for all a, b
and c in R:

1.3. ALGEBRAIC DEFINITIONS 33

1. a+ (b+ c) = (a+ b) + c (associativity of +);

2. a ∗ (b ∗ c) = (a ∗ b) ∗ c (associativity of ∗);

3. a+ b = b+ a (commutativity of +);

4. a+ (−a) = 0;

5. a+ 0 = a;

6. a ∗ (b+ c) = (a ∗ b) + (a ∗ c) (distributivity of ∗ over +);

6’ (b+ c) ∗ a = b ∗ a+ c ∗ a (right-distributivity)

7. a ∗ b = b ∗ a (commutativity of ∗).

Not every text includes the last clause, and they would call a ‘commutative ring’
what we have called simply a ‘ring’. In the absence of the last clause, we will
refer to a ‘non-commutative ring’. 6’ is unnecessary if we have commutativity,
of course.

Definition 9 If R is a (possibly non-commutative) ring and ∅ ̸= I ⊆ R, then
we say that I is a (left-)ideal of R, written I ◁R, if the following two conditions
are satisfied17:

(i) ∀f, g ∈ I, f − g ∈ I,

(i) ∀f ∈ R, g ∈ I, fg ∈ I.

Notation 5 If S ⊂ R, we write (S) for
⋃

n∈N {
∑n

i=1 figi fi ∈ R, gi ∈ S}:
the set of all linear combinations (over R) of the elements of S. We tend to
abuse notation and write (a1, . . . , ak) instead of ({a1, . . . , ak}). This is called
the (left-)ideal generated by S, and clearly is a left-ideal.

There are also concepts of right ideal and two-sided ideal , but all concepts agree
in the case of commutative rings. Non-trivial ideals (the trivial ideals are {0}
and R itself) exist in most rings: for example, the set of multiples of m is an
ideal in Z.

Proposition 1 If I and J are ideals, then I + J = {f + g : f ∈ I, g ∈ J} and
IJ = {fg : f ∈ I, g ∈ J} are themselves ideals.

Definition 10 A ring is said to be noetherian, or to satisfy the ascending chain
condition if every ascending chain I1 ⊂ I2 · · · of ideals is finite.

Theorem 1 (Noether) If R is a commutative noetherian ring, then so is R[x]
(Notation 12, page 46).

Corollary 1 If R is a commutative noetherian ring, then so is R[x1, . . . , xn].

17We write f − g ∈ I since then 0 = f − f ∈ I, and then f + g = f − (0− g) ∈ I.

34 CHAPTER 1. INTRODUCTION

Definition 11 A ring R is said to be an integral domain if, in addition to the
conditions above, there is a neutral element 1 such that 1 ∗ a = a and, whenever
a ∗ b = 0, at least one of a and b is zero.

Another way of stating the last is to say that R has no zero-divisors (meaning
none other than zero itself).

Definition 12 An element u of a ring R is said to be a unit of R if there is
an element u−1 ∈ R such that u ∗ u−1 = 1. u−1 is called the inverse of u. Note
that the context R matters: 2 is a unit in Q (with inverse 1/2), but not in Z.

Definition 13 If a = u∗b where u is a unit, we say that a and b are associates.

Proposition 2 If a and b are associates, and b and c are associates, then a
and c are associates. Therefore being associates is an equivalence relation, since
it’s clearly reflexive and symmetric.

For the integers, n and −n are associates, whereas for the rational numbers,
any two non-zero numbers are associates.

Definition 14 An ideal I of the form (f), i.e. such that every h ∈ I is gf for
some g ∈ R, is called principal. If R is an integral domain such that every ideal
I is principal, then R is called a principal ideal domain, or P.I.D.

Classic P.I.D.s are the integers Z, and polynomials in one variable over a field.
Inside a principal ideal domain, we have the standard concept of a greatest
common divisor (formally defined in Definition 32).

Proposition 3 Let R be a P.I.D., a, b ∈ R and (a, b) = (g). Then g is a
greatest common divisor of a and b, in the sense that any other common divisor
divides g, and g = ca+ db for c, d ∈ R.

It is possible to have g.c.d.s without being a P.I.D.: common examples are Z[x]
(where the ideal (2, x) is not principal) and Q[x, y] (where the ideal (x, y) is not
principal).

Definition 15 If F is a ring in which every non-zero element is a unit, F is
said to be a field.

The “language of fields” therefore consists of two constants (0 and 1), four
binary operations (+, −, ∗ and /) and two unary operations (− and −1, which
can be replaced by the binary operations combined with the constants). The
rational numbers and real numbers are fields, but the integers are not. For any
m, the integers modulo m are a ring, but only if m is prime do they form a
field. The only ideals in a field are the trivial ones.

Definition 16 If R is an integral domain, we can always form a field from it,
the so called field of fractions, consisting of all formal fractions18 a

b : a, b ∈
18Strictly speaking, it consists of equivalence classes of formal fractions, under the equality

we are about to define.

1.4. SOME COMPLEXITY THEORY 35

R, b ̸= 0, where a/b is zero if and only if a is zero. Addition is defined by
a
b + c

d = ad+bc
bd , and multiplication by a

b ∗
c
d = ac

bd . So a
b = c

d if, and only if,
ad− bc = 0.

In particular, the rational numbers are the field of fractions of the integers.

Definition 17 If F is a field, the characteristic of F , written char(F), is the
least positive number n such that 1 + · · ·+ 1︸ ︷︷ ︸

n times

= 0. If there is no such n, we say

that the characteristic is zero.

So the rational numbers have characteristic 0, while the integers modulo p have
characteristic p, as do, for example, the rational functions whose coefficients are
integers modulo p.

Proposition 4 The characteristic of a field, if non-zero, is always a prime.

1.3.1 Algebraic Closures

Some polynomial equations have solutions in a given ring/field, and some do
not. For example, x2− 1 = 0 always has two solutions: x = −1 and x = 1. The
reader may protest that, over a field of characteristic two, there is only one root,
since 1 = −1. However, over a field of characteristic two, x2 − 1 = (x− 1)2, so
x = 1 is a root with multiplicity two.

Definition 18 A field F is said to be algebraically closed if every polynomial
in one variable over F has a root in F .

Proposition 5 If F is algebraically closed, then every polynomial of degree n
with coefficients in F has, with multplicity, n roots in F .

Theorem 2 (“Fundamental Theorem of Algebra”) 19 C, the set of com-
plex numbers, is algebraically closed.

Definition 19 If F is a field, the algebraic closure of F , denoted F is the field
generated by adjoining to F the roots of all polynomials over F .

It follows from proposition 85 that the algebraic closure is in fact algebraically
closed.

1.4 Some Complexity Theory

As is usual in computing we will use the so-called “Landau notation”20 to de-
scribe the computing time (or space) of operations.

19The title is in quotation marks, since C (and R) are constructs of analysis, rather than
algebra.

20Though apparently first introduced by[Bac94, p. 401]. See [Knu76].

36 CHAPTER 1. INTRODUCTION

Notation 6 (“Landau”) Let N be some measure of the size of a problem,
generally the size of the input to a program, and f some function. If t(N) is
the time taken, on a given hardware/software configuration, for a particular
program to solve the hardest problem of size N , we say that “t is eventually no
bigger than f”, in symbols

t(N) = O(f(N)), (1.8)

if, from some point onwards as N increases, t is no more than some fixed mul-
tiple of f , i.e. ∃C ∈ R,M ∈ N : ∀N > M t(N) < Cf(N). C (and M) are
generally referred to as the implicit constants of this notation.

Hardware tends to change in speed, but generally linearly, so O-notation is inde-
pendent of particular hardware choices. If the program implements a particular
algorithm, we will say that the algorithm has this O behaviour.

We will also use “soft O” notation.

Notation 7 (“soft O”) Let N be some measure of the size of a problem, and
f some function. If t(N) is the time taken, on a given hardware/software con-
figuration, for a particular program to solve the hardest problem of size N , we
say that

t(N) = Õ(f(N)) (1.9)

if t(N) grows “almost no faster” than f(N), i.e. slower than f(N)1+ϵ for any
positive ϵ: in symbols ∀ε > 0∃C ∈ R,M ∈ N : ∀N > M t(N) < Cf(N)1+ε.

We should note that “= O” and “= Õ” should really be written with “∈” rather
than “=”, and this use of “=” is not reflexive, symmetric or transitive. Also,
many authors use Õ to mean “up to logarithmic factors”, which is included in
our, more general, definition. [DL08]. One specific use of Õ is given in footnote
4, page 175.

The key results of complexity theory for elementary algorithms are that it
is possible to multiply two N -bit integers in time Õ(N), and two degree-N
polynomials with coefficients of bit-length at most τ in time Õ(Nτ). [AHU83]
For matrix multiplication, the situation is more complicated: see Notation 47

Definition 20 (Following [BFSS06]) We say that an algorithm producing
output of size N is optimal if its running time is O(N), and almost optimal if
its running time is Õ(N).

Addition of numbers and polynomials is therefore optimal, and multiplication
almost optimal. Matrix multiplication is not known to be either.

However, the reader should be warned that Õ expressions are often far from
the reality experienced in computer algebra, where data are small enough that
the limiting processes in equations (1.8) and (1.9) have not really taken hold
(see note 4), or are quantised (in practice integer lengths are measured in words,
not bits, for example). We therefore often use the phrase “classical arithmetic”
to mean O(n2) integer/polynomial multiplication, and O(n3) matrix multipli-
cation.

1.4. SOME COMPLEXITY THEORY 37

When it comes to measuring the intrinstic difficulty of a problem, rather
than the efficiency of a particular algorithm, we need lower bounds rather than
the upper bounds implied in (1.8) and (1.9).

Notation 8 (Lower bounds) Consider a problem P , and a given encoding,
e.g. “dense polynomials (Definition 26) with coefficients in binary”. Let N be
the size of a problem instance, and C a particular computing paradigm, and way
of counting operations. If we can prove that there is a c such that any algorithm
solving this problem must take at least cf(N) operations on at least one problem
instance of size N , then we say that this problem has cost at least of the order
of f(n), written

PC = Ω(f(N)) or loosely P = Ω(f(N)). (1.10)

Again “=” really ought to be “∈”.

In some instances (sorting is one of these) we can match upper and lower bounds.

Notation 9 (Θ) If PC = Ω(f(N)) and PC = O(f(N)), then we say that PC is
of order exactly f(N), and write PC = Θ(f(N)).

For example if C is the paradigm in which we only count comparison operations,
sorting N objects is Θ(N logN).

Notation 10 (Further Abuse) We will sometimes abuse these notations fur-
ther, and write, say, f(N) = 2O(N), which can be understood as either of the
equivalent forms log2 f(N) = O(N) or ∃C ∈ R,M : ∀N > Mf(N) < 2CN .
Note that 2O(N) and O(2N) are very different things. 4N = 22N is 2O(N) but
not O(2N).

Open Problem 1 (Algebra of O) Manipulating such O-expressions, especi-
ally when they depend on several variables, can be very tedious as seen in [Col75,
pp. 160–163]. Write a computer algebra package to simplify such expressions,
so that, for example,

Osimplify(O(N^3)+O(N^2));

would yield O(N3).

1.4.1 Complexity Hierarchy

If an algorithm has input of size N , it will take time O(N) to read its input,
so this is generally the least complexity we consider. We then have various
complexities, all of which are (bounded by) polynomials in N :

N ≺ N logN ≺ N logN log logN ≺ N log2N ≺ N3/2 ≺ N2 ≺ N3 ≺ · · · .
(1.11)

We have written f(N) ≺ g(N) rather than f(N) < g(N) since it depends on
the implicit constants whether for a particular N an algorithm whose time is

38 CHAPTER 1. INTRODUCTION

O(f(N)) is actually faster than one whose time is Ω(g(N)): all we know is that
eventually, as N grows, the one with the better complexity will be faster.

All the complexities in class (1.11) are referred to as polynomial time com-
plexities, or P .

Definition 21 An algorithm is polynomial time, or in the class P if there is
a constant c such that the running time of the algorithm is O(N c).

Beyond this, we have an exponential class (or EXP):

1.01N = 20.01436N ≺ 2N ≺ 4N = 22N ≺ 2N logN ≺ 2N
2

≺ · · · (1.12)

Again, it depends on the implied constants, but eventually any algorithm whose
complexity is polynomial will be faster than one whose complexity is in (1.12).

There are complexities which lie between the two: (B.18) showsNΘ(1/ log logN),
which goes slower than any cN .

1.4.2 Probabilistic Algorithms

The traditional definition of an algorithm is “a definite sequence of operations
which terminates and produces the desired result” or words to that effect, so the
title of this section is, taken literally, an oxymoron. Nevertheless, the concept
is very useful, and can be made precise by inserting into that definition “(which
may include calls to random number generators)”. We can then distinguish
various kinds of probabilistic algorithms (where “fast” tends to mean “polyno-
mial time”). In each case, “probably” refers to probability across the possible
outputs of the random number generators.

Monte Carlo (“always fast/probably correct”) The classic example here is the
Miller–Rabin primality testing algorithm [Rab80].

Algorithm 1 (Miller–Rabin primality testing)
Input: a number N of n bits
Output: Either “N is definitely composite” or “N is probably prime”.
The algorithm picks a random a ∈ [2, N−1] and computes aN−1 carefully.
The running time, with classical arithmetic, is therefore O(n3). If N is
prime, the algorithm always outputs “N is probably prime”. If N is
composite, the algorithm outputs “N is probably prime” for at most 1/4
of a-values.

Las Vegas (“always correct/probably fast”) If Algorithm A is a Monte Carlo
algorithm for problem P , and Algorithm B is a fast verifier for correctness,
then the process in Figure 1.2 will give a Las Vegas algorithm for problem
P . It is the absence of such a verifier that means that Miller–Rabin pri-
mality testing (as opposed to the deterministic, but much more expensive
AKS [AKS04] test) is only Monte Carlo.

1.5. SOME MAPLE 39

Figure 1.2: Converting Monte Carlo to Las Vegas

do
ans:=Algorithm A(P)

while Algorithm B(ans,P)=false

return ans

Atlantic City (“probably fast/probably correct”) Again, the existence of a
fast verifier for correctness would let the process in Figure 1.2 convert this
to a Las Vegas algorithm. One example of an Atlantic City algorithm
is given in Theorem 3: again we lack a fast verifier, so the algorithm is
“only” Atlantic City.

1.5 Some Maple

TO BE COMPLETED

� In Maple, the synbol % refers to the last object computed, %% to the last
but one, and %%% to the last but two. Note that this is not necessarily the
same as the textually previous item in the worksheet.

1.5.1 Maple polynomials

From Maple 17 onwards, Maple has two possible representations for polynomi-
als.

Original Expressions An expression, whether or not it had been through
expand, was an n-ary sum of n-ary power products with numerical coef-
ficients. Uniqueness of power products (and hence collection of like terms
(8’) on page 46) was enforced through hashing, rather than sorting, and
hence summands and multiplicands could, and did, appear in any order.

Sparse distributed [MP12, MP14] This is as on page 54, and the order is
total degree lexicographic (Section 3.3.3).

There’s a Maple worksheet demonstrating this at http://staff.bath.ac.uk/
masjhd/JHD-CA/MaplePoly.html.

1.5.2 Maple rational functions

Maple’s expand command, as we saw on page 27, only expands numerators of
rational functions, so we get results like Figure 1.3. If we actually want the
denominators expanded, and the whole placed over a common denominator,
the correct tool is normal(...,expanded), as in Figure 1.4. As the name
implies, we get a normal representation (Definition 3), and indeed a canonical

http://staff.bath.ac.uk/masjhd/JHD-CA/MaplePoly.html
http://staff.bath.ac.uk/masjhd/JHD-CA/MaplePoly.html

40 CHAPTER 1. INTRODUCTION

Figure 1.3: expand in Maple

> expand((x-1)*(x-2)/((x-3)*(x-4)));

2

x 3 x 2

--------------- - --------------- + ---------------

(x - 3) (x - 4) (x - 3) (x - 4) (x - 3) (x - 4)

Figure 1.4: normal in Maple

> normal((x-1)*(x-2)/((x-3)*(x-4)),expanded);

2

x - 3 x + 2

2

x - 7 x + 12

one, as greatest common divisors are cancelled, and the leading coefficient of
the denominator made positive in a consistent way.

1.5.3 The RootOf construct

Maple uses this construct to indicate a solution of an (univariate) equation. It’s
generally seen in the context of polynomial equations, as in Figure 1.5, where
essentially nothing more can be said about these numbers other than they are
the roots of the polynomial z5−5z3 +4z−1. Note that (over the complex num-
bers) Maple indexes the result of RootOf according to the rules at http://www.
maplesoft.com/support/help/Maple/view.aspx?path=RootOf/indexed, es-
sentially “closest in argument to the positive real axis first”. For the example
above, this results in the five roots being

[.7418139305, 1.668777593, -.3141413715+.5954413283*I,

-1.782308780, -.3141413715-.5954413283*I]

which actually contradicts the documentation.
The RegularChains package (implementing the ideas of sections 3.4 and 3.5),

extends this notation, to allow index=real[2] to mean the second real root
(counting from −∞).

� The two notations are clearly not compatible: the first real root may well
not be the first complex root. They are also not well-integrated, so for
example Maple doesn’t see RootOf(z^5-3*z^3+1,z,index=real[2]) and
RootOf(z^5-3*z^3+1,z,index=real[2]) as being equal, even though they
differ by 0 when we ask for numerical evaluation!

http://www.maplesoft.com/support/help/Maple/view.aspx?path=RootOf/indexed
http://www.maplesoft.com/support/help/Maple/view.aspx?path=RootOf/indexed

1.5. SOME MAPLE 41

Figure 1.5: An example of Maple’s RootOf construct

> solve(z^5-3*z^3+1, z);

/ 5 3 \

RootOf_Z - 3 _Z + 1, index = 1/,

/ 5 3 \

RootOf_Z - 3 _Z + 1, index = 2/,

/ 5 3 \

RootOf_Z - 3 _Z + 1, index = 3/,

/ 5 3 \

RootOf_Z - 3 _Z + 1, index = 4/,

/ 5 3 \

RootOf_Z - 3 _Z + 1, index = 5/

1.5.4 Active and Inert Functions

Notation 11 Maple functions fall into two categories.

active is the usual form: a command that tells Maple to perform a computa-
tion, as in gcd(x^2-1, x^3-1) which computes x− 1, or cos(Pi), which
computes −1.

inert is a form which tells Maple just to store the unevaluated concept of the
computation, as in Gcd(x^2-1, x^3-1), which returns Gcd

(
x2 − 1, x3 − 1

)
.

Some Maple commands have both active and inert forms — in this case the
inert form generally begins with a capital letter. An inert form can always be
built by prepending the % symbol to the function name, as in %cos(Pi), which
returns ‘%cos‘ (π).

The value function evaluates the inert forms in its argument, so that

value(Gcd(x^2-1, x^3-1))

is equivalent to gcd(x^2-1, x^3-1), and therefore is x− 1.

Inert forms have many uses (see the Maple documentation): one that is par-
ticularly relevant to this book is their relationship with the mod operator. The
Maple documentation says, describing e mod m,

The mod operator evaluates the expression e over the integers modulo
m.

What may not be apparent here is that the usual Maple rules, that arguments
get evaluated before being passed to functions, still apply. Hence

42 CHAPTER 1. INTRODUCTION

gcd(x+2,x-3) mod 5

first evaluates gcd(x+2,x-3) (getting 1) then passes this in, effectively calling
1 mod 5, and we get 1. What we probably intended was

Gcd(x+2,x-3) mod 5

so that the unevaluated g.c.d. object is passed to be calculated modulo 5, where
the result is x+2 (Maple by default uses 0, . . . , |m|−1 to store the results modulo
m). Similarly

factor(x^4+1) mod 2

first evaluates factor(x^4+1), getting x4+1 since this polynomial is irreducible
over the integers, effectively calling x^4+1 mod 2, which is x4 + 1. Had we
written

Factor(x^4+1) mod 2

then Maple would be being asked to factor x4 + 1 modulo 2, and the answer
would have been (x+ 1)4.

Note also that 10^100 mod 7 will first calculate the integer 10100. The
correct syntax in this case is 10&^100 mod 7 to defer the exponentiation.

1.5.5 The simplify command

This Maple command is been discussed elsewhere, especially in section 1.2.4. It
is worth noting that simplification in this sense does not commute with substi-
tution, and it can be argued [Zim07] that it is a ‘user-oriented’ command that
should not be used inside Maple programs, where well-specified commands such
as expand (Section 1.2.2), or more specific ones such as combine(%,trig) are
very appropriate.

1.5.6 Equality

There are four operators in Maple which are relevant here, and the first three
could all be thought of as Maple’s =Maple.

= This actually forms a symbolic equation by default, as in

> 2=3;

2=3

It is only when this is required to be a Boolean value, either because of
the context (if or while statement), or explicitly by the evalb function,
that it is converted into true/false. When this happens, it appears to
the author that this implements =R (Notation 4), i.e. equality of data
structures.

1.5. SOME MAPLE 43

testeq This uses the probabilistic algorithm of [Gon84] and hence might be
unsound, i.e. say that two things are equal when in fact they are not, but
the author has been unable to provoke this. It returns FAIL (rather than
false) if the expressions are of a category that it cannot handle, such as
square roots.

• The next two are part of Maple’s assume facility [WG93], but can be used
without any assumptions.

is typically has the syntax is(x1,prop1) and “returns true if all possible
values of x1 satisfy the property prop1”. It “returns false if any possible
value of x1 does not satisfy the property prop1”, and “returns FAIL if
it cannot determine whether the property is always satisfied”. However,
it can also be used as is(x=y), and in this context would seem to do
significant amounts of simplification: at least the equivalent of normal,
and possibly simplify. However, it cannot really handle square roots,
and returns false (rather than FAIL, annoyingly) for both examples 3
and 4 (page 28).

coulditbe typically has the syntax coulditbe(x1,prop1) and “determines
whether there is a value of x1 such that prop1 is satisfied”. However,
it cannot really handle square roots, and returns true (rather than FAIL,
annoyingly) for the negations of both examples 3 and 4 (page 28), even
though there is no x for which examples 3 is not true.

44 CHAPTER 1. INTRODUCTION

Chapter 2

Polynomials

Polynomials are fundamental to much of mathematics, even when the objects
under discussion are apparently not polynomials, such as differential equations.
Equally, polynomials underpin much of computer algebra. But what, precisely,
are they?

2.1 What are polynomials?

There are numerous definitions. From our point of view, computer algebra,
we will adopt the following definition for commutative1 polynomials, leaving
non-commutative polynomials to be discussed in section 2.4.

Definition 22 (Polynomials) A (commutative) polynomial is built up from
coefficients, which are assumed to form a ring (definition 8), and certain in-
determinates (often called variables), by the algebraic operations of addition,
subtraction and multiplication. These are subject to the following laws, where
a, b, c are polynomials, m,n coefficients, and 0 and 1 certain distinguished coef-
ficients.

1. a+ b = b+ a;

2. (a+ b) + c = a+ (b+ c);

3. a+ 0 = a

4. a+ (−a) = 0;

5. a ∗ b = b ∗ a;

6. a ∗ (b ∗ c) = (a ∗ b) ∗ c;
1“Commutative” meaning a ∗ b = b ∗ a. Strictly speaking, we should also worry whether

addition is commutative, i.e. whether a+ b = b+ a, but we will always assume that addition
is commutative.

45

46 CHAPTER 2. POLYNOMIALS

7. a ∗ 1 = a;

8. a ∗ (b+ c) = (a ∗ b) + (a ∗ c);

9. m+ n = m⊕ n;

10. m ∗ n = m⊗ n;

where we have used ⊕ and ⊗ to denote the operations of addition and multipli-
cation on coefficients, which are assumed to be given to us.

The reader can think of the coefficients as being numbers, though they need not
be, and may include other indeterminates that are not the “certain indetermi-
nates” of the definition. However, we will use the usual ‘shorthand’ notation of
2 for 1 ⊕ 1 etc. The associative laws (2 and 6 above) mean that addition and
multiplication can be regarded as n-ary operations. A particular consequence
of these rules is

8’ m ∗ a+ n ∗ a = (m⊕ n) ∗ a

which we can think of as ‘collection of like terms’.

Proposition 6 Polynomials over a ring form a ring themselves.

Definition 23 (Free Algebra) If it is the case that a polynomial is only zero
if it can be deduced to be zero by rules 1–10 above, and the properties of ⊕ and
⊗, then we say that we have a free polynomial algebra.

Free algebras are common, but by no means the only one encountered in com-
puter algebra. For examples, trigonometry is often encoded by regarding sin θ
and cos θ as indeterminates, but subject to sin2 θ + cos2 θ = 1 [Sto77].

Notice what we have not mentioned: division and exponentiation.

Definition 24 ((Exact) Division) If a = b ∗ c, then we say that b divides a,
and we write b = a

c .

Note that, for the moment, division is only defined in this context. We note
that, if c is not a zero-divisor, b is unique.

Definition 25 (Exponentiation) If n is a natural number and a is a polyno-
mial, then we define an inductively by:

• a0 = 1;

• an+1 = a ∗ an.

Notation 12 If K is a set of coefficients, and V a set of variables, we write
K[V] for the set of polynomials with coefficients in K and variables in V . We
write K[x] instead of K[{x}] etc.

2.1. WHAT ARE POLYNOMIALS? 47

2.1.1 How do we manipulate polynomials?

We have defined the abstract, almost Platonic, concept of polynomials as math-
ematical objects, and polynomial algebra as rules for these objects. What do
we mean by the representation of these objects in a computer system?

One option would be for a computer algebra system essentially to do nothing,
simply recording the computations requested by the user, so that a+b would
become simply a + b. However, we would not be very happy with a calculator
which computed 1+1 as “1+1”, as we would rather see “2”. In particular, if the
answer is 0, we would like to see that shown, i.e. we would like the representation
to be normal (definition 3).

2.1.2 Polynomials in one variable

We will first consider polynomials in one variable, say x. If the coefficients
come from a domain K, the polynomials in x over K are denoted by K[x]
(Notation 12). One obvious route to a canonical representation (definition 4) is
to insist that polynomials be expanded, i.e. that multiplication is only applied
to coefficients and variables, not to general polynomials. This is achieved by
applying distributivity, rule 8 from definition 22, where necessary, ensuring that
multiplication is not applied to additions, and rule 8’ to collect terms. Once this
is done, the polynomial is of the form

∑n
i=0 aix

i, where the ai are coefficients.

Notation 13 We assume that an ̸= 0, which is easy if the coefficients are
represented normally (Definition 3). In this case, n is called the degree of
the polynomial, denoted deg(f), or degx(f) if we wish to make it clear which
variable is being considered. an is called the leading coefficient of f , and denoted
lc(f) or lcx(f). If lc(f) = 1, we say that f is monic. f − lc(f)xdeg(f), i.e.
f minus its leading term, is known as the reductum of f , red(f). The set
{red(f), red(red(f)), . . .} is known as the iterated reducta of f .

There is then an important distinction, which does not really occur when
doing algebra by hand: does one represent the zero coefficients, or not?

Definition 26 A representation2 is said to be dense if every coefficient, zero
or not, is represented, while it is sparse if zero coefficients are not stored.

Hence the polynomial x2+0x−1, normally written as x2−1, would be stored as
<1,0,-1> in a dense representation, but <<2,1>,<0,-1>> in a sparse representa-
tion. As is implicit in the previous sentence, the normal “human” representation
is sparse. Those systems that automatically expand, e.g. Reduce [Hea05], use a
sparse representation, since a system would look fairly silly if it was unable to
represent x1000000000+1 since it could not store the 999,999,999 zeros. However,
dense representations are often used internally in some algorithms.

2In the current case, we are dealing with polynomials. But the concept is more general —
see section 3.2.2 for sparse matrices, for example.

48 CHAPTER 2. POLYNOMIALS

Definition 27 For a polynomial f =
∑#f

i=1 cix
αi ∈ Z[x], we might think we

could store f in
∑

i [1 + log2(|ci|) + log2(1 + αi)] (the 1+ term allows for the
sign of the coefficient). However, this would require length fields, and then

lengths for the length fields, etc. For a polynomial f =
∑#f

i=1 cix
αi ∈ Z[x], we

let C = max |ci and D = max(αi) and define the sparse bit size of f to be
#f(log2D + 1 + log2 C): the number of bits needed to encode f (the 1+ term
allows for the sign of the coefficient, but many authors drop it as asymptotically
negligeable).

This definition ignores the awkward practicalities that bits are whole (we
should have ⌈log2 . . .⌉) and come in bytes/words, but has the right O-behaviour.
It is also information-theoretically correct, in that the αi might be 0, hence the
1+, but the ci can’t be 0, so don’t need a corresponding 1+, but this is unlikely
to be taken advantage of in practice.

We say that an algorithm has poly-sparse complexity if the complexity is a
polynomial function in the sparse bit size of the inputs and outputs. See also
Definition 29.

Proposition 7 Both the dense and the sparse expanded representation are can-
onical (definition 4), provided that:

• the coefficients themselves are canonical (otherwise polynomials of degree
0 would not be canonical)

• leading (in the dense case) or all (in the sparse case) zeros are suppressed;

• (in the sparse case) the individual terms are stored in a specified order,
generally3 sorted.

Addition is fairly straight-forward in either representation. In Lisp, we can do
addition in a sparse representation as follows. We use a representation in which
the CAR of a polynomial is a term, whilst the CDR is another polynomial: the ini-
tial polynomial minus the term defined by the CAR, i.e. the reductum (Notation
13). A term is a CONS, where the CAR is the exponent and the CDR is the coeffi-
cient. Thus the LISP structure of the polynomial 3x2+1 is ((2 . 3) (0 . 1)),
and the list NIL represents the polynomial 0, which has no non-zero coefficients,
and thus nothing to store. In this representation, we must note that the num-
ber 1 does not have the same representation as the polynomial 1 (which is ((0

. 1))), and that the polynomial 0 is represented differently from the other
numerical polynomials.

(DE ADD-POLY (A B)

(COND ((NULL A) B)

((NULL B) A)

((GREATERP (CAAR A) (CAAR B))

(CONS (CAR A) (ADD-POLY (CDR A) B)))

3But we should observe that Maple, for example, which uses a hash-based representation,
is still canonical, even though it may not seem so to the human eye.

2.1. WHAT ARE POLYNOMIALS? 49

((GREATERP (CAAR B) (CAAR A))

(CONS (CAR B) (ADD-POLY A (CDR B))))

((ZEROP (PLUS (CDAR A) (CDAR B)))

; We must not construct a zero term

(ADD-POLY (CDR A) (CDR B)))

(T (CONS (CONS (CAAR A) (PLUS (CDAR A) (CDAR B)))

(ADD-POLY (CDR A) (CDR B))))))

(DE MULTIPLY-POLY (A B)

(COND ((OR (NULL A) (NULL B)) NIL)

; If a = a0+a1 and b = b0+b1, then ab = a0b0 + a0b1 + a1b

(T (CONS (CONS (PLUS (CAAR A) (CAAR B))

(TIMES (CDAR A) (CDAR B)))

(ADD-POLY (MULTIPLY-POLY (LIST (CAR A))

(CDR B))

(MULTIPLY-POLY (CDR A) B))))))

If A has m terms and B has n terms, the calculating time (i.e. the num-
ber of LISP operations) for ADD-POLY is bounded by O(m + n), and that for
MULTIPLY-POLY by O(m2n) ((m(m+ 3)/2− 1)n to be exact).4

There is a technical, but occasionally important, difficulty with this pro-
cedure, reported in [ABD88]. We explain this difficulty in order to illustrate
the problems which can arise in the translation of mathematical formulae into
computer algebra systems. In MULTIPLY-POLY, we add a0b1 to a1b. The order
in which these two objects are calculated is actually important. Why, since this
can affect neither the results nor the time taken? The order can dramatically
affect the maximum memory space used during the calculations. If a and b are
dense of degree n, the order which first calculates a0b1 should store all these
intermediate results before the recursion finishes. Therefore the memory space
needed is O(n2) words, for there are n results of length between 1 and n. The
other order, a1b calculated before a0b1, is clearly more efficient, for the space
used at any moment does not exceed O(n). This is not a purely theoretical re-
mark: [ABD88] were able to factorise x1155 − 1 with REDUCE in 2 megabytes
of memory5, but they could not remultiply the factors without running out of
memory, which appears absurd.

There are multiplication algorithms which are more efficient than this one:
roughly speaking, we ought to sort the terms of the product so that they ap-
pear in decreasing order, and the use of ADD-POLY corresponds to an insertion
sort. We know that the number of coefficient multiplications in such a ‘classi-
cal’ method is mn, so this emphasises that the extra cost is a function of the
exponent operations (essentially, comparison) and list manipulation. Of course,
the use of a better sorting method (such as “quicksort” or “mergesort”) offers

4It is worth noting the asymmetry in the computing time of what is fundamentally a
symmetric operation. Hence we ought to choose A as the one with the fewer terms. If this
involves counting the number of terms, many implementors ‘cheat’ and take A as the one of
lower degree, hoping for a similar effect.

5A large machine for the time!

50 CHAPTER 2. POLYNOMIALS

a more efficient multiplication algorithm, say O(mn logm) in terms of time.
Nâıve construction of all the terms followed by sorting would take O(mn) space
to build the unsorted list, and we can do better with ”heapsort” [Joh74]. But
most systems have tended to use an algorithm similar to the procedure given
above: [MP08] shows the substantial improvements that can be made using a
better algorithm.

In general, the product of a sparse polynomial with m terms by one with n
terms will have mn terms, so a O(mn logm) has “nearly optimal” (optimal up to
logarithmic factors) complexity in terms of the worst-case output size. However,
this worst-case output size is often not achieved in practice. For example, the
polynomials may actually be dense in x1000, and then the number of terms is
m+ n− 1 rather than mn.

Notation 14 Define the support of a polynomial f , supp(f), to be the set of
exponents n such that xn occurs in f with a non-zero coefficient. The sparsity of
f is the size of supp(f). Given two polynomials f and g, the possible exponent
set of f · g, poss(f, g) is {ef + eg : ef ∈ supp(f), eg ∈ supp(g)}.

Hence supp(f ·g) ⊆ poss(f, g), with strict inequality occurring when cancellation
of coefficients gives us an “unexpected” zero.

Theorem 3 ([AR15, Theorem 1.1]) Given f, g ∈ Z[x] with bounds for the
degree D ≥ deg(f) + deg(g) and height C ≥ ||f ||∞ + ||g||∞, and a constant
µ ∈ (0, 1), Algorithm SparseMultZZ of [AR15] correctly computes the product
h = fg with probability exceeding 1−µ, using expected6 Õ((# poss(f, g) logD+
supp(f · g) logC) bit operations, where the constants in Õ depend on µ.

We can simplify the complexity to Õ((# poss(f, g)(logD+logC)), which shows
that this algorithm, which is based on interpolation, is nearly optimal in the ex-
pected sparsity of the output. However, it is probabilistic, which limits its use in
practice. There is more recent work in [Nak19], producing a probabilitsic algo-
rithm with running time O

(
k log k log log k + (a+ b) log2 k log log k

)
+Õ(log4 n),

where a and b are the number of non-zero coefficients in the input, k − 4 is the
number of non-zero coefficients in the output, and n − 1 is the degree of the
answer.

Maple’s original representation (see section 1.5.1), and methods, are rather
different. The terms in a Maple sum might appear to be unordered, so we might
ask what prevents 2x2 from appearing at one point, and −2x2 at another. Maple
uses a hash-based representation [CGGG83], so that insertion in the hash table
takes amortised7 constant time, and the multiplication is O(mn).

In a dense representation, we can use radically different, and more efficient,
methods based on Karatsuba’s method [KO63, and section B.3], which takes

6This is an Atlantic City (“probably fast/probably correct”) algorithm: see section 1.4.2.
In fact the authors prove the existence of a Monte Carlo algorithm, but cannot describe it as
we do not know the number-theoretic constants.

7Occasionally the hash table may need to grow, so an individual insertion may be expensive,
but the average time is constant.

2.1. WHAT ARE POLYNOMIALS? 51

time O
(
max(m,n) min(m,n)0.57...

)
, or the Fast Fourier Transform [AHU74,

chapter 8], where the running time is O(max(m,n) log min(m,n)). Since the
number of terms in a dense product is m + n − 1 = O(max(m,n)), these algo-
rithms are nearly optimal.

Division is fairly straight-forward: to divide f by g, we keep subtracting
appropriate (meaning ci = (lc(f)/lc(g))xdegf−degg) multiples of g from f until
the degree of f is less than the degree of g. If the remaining term (the remainder)
is zero, then g divides f , and the quotient can be computed by summing the ci.
This is essentially the process known to schoolchildren as “long division”.

However, the complexity of sparse polynomial division is not so straight-
forward [DC09]. We cannot bound the complexity in terms of just the number
of terms in the input, because of the example8 of

xn − 1

x− 1
= xn−1 + · · ·+ x+ 1, (2.1)

where two two-term inputs give rise to an n-term output. So imagine that we
are dividing f by g, to give a quotient of q and a remainder of r.

Notation 15 Let a polynomial f have degree df , and tf non-zero terms.

Since each step in the division algorithm above generates a term of the quotient,
there are tq steps. Each step generates tg terms, so there are O(tg) arithmetic
operations. But there are also the comparison operations required to organise
the subtraction, and it is hard to find a better bound than df for the number
of these. Hence the total cost is O(tq(df + tg)) operations. Since we don’t
know tq until we have done the division, the best estimate is O(d2f + df tg).
Again, ideas based on Heapsort can improve this, and the best result is O(tf +
tqtg log min(tq, tg)) = O(tf +(df−dg)tg log min(df−dg, tg)) comparisons[MP11].
This algorithm therefore has poly-sparse complexity (Definition 27).

Example 3 (Bad Mergesort) The reason we need to use Heapsort rather
than, say, Mergesort is seen is a case like the following

xn

xn/2 + xn/2−1 + xn/4 + 1
,

where we perform n/2 merges of the divisor (4 terms) with polynomials with
up to n/2 terms, i.e. O(n2) work. The problem arises because the merges in
this case are asymmetrical, and a merge is only efficient when merging things
of roughly the same size.

An alternative strategy, known as “geobuckets” for “geometrically increasing
buckets”, was devised by Yan [Yan98]. Let d be a fixed growth factor (his
experiments9 suggested d = 4). The application was Buchberger’s Algorithm

8See also Excursus B.7.
9Geobuckets are also used in CoCoA [Abb15], for polynomial multiplication, division and

polynomial reduction, and after experimentation they have also settled on d = 4. SINGULAR
also uses geobuckets with d = 4 [Sch15].

52 CHAPTER 2. POLYNOMIALS

(9), where we are repeatedly computing f := f − cigi, where f typically is a
large polynomial and the cigi are polynomials which may be large or small. His
intermediate representation for a polynomial f was

f := f1 ⊕ f2 ⊕ · · · ⊕ fl, (2.2)

where ⊕ signifies a lazy summation that we have yet to perform, and each
“bucket” fi consists of at most di terms, sorted normally. Then, when we
have to subtract cigi from f , we subtract it from fk, where k is minimal with
dk ≥ tgi . It is conceivable that this will cause fk to ‘overflow’, i.e. have more
than dk terms, in which case we add fk to fk+1, and then set fk to 0. This has
the consequence that we (almost) never add (i.e. merge) polynomials of greatly
unequal sizes, and also, compared with a heap, the storage requirements are
reduced: if d ≥ 2 the redundancy is bound to be less than 50%, even if every
monomial in every other fi is a duplicate of a monomial in fl. At the end, we
actually perform the summations implicit in (2.2) to get a polynomial in the
usual form, taking care to perform them as

(. . . (f1 ⊕ f2)⊕ · · ·)⊕ fl

so as to preserve the balanced nature of the merges.

2.1.3 A factored representation

Instead of insisting that multiplication not be applied to addition, we could
insist that addition not be applied to multiplication. This would mean that a
polynomial was represented as a product of polynomials, each the sum of simple
terms:

f =
∏
i

fi =
∏
i

 ni∑
j=0

ai,jx
j

 . (2.3)

In practice, repeated factors are stored explicitly, as in the following format:

f =
∏
i

fdi
i =

∏
i

 ni∑
j=0

ai,jx
j

di

. (2.4)

We have a choice of using sparse or dense representations for the fi, but usually
sparse is chosen. It is common to insist that the fi are square-free10 and rela-
tively prime11 (both of which necessitate only g.c.d. computations12 — lemma

10Which almost certainly improves compactness, but see [CD91], where a dense polynomial
of degree 12 was produced (13 terms), whose square had only 12 nonzero terms, and the
process can be generalised. Twelve is minimal [Abb02].

11Which often improves compactness, but consider (xp−1)(xq−1) where p and q are distinct
primes, which would have to be represented as (x− 1)2(xp−1 + · · ·+ 1)(xq−1 + · · ·+ 1).

12These g.c.d. computations, if carried out by modular or p-adic methods (pages 173 and
219), should be cheap if the answer is “no simplification”, and otherwise should, at least in
non-pathological cases, lead to greater efficiency later.

2.1. WHAT ARE POLYNOMIALS? 53

3), but not necessarily13 irreducible. Hence this representation is generally
known as partially factored. In this format, the representation is not canonical,
since the polynomial x2 − 1 could be stored either as that (with 2 terms), or as
(x − 1)(x + 1) (with 4 terms): however, it is normal in the sense of definition
3. For equality testing, see excursus B.2 Though an extension of Stoutemyer’s
original definition of candid (Definition 6), we can say that insisting on square-
freeness, so that any repeated part of one factor is explicit in the exponents in
(2.4), as in x3 + x2 − x − 1 having to be written as (x − 1)(x + 1)2, and on
relative primeness, so that a repeated factor cannot be hidden in two different
factors, as in (x2− 1)(x2 +x− 2) having to be written as (x− 1)2(x+ 1)(x+ 2),
means that all the repetition is visible in the format of (2.4) and nothing is
being hidden.

Multiplication is relatively straight-forward, we check (via g.c.d. computa-
tions14) for duplicated factors between the two multiplicands, and then combine
the multiplicands. Addition can be extremely expensive, and the result of an
addition can be exponentially larger than the inputs: consider

(x+ 1)(x2 + 1) · · · (x2
k

+ 1) + (x+ 2)(x2 + 2) · · · (x2
k

+ 2),

where the input has 4(k + 1) non-zero coefficients, and the output has 2k+1

(somewhat larger) ones.
This representation is not much discussed in the general literature, but is

used in Redlog [DS97] and Qepcad [CH91], both of which implement cylindrical
algebraic decomposition (see section 3.5), where a great deal of use can be made
of corollaries 22 and 23.

2.1.4 Polynomials in several variables

Here the first choice is between factored and expanded. The arguments for, and
algorithms handling, factored polynomials are much the same15 as in the case
of one variable. The individual factors of a factored form can be stored in any
of the ways described below for expanded polynomials, but recursive is more
common since it is more suited to g.c.d. computations (chapters 4 and 5), which
as we saw above are crucial to manipulating factored representations.

If we choose an expanded form, we have one further choice to make, which
we explain in the case of two variables, x and y, and illustrate the choices with
x2y + x2 + xy2 − xy + x− y2.

13If we were to insist on irreducibility, we would need to store xp−1 as (x−1)(xp−1+· · ·+1),
with p + 2 terms rather than with 2. Furthermore, irreducibility can be expensive to prove
[ASZ00].

14Again, these should be cheap if there is no factor to detect, and otherwise lead to reduc-
tions in size.

15In one variable, the space requirements for a typical dense polynomial and its factors are
comparable, e.g. 11 terms for a polynomial of degree 10, and 6 each for two factors of degree
5. For multivariates, this is no longer the case. Even for bivariates, we would have 121 terms
for a dense polynomial of degree 10, and 36 each for two factors of degree 5. The gain is
greater as the number of variables increases.

54 CHAPTER 2. POLYNOMIALS

Notation 16 A monomial is a power product xαi
1 x

α2
2 · · ·, such as x2y in that

example. A polynomial is then a sum
∑
cimi where the ci are coefficients and

the mi monomials. Each cimi is a term. The total degree of a monomial is
the sum of the degrees of all the variables. The total degree of a polynomial is
the greatest total degree of any monomial in it.

Note that this definition implicitly assumes that we have performed any cancel-
lation, since the total degree of x2y3−x−x2y3 is 1, not 5. Put another way, we
require the representation to be candid (Definition 6), at least in this respect.

recursive — C[x][y]. We regard the polynomials as polynomials in y, whose
coefficients are polynomials in x. Then the sample polynomial would be
(x − 1)y2 + (x2 − x)y + (x2 + x)y0. We have made the y0 term explicit
here: in practice detailed representations in different systems differ on this
point.

recursive — C[y][x]. We regard the polynomials as polynomials in x, whose
coefficients are polynomials in y. Then the sample polynomial would be
(y + 1)x2 + (y2 − y + 1)x+ (−y2)x0.

distributed — C[x, y]. We regard the polynomials as polynomials in x and
y, whose coefficients are numbers. With 6 terms (as in this example),
there are 6! = 720 possible orders. It is usual to impose two additional
constraints on the order on terms, or more accurately on the monomials16,
i.e. ignoring the coefficients, which we will denote17 as >.

Definition 28 An ordering is said to be an admissible ordering if it sat-
isfies the following conditions.

• Compatibility with multiplication: if a > b then, for all monomials c,
ac > bc.

• Well-foundedness: for all non-trivial monomials a, a > 1.

These requirements greatly reduce the available orders for our sample
polynomial. One possibility would be to sort by total degree (i.e. the sum
of the degrees in each variable), using degree in x as a tie-breaker. This
would give us x2y+ xy2 + x2− xy− y2 + x. There is a fuller discussion of
such orderings in Section 3.3.3. However, we should note one important
property of admissible orders here.

Theorem 4 (Descending Chain Condition; Dickson’s Lemma)
Any decreasing sequence (with respect to an admissible ordering) of mono-
mials in a finite number of variables is finite. [Dic13]

16In this book we use the word monomial to mean a product of (possibly repeated) variables,
as in xyz or x2y, without any coefficient. This includes 1 = x0y0z0 as a monomial. Term
means a product with a coefficient, as in 3x2y. Usage on this point differs.

17We are not making any numerical evaluation of the monomials, merely saying which order
we put the monomials in.

2.1. WHAT ARE POLYNOMIALS? 55

In general, if there are n variables, there are n! possible recursive representations,
but an infinite number of possible distributed representations, though clearly
only finitely many different ones for any one given polynomial or finite set of
polynomials.

In both cases, we use sparse, rather than dense, representations, since any
reasonable multivariate polynomial had better be sparse: degree 6 in each of 6
variables means 76 = 117649 terms.

Definition 29 We say that an algorithm has poly-sparse complexity if the com-
plexity is a polynomial function in the sparse bit size (see Definition 27) of the
inputs and outputs. We say that an algorithm has poly-semisparse complexity
if the complexity is a polynomial function in the sparse bit size and the degree
of the polynomial. If all that can be said is that the complexity is polynomial in
dn (where d is the total degree and n is the number of indeterminates) we say
it has poly-dense complexity.

The same canonicality results as for univariate polynomials apply.

Proposition 8 For a fixed ordering, both recursive and distributed representa-
tions are canonical (definition 3). Partially factored representations are normal,
but not canonical.

It makes no sense to compare polynomials in different representations, or the
same representation but different orderings. We have spoken about ‘represen-
tations’, but in fact the division between recursive and distributed goes deeper.
While characterisations 3 and 2 of a Gröbner base (theorem 16) can make sense
in either view, characterisations 4 and 1 (the only effective one) only make sense
in a distributed view. Conversely, while the abstract definitions of factorisation
and greatest common divisors (definition 31) make sense whatever the view, the
only known algorithms for computing them (Algorithm 2 or the advanced ones
in chapters 4 and 5) are inherently recursive18.

2.1.5 Other representations

Sparse representations take up little space if the polynomial is sparse. But
shifting the origin from x = 0 to x = 1, say, will destroy this sparsity, as
might many other operations. The following example, adapted from [CGH+03],
illustrates this. Let Φ(Y, T) be

∃X1 . . . ∃Xn(X1 = T + 1)∧ (X2 = X2
1)∧ · · · ∧ (Xn = X2

n−1)∧ (Y = X2
n). (2.5)

The technology described in section 3.5.3 will convert this to a polynomial equa-
tion

Ψ(Y, T) : Y = (1 + T)2
n

. (2.6)

18At least for commutative polynomials. Factorisation of non-commutative polynomials is
best done in a distributed form.

56 CHAPTER 2. POLYNOMIALS

Dense or sparse representations have problems with this, in the sense that ex-
pression (2.5) has length O(n), but expression (2.6) has length O(2n) or more.
A factored representation could handle the right-hand side, assuming that we
are not representing the equations as polynomial = 0. But changing the last
conjunct of Φ to (Y = (Xn + 1)2) changes Ψ to

Y =
(

1 + (1 + T)2
n−1
)2
, (2.7)

whose factored representation now has length O(2n).
Factored representations display a certain amount of internal structure, but

at the cost of an expensive, and possibly data-expanding, process of addition.
Are there representations which do not have these ‘defects’? Yes, though they
may have other ‘defects’.

Expression tree This representation “solves” the cost of addition in the fac-
tored representation, by storing addition as such, just as the factored

representation stored multiplication as such. Hence
(
(x+ 1)3 − 1

)2
would

be legal, and represented as such. Equation (2.7) would also be stored
compactly provided exponentiation is stored as such, e.g. Z2 requiring
one copy of Z, rather than two as in Z · Z. This system is not canoni-
cal, or even normal: consider (x + 1)(x − 1) − (x2 − 1). This would be
described by Moses [Mos71] as a “liberal” system, and generally comes
with some kind of expand command to convert to a canonical represen-
tation. Assuming now that the leaf nodes are constants and variables,
and the tree’s internal nodes are (binary, i.e. with two arguments) addi-
tion, subtraction and multiplication, then a tree with maximal depth p
can represent a polynomial with maximum total degree 2p. It would need
to have 2p − 1 internal nodes (all multiplication), and 2p leaf nodes. The
degree is easy to bound, by means of a tree-walk, but harder to compute,
especially if cancellation actually occurs. Similarly, the leading coefficient
can be computed via a simple tree-walk if no cancellation occurs.

Expression DAG also known as Straight-Line Program (SLP) or Alge-
braic Circuit [IL80]. This is essentially19 the representation used by
Maple — it looks like the previous representation, but the use of hashing
in fact makes it a directed acyclic graph (DAG). Again, a straight-line
program of length l (i.e. a DAG of depth l− 1) can store a polynomial of
degree 2l−1. The difference with the expression tree representation above
is that we only need l nodes, since the nodes can be reused.

This format is essentially immune to the “change of origin” problem men-
tioned above, since we need merely replace the x node by a tree to compute
x + 1, thus adding two nodes, and possibly increasing the depth by one,
irrespective of the size of the polynomial. The general ‘straight-line’ for-
malism has advantages where multi-valued functions such as square root
are concerned: see the discussions around figures 3.1 and 3.2.

19Maple uses n-ary addition and multiplication, rather than binary, as described in section
C.3.

2.1. WHAT ARE POLYNOMIALS? 57

However, there is one important caveat about straight-line programs: we
must be clear what operations are allowed. If the only operations are +,
− and ×, then evidently a straight-line program computes a polynomial.
Equally, if division is allowed, the program might not compute a polyno-
mial. But might it? If we look at figure 2.1, we see that p = x2 − 1 and

q = x− 1, so the result is p
q = x2−1

x−1 = x+ 1. Or is it? If we feed in x = 1,

we in fact get 0
0 , rather than 2. This is a singularity of the kind known as

a removable singularity, because limx→1
p(x)
q(x) = 2. In fact [IL80, Theorem

3], deciding if two straight-line programs are equivalent is undecidable if
division is allowed.

Figure 2.1: A polynomial SLP

x
⇓ ↘

−1 ∗ ↓ −1
↘ ↙ ↓ ↙

p→ + + ← q
↘ ↙

/

We said earlier that the only known algorithms for computing greatest
common divisors were recursive. This is essentially true, and means that
the computation of greatest common disivors of straight-line programs is
not a straight-forward process [Kal88].

Reconstructing one of the more explicit representations (usually a sparse
one!) from a straight-line program representation is not straightforward.
The current state of the art over general finite fields is the following20.

Proposition 9 ([AGR14a, Theorem 1]) Let F ∈ Fq[z1, . . . , zn], and
suppose we are given a division-free straight-line program SF of length L
which evaluates F , an upper bound D = maxj degzj (F), and an upper
bound T on the number of nonzero terms t of F . There exists a proba-
bilistic algorithm which interpolates F with probability at least 3/4. The
algorithm requires

Õ
(
Ln(T logD + n)(logD + log q) logD + nω−1T logD + nω logD

)
bit operations, where ω is the matrix multiplication exponent.

We note that this is linear in T , which is as good as we could hope for.

If we can choose the finite field, to be Zp where p is smooth (has only small

prime divisors) then we can do much better: Õ(LTn logD + n2T log2D)

20The author is grateful to Dan Roche for explanations here, and for [Roc14].

58 CHAPTER 2. POLYNOMIALS

Figure 2.2: Code fragment A — a graph

p:=x+1;

q:=p;

r:=p*q;

Figure 2.3: Code fragment B — a tree

p:=x+1;

q:=x+1;

r:=p*q;

[Kal10, for the algorithm], [AGR14a, for the complexity]. Such fields ap-
pear to be common [HB78], and this gives us a algorithm for interpolat-
ing F over the integers with time Õ

(
(n2T logD + nLT)(n logD + logH)

)
[Kal10, for the algorithm], [Roc14, for the complexity]. There are further
improvements to be had in [AGR14b].

Additive Complexity This [Ris85, Ris88] is similar to a straight-line pro-
gram, except that we only count the number of (binary) addition/subtrac-
tion nodes, i.e. multiplication and exponentiation are ‘free’. Hence the
degree is unbounded in terms of the additive complexity, but for a given
expression (tree/DAG) can be bounded by a tree-walk. A univariate poly-

nomial of additive complexity a has at most Ca2

real roots for some ab-
solute constant C: conjecturally this can be reduced to 3a. These bounds
trivially translate to the straight-line program and expression tree cases.
See also Open Problem 5.

Specialist There are many possible highly specialist representations of poly-
nomials. One of the most impressive (where it’s applicable) is the graph
representation, used in [AIR14] to represent a polynomial with 317,881,154
monomials in a half-page graph.

“Additive complexity” is more of a measure of the ‘difficulty’ of a polynomial
than an actual representation. Of the others, the first was used in Macsyma for
its “general expression”, and the second is used in Maple21. In fact, Macsyma
would22 allow general DAGs, but would not force them. Consider the two code
fragments in figures 2.2 and 2.3. In the case of figure 2.2, both systems would
produce the structure in figure 2.4. For figure 2.3, Macsyma would produce the

21Until such time as operations such as expand are used!
22Not explicitly, but rather as a side-effect of the fact that Macsyma is implemented in Lisp,

which cares little for the difference. The basic function EQUAL does not distinguish between
acyclic and cyclic structures

2.1. WHAT ARE POLYNOMIALS? 59

Figure 2.4: DAG representation

1 x
↘ ↙

p→ + ← q
⇓

r → ∗

Figure 2.5: Tree representation

1 x 1
↘ ↙ ↘ ↙

p→ + + ← q
↘ ↙
r → ∗

structure23 in figure 2.5. Maple would still produce the structure of figure 2.4,
since the hashing mechanism would recognise that the two x+ 1 were identical.

2.1.6 The Newton Representation

For simplicity, in this subsection we will only consider the case of charateristic
0: finite characteristic has some serious technical difficulties, and we refer the
reader to [BFSS06]. We will also only consider monic polynomials.

Notation 17 Let p = xn+
∑n−1

i=0 aix
i =

∏n
i=0(x−αi) be a polynomial of degree

n. Let βs =
∑n

i=0 α
s
i , and define the Newton series of p to be Newton(p) =∑

s≥0 βsT
s.

It is well-known that the ai and αi are related:

an−1 = −
n∑

i=0

αi

an−2 =

n∑
i=0

n∑
j=i+1

αiαj

...
...

...

a0 = (−1)n
n∏

i=0

αi.

These are then related to the βi:

β1 = −an−1

23The x is shown as shared since the Lisp implementation will store symbols unqiuely.

60 CHAPTER 2. POLYNOMIALS

β2
1 = β2 + 2an−2

...
...

....

Hence, in characteristic 0, the βi (i ≤ n) form an alternative to the ai, a
fact known since 1840 [LV40]. But how do we convert rapidly between these
representations?

Proposition 10 ([Sch82], see also [BFSS06, Lemma 1]) Newton(p) = rev(p′)
rev(p)

as a power series about x = 0, where rev(p) =
∑n

i=0 an−ix
i.

2.1.7 Representations in Practice

General-purpose (calculus-side) computer algebra systems have to deal with
many expressions other than polynomials, but tend to regard polynomials as
the basic construct.

2.1.7.1 Representations in Reduce

This is probably one of the most straightforward. The basic Reduce object is
a standard quotient , i.e. a pair (literally a CONS cell in Lisp) of polynomials,
or standard forms. A standard form is a sparse recursive multivariate polyno-
mial, where the “variables” (known as kernels in Reduce) may be variables such
as x, but equally functions and expressions such as (cos x) — a Lisp form
representing cos(x).

If the kernels are genuinely indeterminates, i.e. we have a free algebra (Def-
inition 23), then this is a normal form, and it is canonical subject to the re-
strictions in Proposition 14. Initially Reduce did not, by default, compute gcds
(clause 3), but this changed as more efficient gcd algorithms were implemented.

2.1.7.2 Representations in Macsyma

Macsyma’s “general representation” is essentially an expression tree one. There
is a special form, known as Canonical Rational Expression24, which again is a
ratio of sparse recursive polynomials.

2.1.7.3 Representations in Maple

Maple’s original internal representation25 was an expression tree whose funda-
mental form was an n-ary sum of n-ary power products, as in the representation
of 9xy3z − 4y3z2 − 6xy2z − 8x3 − 5 as in Figure 2.6. The “variables” might in
fact be other Maple expressions, so that x2 − (x − 1)(x + 1) − 1 would be a
sum of three terms, one of which was the product of two elements each of which

24See http://www.ma.utexas.edu/maxima/maxima_11.html.
25The author is grateful to Michael Monagan of Simon Fraser University for much of this

information, and for permisson to reproduce the images. Note that, in the standard format
for a SUM, all the coefficients are the odd-numbered elements (counting the SUM as number 1)
except for the constant term. This is apparently a historical design decision.

http://www.ma.utexas.edu/maxima/maxima_11.html

2.1. WHAT ARE POLYNOMIALS? 61

Figure 2.6: Maple’s Original Polynomials
SUM11 means a sum expression occupying 11 words (header plus 5 prod-
uct/coefficient pairs); similarly PROD7 means a product expression occupying 7
words (header plus 3 variable/exponent pairs).

PROD 7

PROD 5

PROD 7

PROD 3

PROD 7 11 3

23 zy

1 2 1

3

zy

yx z

x

x

1−5−8−6−4SUM 11 9

were themselves sums. The elements in SUM and PROD expressions were stored in
hash-code order, which greatly facilitated combining like terms. The advantages
and disadvantages of this are described in [MP12, MP13].

As described there, for genuine polynomials (which would exclude x2− (x−
1)(x+1)−1 and expressions involving RootOf etc.), an alternative data structure
was introduced at Maple 17: the POLY data structure, which is a packed sparse
distributed representation: in this case as in Figure 2.7. where the numbers 5131

Figure 2.7: Maple’s New-Style Polynomials
POLY12 means a poly data structure of header word, a pointer to the variables,
and five exponent/coefficients pairs.

SEQ 4 x y z

−4 −6 −8 −59 5032 4121 3300 00005131POLY 12

etc. are in fact numbers base 215, so “5131”= 5 · 245 + 230 + 3 · 215 + 1, meaning
‘total degree 5’ and then the exponents of the individual variables. This form is
only used if the packed exponent field will fit into a 64-bit integer (or a 32-bit
integer on 32-bit Maple. Note that a 64-bit Maple integer actually goes up to
262 − 1, as given by kernelopts(maximmediate)). In this case, we had four
‘variables’ (three real ones and the slot for total degree), and 16 = ⌊62/4⌋ —
with four real variables we would have a base 212 expression as 12 = ⌊62/5⌋,
and so on. The fact that total degree is stored, and that the items in a POLY

data structure are stored in decreasing order of this packed exponent, means
that we have a ‘graded lexicographic’ (see p. 111) ordering.

The difference should be invisible to the casual Maple user, except for per-

62 CHAPTER 2. POLYNOMIALS

formance, but can be seen via the dismantle command.

2.1.8 Comparative Sizes

This section is largely of theoretical interest, since practical systems employ a
variety of techniques for storing polynomials, and are also constrained by the
actual size of machine words etc. Hence an analysis of a practical system will
tend to contain 4⌈log231(n)⌉ for the size in bytes, rather than log2(n) for the
size in bits.

Notation 18 We assume our polynomials have integer coefficients and are in
N variables, each of which26 occurs to degree at most D, and the coefficients are
at most C in absolute value. Furthermore, suppose there are at most T non-zero
terms. Let n = log2N , d = log2D and c = 1 + log2 C (the “1+” allows for a
sign. We ignore the space needed to store N , D etc. themselves.

Dense At least in principle, dense storage, whether recursive or distributed,
just stores the coefficients and no additional structural information. There
are (D+1)N terms, and , hence the storage needed is sdense = c(D+1)N .

Sparse (Distributed) There are T terms, each needing a coefficient and N
exponents, hence ssparse = T (c+Nd). If T is maximal (i.e. the polyno-

mial is completely dense), ssparse = sdense + (D + 1)NNd.

Sparse (Recursive) This is harder to describe, partly because it depends on
the variable order, as xD1 x

D
2 · · ·xdN−1

(
xDN + · · ·+ x0N

)
stores N +D expo-

nents, but if xN is the main variable, it stores (D + 1)N exponents. The
coefficient storage is the same as for ssparse, though.

Expression Tree Since this representation is not canonical, we need to discuss
the size of a particular representation, not just of an abstract polynomial.
Call this stree. Note that xN requires N − 1 multiplications, whether
we use repeated squaring, as in x4 = (x ∗ x) ∗ (x ∗ x) or iteration as in
x4 = x ∗ (x ∗ (x ∗ x))

Expression DAG Again this is not canonical. xN can now be computed by
recursive squaring with reuse, so x2

n

only needs n multiplications. Call
this sDAG. Since every tree is a DAG, we have sDAG ≤ stree.

Though there are unusual counter-examples, if we assume that c≫ d≫ n, then

sdense ≫ ssparse ≫ stree ≫ sDAG. (2.8)

Proposition 11 Each of the gaps in (2.8) can be exponentially big.
26Many authors prefer to bound the total degree by D. The difference is not great in

practice.

2.2. RATIONAL FUNCTIONS 63

2.2 Rational Functions

Of course, we want to manipulate a wider class of expressions, and even 1
x is

not a polynomial.

Definition 30 A rational function is built up from coefficients, which are as-
sumed to form an integral domain (definition 11), and certain indeterminates,
by the algebraic operations of addition, subtraction, multiplication and division
(except that division by zero is not permitted). In addition to the laws in def-
inition 22 (but with a, b and c interpreted as rational functions), the following
law is obeyed.

11. a ∗ (1/a) = 1.

2.2.1 Canonical Rational Functions

Proposition 12 Any rational function f can be put over a common denomina-
tor, i.e. written as n/d where n and d are polynomials, known as the numerator
and denominator respectively. We write num(f) and den(f) respectively, noting
that in fact these are only defined up to units.

Proposition 13 In common denominator format, a
b = c

d if, and only if, ad−
bc = 0.

We can in fact characterise three simple forms of equality.

common coefficients An example of this would be.

x2 − 2x+ 1

x2 − 1
versus

2x2 − 4x+ 2

2x2 − 2
.

Here we need to remove the g.c.d. of the contents (definition 35) of the
two polynomials.

“up to sign” An example of this would be.

−x2 + 2x− 1

x2 − 1
versus

x2 − 2x+ 1

−x2 + 1
.

These are ‘clearly equal’ but “computers don’t do clearly”. We need a
convention, and the common one27 is ‘leading coefficient positive’ in the
denominator. However, this does not generalize so easily to other domains
of coefficients [DT90].

common factors An example of this would be

x2 − 2x+ 1

x2 − 1
versus

x− 1

x+ 1
.

27By no means the only possible one: ‘leading coefficient negative’ would be equally valid,
as would ‘trailing coefficient positive’.

64 CHAPTER 2. POLYNOMIALS

If we put the difference between the two over a common denominator, we

get 0
x2−1 = 0. The reader may complain that x2−2x+1

x2−1 “is undefined when

x = 1”, whereas x−1
x+1 “has the value 0”. However, we have not defined

what we mean by such substitutions, and for the purposes of this chapter,
we are concerned with algebraic equality in the sense of proposition 13.

Proposition 14 ([DT90]) A representation n/d where n and d are polynomi-
als is canonical if the following conditions are satisfied:

1. n and d are polynomials from a free (Definition 23) polynomial algebra;

2. these polynomials are themselves represented canonically;

3. Any greatest common divisor, whether polynomial or content, is removed
from n and d;

4. n/d is canonical with respect to units, typically by insisting that d have a
canonical-up-to-associates (e.g. positive) leading coefficient.

The reader might think that condition 1 was unnecessary in view of condition
2. That this is not so is shown by

√
2− 1 =

1√
2 + 1

(2.9)

where each of
√

2−1 and
√

2+1 are represented canonically, but nevertheless we
have an equality here, which wouldn’t occur for any value of the “indeterminate”
except

√
2.

2.2.2 Candidness of rational functions

We have already given (Definition 6) an abstract definition of candidness, which
can also be described as “what you see is what you’ve got” mathematically.
What would this mean for rational functions (and therefore for polynomials)?
[Sto11a, p.869] gives the following as a sufficient set of conditions28.

1. there are no compound ratios such as

x+
x+ 1

1 + 1
x

(2.10)

(note that this is 2x, and therefore “only” a polynomial, so violates the
general definition of candidness),

2. all ratios that occur are reduced (therefore preferring x999 + · · ·+x+ 1 to
x1000−1

x−1 , so disagreeing with Carette’s definition of ‘simplification’ on page
29),

28He also remarks “There can be other candid forms for rational expressions, including
[appropriately reduced, ruling out (2.10)] continued fractions. However, the complexity of
implementing a candid simplifier increases with the permissiveness of the allowed result forms.”

2.3. GREATEST COMMON DIVISORS 65

3. the factors and terms are ordered in an easily discerned traditional way29,
such as lexically by descending degree,

4. all manifestly similar factors and terms are collected,

5. for each variable, the actual degree of every variable in a reduced ratio of
an expanded numerator and denominator would be no less than what a
user would predict assuming no cancellations. For example, assuming no
cancellations, we can predict that at most the degree of x will be 3 in the
denominator and 6 in the numerator when

x3 +
1

x2 − 1
+

1

x+ 2
(2.11)

is reduced over a common denominator. Those are the resulting degrees,
so (2.11) is a candid representation, even though it’s probably not one
of a class of canonical representations. Conversely (2.10) violates this
condition, since we would predict it to be the ratio of a degree 2 and a
degree 1 polynomial.

In particular, clause 2 (or 5) implies that any common factors are cancelled,
which poses the question, answered in the next section: how do we compute
common factors? Given f

g , is there an h dividing both f and g that should be
cancelled?

2.3 Greatest Common Divisors

The following definition is valid whenever we have a concept of division.

Definition 31 h is said to be a greatest common divisor, or g.c.d., of f and g
if, and only if:

1. h divides both f and g;

2. if h′ divides both f and g, then h′ divides h.

This definition clearly extends to any number of arguments. The g.c.d. is nor-
mally written gcd(f, g).

Note that we have defined a g.c.d, whereas it is more common to talk of the
g.c.d. However, ‘a’ is correct. We normally say that 2 is the g.c.d. of 4 and 6, but
in fact −2 is equally a g.c.d. of 4 and 6. By analogy with the ‘leading coefficient
positive’ convention (page 63), we will usually make the leading coefficient of a
polynomial positive when working over the integers, and 1 when working modulo
a prime p. But it must be emphasised that this is only a convention, and doesn’t
transfer easily to more general domains [DT90].

29It is this clause that Maple’s sometimes disconcerting hash-based output breaks. Maple
prefers to use the POLY format (Figure 2.7) when it can, so this doesn’t happen with small
examples.

66 CHAPTER 2. POLYNOMIALS

Proposition 15 If h and h′ are greatest common divisors of a and b, they are
associates (definition 13).

Example 4 (Greatest common divisors need not exist) Consider the set
of all integers with

√
−5. 2 clearly divides both 6 and and 2 + 2

√
−5. However,

so does 1 +
√
−5 (since 6 = (1 +

√
−5)(1 −

√
−5)), yet there is no multiple of

both 2 and 1 +
√
−5 which divides both.

Definition 32 An integral domain (definition 11) in which any two elements
have a greatest common divisor is known30 as a g.c.d. domain.

If R is a g.c.d. domain, then the elements of the field of fractions (definition 16)
can be simplified by cancelling a g.c.d. between numerator and denominator,
often called “reducing to lowest terms”. While this simplifies fractions, it does
not guarantee that they are normal or canonical. One might think that 0

1
was the unique representation of zero required for normality, but what of 0

−1?

Equally −1
2 = 1

−2 , and in general we have to remove the ambiguity caused by
units. In the case of rational numbers, we do this automatically by making the
denominator positive, but the general case is more difficult [DT90].

Definition 33 h is said to be a least common multiple, or l.c.m., of f and g
if, and only if:

1. both f and g divide h ;

2. if both f and g divide h′, then h divides h′.

This definition clearly extends to any number of arguments. The l.c.m. is
normally written lcm(f, g).

Proposition 16 If gcd(f, g) exists, then fg/ gcd(f, g) is a least common mul-
tiple of f and g.

This result is normally written as fg = gcd(f, g)lcm(f, g), but this is only true
up to associates. We should also note that this result does not extend to any
number of arguments: in general fgh ̸= gcd(f, g, h)lcm(f, g, h).

2.3.1 Polynomials in one variable

For univariate polynomials over a field, we can define a more extended version
of division.

Definition 34 If a and b ̸= 0 are polynomials in K[x], K a field, and a = qb+r
with deg(r) < deg(b), then we say that b divides a with quotient q and remainder
r, and q and r are denoted quo(a, b) and rem(a, b).

30Normally known in mathematics as a unique factorisation domain, but, while the exis-
tence of greatest common divisors is equivalent to the existence of unique factorisation, the
ability to compute greatest common divisors is not equivalent to the ability to compute unique
factorisations [FS56, DGT91], and hence we wish to distinguish the two.

2.3. GREATEST COMMON DIVISORS 67

It is clear that q and r exist, and are unique. Division in the previous sense
then corresponds to the case r = 0.

Theorem 5 (Euclid) If K is a field, the univariate polynomials K[x] form a
g.c.d. domain.

Algorithm 2 (Euclid)
Input: f, g ∈ K[x].
Output: h ∈ K[x] a greatest common divisor of f and g

i := 1;
if deg(f) < deg(g)

then a0 := g; a1 := f ;
else a0 := f ; a1 := g;

while ai ̸= 0 do
ai+1 = rem(ai−1, ai);
#qi :=the corresponding quotient: ai+1 = ai−1 − qiai
i := i+ 1;

return ai−1;

Proof. We must first show that this is an algorithm, i.e. that the potentially
infinite loop actually terminates. But deg(ai) is a non-negative integer, strictly
decreasing each time round the loop, and therefore the loop must terminate. So
ai = 0, but ai = rem(ai−2, ai−1), so ai−1 divides ai−2. In fact, ai−2 = qi−1ai−1.
Now ai−1 = ai−3 − qi−2ai−2, so ai−3 = ai−1(1 + qi−2qi−1), and so on, until we
deduce that ai−1 divides a0 and a1, i.e. f and g in some order. Hence the result
of this algorithm is a common divisor. To prove that it is a greatest common
divisor, we must prove that any other common divisor, say d, of f and g divides
ai−1. d divides a0 and a1. Hence it divides a2 = a0 − q1a1. Hence it divides
a3 = a1 − q2a2, and so on until it divides ai−1.

We should note that our algorithm is asymmetric in f and g: if they have
the same degree, it is not generally the case that gcd(f, g) = gcd(g, f), merely
that they are associates.

Lemma 1 In these circumstances, the result of Euclid’s algorithm is a linear
combination of f and g, i.e. ai−1 = λi−1f + µi−1g: λi−1, µi−1 ∈ K[x].

Proof. a0 and a1 are certainly such combinations: a0 = 1 ·f+0 ·g or 1 ·g+0 ·f
and similarly for a1. Then a2 = a0− q1a1 is also such a combination, and so on
until ai−1, which is the result.

The above theory, and algorithm, are all very well, but we would like to
compute (assuming they exist!) greatest common divisors of polynomials with
integer coefficients, polynomials in several variables, etc. So now let R be any
g.c.d. domain.

Definition 35 If f =
∑n

i=0 aix
i ∈ R[x], define the content of f , written

cont(f), or contx(f) if we wish to make it clear that x is the variable, as
gcd(a0, . . . , an). Technically speaking, we should talk of a content, but in the

68 CHAPTER 2. POLYNOMIALS

theory we tend to abuse language, and talk of the content. Similarly, the prim-
itive part, written pp(f) or ppx(f), is f/cont(f). f is said to be primitive if
cont(f) is a unit.

Proposition 17 If f divides g, then cont(f) divides cont(g) and pp(f) divides
pp(g). In particular, any divisor of a primitive polynomial is primitive.

The following result is in some sense a converse of the previous sentence.

Lemma 2 (Gauss) The product of two primitive polynomials is primitive.

Proof. Let f =
∑n

i=0 aix
i and g =

∑m
j=0 bjx

j be two primitive polynomials,

and h =
∑m+n

i=0 cix
i their product. Suppose, for contradiction, that h is not

primitive, and p is a prime31 dividing cont(h). Suppose that p divides all the
coefficients of f up to, but not including , ak, and similarly for g up to but not
including bl. Now consider

ck+l = akbl +

k−1∑
i=0

aibk+l−i +

k+l∑
i=k+1

aibk+l−i (2.12)

(where any indices out of range are deemed to correspond to zero coefficients).
Since p divides cont(h), p divides ck+l. By the definition of k, p divides

every ai in
∑k−1

i=0 aibk+l−i, and hence the whole sum. Similarly, by definition of

l, p divides every bk+l−i in
∑k+l

i=k+1 aibk+l−i, and hence the whole sum. Hence p
divides every term in equation (2.12) except akbl, and hence has to divide akbl.
But, by definition of k and l, it does not divide either ak or bl, and hence cannot
divide the product. Hence the hypothesis, that cont(h) could be divisible by a
prime, is false.

Corollary 2 cont(fg) = cont(f)cont(g).

Theorem 6 (“Gauss’ Lemma”) If R is a g.c.d. domain, and f, g ∈ R[x],
then gcd(f, g) exists, and is gcd(cont(f), cont(g)) gcd(pp(f),pp(g)).

Proof. Since R is an integral domain, its field of fractions, say K is a field.
Hence, in K[x] where theorem 5 is applicable, pp(f) and pp(g) have a greatest
common divisor, say h. If c is any non-zero element of R, then ch is also a
greatest common divisor of pp(f) and pp(g). Hence we can assume that h is
in R[x] and, as a polynomial of R[x], is primitive. In K[x], pp(f) is a multiple
of h, say pp(f) = hk for k ∈ K[x]. We can write k = dk′, where k′ ∈ R[x]
and is primitive. Then d−1pp(f) = hk′. But h and k′ are primitive, so, by
the Lemma, their product is primitive, and d is a unit. Hence h is, in R[x], a
common divisor of pp(f) and pp(g).

31The reader may complain that, in note 30, we said that the ability to compute g.c.d.s
was not equivalent to the ability to compute unique factors, and hence primes. But we are
not asking to factorise cont(f), merely supposing, for the sake of contradiction that it is
non-trivial, and therefore has a prime divisor.

2.3. GREATEST COMMON DIVISORS 69

But, if h̄ is a common divisor of pp(f) and pp(g) in R[x], it is certainly
a common divisor of f and g in K[x], hence divides h in K[x], and so pp(h̄)
divides h in R[x]. Hence h is a greatest common divisor of pp(f) and pp(g) in
R[x], and the rest of the theorem is obvious.

This gives us one obvious means of computing g.c.d.s in R[x], which can be
described as “compute in K[x] and sort out the contents afterwards”. More
formally it would be Algorithm 3.

Algorithm 3 (General g.c.d.)
Input: f, g ∈ R[x].
Output: h ∈ R[x] a greatest common divisor of f and g

1. fc := contx(f); fp := f/fc; gc := contx(g); gp := g/gc.
2. h := gcd(fp, gp) computed in K[x] by Algorithm 2
3. hp := pp(h× (enough to remove denominators))
4. return gcd(fc, gc)× hp
Correct by reasoning above.

Certainly this is an algorithm, but is it a good one? Let k = max(degx(f),degx(g)).
In terms of the number of coefficient operations, and in the dense representa-
tions, we do O(k2) operations. But how big do these coefficients get?

Consider the computation of the g.c.d. of the following two polynomials
(this analysis is mostly taken from [Bro71a, Bro71b], but with one change32:
−21 instead of +21 for the trailing coefficient of B):

A(x) = x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5;

B(x) = 3x6 + 5x4 − 4x2 − 9x− 21.

The first elimination gives A− (x2

3 −
2
9)B, that is

−5

9
x4 +

127

9
x2 − 29

3
,

and the subsequent eliminations give

50157

25
x2 − 9x− 35847

25

93060801700

1557792607653
x+

23315940650

173088067517

and, finally,
761030000733847895048691

86603128130467228900
.

Since this is a number, it follows that no polynomial can divide both A and B,
i.e. that gcd(A,B) = 1.

32Originally an error, but it makes the point better. The polynomials are due to [Knu69,
pp. 370-371].

70 CHAPTER 2. POLYNOMIALS

It is obvious that these calculations on polynomials with rational coefficients
require several g.c.d. calculations on integers, and that the integers in these
calculations are not always small.

We can eliminate these g.c.d. calculations by working all the time with
polynomials with integer coefficients, and this gives a generalisation of the ai of
algorithm 2, known as polynomial remainder sequences or p.r.s., by extending
the definition of division.

Definition 36 Instead of dividing f by g in K[x], we can multiply f by a
suitable power of the leading coefficient of g, so that the divisions stay in R.
The pseudo-remainder of dividing f by g, written prem(f, g), is the remainder
when one divides lc(g)deg(f)−deg(g)+1f by g, conceptually in K[x], but in fact all
the calculations can be performed in R, i.e. all divisions are exact in R. This
is denoted33 by prem(f, g).

In some applications (section 3.1.9) it is necessary to keep track of the signs:
we define a signed polynomial remainder sequence or s.p.r.s. of f0 = f and
f1 = g to have fi proportional by a positive constant to −rem(fi−2, fi−1).

This gives us a pseudo-euclidean algorithm, analogous to algorithm 2 where we
replace rem by prem, and fix up the contents afterwards. In the above example,
we deduce the following sequence:

−15x4 + 381x2 − 261,

6771195x2 − 30375x− 4839345,

500745295852028212500x+ 1129134141014747231250

and
7436622422540486538114177255855890572956445312500.

Again, this is a number, so gcd(A,B) = 1. We have eliminated the fractions,
but at a cost of even larger numbers. Can we do better?

2.3.2 Subresultant sequences

One option would be to make the ai primitive at each step, since we are going
to fix up the content part later: giving the so-called primitive p.r.s. algorithm,
which in this case would give

−5x4 + 127x2 − 87; 5573x2 − 25x− 3983;−1861216034x− 4196868317; 1

This is a perfectly reasonable algorithm when it is a question of polynomials in
one variable, and is essentially equivalent to calculating with rational numbers,
but over a common denominator. However, if we come to polynomials in several
variables, every step of the g.c.d. for polynomials in n variables would involve

33This definition agrees with Maple, but not with all software systems, which often use prem
to denote what Maple calls sprem, i.e. only raising lc(g) to the smallest power necessary.

2.3. GREATEST COMMON DIVISORS 71

Figure 2.8: Subresultant p.r.s. algorithm

Algorithm 4 (Subresultant p.r.s.)
Input: f, g ∈ K[x].
Output: h ∈ K[x] a greatest common divisor of pp(f) and pp(g)
Comment: If f, g ∈ R[x], where R is an integral domain and K is the field of
fractions of R, then all computations are exact in R[x]. This can therefore fulfil
the rôle of steps 2–3 of Algorithm 3.

i := 1;
if deg(f) < deg(g)

then a0 := pp(g); a1 := pp(f);
else a0 := pp(f); a1 := pp(g);

δ0 := deg(a0)− deg(a1);
β2 := (−1)δ0+1;
ψ2 := −1;
while ai ̸= 0 do

ai+1 = prem(ai−1, ai)/βi+1;
#qi :=the corresponding quotient: ai+1 = lc(ai)

δi−1+1ai−1 − qiai
δi := deg(ai)− deg(ai+1);
i := i+ 1;

ψi+1 := (−lc(ai−1))
δi−2 ψ

1−δi−2

i ;

βi+1 := −lc(ai−1)ψ
δi−1

i+1 ;
return pp(ai−1);

The ai are referred to as a subresultant polynomial remainder sequence.

the g.c.d. of several polynomials in n − 1 variables, each step of each of which
would involve the g.c.d. of several polynomials in n− 2 variables, and so on.

The following, slightly mysterious34, algorithm will do the trick. By the
Subresultant Theorem [Loo82], all divisions involved are exact, i.e. we always
stay in R[x]. Furthermore, the factors βi that are cancelled are generically as
large as possible, where by “generically” we mean that, if the coefficients of
f and g were all independent, nothing more could be cancelled35. In the same
example as before, we get the following:

a2 = 15x4 − 381x2 + 261,

a3 = −27865x2 + 125x+ 19915,

34Some of the mystery is explained by corollary 5 on page 99. In particular the various −
signs, which are irrelevant as far as a strict g.c.d. algorithm is concerned, come from corollary
5.

35The reader may comment that the example, repeated below with this algorithm, shows a
consistent factor of 3 in a2, and this is true however the non-zero coefficients are perturbed.
Indeed, if the leading coefficient of a1 is changed to, say, 4, we get a consistent factor of 4.
However, if the coefficient of x7 in a0 is made non-zero, then the common factor will generally
go away, and that is what we mean by “generically”.

72 CHAPTER 2. POLYNOMIALS

a4 = −3722432068x− 8393738634,

a5 = 1954124052188.

Here the numbers are much smaller, and indeed it can be proved that the
coefficient growth is only linear in the step number. a2 has a content of 3,
which the primitive p.r.s. would eliminate, but this content in fact disappears
later. Similarly a3 has a content of 5, which again disappears later. Hence we
have the following result.

Theorem 7 Let R be a g.c.d. domain. Then there is an algorithm to calculate
the g.c.d. of polynomials in R[x]. If the original coefficients have length bounded
by B, the length at the i-th step is bounded by iB. Strictly speaking, this theorem
is true for polynomials in several variables, where “length” is replaced by “degree
in variables other than x”. Over the integers, we need to add log(2i!) to allow
for the fact that the sum of two integers can be larger than either.

This algorithm is the best method known for calculating the g.c.d., of all those
based on Euclid’s algorithm applied to polynomials with integer coefficients. In
chapter 4 we shall see that if we go beyond these limits, it is possible to find
better algorithms for this calculation.

2.3.3 The Extended Euclidean Algorithm

We can in fact do more with the Euclidean algorithm. Consider the following
variant of Algorithm 2, where we have added a few extra lines, marked (*),
manipulating (a, b), (c, d) and (e, e′).

Algorithm 5 (Extended Euclidean)
Input: f, g ∈ K[x].
Output: h ∈ K[x] a greatest common divisor of f and g, and c, d ∈ K[x] such
that cf + dg = h.

i := 1;
if deg(f) < deg(g)

then a0 := g; a1 := f ;
(∗1) a := 1; d := 1; b := c := 0

else a0 := f ; a1 := g;
(∗1) c := 1; b := 1; a := d := 0

while ai ̸= 0 do
(∗2) #Loop invariant: ai = af + bg; ai−1 = cf + dg;

ai+1 := rem(ai−1, ai);
qi :=the corresponding quotient: #ai+1 = ai−1 − qiai

(∗3) e := c− qia; e′ := d− qib; #ai+1 = ef + e′g
i := i+ 1;

(∗3) (c, d) := (a, b);
(∗3) (a, b) := (e, e′)

return (ai−1, c, d);

2.3. GREATEST COMMON DIVISORS 73

The comments essentially form the proof of correctness. In particular, if f and
g are relatively prime, there exist c and d such that

cf + dg = 1 : (2.13)

a result often called Bézout’s identity36.
For the sake of further developments (section B.3.6), we can express the

marked lines as

(∗1)

(
a b
c d

)
:=

(
1 0
0 1

)
or

(
0 1
1 0

)
(2.14)

(∗2)

(
ai
ai+1

)
=

(
a b
c d

)(
f
g

)
(2.15)

(∗3)

(
a b
c d

)
:=

(
0 1
1 −qi

)(
a b
c d

)
(2.16)

It is possible to make similar modifications to algorithm 4, and the same
theory that shows the division by βi+1 is exact shows that we can perform
the same division of (e, e′). However, at the end, we return pp(ai−1), and the
division by cont(ai−1) is not guaranteed to be exact when applied to (a, b).

Algorithm 6 (General extended p.r.s.)
Input: f, g ∈ K[x].
Output: h ∈ K[x] a greatest common divisor of pp(f) and pp(g), h′ ∈ K and
c, d ∈ K[x] such that cf + dg = h′h
Comment: If f, g ∈ R[x], where R is an integral domain and K is the field of
fractions of R, then all computations are exact in R[x], and h′ ∈ R, c, d ∈ R[x].

i := 1;
if deg(f) < deg(g)

then a0 := pp(g); a1 := pp(f);
(*) a := 1; d := 1; b := c := 0

else a0 := pp(f); a1 := pp(g);
(*) c := 1; b := 1; a := d := 0

δ0 := deg(a0)− deg(a1);
β2 := (−1)δ0+1;
ψ2 := −1;
while ai ̸= 0 do

(*) #Loop invariant: ai = af + bg; ai−1 = cf + dg;
ai+1 = prem(ai−1, ai)/βi+1;
#qi :=the corresponding quotient: ai+1 = lc(ai)

δi−1+1ai−1 − qiai
δi := deg(ai)− deg(ai+1);

(*) e := (c− qia)/βi+1;
(*) e′ := (d− qib)/βi+1; #ai+1 = ef + e′g

i := i+ 1;

36Often spelled Bezout. But the title page of [Béz79] does have the acute accent.

74 CHAPTER 2. POLYNOMIALS

(*) (c, d) = (a, b);
(*) (a, b) = (e, e′)

ψi+1 := −lc(ai−1)δi−2ψ
1−δi−2

i ;

βi+1 := −lc(ai−1)ψ
δi−1

i+1 ;
return (pp(ai−1), cont(ai−1), c, d);

2.3.4 Partial Fractions

Bézout’s Identity (2.13) has a useful consequence. Suppose we have a fraction
p/q, and q = fg with gcd(f, g) = 1. Then

p

gf
=
p(cf + dg)

fg
=
pc

g
+
pd

f
. (2.17)

Even if p/q is proper, i.e. degp < degq, the same may not be true of pc/g or
pd/f . However, if the left-hand side of (2.17) is proper, so must the right-hand
side be when collected over a common denominator. Hence the extents to which
pc/g and pd/f are improper must cancel. So

p

q
=
pc rem g

g
+
pd rem f

f
. (2.18)

A decomposition of the form of the right-hand side of (2.18) is called a partial
fraction decomposition. This can clearly be extended to any number of factors
of the denominator, i.e.

p∏n
i=1 fi

=

n∑
i=1

pi
fi
. (2.19)

There is one important caution: even if p, q ∈ Z[x], this need not be the case
for the partial fraction decomposition, for example

1

x2 − 1
=

1/2

x− 1
+
−1/2

x+ 1
.

2.3.5 Polynomials in several variables

Here it is best to regard the polynomials as recursive, so that R[x, y] is regarded
as R[y][x]. In this case, we now know how to compute the greatest common
divisor of two bivariate polynomials.

Algorithm 7 (Bivariate g.c.d.)
Input: f , g ∈ R[y][x].
Output: h ∈ R[y][x] a greatest common divisor of f and g

hc := the g.c.d. of contx(f) and contx(g)
this is a g.c.d. computation in R[y].
hp := algorithm 4 (ppx(f),ppx(g))
replacing R by R[y], which we know, by theorem 7, is a g.c.d. domain.
return hchp
which by theorem 6 is a g.c.d. of f and g.

2.3. GREATEST COMMON DIVISORS 75

This process generalises.

Theorem 8 If R is a g.c.d. domain, then R[x1, . . . , xn] is also a g.c.d. domain.

Proof. Induction on n, with theorem 7 as the building block.

What can we say about the complexity of this process? It is easier to analyse
if we split up the division process which computes rem(ai−1, ai) into a series
of repeated subtractions of shifted scaled copies of ai from ai−1. Each such
subtraction reduces deg(ai−1), in general by 1. For simplicity, we shall assume
that the reduction is precisely by 1, and that37 deg(ai+1) = deg(ai)− 1. It also
turns out that the polynomial manipulation in x is the major cost (this is not the
case for the primitive p.r.s, where the recursive costs of the content computations
dominates), so we will skip all the other operations (the proof of this is more
tedious than enlightening). Let us assume that degx(f)+degx(g) = k, and that
the coefficients have maximum degree d. Then the first subtraction will reduce
k by 1, and replace d by 2d, and involve k operations on the coefficients. The
next step will involve k − 1 operations on coefficients of size 2d. The next step
combines one of the original polynomials, with coefficients of degree d, with this
polynomial with coefficients of degree 2d, giving a polynomial with coefficients
of degree 3d. Combining this with a polynomial with coefficients of degree 2d
ought to give us coefficients of degree 5d, but in fact we divide by the previous
leading coefficient (degree d) so the answer is a polynomial with coefficients of
degree 4d, and so on, giving degree id at the i-th step (for a matrix view of this,

see Corollary 7 and the discussion after it), and a total cost of
∑k

i=0(k−i)F (id),
where F (d) is the cost of operating on coefficients of degree d. Let us suppose
that there are v variables in all : x itself and v − 1 variables in the coefficients
with respect to x.

v = 2 Here the coefficients are univariate polynomials. If we assume classic
multiplication on dense polynomials, F (d) = cd2 + O(d). We are then
looking at

k∑
i=0

(k − i)F (id) ≤ c

k∑
i=0

(k − i)i2d2 +

k∑
i=0

kO(id)

≤ ck

k∑
i=0

i2d2 − c
k∑

i=0

i3d2 + k3O(d)

= c

(
1

3
k4 +

1

2
k3 +

1

6
k2
)
d2 − c

(
1

4
k4 +

1

2
k3 +

1

4
k2
)
d2 + k3O(d)

= c

(
1

12
k4 − 1

12
k2
)
d2 + k3O(d)

37This assumption is known as assuming that the remainder sequence is normal . Note that
our example is distinctly non-normal, and that, in the case of a normal p.r.s., βi = ±lc(ai−2)

2.
In fact, the sub-resultant algorithm was first developed for normal p.r.s., where it can be seen
as a consequence of the Dodgson–Bareiss Theorem (theorem 15).

76 CHAPTER 2. POLYNOMIALS

which we can write as O(k4d2). We should note the asymmetry here: this
means that we should choose the principal variable (i.e. the x in algorithm
7) to be whichever of x and y minimises

min(max(degx(f),degx(g)),max(degy(f),degy(g))).

v = 3 Here the coefficients are bivariate polynomials. If we assume classic mul-
tiplication on dense polynomials, F (d) = cd4+O(d3). We are then looking
at

k∑
i=0

(k − i)F (id) ≤ c

k∑
i=0

(k − i)i4d4 +

k∑
i=0

kO(i3d3)

≤ ck

k∑
i=0

i4d4 − c
k∑

i=0

i5d4 + k5O(d3)

= c

(
1

5
k6 + · · ·

)
d2 − c

(
1

6
k6 + · · ·

)
d2 + k5O(d3)

= c

(
1

30
k6 + · · ·

)
d4 + k5O(d3)

which we can write as O(k6d4). The asymmetry is again obvious.

general v The same analysis produces O(k2vd2v−2).

We see that the cost is exponential in v, even though it is polynomial in d and
k. This is not a purely theoretical observation: any experiment with several
variables will bear this out, even when the inputs (being sparse) are quite small:
the reader need merely use his favourite algebra system on

a0 := ax4 + bx3 + cx2 + dx+ e; a1 := fx4 + gx3 + hx2 + ix+ j,

treating x as the main variable (which of course one would not do in practice),
to see the enormous growth of the coefficients involved.

2.3.6 Square-free decomposition

Let us revert to the case of polynomials in one variable, x, over a field K, and let
us assume that char(K) = 0 (see definition 17 — the case of characteristic non-
zero is more complicated [DT81], and we really ought to talk about ‘separable
decomposition’ [Lec08]).

Definition 37 The formal derivative of f(x) =
∑n

i=0 aix
i is written f ′(x) and

computed as f ′(x) =
∑n

i=1 iaix
i−1.

This is what is usually referred to as the derivative of a polynomial in calculus
texts, but we are making no appeal to the theory of differentiation here: merely
defining a new polynomial whose coefficients are the old ones (except that a0
disappears) multiplied by the exponents, and where the exponents are decreased
by 1.

2.3. GREATEST COMMON DIVISORS 77

Proposition 18 The formal derivative satisfies the usual laws:

(f + g)′ = f ′ + g′ (fg)′ = f ′g + fg′.

Proof. By algebra from the definition. This is taken up in more generality in
Proposition 73.

Let us consider the case f = gnh, where g and h have no common factors.
Then f ′ = gnh′ + ngn−1g′h and is clearly divisible by gn−1. n is not zero in
K (by the assumption on char(K)), so g does not divide f ′/gn−1 = gh′ + ng′h.
Hence gcd(f, f ′) is divisible by gn−1 but not by gn. These considerations lead
to the following result.

Proposition 19 Let f =
∏k

i=1 f
ni
i where the fi are relatively prime and have

no repeated factors. Then

gcd(f, f ′) =

k∏
i=1

fni−1
i .

Definition 38 The square-free decomposition of a polynomial f is an expres-
sion

f =

n∏
i=1

f ii (2.20)

where the fi are relatively prime and have no repeated factors. f is said to be
square-free if n = 1.

Note that some of the fi may be 1.

Lemma 3 Such a decomposition exists for any non-zero f , and can be calcu-
lated by means of gcd computations and divisions.

Proof. Let g = gcd(f, f ′) =
∏n

i=1 f
i−1
i by the previous proposition. Then

f/g =
∏n

i=1 fi and gcd(g, f/g) =
∏n

i=2 fi. Hence

f/g

gcd(g, f/g)
= f1.

Applying the same process to g will compute f2, and so on.
This is not in fact the most efficient way of computing such a decomposition:

a better method was given by Yun [Yun76].

2.3.7 Sparse Complexity

So far we have, implicitly, considered dense polynomials. What if the polyno-
mials are sparse? There are then various embarrassing possibilities that

1. the gcd g might be much denser than the inputs A and B

2. even if the gcd g is not much denser than the inputs A and B, the cofactors
A/g and B/g computed as part of the verification might be much denser

78 CHAPTER 2. POLYNOMIALS

3. even if neither of these happens, various intermediate results might be
much denser than A and B.

Problem 2 is easy to demonstrate: consider the cofactors in gcd(xp− 1, xq − 1),
where p and q are distinct primes. Problem 1 is demonstrated by the following
elegant example of [Sch03a] (extended to multivariates in Example 24)

gcd(xpq − 1, xp+q − xp − xq + 1) = (xp−1)(xq−1)
x−1

= xp+q−1 + xp+q−2 ± · · · − 1︸ ︷︷ ︸
2 min(p, q) terms

, (2.21)

and indeed just knowing whether two polynomials have a non-trivial gcd is hard,
by the following result.

Theorem 9 ([Pla77]) It is NP-hard to determine whether two sparse polyno-
mials (in the standard encoding) have a non-trivial common divisor.

This theorem, like the examples above, relies on the factorisation of xp−1, and it
is an open question [DC09, Challenge 3] whether this is the only obstacle. More
precisely, we have the following equivalent of the problem solved for division.

Open Problem 2 (Sparse gcd (strong)) Find an algorithm for computing
h = gcd(f, g) which is polynomial-time in tf , tg and th, and independent of the
degrees (or possibly polynomial in the logarithms of the degrees). See [DC09,
Challenge 5].

For multivariate polynomials, we seem to have a solution in practice (page 207)
in the sense that its running time depends on the number of actual terms in
the multivariate g.c.d., rather than the potential number of terms. It is still
polynomial in the degree in the main variable, though.

A weaker problem, but still unsolved, is

Open Problem 3 (Sparse gcd (weak)) Find an algorithm for computing h =
gcd(f, g) which is polynomial-time in tf , tg, th and tf/h, tg/h.

Observation 2 It follows from (2.21) that square-free decompositions are also
hard in the sense that the number of terms in the output is unbounded in the
number of terms in the input:

xpq+p+q − xpq+p − xpq+q + xpq − xp+q + xp + xq − 1︸ ︷︷ ︸
8 terms

=

(xpq − 1) (xp+q − xp − xq + 1) =(x− 1)3
(
xp+q−2 + 2xp+q−3 ± · · ·+ 1

)︸ ︷︷ ︸
p+ q − 2 terms

2
(. . .)

(2.22)
Furthermore, the largest coefficient in the marked term of multiplicity 2 is
min(p, q), quashing any hopes that the coefficients of a square-free decomposition
might be bounded in terms only of the coefficients of the input.

2.4. NON-COMMUTATIVE POLYNOMIALS 79

2.4 Non-commutative polynomials

2.4.1 Types of non-commutativity

The label “non-commutative polynomials” in fact covers three cases.

1. The indeterminates commute, but the coefficients do not. For definiteness,
we will refer to this case as polynomials with non-commuting coefficients.
In this case, rule 5 of definition 22 has to be replaced by

5′ x ∗ y = y ∗ x;

where x and y are indeterminates, not general polynomials. This means
that some of the traditional laws of algebra cease to operate: for example

(ax+ b)(ax− b) = a2x2 − b2

becomes

(ax+ b)(ax− b) = a2x2 + (−a ∗ b+ b ∗ a)x− b2

2. The coefficients commute, but the indeterminates do not. For definiteness,
we will refer to this case as polynomials with non-commuting indetermi-
nates. In this case, rule 5 of definition 22 has to be replaced by the
assumption

• m⊗ n = n⊗m.

At this point, many of the traditional laws of algebra cease to operate:
even the Binomial Theorem in the form

(x+ y)2 = x2 + 2xy + y2

has to be replaced by

(x+ y)2 = x2 + (xy + yx) + y2.

A common case of non-commuting indeterminates is in differential algebra,
where the variable x and the differentiation operator d

dx do not commute,
but rather satisfy the equation

d

dx
(xa) = x

da

dx
+ a. (2.23)

3. Neither can be assumed to commute, in which case rule 5 of definition 22
is just deleted, with no replacement.

Notation 19 If the variables do not commute, it is usual to use the notation
R⟨x1, . . . , xn⟩ for the ring of polynomials with coefficients in R and the non-
commuting variables x1, . . . , xn.

80 CHAPTER 2. POLYNOMIALS

2.4.2 Noncommutativity and Division

It might be tempting to assume that we had an equivalent to the rational func-
tions (Section 2.2). Assume we have an inversion operator, denoted, as usual,
by x−1. Then indeed:

1.
(
x−1

)−1
= x;

2. a−1b−1 = (ba)−1 (but note the order).

Definition 39 Define the inversion height of an expression E, denoted ihE(E)
to be the maximum number of nested inversions occurring in that expression,
and the inversion height of an element e, denoted ih(e), to be the minimum,
over all expressions E equal to e, of ihE(E).

Example 5 ihE

(
y−1 + y−1

(
z−1x−1 − y−1

)−1
y−1

)
= 2 since the z is inside

two inversions, and nothing is inside three. But all we can deduce is that

ih
(
y−1 + y−1

(
z−1x−1 − y−1

)−1
y−1

)
≤ 2, but it might be less.

We can sometimes clear nested inversions.

Proposition 20 (Hua’s Identity) See [Hua49], [Coh03, (9.1.2)].(
a−1 +

(
b−1 − a

)−1
)−1

= a− aba.

So ih

((
a−1 +

(
b−1 − a

)−1
)−1

)
= 0, despite appearances: ihE

((
a−1 +

(
b−1 − a

)−1
)−1

)
=

2.

Corollary 3 (a+ab−1a)−1 = a−1− (a+ b)−1 (replacing b by −b−1 and invert-
ing).

Proposition 21 ([Reu96, theorem 2.1]) Each entry of the inverse in the
free field of an n× n generic matrix is of inversion height n.

In particular, ih
(
m1,1 +m1,2m

−1
2,2m2,1

)−1
= 2, but if m1,1 = m1,2 = m2,1,

Hua’s identity shows that ih
(
m1,1 +m1,1m

−1
2,2m1,1

)−1
= 1.

TO BE COMPLETED

Chapter 3

Polynomial Equations

In the first parts of this chapter, we will deal with polynomial equations, either
singly or as sets of equations. A preliminary remark is in order. Any polynomial
equation

A = B, (3.1)

where A and B are polynomial equations, can be reduced to one whose right-
hand side is zero, i.e.

A−B = 0. (3.2)

Notation 20 Henceforth, all polynomial equations will be assumed to be in the
form of (3.2).

3.1 Equations in One Variable

We may as well assume that the unknown variable is x. If the equation is linear
in x then, by the notation above, it takes the form

ax+ b = 0. (3.3)

The solution is then obvious: x = −b/a.

3.1.1 Quadratic Equations

Again, by the notation above, our equation takes the form

ax2 + bx+ c = 0. (3.4)

The solutions are well-known to most schoolchildren1: there are two of them,
of the form

x =
−b±

√
b2 − 4ac

2a
. (3.5)

1Even if regarded as troublesome by numerical analysts: see [Gol91, p. 10].

81

82 CHAPTER 3. POLYNOMIAL EQUATIONS

However, if b2− 4ac = 0, i.e. c = b2/4a then there is only one solution: x = −b
2a .

In this case, the equation becomes ax2 + bx+ b2

4a = 0, which can be re-written

as a
(
x+ b

2a

)2
= 0, making it more obvious that there is a repeated root, and

that the polynomial is not square-free (definition 38).
Mathematicians dislike the sort of anomaly in “this equations has two solu-

tions except when c = b2/4a”, especially as there are two roots as c tends to
the value b2/4a. We therefore say that, in this special case, x = −b

2a is a double
root of the equation. This can be generalised, and made more formal.

Definition 40 If, in the equation f = 0, f has a square-free decomposition
f =

∏n
i=1 f

i
i , and x = α is a root of fi, we say that x = α is a root of f of

multiplicity i. When we say we are counting the roots of f with multiplicity,
we mean that x = α should be counted i times.

Proposition 22 The number of roots of a polynomial equation over the complex
numbers, counted with multiplicity, is equal to the degree of the polynomial.

Proof. deg(f) =
∑
ideg(fi), and each root of fi is to be counted i times as a

root of f . That fi has i roots is the so-called Fundamental Theorem of Algebra.
In this case, the two roots are given by the two possible signs of the square

root, and
√

0 is assumed to have both positive and negative signs.

3.1.2 Cubic Equations

There is a formula for the solutions of the cubic equation

x3 + ax2 + bx+ c, (3.6)

albeit less well-known to schoolchildren:

1

6

3

√
36 ba− 108 c− 8 a3 + 12

√
12 b3 − 3 b2a2 − 54 bac+ 81 c2 + 12 ca3 −

2b− 2
3a

2

3
√

36 ba− 108 c− 8 a3 + 12
√

12 b3 − 3 b2a2 − 54 bac+ 81 c2 + 12 ca3
− 1

3
a.

We can simplify this by making a transformation2 to equation (3.6): replacing
x by x− a

3 . This transforms it into an equation

x3 + bx+ c (3.7)

(where b and c have changed). This has solutions of the form

1

6

3

√
−108 c+ 12

√
12 b3 + 81 c2 − 2b

3
√
−108 c+ 12

√
12 b3 + 81 c2

. (3.8)

2This is the simplest case of the Tschirnhaus transformation[vT83], which can always
eliminate the xn−1 term in a polynomial of degree n.

3.1. EQUATIONS IN ONE VARIABLE 83

S :=
√

12 b3 + 81 c2;

T := 3
√
−108 c+ 12S;

return
1

6
T − 2b

T
;

Figure 3.1: Program for computing solutions to a cubic

Now a cubic is meant to have three roots, but a näıve look as equation (3.8)
shows two cube roots, each with three values, and two square roots, each with
two values, apparently giving a total of 3 × 3 × 2 × 2 = 36 values. Even if
we decide that the two occurrences of the square root should have the same
sign, and similarly the cube root should have the same value, i.e. we effectively
execute the program in figure 3.1, we would still seem to have six possibilities.
In fact, however, the choice in the first line is only apparent, since

1

6

3

√
−108 c− 12

√
12 b3 + 81 c2 = − 2b

3
√
−108 c+ 12

√
12 b3 + 81 c2

. (3.9)

In the case of the quadratic with real coefficients, there were two real solu-
tions if b2− 4ac > 0, and complex solutions otherwise. However, the case of the
cubic is more challenging. If we consider x3 − 1 = 0, we compute (in figure 3.1)

S := 9; T := 6; return 1;

(or either of the complex cube roots of unity if we choose different values of T).
If we consider x3 + 1 = 0, we get

S := 9; T := 0; return “ 0
0”;

but we can (and must!) take advantage of equation (3.9) and compute

S := −9; T := −6; return − 1;

(or either of the complex variants).
For x3 + x, we compute

S :=
√

12; T :=
√

12; return 0;

and the two complex roots come from choosing the complex roots in the com-

putation of T , which is really
3
√

12
√

12. x3−x is more challenging: we compute

S :=
√
−12; T :=

√
−12; return {−1, 0, 1}; (3.10)

i.e. three real roots which can only be computed (at least via this formula)
by means of complex numbers. In fact it is clear that any other formula must
have the same problem, since the only choices of ambiguity lie in the square and
cube roots, and with the cube root, the ambiguity involves complex cube roots
of unity.

84 CHAPTER 3. POLYNOMIAL EQUATIONS

3.1.3 Quartic Equations

Here the equation would be x4 + ax3 + bx2 + cx+ d, but after the Tschirnhaus
transformation x→ x− a

4 , analogous to that which took equation (3.6) to (3.7),
we can assume that a = 0. A truly marvellous solution then looks as follows
(but the page is too small to contain it!).

√
6

12

√√√√−4 b
3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3 +

(
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

)2/3
+ 48 d+ 4 b2

3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

+1/12

√√√√√√√√−
48 b

3

√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

√√√√−4 b
3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3 +

(
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

)2/3
+ 48 d+ 4 b2

3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

+ 6

√√√√−4 b
3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3 +

(
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

)2/3
+ 48 d+ 4 b2

3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

(
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

)2/3
+ 288

√√√√−4 b
3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3 +

(
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

)2/3
+ 48 d+ 4 b2

3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

d+ 24

√√√√−4 b
3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3 +

(
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

)2/3
+ 48 d+ 4 b2

3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

b2 + 72 c
√

6
3

√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

 1
3
√
−288 db+ 108 c2 + 8 b3 + 12

√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

1√
−4 b

3
√

−288 db+108 c2+8 b3+12
√
−768 d3+384 d2b2−48 db4−432 dbc2+81 c4+12 c2b3+(−288 db+108 c2+8 b3+12

√
−768 d3+384 d2b2−48 db4−432 dbc2+81 c4+12 c2b3)

2/3
+48 d+4 b2

3
√

−288 db+108 c2+8 b3+12
√
−768 d3+384 d2b2−48 db4−432 dbc2+81 c4+12 c2b3

(3.11)
We can adopt the same formulation as in Figure 3.1, as shown in figure 3.2. Here

S :=
√
−768 d3 + 384 d2b2 − 48 db4 − 432 dbc2 + 81 c4 + 12 c2b3

T :=
3
√
−288 db+ 108 c2 + 8 b3 + 12S

U :=

√
−4 bT + T 2 + 48 d+ 4 b2

T

return

√
6

12
U +

√
6

12

√
−
(
8 bTU + UT 2 + 48Ud+ 4Ub2 + 12 c

√
6T
)

TU

Figure 3.2: Program for computing solutions to a quartic

the problem of multiple choices is even more apparent, but in this formulation
it turns out that choices cancel, much as in the case of the cubic. We have
the same problem as in the case of the cubic, that real solutions can arise from
complex intermediates, but also that the answer apparently involves

√
6, even

though it clearly need not do so in reality. For example, with x4 − 5x2 + 4,
whose solutions are ±1,±2, we can evaluate

S := 72
√
−3; T := 17 +

√
−3; U := 3

√
6; return 2; (3.12)

taking the other square root at the end gives 1, and taking the other square root
when computing U gives −1 or −2. We should also note that T was evaluated

as 3
√

4760 + 864
√
−3: not entirely obvious.

3.1.4 Higher Degree Equations

When it comes to higher degree equations, the situation is very different.

Theorem 10 (Abel, Galois [Gal79]) The general polynomial equation of de-
gree 5 or more is not soluble in radicals (i.e. in terms of k-th roots).

3.1. EQUATIONS IN ONE VARIABLE 85

In fact,3 if we choose such a polynomial “at random”, the probability of its
having a solution that can be expressed in terms of radicals is zero. Of course,
any particular quintic, or higher degree equation, may have solutions expressible
in radicals, such as x5 − 2, whose solutions are 5

√
2, but this is the exception

rather than the rule. It is possible [Bri86] to reduce quintics to radicals and
solutions of x5 + ax + 1 — see [FW18] for a recent discussion of this class of
reductions. A generalization of Theorem 10 to multivariate systems is given in
[Est20], but requires too much notation to state precisely here.

Hence algebra systems, if they handle such concepts, can only regard the
roots of such equations as being defined by the polynomial of which they are
a root. A Maple example4 is given in figure 1.5, where the Maple operator
RootOf is generated. It is normal to insist that the argument to RootOf (or its
equivalent) is square-free: then differently-indexed roots are genuinely different.
Then α, the first root of f(x), satisfies f(α) = 0, the second root β satisfies
f(x)/(x − α) = 0, and so on. Even if f is irreducible, these later polynomials
may not be, but determining the factorisations if they exist is a piece of Galois
theory which would take us too far out of our way [FM89]. It is, however,
comparatively easy to determine the Monte Carlo question: “such factorisations
definitely do not exist”/“they probably do exist” [DS00].

3.1.5 Reducible defining polynomials

It should be noted that handling such constructs when the defining polynomial
is not irreducible can give rise to unexpected results. For example, in Maple,
if α is RootOf(x^2-1,x), then 1

α−1 returns that, but attempting to evaluate
this numerically gives infinity, which is right if α = 1, but wrong if α = −1,
the other, equally valid, root of x2 − 1. In this case, the mathematical answer
to “is α − 1 zero?” is neither ‘yes’ nor ‘no’, but rather ‘it depends which α
you mean’, and Maple is choosing the 1 value (as we can see from 1

α+1 , which
evaluates to 0.5). However, the ability to use polynomials not guaranteed to
be irreducible can be useful in some cases — see section 3.3.7. In particular,
algorithm 11 asks if certain expressions are invertible, and a ‘no’ answer here
entrains a splitting into cases, just as asking “is α−1 zero?” entrains a splitting
of RootOf(x^2-1,x).

In general, suppose we are asking if g(α) is invertible, where α = RootOf(f(x), x),
i.e. we are asking for d(α) such that d(α)g(α) = 1 after taking account of the
fact that α = RootOf(f(x), x). This is tantamount to asking for d(x) such that
d(x)g(x) = 1 modulo f(x) = 0, i.e. d(x)g(x) + c(x)f(x) = 1 for some c(x). But
applying the Extended Euclidean Algorithm (Algorithm 5) to f and g gives us

3The precise statement is as follows. For all n ≥ 5, the fraction of polynomials in Z[x] of
degree n and coefficients at most H which have a root expressible in radicals tends to zero as
H tends to infinity.

4By default, Maple will also use this formulation for roots of most quartics, and the expres-
sion in figure 3.2 is obtained by convert(%,radical) and then locating the sub-expressions by
hand. This can be seen as an application of Carette’s view of simplification (page 29), though
historically Carette’s paper is a retrospective justification.

86 CHAPTER 3. POLYNOMIAL EQUATIONS

c and d such that cf + dg = gcd(f, g). Hence if the gcd is in fact 1, g(α) is
invertible, and we have found the inverse.

If in fact the gcd is not 1, say some h(x) ̸= 1, then we have split f as f = hĥ,

where ĥ = f/h. Now

α = RootOf(f(x), x)⇔ α = RootOf(h(x), x) ∨ α = RootOf(ĥ(x), x),

and in the first case g(α) is definitely zero, and the second case requires us

to consider gcd(g, ĥ), and ĥ has lower degree than f , so this splitting process
terminates.

3.1.6 Multiple Algebraic Numbers

The situation gets more complicated if we have several such algebraic numbers
in play. By hand, such situations tend to be bypassed almost instinctively: if
there are

√
2 around, we replace

√
8 by 2

√
2, and if

√
2 and

√
3 are around, we

replace
√

6 by
√

2
√

3. For positive radicals, such an approach is good enough if
correctly formalised.

Proposition 23 Let the Ni be positive numbers, and the Mj be a square-free
basis for the Ni, i.e. the Mj are relatively prime and have no repeated factors,
and each Ni =

∏
j M

ni,j

j . Then the k-th roots of the Mj form a multiplicative

basis for the k-th roots of the Ni, and the only relations are
(
M

1/k
j

)k
= Mj.

If we allow negative numbers, we have to deal with the catch that 4
√
−4 = 1 + i,

which corresponds to the fact that x4 + 4 = (x2 + 2x+ 2)(x2− 2x+ 2), but this
is all [Sch00a, Theorem 19].

Hence, given a set S of expressions involving non-nested radicals, we can
compute the corresponding square-free basis Mj for the Ni occurring in the rad-
icals, let k be the least common multiple of the denominators of the exponents,

and express every number as N0

∏
M

αj/k
j where N0 ∈ Q and 0 ≤ αj < k.

This representation is locally canonical (Definition 5): every number has a
unique representation until a new radical is introduced. However, it is only
locally canonical, not canonical: in different contexts we could have 51/261/2

and 31/2101/2, which are both valid, but equal. If we had them both in the
same context, they would both become 21/231/251/2. We note that this repre-
sentation is not candid (Definition 6), since, if we have some n1/6, thereafter we
represent m1/2 as m3/6. This is easily solved by cancelling common factors in
αj/k on printing, while preserving the common denominator internally.

Integer g.c.d. is an efficient process, and can compute a relatively prime
basis of the Ni efficiently. However the square-free aspect is more troublesome,
and indeed is believed to be as hard as integer factorisation in general. There
are various reasons why we want a square-free basis.

1. We certainly want to avoid expressions like 41/2 or 271/3, and we would
probably want to replace 41/4 by 21/2. This can be achieved by checking

3.1. EQUATIONS IN ONE VARIABLE 87

the Mj for being perfect powers, and this can be done efficiently: [BS93]
shows O(log2 n). Failing to do this would mean that our expressions were
not even locally canonical, or indeed normal — consider 2− 41/2.

2. Expressions like z := 721/6 are troublesome, as z2 will be stored internally
as 722/6 and printed as 721/3, whereas a human being would prefer to see
2 ·91/3, or even better 2 ·32/3. Hence it could be argued that there is scope
for non-candid expressions in this case.

There is further discussion of non-nested radicals in [RS13]: in particular
they point out that if we are prepared to do complete factorisation of the Ni

into primes we can have truly canonical representations.
In terms of the RootOf construct, we see that

√
2 is actually α = RootOf(x2−

2, x) and
√

8 is actually β = RootOf(x2− 8, x). Now both x2− 2 and x2− 8 are
irreducible polynomials over the integers. But, in the presence of α, x2−8 factors
as (x−2α)(x+2α). The “square-free basis” technique of the previous paragraphs
spots this factorisation directly for non-nested radicals, but in general we are
led to the complications of factorisation in the presence of algebraic numbers
(Section 6.3).

3.1.7 Solutions in Real Radicals

We have seen above, both in the case of the cubic, equation (3.10), and the
quartic, equation (3.12), that real roots may need to be expressed via complex
radicals, even if all the root are real. Indeed, in the case of the cubic, this is
necessary. However, the quartic x4 + 4x3 + x2 − 6x+ 2, whose roots are{

−1 +
√

3,−1−
√

3,−1 +
√

2,−1−
√

2
}

shows that polynomials can have real roots expressible in terms of real radicals,
and a slightly less obvious example is given by x4 + 4x3 − 44x2 − 96x + 552,
whose roots are{
−1−

√
25 + 2

√
6,−1 +

√
25 + 2

√
6,−1−

√
25− 2

√
6,−1 +

√
25− 2

√
6

}
.

There is a little-known theorem in this area.

Theorem 11 ([Isa85]) Suppose that all the roots of an irreducible polynomial
f(x) over Q are real. Then if any root of the polynomial is expressible in radicals,
the degree of the polynomial must be a power of two.

3.1.8 Equations of curves

For a fuller description of this topic, see [Ful69]. In particular, we only consider
the affine case, whereas the projective case (i.e. allowing for “points at infinity”)
is in many ways more general.

88 CHAPTER 3. POLYNOMIAL EQUATIONS

Definition 41 An (affine) algebraic curve C(x1, . . . , xn) in n dimensions over
a field K is the set of solutions (x1, . . . , xn) to n − 1 independent algebraic
equations, i.e. polynomials gi(x1, . . . , xn) = 0.

If n = 2 we say that we have a plane algebraic curve.
Of course, the precise curve and equations are often not very interesting: for

instance we would like to think that the parabola x21 − x2 was “the same” as
y1 − y22 , and so on.

Definition 42 Two curves C(x1, . . . , xn) and C ′(y1, . . . , ym) are said to be bi-
rationally equivalent if there are two families of rational functions

F = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

and
G = (g1(y1, . . . , ym), . . . , gn(y1, . . . , ym))

such that:

1. for almost all (x1, . . . , xn) ∈ C, (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) is de-
fined and ∈ C ′;

2. for almost all (y1, . . . , ym) ∈ C ′, g1(y1, . . . , ym), . . . , gn(y1, . . . , ym) is de-
fined and ∈ C;

3. almost everywhere, F and G are mutually inverse, i.e.

fi(g1(y1, . . . , ym), . . . , gn(y1, . . . , ym)) = yi

and
gj(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)) = xj .

“Almost everywhere” means “on a non-empty Zariski open set” [Ful69,], and
can be thought of as “except where we get 0

0 behaviour”.

Theorem 12 Every algebraic curve is birationally equivalent to a plane curve.

Proof. If there are more than two variables, there is more than one equation,
and we can use resultants to eliminate one variable and one equation.

We then have the concept [Sen08] of a curve being soluble by radicals. In
this case, the generic curve of degree greater than six is not soluble by radicals
[Zar26]. However, many “interesting” curves are soluble by radicals.

Proposition 24 [Sen08, Corollary 3.2] Every irreducible plane curve of degree
at most five is soluble by radicals.

Proposition 25 [Sen08, Corollary 3.3] Every irreducible singular plane curve
of degree at most six is soluble by radicals.

Algorithms to compute these expressions are given in [Har11, SS11].
It is also the case5 that the offset , i.e. the curve defined as the set of points

a fixed distance d from the original curve, to a curve soluble by radicals is also
soluble by radicals.

5Unpublished. Prof. Sendra has supplied this proof for plane curves.

3.1. EQUATIONS IN ONE VARIABLE 89

3.1.9 How many Real Roots?

While a polynomial of degree n has n complex roots, it generally has fewer real
ones, though how many, on average, is an interesting question, depending on
the definition of “on average”. The ‘obvious’ definitions would be ‘coefficients
normally distributed’ or ‘coefficients uniformly distributed in some range’, and
for these Kac [Kac43] shows that the average number is 2

π log(n) + O(1). But
this is quite sensitive to the precise definitions, and scaling the coefficients as the
coefficients of (x+1)n produces a very different result [EK95]. A definition with
better geometric invariance properties is proposed by [LL14]. These definitions
give strikingly different results, as shown in Table 3.1.

Table 3.1: How Many Real Roots

Coefficient Expectation Reference

Distribution Real Roots

N(0, 1) 2
π log(n) +O(1) [Kac43]

U(−1, 1) 2
π log(n) +O(1) [Kac43]

±1 2
π log(n) +O(1) [Kac43]

N

0,

 n

i

 √
n+O(1) [EK95]

Bombieri–WeylR

√
n(n+2)

3 [LL14]

U is the uniform distribution, N(µ, σ2) the normal distribution

We have seen that it is not obvious how many real roots a polynomial has:
can we answer that question, or more formally the following?

Problem 1 Given a square-free polynomial f , determine how many real roots
f has, and describe each real root sufficiently precisely to distinguish it from
the others. Many authors have asked the same question about non-square-
free polynomials, and have laboured to produce better theoretical complexity
bounds, since the square-free part of a polynomial may have larger coefficients
than the original polynomial. However, in practice it is always better to compute
the square-free part first.

Let (R1, R2) be a square parametrization of the curve and K0 = C(t) ⊂ K1 ⊂ . . . ⊂ Ks be
a (radical) field tower such that R1, R2 ∈ Ks. Considering the formal derivation with respect
to t, one can deduce (for instance by induction on s) that if R ∈ Ks then its derivative R′ is
also in Ks.

Now consider a = (R′
1)

2 + (R′
2)

2 ∈ Ks and Ks+1 = Ks(
√
a), then (O1, O2) = (R1, R2) ±

d/
√
a(−(R2)′, (R1)′) ∈ (Ks+1)2. So (O1, O2) is radical with the tower K0 ⊂ . . . ⊂ Ks ⊂

Ks+1.

90 CHAPTER 3. POLYNOMIAL EQUATIONS

The usual description (but see Section 3.1.10) is to enclose the root in an interval,
within which it is the only root.

Definition 36 introduced the concept of a signed polynomial remainder se-
quence, also called a Sturm–Habicht sequence: fi is proportional by a positive
constant to −rem(fi−2, fi−1). The positive constant is normally chosen to keep
the coefficients integral and as small as possible.

Definition 43 If f(x) is a square-free polynomial and a ∈ R ∪ {−∞,∞}, let
Vf (a) denote the number of sign changes in the sequence f0(a), f1(a), . . . , fn(a),
where f0, . . . , fn is the Sturm–Habicht sequence of f and f ′, also known as the
Sturm sequence of f .

If f is not square-free, we need more careful definitions [BPR06], and to be clear
whether we are counting with multiplicity or not.

Theorem 13 (Sturm) If a < b are not zeros of f , and f is square-free, then
Vf (a)− Vf (b) is the number of zeros of f in (a, b).

An elegant proof (also treating the case when a, b are zeros) can be found in
[PRT22]. Vf (∞) (which can be regarded as lima→∞ Vf (a)) can be computed as
the number of sign changes in the sequence of leading coefficients of the Sturm
sequence. Similarly, Vf (−∞) is the number of sign changes in the sequence
of leading coefficients of the Sturm sequence with the signs of the odd-degree
terms reversed. Hence Vf (−∞)−Vf (∞), the total number of real roots, is easily
computed from the Sturm sequence.

Example 6 Let f be the polynomial x5 − 15x4 + 85x3 − 225x2 + 274x− 120.
Then a Sturm–Habicht sequence (just taking pseudo-remainders) is

f0(x) = f = x5 − 15x4 + 85x3 − 225x2 + 274x− 120
f1(x) = f(x)′ = 5x4 − 60x3 + 255x2 − 450x+ 274
f2(x) = −prem(f0, f1) = 50x3 − 450x2 + 1270x− 1110
f3(x) = −prem(f1, f2) = 17500x2 − 105000x+ 147500
f4(x) = −prem(f2, f3) = 15750000000x− 47250000000
f5(x) = −prem(f3, f4) = 2480625000000000000000000

Since all the leading coefficients are positive, the sign sequence at ∞ is +,+,+,
+,+,+ and Vf (∞) = 0. Similarly, the sign sequence at −∞ is −,+,−,+,−,+,
so Vf (−∞) = 5 and there are five real roots. Since fi(0) is just the trailing
coefficient of fi we see that Vf (0) is the number of variations in −,+,−,+,−,+,
also 5. Hence there are no roots between −∞ and 0, and five roots between 0 and
∞. A longer version can be found at http: // staff. bath. ac. uk/ masjhd/
JHD-CA/ SHexample. html .

Theorem 14 If f is a square-free polynomial of degree d and coefficients less
than 2L, then the number of subdivisions of (−∞,∞) required is O(d(L+log d))
[Dav85]. If L > log d, then the number of subdivisions required can be Ω(d(L+
log d)) [ESY06]. Hence if L > log d, the number of subdivisions required is
Θ(d(L+ log d)).

http://staff.bath.ac.uk/masjhd/JHD-CA/SHexample.html
http://staff.bath.ac.uk/masjhd/JHD-CA/SHexample.html

3.1. EQUATIONS IN ONE VARIABLE 91

While the obvious way of computing Vf (a) is by the definition, i.e. evaluating
f0(a), . . ., this turns out not to be the most efficient. Rather, while computing
the Sturm sequence f0 . . . , we should also store the quotients qi, so that fi(x) =
− (fi−2(x)− qi(x)fi−1(x)). We then compute as follows.

Algorithm 8 (Sturm Sequence evaluation)

Input:
a: A number
fn(x): Last non-zero element of Sturm sequence of f
qi(x): Quotient sequence from Sturm sequence of f

Output: Sequence L of fn(a), fn−1(a), . . . , f0(a).

L[n] := fn(a);
L[n− 1] := qn+1(a)L[n];
for i = n . . . 2

L[i− 2] := qi(a)L[i− 1]− L[i];
return L

If f has degree n, coefficients of bit-length at most τ , a has numerator
and denominator of bit-length σ, this algorithm has asymptotic complexity
Õ(d2 max(σ, τ)) [LR01].

Since it is possible to say how big the roots of a polynomial can be (proposi-
tions 92, 93 and 94 can tell us they are all ≤ B in magnitude), we can determine,
as precisely as we wish, the location of the real roots of a univariate polynomial:
we start with the interval [−B,B], and every time the Sturm sequence says that
there are more than one root in an interval, we divide the interval in two, and
re-compute V (a)− V (b) for each half.

This technology can be generalised to tell us about the sign of a polynomial
Q at the roots of P under the name of Cauchy index : see [PR20].

This is far from the only way of counting and locating real roots, i.e. solving
problem 1: other methods are based on Descartes’6 rule of signs (Theorem 58:
the number of roots of f in (0,∞) is less than or equal to, by an even number,
the number of sign changes in the coefficients of f) [CA76], its generalisation
the Budan–Fourier theorem [Hur12] (Corollaries 35 and 36: the number of roots
of f in7 [a, b] is less than or equal to, by an even number, the number of sign
changes in the derivatives of f evaluated at a (i.e. f(a), f ′(a), f ′′(a) . . .) less the
same evaluated at b), on continued fractions [TE07], or on numerical methods
[Pan02].

All such algorithms take time polynomial in d, the degree of the polynomial
whose real roots are being counted/determined, i.e. they are algorithms for the
dense model. The best results are in [Bur13], and are Õ(d4L2) for coefficients
≤ 2L. A good comparison of various methods in practice in given in [HTZ+09].

In the sparse model, we have theorems, but are short on algorithms.

6This rule is always called after Descartes, though the proof actually seems to be due to
Gauss [BF93].

7We assume neither a nor b are roots.

92 CHAPTER 3. POLYNOMIAL EQUATIONS

Proposition 26 A polynomial with t non-zero terms has at most 2t − 1 real
roots (not counted with multiplicity).

Since the number of sign changes in a sequence of t terms is at most t−1, there
are at most 2t − 1 real roots (t − 1 positive, t − 1 negative and zero: consider
x3 − x) for a polynomial with t non-zero terms, irrespective of d.

Open Problem 4 (Roots of Sparse Polynomials) Find algorithms for count-
ing the number of real roots whose complexity depends polynomially on t alone,
or t and log d. There is recent progress described in [BHPR11]: notably a prob-
abilistic algorithm when t = 4. See also [Sag14], which depends polynomially
on t and log d, and linearly on the sparse bit size.

In fact, we can say more than Proposition 26.

Proposition 27 ([KPT12, Theorem 9]) Let g be a polynomial of the form

g(x) =

k∑
i=1

ai

m∏
j=1

f
αi,j

j

where ai ∈ R, αi,j ∈ N and the fj have at most t non-zero terms. Then the

number of real roots of g (not counted with multiplicity) is at most 2k2tk
2m/2 +

2kmt = 2O(k2m log t), and in particular is polynomial in t.

If all the αi,j ∈ {0, 1} the result would be trivial, as g would have at most
ktm non-zero terms. If k = 1 the result is also trivial. The point is that we
are allowing a slightly wider range of polynomials. However, Proposition 27 is
probably a long way from the truth. The following example8 illustrates this.

Open Problem 5 (Roots of fg + 1) Suppose f and g each have t terms.
Then (Proposition 26) each has at most 2t−1 real roots (and exactly 2t−1 only
if 0 is included). Hence fg, which might have t2 terms, has at most 4t− 3 real
roots (since we shouldn’t count 0 twice). How many real roots does fg+1 have?
It is not difficult to make it have 4t− 2 roots (since 0 might be a double root of
fg, and we can split that into two roots), but nothing more is known.

This open problem is really about Additive Complexity (p. 58): f and g each
have additive complexity at most t − 1, so fg + 1 has additive complexity at
most 2t − 1, rather than the t2 − 1 a general polynomial with t2 terms might
have.

Problem 2 Having solved Problem 1, we may actually wish to know the roots
to a given accuracy, say L bits after the point. Again, many authors have asked
the same question about non-square-free polynomials, and have laboured to
produce better theoretical complexity bounds, since the square-free part of a
polynomial may have larger coefficients, and potentially more terms [CD91],
than the original polynomial. However, in practice the author has always com-
puted the square-free part first.

8In [KPT12], but the author is grateful to Professor Koiran for explaining its significance
in a June 2015 Dagstuhl seminar.

3.2. LINEAR EQUATIONS IN SEVERAL VARIABLES 93

The best published solution to this problem currently is that in [KS11]. TO
BE COMPLETED[BK12] [BD14]

3.1.10 Thom’s Lemma

An alternative approach to the description of real roots is provided by Thom’s
Lemma, and elaborated in [CR88].

Notation 21 A sign condition ϵi is any of the symbols “> 0”, “< 0”, “= 0”. A
generalised sign condition is any of these or “≥ 0”, “≤ 0”. If ϵ = (ϵ0, . . . , ϵn−1)
is any n-tuple of generalised sign conditions, we denote by ϵ the relaxation of ϵ
obtained by replacing < 0 by ≤ 0 and > 0 by ≥ 0.

Lemma 4 (Thom’s Lemma [CR88, Proposition 1.2]) Let p be a polynomial
of degree n, and ϵ an n-tuple of sign conditions. Let

A(ϵ) =
{
x ∈ R|∀i p(i)ϵi

}
,

where p(i) denotes the i-th formal derivative (Definition 37) of p. Then:

(a) A(ϵ) is either empty or connected, i.e. an interval;

(b) If A(ϵ) is an interval, then A(ϵ) is the closure of A(ϵ), obtained by replacing
< r by ≤ r and > l by ≥ l.

The proof is by induction on deg(p). Item (b) may seem obvious, but is in fact
rather subtle. Consider p = x3−x2, depicted in Figure 3.3. While {x|p(x) > 0}
is the interval (1,∞), {x|p(x) ≥ 0} is not the interval [1,∞), but rather {0} ∪
[1,∞). Thom’s Lemma actually talks about A(ϵ) with all the signs fixed, and
the sign of p′′ distinguishes {0} from [1,∞).

Corollary 4 A root x0 of p, hence a point where p(0)(x0) = 0, is uniquely
determined by the signs of all the derivatives of p there.

It is possible to compute with real algebraic numbers defined this way, and
answer questions such as “how many roots does q(x, y) have, when y is the
(unique) root of p(y) = 0 with the following sign conditions: p′(y) < 0, p′′(y) > 0
o.ts?”: again for details see [CR88].

3.2 Linear Equations in Several Variables

We now consider the case of several polynomial equations in several (not nec-
essarily the same number) of variables.

Notation 22 The variables will be called x1, . . . , xn, though in specific examples
we may use x, y or x, y, z etc.

94 CHAPTER 3. POLYNOMIAL EQUATIONS

Figure 3.3: x3 − x2 illustrating Thom’s Lemma

3.2.1 Linear Equations and Matrices

A typical set of 3-by-3 linear equations might look like the following.

2x+ 3y − 4z = a;

3x− 2y + 2z = b;

4x− 3y + 3z = c.

If we denote by M the matrix

 2 3 −4
3 −2 2
4 −3 3

, x the (column) vector (x, y, z)

and a the (column) vector (a, b, c), then this becomes the single matrix equation

M.x = a, (3.13)

which has, assuming M is invertible, the well-known solution

x = M−1.a. (3.14)

This poses two questions: how do we store matrices, and how do we compute
inverses?

3.2.2 Representations of Matrices

The first question that comes to mind here is “dense or sparse?”, as in definition
26 (page 47). For a dense representation of matrices, the solution is obvious:

3.2. LINEAR EQUATIONS IN SEVERAL VARIABLES 95

we store a two-dimensional array (or one-dimensional array of one-dimensional
arrays if our language does not support two-dimensional arrays) containing the
values mi,j of the elements of the matrix. The algorithms for adding and multi-
plying dense matrices are pretty obvious, though in fact it is possible to multiply
two 2× 2 matrices with seven multiplications of entries rather than the obvious
eight [Str69, Win71]: this leads to being able to multiply two n × n matrices
with O(nlog2 7≈2.807) element multiplications rather than O(n3): see Excursus
B.4.

For a sparse representation of matrices, we have more choices.

row-sparse Here M is stored as a one–dimensional array of rows: the i-th
row consisting of a list of pairs (j,mi,j). This representation is equivalent
to that of the sparse polynomial

∑
j mi,jx

j , and this technique has been
used in practice [CD85] and has a useful analogue in the case of non-linear
equations (see section 3.3.5).

column-sparse Here M is stored as a one–dimensional array of columns: the
j-th column consisting of a list of pairs (i,mi,j).

totally sparse Here M is stored as a list of triples (i, j,mi,j).

structured There are a large variety of special structures of matrices familar to
numerical analysts, such as ‘banded’, ‘Toeplitz’ etc. Each of these can be
stored efficiently according to their special form. For example, circulant
(a special form of Toeplitz) matrices, of the form

a1 a2 a3 . . . an−1 an
an a1 a2 a3 . . . an−1

...
. . . · · · · · ·

. . .
...

a2 a3 . . . an−1 an a1

 ,

are, strictly speaking, dense, but only have n distinct entries, so are
“information-sparse”. Recognizing these structures is not just a matter
of storage economy: there are also faster algorithms, e.g. [KMS13] can
solve an n×n Toepliz (3.13) in time O(n log2 n), rather than the ‘obvious’
O(n3) or better O(n2.···) (see Section B.4).

Clearly, if the matrix is structured, we should use the corresponding represen-
tation. For randomly sparse matrices, the choice depends on what we are doing
with the matrix: if it is row operations, then row-sparse is best, and so on. One
big issue with sparse matrices is known as fill-in — the tendency for operations
on sparse matrices to yield less sparse matrices. For example, if we multiply two
n × n matrices, each with e non-zero elements per row, with n ≫ e, we would
expect, assuming the non-zero elements are scattered at random, the resulting
matrix to have e2 non-zero elements per row. This has some apparently para-
doxical consequences. Suppose M and N are two such matrices, and we wish to
compute MNv for many vectors v. Clearly, we compute MN once and for all,
and multiply this by v, and for dense M and N , this is right if there are more

96 CHAPTER 3. POLYNOMIAL EQUATIONS

than n such vectors v. But, if n ≫ e > 2, this is not optimal, since, once MN
is computed, computing (MN)v requires ne2 operations, while computing Nv
requires ne, as does computing M(Nv), totalling 2ne < ne2.

3.2.3 Matrix Inverses: not a good idea!

The first response to the question “how do we compute matrix inverses” ought
to be “are you sure you want to?” Solving (as opposed to thinking about the
solution of) equation (3.13) via equation (3.14) is often not the best way to
proceed in computer algebra9. Gaussian elimination (possibly using some of
the techniques described later in this section) directly on equation (3.13) is
generally the best way. This is particularly true if M is sparse, since M−1 is
generally not sparse — an extreme example of fill-in. Indeed, special techniques
are generally used for the solution of large sparse systems, particularly those
arising in integer factorisation or other cryptographic applications [HD03].

The usual method of solving linear equations, or computing the inverse of a
matrix, is via Gaussian elimination, i.e. transforming equation (3.13) into one in
which M is upper triangular, and then back-substituting. This transformation
is done by row operations, which amount to adding/subtracting multiples of one
row from another, since

P = Q & R = S implies P + λR = Q+ λS. (3.15)

If we try this on the above example, we deduce successively that z = −a+18b−
13c, y = −a + 22b − 16c and x = 3b − 2c. Emboldened by this we might try a
larger matrix:

M =

a b c d

e f g h

i j k l

m n o p

 . (3.16)

After clearing out the first column, we get the matrix

a b c d

0 − eb
a + f − ec

a + g − ed
a + h

0 − ib
a + j − ic

a + k − id
a + l

0 −mb
a + n −mc

a + o −md
a + p

 .

9Or elsewhere: “To most numerical analysts, matrix inversion is a sin” [Hig02, p. 260].

3.2. LINEAR EQUATIONS IN SEVERAL VARIABLES 97

Clearing the second column gives us

a b c d

0 − eb
a + f − ec

a + g − ed
a + h

0 0 − (− ib
a +j)(− ec

a +g)
(− eb

a +f)
− ic

a + k
−(− ib

a +j)(− ed
a +h)

(− eb
a +f)

− id
a + l

0 0 − (−mb
a +n)(− ec

a +g)
(− eb

a +f)
− mc

a + o
(mb

a −n)(− ed
a +h)

(− eb
a +f)

− md
a + p

,

which we can “simplify” to
a b c d

0 −eb+af
a

−ec+ag
a

−ed+ah
a

0 0 afk−agj−ebk+ecj+ibg−icf
−eb+af

afl−ahj−ebl+edj+ibh−idf
−eb+af

0 0 afo−agn−ebo+ecn+mbg−mcf
−eb+af

afp−ahn−ebp+edn+mbh−mdf
−eb+af

 .

(3.17)
After clearing the third column, the last element of the matrix is

−

(
−
(
− ib

a + j
) (
− ed

a + h
)(

− eb
a + f

) − id

a
+ l

)(
−
(
−mb

a + n
) (
− ec

a + g
)(

− eb
a + f

) − mc

a
+ o

)
×

(
−
(
− ib

a + j
) (
− ec

a + g
)(

− eb
a + f

) − ic

a
+ k

)−1

−
(
−mb

a + n
) (
− ed

a + h
)(

− eb
a + f

) − md

a
+ p.

This simplifies to

−

−afkp+ aflo+ ajgp− ajho− angl + anhk + ebkp− eblo
−ejcp+ ejdo+ encl − endk − ibgp+ ibho+ ifcp− ifdo

−inch+ indg +mbgl −mbhk −mfcl +mfdk +mjch−mjdg
afk − agj − ebk + ecj + ibg − icf

. (3.18)

The numerator of this expression is in fact the determinant of the original ma-
trix, |M |.

In general, for an n×n matrix, we would perform O(n3) computations with
rational functions, which would, if we were to simplify, involve g.c.d. computa-
tions, often costly.

Can we do better? We could take a leaf out of the calculation on page
70, and not introduce fractions, but rather cross-multiply. If we do this while
clearing column one, we get

M2 :=

a b c d

0 −eb+ af −ec+ ag −ed+ ah

0 aj − ib ak − ic al − id

0 −mb+ an ao−mc ap−md

 . (3.19)

98 CHAPTER 3. POLYNOMIAL EQUATIONS

After clearing column two,we get

M3 :=

a b c d

0 −eb+ af −ec+ ag −ed+ ah

0 0 (−aj + ib) (−ec+ ag) + (−aj + ib) (−ed+ ah) +
(−eb+ af) (ak − ic) (−eb+ af) (al − id)

0 0 (−an+mb) (−ec+ ag) + (−an+mb) (−ed+ ah) +
(−eb+ af) (ao−mc) (−eb+ af) (ap−md)

.

(3.20)
The result of the next step is better contemplated than printed!

However, if we do contemplate the result printed above, we see that rows
3 and 4 contain polynomials of degree four, whereas in the “simplified” form
(3.17) we only have polynomials of degree three in the numerators. Indeed, if
we were to expand the matrix above, we would observe that rows three and
four each had a common factor of a. Similarly, if we were to (or were to get a
computer algebra system to) expand and then factor the last step, we would get
a2(af−eb)|M |, as in equation (3.18). Such common factors are not a cöıncidence
(indeed, they cannot be, since M is the most general 4× 4 matrix possible).

Theorem 15 (Dodgson–Bareiss [Bar68, Dod66]) 10 Consider a matrix with

entries mi,j. Let m
(k)
i,j be the determinant

∣∣∣∣∣∣∣∣∣
m1,1 m1,2 . . . m1,k m1,j

m2,1 m2,2 . . . m2,k m2,j

.
mk,1 mk,2 . . . mk,k mk,j

mi,1 mi,2 . . . mi,k mi,j

∣∣∣∣∣∣∣∣∣ ,

i.e. that of rows 1 . . . k and i, with columns 1 . . . k and j. In particular, the

determinant of the matrix of size n whose elements are (mi,j) is m
(n−1)
n,n and

mi,j = m
(0)
i,j . Then (assuming m

(−1)
0,0 = 1):

m
(k)
i,j =

1

m
(k−2)
k−1,k−1

∣∣∣∣∣m
(k−1)
k,k m

(k−1)
k,j

m
(k−1)
i,k m

(k−1)
i,j

∣∣∣∣∣ .
Proof. By fairly tedious induction on k.

How does this relate to what we have just seen? If we do fraction-free

10The Oxford logician Charles Dodgson was better known as Lewis Carroll. Much of this
seems to have been known earlier [Chi53].

3.2. LINEAR EQUATIONS IN SEVERAL VARIABLES 99

elimination on the matrix M of (3.16), we get (3.19), which we can rewrite as

M2 =

a b c d

0

∣∣∣∣ a b
e f

∣∣∣∣ ∣∣∣∣ a c
e g

∣∣∣∣ ∣∣∣∣ a d
e h

∣∣∣∣
0

∣∣∣∣ a b
i j

∣∣∣∣ ∣∣∣∣ a c
i k

∣∣∣∣ ∣∣∣∣ a d
i l

∣∣∣∣
0

∣∣∣∣ a b
m n

∣∣∣∣ ∣∣∣∣ a c
m o

∣∣∣∣ ∣∣∣∣ a d
m p

∣∣∣∣

, (3.19′)

or, in the terminology of Theorem 15,

M2 =

m

(0)
1,1 m

(0)
1,2 m

(0)
1,3 m

(0)
1,4

0 m
(1)
2,2 m

(1)
2,3 m

(1)
2,4

0 m
(1)
3,2 m

(1)
3,3 m

(1)
3,4

0 m
(1)
4,2 m

(1)
4,3 m

(1)
4,4

 . (3.19′′)

The next elimination step is

M3 =

m
(0)
1,1 m

(0)
1,2 m

(0)
1,3 m

(0)
1,4

0 m
(1)
2,2 m

(1)
2,3 m

(1)
2,4

0 0

∣∣∣∣∣ m(1)
2,2 m

(1)
2,3

m
(1)
3,2 m

(1)
3,3

∣∣∣∣∣
∣∣∣∣∣ m(1)

2,2 m
(1)
2,4

m
(1)
3,2 m

(1)
3,4

∣∣∣∣∣
0 0

∣∣∣∣∣ m(1)
2,2 m

(1)
2,3

m
(1)
4,2 m

(1)
4,3

∣∣∣∣∣
∣∣∣∣∣ m(1)

2,2 m
(1)
2,4

m
(1)
4,2 m

(1)
4,4

∣∣∣∣∣

, (3.20′)

and Theorem 15 guarantees that m
(0)
1,1 (i.e. a) divides the determinants in rows

3 and 4, so that we have
1 0 0 0
0 1 0 0
0 0 1/a 0
0 0 0 1/a

M3 =

m

(0)
1,1 m

(0)
1,2 m

(0)
1,3 m

(0)
1,4

0 m
(1)
2,2 m

(1)
2,3 m

(1)
2,4

0 0 m
(2)
3,3 m

(2)
3,4

0 0 m
(2)
4,3 m

(2)
4,4

 . (3.21)

This is a general result.

Corollary 5 (Bareiss’ algorithm) When doing fraction-free Gaussian elim-
ination, after clearing column k, every element of rows k+ 1 . . . n is divisible by

m
(k−2)
k−1,k−1.

This is actually the ‘one-step’ variant of Bareiss [Bar68]: there are other variants
with more advanced look-ahead, but they do not (and can not) cancel any more
in general. This result accounts for the factor of a observed in rows 3 and 4

100 CHAPTER 3. POLYNOMIAL EQUATIONS

above, and for the factors of a2 and af − eb in the last step. Cancelling the
a in rows 3 and 4 would in fact automatically prevent the a2 from even being
generated — far better than generating it and then cancelling it!

We normally apply Gaussian elimination (fraction-free or not) to solve sys-
tems such as (3.13), by transforming them to

U.x = a′, (3.22)

where U ′ is upper-triangular: performing the same operations on the rows of a
to get a′ as we do on M to get U. This can be viewed as elimination on the
augmented matrix M — M with a as an extra column.

Corollary 6 When doing fraction-free Gaussian elimination in the augmented
matrix M, after clearing column k, every element of rows k + 1 . . . n, including

the “right-hand side”, is divisible by m
(k−2)
k−1,k−1.

�The Bareiss–Dodgson calculation pre-supposes that we are indeed doing Gaus-
sian elimination precisely, and building all the sub-determinants specified. It
is tempting to assume that we can take “short cuts”, and skip zero elements,
as after all “they are already zero, and so don’t need to be cleared”. This is
a mistake, as we may miss factors we should cancel. Unfortunately, demon-
strating this is not trivial, so there’s a Maple worksheet demonstrating this at
http://staff.bath.ac.uk/masjhd/JHD-CA/BDwarning.html.

Corollary 7 If the initial entries are integers of length l (resp. polynomials of
degree l), then after k steps, the entries will have length (resp. degree) O(kl).

This is to be contrasted with the O(2kl) of the näıve fraction-free approach.
We mote that a similar approach can be applied to the “LU decomposition” of
matrices [Jef10].

It is possible to view Euclid’s algorithm for polynomials as Gaussian elimi-
nation in a matrix (Sylvester’s matrix — definition 115) of coefficients, and the
factors βi that are cancelled by the sub-resultant variant for normal polynomial
remainder sequences (footnote 37 on page 75) are those predicted by Corollary
5 above.

3.2.4 Complexity

Let the elements of an n× n matrix have size d (degree for polynomials, or bit-
length for integers, ignoring11 the fact that a + b may have greater bit-length
than either a or n), and let the cost of multiplying two elements of size d, or
dividing an element of size 2d by an element of size ≤ d, be M(d). We will
ignore the cost of addition/substraction. Then the cost of clearing columns is
as follows.

11If we wanted to take it into account, we would use the Hadamard bounds (Propositions
87 and 88) to bound the size of the intermediate objects, which are k × k determinants by
Theorem 15, and get an extra factor of log d in the length.

http://staff.bath.ac.uk/masjhd/JHD-CA/BDwarning.html

3.2. LINEAR EQUATIONS IN SEVERAL VARIABLES 101

column 1 For n− 1 rows, we do n− 1 calculations of new elements, which are
2× 2 determinants: cost 2M(d) each, making a total of 2(n− 1)2M(d).

column 2 For n− 2 rows, we do n− 2 calculations of new elements, which are
2× 2 determinants followed by a cancellation: cost 3M(2d) each, making
a total of 3(n− 2)2M(2d).

column k For n− k rows, we do n− k calculations of new elements, which are
2× 2 determinants followed by a cancellation: cost 3M(kd) each, making
a total of 3(n− k)2M(kd).

If we call the first term 3(n − 1)2M(d) rather than 2(n − 1)2M(d) (i.e. ignore
the fact that there is no cancellation for the first column) we get

3

n−1∑
k=1

(n− k)2M(kd). (3.23)

The value of this depends on M (we’ll ignore constant factors, so there is an
implied O(· · ·), or Õ(· · ·), round everything in this analysis).

M(kd) = (kd)2 (classical arithmetic on integers, or univariate polynomials with
fixed-length coefficients) we get

1

30
d2n5 − 1

30
d2n = O(d2n5). (3.24)

Allowing for coefficient growth in the integer case11, we would have

O(d2n5 log2 n). (3.25)

M(kd) = kd (the dominant effect in FFT-based arithmetic on integers, or uni-
variate polynomials with fixed-length coefficients) we get 1

12 dn
4− 1

12 n
2d =

Õ(dn4).

Suppose we have an n×n matrix, and the elements are polynomials of degree
d in s variables. We have two options for computing the determinant:

1. Fraction-free Gaussian elimination, as described above;

2. Expansion by minors (see Appendix A.6), where we compute all n(n−1)
2∣∣∣∣ a1,i a1,j

a2,i a2,j

∣∣∣∣, then all n(n−1)(n−2)
6

∣∣∣∣∣∣
a1,i a1,j a1,k
a2,i a2,j a2,k
a3,i a3,j a3,k

∣∣∣∣∣∣ and so on.

The first involves O(n3) operations on polynomials, and the second O(n2n)
such operations. The comparison seems clear-cut, we should use the Bareiss-
Dodgson Fraction-free method (Corollary 5). Furthermore the intermediate

results of Corollary 5 are, apart from the pre-cancellation

∣∣∣∣∣ m(1)
3,2 m

(1)
3,3

m
(1)
4,2 m

(1)
4,3

∣∣∣∣∣ etc.,

102 CHAPTER 3. POLYNOMIAL EQUATIONS

sub-minors of the same size as would be computed in the minors method: see
(3.21) for an example.

The experimental evidence [Smi76, Smi79] is rather different, and much de-
pends in practice on the sparsity of the matrix. This is analysed in [GJ76],
whose conclusions also depend on the sparsity of the polynomials.

Open Problem 6 (Modern comparison of Minor Computations) The com-
putations in [Smi76, Smi79] should be repeated on modern systems/computers,
and the scaling should be re-examined now that larger systems are feasible.

3.2.5 Sparse Systems

So far, we have considered only taking as pivot elements first a1,1, then a2,2 and
so on. [Mar57] proposed the following.

Criterion 1 (Markowitz) Let there be ri non-zero elements in row i, and
cj non-zero elements in column j. Then choosing ai,j as a pivot adds ri − 1
elements into cj − 1 columns, so we choose a pivot minimising (ri − 1)(cj − 1).

This ignores the distinction between those of the (ri−1)(cj−1) elements added
that replace zeros (thus decreasing sparsity) and those that get adding into
existing elements (thus not changing sparsity). [KM20] investigated this, and
showed that, for 8× 8 matrices (averaged across all 21,467,043,671,008 sparsity
patterns!), the Markowitz criterion was 42% better (division-based elimination;
37% for fraction-free) than a random choice of pivot, and that the savings in-
creased with the dimension of the matrix. An optimal strategy was some 5%
(division) to 7% (fraction-free) better than this, but the pattern with respect to
increasing dimension was far from clear.

TO BE COMPLETEDRelationship with Bareiss–Dodgson.

3.2.6 Over/under-determined Systems

So far we have implicitly assumed that there are as many equations as there
are unknowns, and that the equations determine the unknowns precisely (in
other words, that the determinant of the corresponding matrix is non-zero).
What happens if these assumptions do not hold? There are several cases to be
distinguished.

Over-determined and consistent Here the ‘extra’ equations are consistent
with those that determine the solution. A trivial example in one variable
would be the pair 2x = 4, 3x = 6.

Over-determined and inconsistent Here the ‘extra’ equations are not con-
sistent with those that determine the solution. A trivial example in one
variable would be the pair 2x = 4, 3x = 9, where the first implies that
x = 2, but the second that x = 3.

3.3. NONLINEAR MULTIVARIATE EQUATIONS: DISTRIBUTED 103

Spuriously over-determined This is a generalisation of “over-determined
and consistent” when, after deleting the ‘extra’ equations that convery
no new information, we are left with an under-determined system.

Under-determined and consistent Here there are not enough equations (pos-
sibly after deleting spurious ones) to determine all the variables. An exam-
ple would be x+y = 3. Here x can be anything, but, once x is chosen, y is
fixed as 3−x. Equally, we could say that y can be anything, but, once y is
chosen, x is fixed as 3−y. The solutions form a k-dimensional hyper-plane,
where k is the number of variables minus the number of (non-spurious)
equations.

Under-determined yet inconsistent Here the equations (possibly after delet-
ing spurious ones) are still inconsistent. One example would be x+ 2y +
3z = 1, 2x+ 4y + 6z = 3.

We are then left with three possibilities for the solutions, which can be cate-
gorised in terms of the dimension (‘dim’).

dim = −1 This is the conventional ‘dimension’ assigned when there are no so-
lutions, i.e. the equations are inconsistent.

dim = 0 Precisely one solution.

dim > 0 An infinite number of solutions, forming a hyperplane of dimension
dim.

3.3 Nonlinear Multivariate Equations: Distributed

Most of the section has its origin in the pioneering work of Buchberger [Buc70].
Some good modern texts are [AL94, BW93, CLO06].

If the equations are nonlinear, equation (3.15) is still available to us. So,
given the three equations

x2 − y = 0 x2 − z = 0 y + z = 0,

we can subtract the first from the second to get y−z = 0, this and the third give
y = 0 and z = 0, and we are left with x2 = 0, so x = 0, albeit with multiplicity
2 (definition 40). However, we can do more than this. Given the two equations

x2 − 1 = 0 xy − 1 = 0, (3.26)

there might seem to be no row operation available. But in fact we can subtract
x times the second equation from y times the first, to get x− y = 0. Hence the
solutions are x = ±1, y = x.

We can generalise equation (3.15) to read as follows: for all polynomials f
and g,

P = Q & R = S implies fP + gR = fQ+ gS. (3.27)

104 CHAPTER 3. POLYNOMIAL EQUATIONS

Lemma 5 In equation (3.27), it suffices to consider terms (monomials with
leading coefficients) for f and g rather than general polynomials.

Proof. Let f be
∑
aimi and g be

∑
bimi, where the mi are monomials and

the ai and bi coefficients (possibly zero, but for a given i, both ai and bi should
not be zero, since then mi would be redundant). Then for each i, the monomial
version of equation (3.27) gives

P = Q & R = S implies aimiP + bimiR = aimiQ+ bimiS.

Then we can use equation (3.15) repeatedly, with λ = 1, to add these together
to get the general form of equation (3.27).

Because of equation (3.2), we can regard equations as synonymous with
polynomials. Equation (3.27) then motivates the following definition.

Definition 44 Let S be a set of polynomials in the variables x1, . . . , xn, with
coefficients from R. The ideal generated by S, denoted (S), is the set of all
finite sums

∑
fisi: si ∈ S, fi ∈ R[x1, . . . , xn]. If S generates I, we say that S

is a basis for I.

Observation 3 In fact we can define ideals in infinitely many variables, but
the theory diverges somewhat as Theorem 4 is no longer valid. See [HKL16].

Proposition 28 This is indeed an ideal in the sense of definition 9.

Strictly speaking, what we have defined here is the left ideal : there are also
concepts of right ideal and two-sided ideal , but all concepts agree in the case of
commutative polynomials, which we will assume until section 3.3.15.

Proposition 29 ((S)) = (S).

Definition 45 Two sets of polynomial equations are equivalent if the polyno-
mials defining the left-hand sides generate the same ideal. We will see how to
test this in corollary 8.

Just as an upper triangular matrix is a nice formulation of a set of linear equa-
tions, allowing us to “read off”, the solutions, so we would like a similarly ‘nice’
basis for an ideal generated by non-linear equations. In order to do this, we
will regard our polynomials in a distributed format, with the terms sorted in
some admissible (page 54)12 ordering >. Note that we are not requiring that
the polynomials are stored this way in an algebra system, though in fact most
algebra systems specialising in this area will do so: we are merely discussing
the mathematics of such polynomials. Having fixed such an ordering >, we can
define the following concepts.

12This is the usual presentation, but [CMR18] makes a case that the “preserved under
multiplication” condition is in fact not necessary for most developments.

3.3. NONLINEAR MULTIVARIATE EQUATIONS: DISTRIBUTED 105

Definition 46 If f is a non-zero polynomial, the leading term of f , denoted
lt(f), is that term greatest with respect to >. The corresponding monomial is
called the leading monomial of f , lm(f). We will sometimes apply lm to sets,
where lm(S) = {lm(s)|s ∈ S}a. In this context, lc(f) is the coefficient of the
leading monomial: hence

lt(f) = lc(f)lm(f).

“Monomial algebra” is a particularly simple form of polynomial algebra: in
particular

gcd

(
n∏

i=1

xai
i ,

n∏
i=1

xbii

)
=

n∏
i=1

x
min(ai,bi)
i ,

lcm

(
n∏

i=1

xai
i ,

n∏
i=1

xbii

)
=

n∏
i=1

x
max(ai,bi)
i .

Definition 47 If lm(g) divides lm(f), then we say that g reduces f to h =
lc(g)f − (lt(f)/lm(g))g, written f →g h. Otherwise we say that f is reduced
with respect to g. The Maple user should note that Maple’s Reduce command
actually implements complete reduction — see Definition 48.

If R is a field, division is possible, and so it is more usual to reduce f to
f − (lt(f)/lt(g))g. In the construction of h, the leading terms of both lc(g)f
and (lt(f)/lm(g))g are lc(f)lc(g)lm(f), and so cancel. Hence lm(h) < lm(f).
This observation and theorem 4 give us the following result.

Proposition 30 Any chain f1 →g f2 →g f3 · · · is finite, i.e. terminates in a

polynomial h reduced with respect to g. We write f1
∗→

g
h.

These concepts and results extend to reduction by a set G of polynomials, where
f →G h means ∃g ∈ G : f →g h. We must note that a polynomial can have
several reductions with respect to G (one for each element of G whose leading
monomial divides the leading monomial of f). For example, let G = {g1 =
x − 1, g2 = y − 2} and f = xy. Then there are two possible reductions of f :
f →g1 h1 = f − yg1 = y, and f →g2 h2 = f − xg2 = 2x. In this case h1 →g2 2

and h2 →g1 2, so that f
∗→

G
2 uniquely, but even this need not always be the case.

If we let G = {g1 = x−1, g2 = x2} and f = x2−1, then f →g2 h2 = f−g2 = −1,

whereas f →g1 f − xg1 = x− 1→g1 0: so f
∗→

G
0 or −1.

This definition deals with reduction of the leading monomial of f by g, but
it might be that other monomials are reducible. For simplicity we consider the
case when R is a field.

Definition 48 If any term cm of f is reducible by g, i.e. the leading monomial
of g divides m, we say that g part-reduces f , and write f ⇒g f − (cm/lt(g))g.

106 CHAPTER 3. POLYNOMIAL EQUATIONS

We can continue this process (only finitely often, by repeated application of

theorem 4), until no monomial of f is reducible by g, when we write f
∗⇒

g
h, and

say that f is completely reduced by g to h. Again, this extends to reduction by
a set of polynomials.

Reduction is conceptually fairly easy, but can be expensive if implemented
näıvely. Yan [Yan98] observed this, and invented the “geobucket” data structure
(see (2.2)), which ensured that we were not repeatedly subtracting polynomials
with few terms (as tends to be the case in G) from polynomials with many
terms (as f often is). In particular, he observed a factor of over 32 in one large
computation: 43 hours instead of 8 weeks!

In section 3.2.1, we performed row operations: subtracting a multiple of one
row from another, which is essentially what reduction does, except that the
‘multiple’ can include a monomial factor. It turns out that we require a more
general concept, given in the next definition.

Definition 49 Let f, g ∈ R[x1, . . . , xn]. The S-polynomial of f and g, written
S(f, g) is defined as

S(f, g) =
lt(g)

gcd(lm(f), lm(g))
f − lt(f)

gcd(lm(f), lm(g))
g. (3.28)

We note that the divisions concerned are exact, and that this generalises reduc-
tion in the sense that, if lm(g) divides lm(f), then f →g S(f, g). As with
reduction, the leading monomials in the two components on the righthand
side of equation (3.28) cancel. Another way of thinking of the S-polynomial
(when R is a field) is that it is the difference between what you get by reducing
lcm(lm(f), lm(g)) by f and by g.

Proposition 31 S(f, g) = −S(g, f).

Proposition 32 S(f, g) ∈ ({f, g}).

3.3.1 Gröbner Bases

From now until section 3.3.14, we will assume that R is a field. However, we
will continue to use R, and not gratuitously make polynomials monic, since this
can be expensive.

Theorem 16 [BW93, Proposition 5.38, Theorem 5.48] The following condi-
tions on a set G ⊂ R[x1, . . . , xn], with a fixed ordering > on monomials, are
equivalent.

1. ∀f, g ∈ G,S(f, g)
∗→

G
0. This is known as the S-Criterion.

2. If f
∗→

G
g1 and f

∗→
G
g2, then g1 and g2 differ at most by a multiple in R,

i.e.
∗→

G
is essentially well-defined.

3. ∀f ∈ (G), f
∗→

G
0.

3.3. NONLINEAR MULTIVARIATE EQUATIONS: DISTRIBUTED 107

4. (lm(G)) = (lm((G))), i.e. the leading monomials of G generate the same
ideal as the leading monomials of the whole of (G).

If G satisfies these conditions, G is called a Gröbner base (or standard basis).

These are very different kinds of conditions, and the strength of Gröbner theory

lies in their interplay. Condition 2 underpins the others:
∗→

G
is well-defined.

Condition 1 looks technical, but has the great advantage that, for finite G, it
is finitely checkable: if G has k elements, we take the k(k − 1)/2 unordered
(by proposition 31) pairs from G, compute the S-polynomials, and check that
they reduce to zero. This gives us either a proof or an explicit counter-example

(which is the key to algorithm 9). Since f
∗→

G
0 means that f ∈ (G), condition

3 means that ideal membership is testable if we have a Gröbner base for the
ideal. Condition 4 can be seen as a generalisation of “upper triangular” — see
section 3.3.5.

Now let G and H be Gröbner bases, possibly with respect to different or-
derings.

Proposition 33 If ∀g ∈ G, g ∗→
H

0, then (G) ⊆ (H).

Proof. Let f ∈ (G). Then f
∗→

G
0, so f =

∑
cigi. But gi

∗→
H

0, so gi =∑
j dijhj . Therefore f =

∑
j (
∑

i cidij)hj , and so f ∈ (H).

Corollary 8 If ∀g ∈ G, g ∗→
H

0, and ∀h ∈ H,h ∗→
G

0, then (G) = (H).

Over a field, a particularly useful Gröbner base is a completely reduced
Gröbner base (abbreviated crGb) G, i.e. one where every element is completely
reduced with respect to all the others: in symbols

∀g ∈ G g
∗⇒

G\{g}
g. (3.29)

For a consistent set of linear polynomials, the crGb would be a set of linear
polynomials in one variable each, e.g. {x − 1, y − 2, z − 3}, effectively the
solution. In general, a monic crGb is a locally canonical (definition 4) form for
an ideal: two ideals are equal if, and only if, they have the same crGb (“locally”
meaning with respect to the same ordering, of course).

Theorem 17 (Buchberger) Every polynomial ideal has a Gröbner base: we
will show this constructively for finitely-generated13 ideals over noetherian (def-
inition 10) rings.

Algorithm 9 (Buchberger)
Input: finite G0 ⊂ R[x1, . . . , xn]; monomial ordering >.
Output: G a Gröbner base for (G0) with respect to >.

13In fact, every polynomial ideal over a noetherian ring is finitely generated. However,
it is possible to encode undecidability results in infinite descriptions of ideals, hence we say
“finitely generated” to avoid this paradox.

108 CHAPTER 3. POLYNOMIAL EQUATIONS

G := G0; n := |G|;
we consider G as {g1, . . . , gn}
P := {(i, j) : 1 ≤ i < j ≤ n}
while P ̸= ∅ do

Pick (i, j) ∈ P ;
P := P \ {(i, j)};
Let S(gi, gj)

∗→
G
h

If h ̸= 0 then
lm(h) /∈ (lm(G))
gn+1 := h; # G := G ∪ {h};
P := P ∪ {(i, n+ 1) : 1 ≤ i ≤ n};
n := n+ 1;

Optionally G :=Interreduce(G) # (3.29)

Proof. The polynomials added to G are reductions of S-polynomials of mem-
bers of G, and hence are in the same ideal as G, and therefore of G0. If this
process terminates, then the result satisfies condition 1, and so is a Gröbner
base for some ideal, and therefore the ideal of G. By proposition 32 and the

properties of
∗→

G
, h ∈ (G), so (G) is constant throughout this process and G

has to be a Gröbner base for (G0). Is it possible for the process of adding new
h to G, which implies increasing (lm(G)), to go on for ever? No: corollary 1
says that the increasing chain of (lm(G)) is finite, so at some point we cannot
increase (lm(G)) any further, i.e. we cannot add a new h.

Proposition 34 Every finitely generated polynomial ideal over a field K has a
completely reduced Gröbner base with respect to any given ordering, and this is
unique up to order of elements and multiplication by elements of K∗.

Hence, for a fixed ordering, a monic crGb is a “fingerprint” of an ideal,
uniquely identifying it. In the terminology of section 1.2, it is locally canonical
(Definition 5), “locally” meaning with respect to a fixed order on monomials.
This makes definition 45 algorithmic.

It also allows effective ideal arithmetic.

Proposition 35 Let G1 and G2 be Gröbner bases of the ideals I1 and I2 with
respect to a fixed ordering. Then:

1. I1 ◁ I2 iff ∀g ∈ G1 g
∗→

G2

0;

2. I1 + I2 = (G1 ∪G2);

3. I1I2 = ({g1g2 | g1 ∈ G1, g2 ∈ G2}) .

Furthermore, all these processes are algorithmic.

3.3. NONLINEAR MULTIVARIATE EQUATIONS: DISTRIBUTED 109

3.3.2 How many Solutions?

Here we will try to give an analysis of the various possibilities for the number
of solutions of a set of polynomial equations. We will assume that a crGb for
the polynomials has been computed, which therefore cannot be over-determined
in the sense of having redundant equations. However, we may still need more
equations than variables — see the examples at the start of section 3.3.7.

Unlike section 3.2.6 however, we have to ask ourselves “in which domain
are the solutions?” We saw in Theorem 10 that, even for an equation in one
variable, the ‘solutions’ may have no simpler formulation than ‘this is a root
of p(x)’. Fortunately, this is all that we need. We will assume that K is the
algebraic closure (definition 19) of (the field of fractions of) R.

Definition 50 The set of solutions over K of an ideal I is called the variety of
I, written V (I). If S is a set of polynomials which generates I, so I = ⟨S⟩, we
will write V (S) as shorthand for V (⟨S⟩).

We should note that two different ideals can have the same variety, e.g. (x) and
(x2) both have the variety x = 0, but the solution has different multiplicity.
However, the two ideals (x2 + y2) and (x, y) both have only the solution x =
y = 0 over the reals, but over the complexes the first has the solutions x = ±iy,
and hence the varieties are different. See Section 3.5.2.

Proposition 36 V (I1 · I2) = V (I1) ∪ V (I2).

Proposition 37 V (I1 ∪ I2) = V (I1) ∩ V (I2).

Definition 51 The radical of an ideal I, denoted
√
I, is defined as

√
I = {p|∀x ∈ V (I), p(x) = 0} .

An equivalent definition is
√
I = {p|∃m : pm ∈ I} .

If I is generated by a single polynomial p,
√
I is generated by the square-free

part of p.

Example 7 The ideal (x2 + y2) and the ideal (xy) are both radical. However,
the ideal I = (x2 + y2, xy) is not radical, and in fact

√
I = (x, y).

Let us see how this happens. x2+y2 ∈ I and xy ∈ I, therefore x2+y2+2xy ∈ I.
But this polynomial is (x + y)2, therefore x + y ∈

√
I. Since xy ∈

√
I and

x+ y ∈
√
I, we have xy− y(x+ y) ∈

√
I. But this is just −y2, so y2 ∈

√
I, and

hence y ∈
√
I. Similarly x ∈

√
I.

In terms of varieties, V (I) is {x = 0, y = 0} (which in fact is with multiplicity
two, since it is a point of multiplicity 2 in both (x2 + y2) and (xy)). A simpler
(indeed the simplest) ideal with this variety is (x, y).

Proposition 38
√
I is itself an ideal, and

√
I ⊃ I.

110 CHAPTER 3. POLYNOMIAL EQUATIONS

Computing the radical in general is a difficult, and potentially expensive (doubly
exponential in the number of variables) procedure —- see [Lap06]. In the case of
zero-dimensional ideals over perfect fields (in particular fields of characteristic
0) it is relatively easy due to the following result.

Proposition 39 ([Sei74]) Suppose I is a zero-dimensional ideal in k[x1, . . . , xn],
where k is a perfect field. Let gi = I ∩ k[xi] and hi be the square-free part of gi.
Then

√
I = ⟨I, h1, . . . , hn⟩.

gi exists because of zero-dimensionality, so xi occurs alone as some power. It
can be computed by the Faugère–Gianni–Lazard–Mora algorithm, see section
3.3.8. In Example 7, a purely lexicographical Gröbner base is {y3, xy, x2 + y2},
and the square-free part of y3 is y.

Definition 52 The dimension of an ideal I in S = k[x1, . . . , xn] is the maxi-
mum number of algebraically independent, over k, elements of the quotient S/I.
We say “dimension of a variety” as shorthand for the dimension of an ideal
defining the variety.

Given an arbitrary description of an ideal I, the dimension may not be obvious,
but if we have a Gröbner basis G of I it is relatively easy to compute. We say
that a subset S of {x1, . . . , xn} is independent if there is no monomial in the
elements of S among the leading monomials of G. The dimension of I is then
the largest size of an independent set.

There are various possibilities for the dimension.

No solutions in K Here the crGb will be {1}, or more generally {c} for some
non-zero constant c. The existence of a solution would imply that this
constant was zero, so there are no solutions. The dimension is undefined,
but normally written as −1.

A finite number of solutions in K There is a neat generalisation of the re-
sult that a polynomial of degree n has n roots.

Proposition 40 If it’s finite, the number (counted with multiplicity) of
solutions of a system with Gröbner basis G is equal to the number of
monomials which are not reducible by G.

It follows from this that, if (and only if) there are finitely many solutions,
every variable xi must appear alone, to some power, as the leading mono-
mial of some element of G. In this case, the dimension is zero. We return
to this case in section 3.3.7.

An infinite number of solutions in K Then some variables do not occur
alone, to some power, as the leading monomial of any element of G. In
this case, the dimension is greater than zero.

3.3. NONLINEAR MULTIVARIATE EQUATIONS: DISTRIBUTED 111

While ‘dimension’, as defined above, is a convenient generalisation of the linear
case, many more things can happen in the non-linear case. If the dimension of
the ideal is d, there must be at least d variables which do not occur alone, to
some power, as the leading monomial of any element of G. However, if d > 0,
there may be more. Consider the ideal (xy − 1) ◁ k[x, y]. {xy − 1} is already a
Gröbner base, and neither x nor y occur alone, to any power, in a leading term
(the only leading term is xy). However, the dimension is 1, not 2, because fixing
x determines y, and vice versa, so there is only one independent variable. In the
case of a triangular set (definition 69), we can do much better, as in Proposition
48.

There are other phenomena that occur with nonlinear equations that cannot
occur with linear equations. Consider the ideal

⟨(x+ 1− y)(x− 6 + y), (x+ 1− y)(y − 3)⟩

(where the generators we have quoted do in fact form a Gröbner base, at least
for plex(x,y) and tdeg(x,y), and the leading monomials are x2 and xy). x
occurs alone, but y does not, so in fact this ideal has dimension greater than
0 but at most 1, i.e. dimension 1. But the solutions are x = y − 1 (a straight
line) and the point (3, 3). Such ideals are said to be of mixed dimension, and
are often quite tedious to work with [Laz09].

3.3.3 Orderings

In section 2.1.4, we defined an admissible ordering on monomials, and the theory
so far is valid for all orderings. What sort of orderings are admissible? We first
need an ordering on the variables themselves, which we will also denote >, and
we will assume that x1 > · · · > xn (in examples, x > y > z). Suppose the
two monomials to be compared are A = xa1

1 . . . xan
n and B = xb11 . . . xbnn . These

monomials have total degree a =
∑n

i=1 ai and b =
∑n

i=1 bi.

purely lexicographic — plex in Maple We first compare a1 and b1. If they
differ, this tells us whether A > B (a1 > b1) or A < B (a1 < b1). If they
are the same, we go on to look at a2 versus b2 and so on. The order is
similar to looking up words in a dictionary/lexicon — we look at the first
letter, and after finding this, look at the second letter, and so on. In this
order x2 is more important than xy10.

total degree, then lexicographic — grlex in Maple We first look at the
total degrees: if a > b, then A > B, and a < b means A < B. If
a = b, then we look at lexicographic comparison. In this order xy10 is
more important than x2, and x2y more important than xy2.

total degree, then reverse lexicographic — tdeg in Maple This order is
the same as the previous, except that, if the total degrees are equal, we
look lexicographically, then take the opposite. Many systems, in particular
Maple and Mathematica14, reverse the order of the variables first. The

14http://reference.wolfram.com/mathematica/tutorial/PolynomialOrderings.html

http://reference.wolfram.com/mathematica/tutorial/PolynomialOrderings.html

112 CHAPTER 3. POLYNOMIAL EQUATIONS

reader may ask “if the order of the variables is reversed, and we then
reverse the sense of the answer, what’s the difference?”. Indeed, for two
variables, there is no difference. However, with more variables it does
indeed make a difference. For three variables, the monomials of degree
three are ordered as

x3 > x2y > x2z > xy2 > xyz > xz2 > y3 > y2z > yz2 > z3

under grlex, but as

x3 > x2y > xy2 > y3 > x2z > xyz > y2z > xz2 > yz2 > z3

under tdeg. One way of seeing the difference is to say that grlex with
x > y > z discriminates in favour of x, whereas tdeg with z > y > x
discriminates against z. This metaphor reinforces the fact that there is
no difference with two variables.

It seems that tdeg is, in general, the most efficient order, however see
Example 8 for a specific counterexample.

k-elimination Here we choose any order >′ on x1, . . . , xk, and use that. If this
cannot decide, we then use a second order >′′ on xk+1, . . . , xn. Since >′

is admissible, the least monomial is x01 . . . x
0
k, so this order will eliminate

x1, . . . , xk as far as possible, in the sense that the polynomials in only
xk+1, . . . , xn in a Gröbner base computed with such an order are all that
can be deduced about these variables. It is common, but by no means
required, to use tdeg for both >′ and >′′. Note that this is not the
same as simply using tdeg, since the exponents of xk+1, . . . , xn are not
considered unless x1, . . . , xk gives a tie.

plex is an (n − 1)-elimination ordering: there’s no choice for >′′ on one
variable, and >′ is itself plex, so is an (n − 2)-elimination ordering, and
so on.

weighted orderings Here we compute the total degree with a weighting fac-
tor, e.g. we may weight x twice as much as y, so that the total degree of
xiyj would be 2i + j. This can come in lexicographic or reverse lexico-
graphic variants.

matrix orderings These are in fact the most general form of orderings [Rob85].
Let M be a fixed n× n matrix of reals, and regard the exponents of A as
an n-vector a. Then we compare A and B by computing the two vectors
M.a and M.b, and comparing these lexicographically.

lexicographic M is the identity matrix.

grlex M =

1 1 . . . 1 1
1 0 . . . 0 0

0
. . . 0 . . . 0

...
...

...
...

...
0 . . . 0 1 0

.

3.3. NONLINEAR MULTIVARIATE EQUATIONS: DISTRIBUTED 113

tdeg It would be tempting to say, by analogy with grlex, that the matrix

is

1 1 . . . 1 1
0 0 . . . 0 1
0 . . . 0 1 0
...

...
...

...
...

0 1 0 . . . 0

. However, this is actually grlex with the

variable order reversed, not genuine reverse lexicographic. To get

that, we need the matrix

1 1 . . . 1 1
−1 0 . . . 0 0

0
. . . 0 . . . 0

...
...

...
...

...
0 . . . 0 −1 0

, or, if we are

adopting the Maple convention of reversing the variables as well,
1 1 . . . 1 1
0 0 . . . 0 −1
0 . . . 0 −1 0
...

...
...

...
...

0 −1 0 . . . 0

.

k-elimination If the matrices are Mk for >′ and Mn−k for >′′, then

M =

(
Mk 0
0 Mn−k

)
.

weighted orderings Here the first row of M corresponds to the weights,
instead of being uniformly 1.

Most “serious” Gröbner systems15 implement matrix orderings, but have
special case implementations for the more common ones listed above, often
storing the (weighted) total degree as well as the individual degrees to
minimise recomputation.

3.3.4 Complexity of Gröbner Bases

We have proved nothing about the running time of Buchberger’s algorithm.
Indeed, “algorithm” is almost an over-statement: we have not specified the

choice of (i, j) ∈ P at all, and furthermore S(gi, gj)
∗→

G
h is not necessarily

unique even once (i, j) is chosen. It turns out in practice that the complexity,
though not the correctness, of the algorithm is strongly dependent on this choice,
and on the ordering > being used.

Observation 4 There have been many improvements and alternative sugges-
tions for computing Gröbner bases. Some improvements are given below. As of
writing probably the best algorithm is the F5 algorithm [Fau02, HA10]. Section
4.6 discusses ways of reducing the coefficient growth in these computations.

15Such as SINGULAR [Sch03b], CoCoA [Abb04] or Macauley [BS86].

114 CHAPTER 3. POLYNOMIAL EQUATIONS

Observation 5 However many improvements have been, or might be, made,
computing Gröbner bases can never be a trivial task. A classic result [MM82]
shows that the output degree can be doubly exponential in the number of variables,
and this is also the worst case [Dub90].

Theorem 18 ([MM82], [MR10, Theorem 4.1]) For any d and k, let n =
14(k + 1). There is a set Jn,d of polynomials in k[x1, . . . , xn] of degree at most
d such that any Gröbner base of Jn,d with respect to a total degree ordering

contains a polynomial of degree at least 1
2d

2k + 4.

Therefore this is O
(
d2

n/14
)

. We can improve this to “nearly” n/2, at the cost

of being less explicit.

Theorem 19 ([Yap91]) Fix an admissible monomial ordering. Then there is
a family of ideals In ⊆ k[x1, . . . , xn] for n ∈ N, generated by O(n) polynomials

of degree ≤ d, such that any Gröbner base Gn of In has degree ≥ d2
(1/2−ϵ)n

for
any epsilon > 0 and sufficiently large d, n.

Theorem 20 ([Dub90]) Whatever the ordering, polynomials of total degree
≤ d in k[x1, . . . , xn] have a reduced Gröbner base with polynomials of degree

≤ 2
(

d2

2 + d
)2n−1

.

Open Problem 7 (Sparse Gröbner Bases) Even when k = 1, we are very
far away from being able in practice to compute Gröbner bases in 28 variables.
Also, of course, these polynomials could be very sparse (the example of Theo-
rem 18 involves only binomials), so this result does not necessarily prove that
the complexity of computing Gröbner bases is doubly exponential in a sparse
encoding. What, then, are the more practical implications of Theorems 18, 19?

We should note that the degree of a Gröbner base depends strongly on the di-
mension (Definition 52) of the ideal — see section 3.3.8 for the zero-dimensional
case, and more generally the following result.

Theorem 21 ([MR11, Theorem 8]) 16 Let I be an r-dimensional ideal in
k[x1, . . . , xn] generated by s polynomials of total degree d1 ≥ . . . ≥ ds. Then, for
any admissible ordering, the maximum total degree required in a Gröbner base

of I is at most 2
(

1
2 (d1 · · · dn−r)

2(n−r)
+ 1

2d1

)2r
.

The worst case ideals are very far from being radical (Definition 51), and indeed
the complexity comes from this property. For radical ideals, we have a much
better degree bound.

Theorem 22 TO BE COMPLETED[Kol88] [Kollar,1988]

16This was originally published as [MR10, Corollary 3.21], but with an error corrected in
[MR11, Theorem 8].

3.3. NONLINEAR MULTIVARIATE EQUATIONS: DISTRIBUTED 115

However, this doesn’t mean that the Gröbner bases are small, as shown by this
example.

Example 8 (van Hoeij [vH15]) Consider 3n variables V := {x1, . . . , xn, y−
1, . . . , yn, z1, . . . , zn}. Let us work modulo 2, and also with the equations S :=
{c2 − c : ∀c ∈ V}, so effectively this is the Boolean ring. Let L := {xiyi − xi −
yi−zi : i ∈ {1, . . . , n}} and H := S∪L∪{

∏n
i=1 zi}. Intuitively, the last equation

in H says that (at least) one of the zi is zero, and if zi = 0, the i-th equation
in L says that xi = yi = 0. If one is familiar with algebraic geometry, it is easy
to see that (H) is a radical ideal.

Let T = {xizi − xi : i ∈ {1, . . . , n}} ∪ {yizi − yi : i ∈ {1, . . . , n}} and P =
{
∏n

i=1 ci : c1 ∈ {x1, y1, z1}, . . . , cn ∈ {xn, yn, zn}}. Note that, while all the other
sets have O(n) elements, P has 3n elements. The equations in T can be intern-
preted as “zi = 0 → xi = 0” and “zi = 0 → yi = 0”. van Hoeij shows
that, with respect to any total degree ordering, the reduced Gröbner base of H is
G := S ∪ L ∪ T ∪ P, i.e. with exponentially more elements.

The author has also observed that, with the lexicographic order and the zi
coming first, the Gröbner base only has those elements of P containing no zi,
i.e. 2n of them. So van Hoeij’s example is also one where any total degree order
has exponentially more polynomials than a good lexicographic order.

Estimating in advance the complexity of computing a Gröbner base for a
given set of polynomials would be very useful, especially in cryptography. One
particular question is “how far do we have to increase the degrees of the polyno-
mials to compute a Gröbner base?”, or “what is the solving degree?”: a precise
definition of “solving degree”, and other related invariants, is given in [CG21].
As they say, though, “Unfortunately however, finding the solving degree of a
system without computing its Gröbner basis is often hard”.

Having got, as it were, the depressing news out of the way, let’s look at some
useful results in practice.

Proposition 41 (Buchberger’s gcd (or First) Criterion [Buc79]) If

gcd(lm(f), lm(g)) = 1, (3.30)

then S(f, g)
∗→

{f,g}
0.

In practice, this is implemented by not even adding to P , either in the initial
construction or when augmenting it due to a new h, pairs for which equation
(3.30) is satisfied.

Corollary 9 If all the leading monomials in a set S are disjoint, then S is
already a Gröbner basis (by the S-Criterion)

This proposition also explains why the more general construct of an S-polynomial
is not relevant to linear equations: when f and g are linear, if they have the
same leading variable, one can reduce the other, and if they do not, then the
S-polynomial reduces to zero.

116 CHAPTER 3. POLYNOMIAL EQUATIONS

Proposition 42 (Buchberger’s lcm (or Third) Criterion [Buc79]) If B

contains f , g, h and the reductions under
∗→

B
of S(f, g) and S(f, h) are zero,

and if both lcm(lm(f), lm(g)) and lcm(lm(f), lm(h)) divide lcm(lm(g), lm(h)),

then S(g, h)
∗→

B
0, and hence need not be computed.

This has been generalised to a chain of polynomials fi connecting g and h: see
[BF91].

Propositions 41 and 42 are therefore sufficient to say that we need not com-
pute an S-polynomial: the question of whether they are necessary is discussed
by [HP07]. Terminology varies in this area, and some refer to Buchberger’s
Second Criterion as well. The more descriptive gcd/lcm terminology is taken
from [Per09].

Whereas applying the gcd Criterion (Proposition 41) to S(f, g) depends only
on f and g, applying the lcm Criterion (Proposition 42 and its generalisations)
to S(g, h) depends on the whole past history of the computation. It might be
that the Criterion is not applicable now, but might become applicable in the
future. Hence we can ask

which way of picking elements from P in Algorithm 9 will maximise
the effectiveness of the lcm Criterion?

A partial answer was given in [Buc79].

Definition 53 We say that an implementation of Algorithm 9 follows a nor-
mal selection strategy if, at each iteration, we pick a pair (i, j) such that
lcm(lm(gi), lm(gj)) is minimal with respect to the ordering in use.

This does not quite specify the selection completely: given a tie between (i, j)
and (i′, j′) (with i < j, i′ < j′), we choose the pair (i, j) if j < j′, otherwise
(i′, j′) [GMN+91]. Note that here we are actually looking at the numerical
values of indices, with larger values meaning “newer” polynomials. Hence we
are picking the pair whose newer element is oldest. This is often justified on the
grounds that the oldest polynomials have the least fill-in.

Open Problem 8 What happens if we look at the actual length of the polyno-
mials, rather than just assuming “old implies short”? And does this change if
we use a “geobuckets” strategy [Yan98] for addition?

For the sake of simplicity, let us assume that we are dealing with a total
degree ordering, or a lexicographic ordering. The case of weighted orderings,
or so-called multi-graded orderings (e.g. an elimination ordering each of whose
components is a total degree ordering) is discussed in [BCR11].

Definition 54 A polynomial is said to be homogeneous17 if every term has the
same total degree. A set of polynomials is said to be homogeneous if each of

17This can be extended to weighted homogeneous orderings, and most of the advantages
carry through [FSEDT14].

3.3. NONLINEAR MULTIVARIATE EQUATIONS: DISTRIBUTED 117

them separately is homogeneous. Note that we are not insisting that all terms
in the set have the same degree, merely that within each polynomial they have
the same total degree.

Definition 55 If f =
∑
ci
∏n

j=1 x
ai,j

j ∈ K[x1, . . . , xn] is not homogeneous, and
has total degree d, we can define its homogenisation to be f0 ∈ K[x0, x1, . . . , xn]
as

f0 =
∑

cix
d−
∑n

j=1
ai,j

0

n∏
j=1

x
ai,j

j .

Proposition 43 If f and g are homogeneous, so is S(f, g) and h where f →g h.

Corollary 10 If the input to Algorithm 9 is a set of homogeneous polynomials,
then the entire computation is carried out with homogeneous polynomials.

The normal selection strategy is observed to work well with homogeneous poly-
nomials, but can sometimes be very poor on non-homogeneous polynomials.
Hence [GMN+91] introduced the following concept.

Definition 56 The ‘sugar’ Sf of a polynomial f in Algorithm 9 is defined in-
ductively as follows:

1. For an input f ∈ G0, Sf is the total degree of f (even if we are working
in a lexicographic ordering)

2. If t is a term, Stf = deg(t) + Sf ;

3. Sf+g = max(Sf , Sg).

We define the sugar of a pair of polynomials to be the sugar of their S-polynomial,
i.e. (the notation is not optimal here!) S(f,g) = SS(f,g).

The sugar of a polynomial is then the degree it would have had we homogenised
all the polynomials before starting Algorithm 9.

Definition 57 We say that an implementation of Algorithm 9 follows a sugar
selection strategy if, at each stage, we pick a pair (i, j) such that S(gi,gj) is
minimal.

This does not completely specify what to do, and it is usual to break ties with the
normal selection strategy (Definition 53), and “sugar then normal” is generally
just referred to as “sugar”.

3.3.5 A Matrix Formulation

Equation (3.13) showed how a family of linear equations can be represented as
a matrix equation. We can do the same with nonlinear equations: (3.26) can

118 CHAPTER 3. POLYNOMIAL EQUATIONS

be written as

(
1 0 0 0 −1
0 1 0 0 −1

)
x2

xy
x
y
1

 = 0 (3.31)

However, this does not give us an obvious solution. Rather, we need to extend
the system, allowing not just the original equations, but also y times the first
and x times the second, to give the following.

1 0 0 0 −1 0
0 1 0 0 0 −1
1 0 0 −1 0 0
0 0 1 0 0 −1

x2y
x2

xy
x
y
1

 = 0. (3.32)

Elimination in this gives us

1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 0 −1 1 0
0 0 1 0 0 −1

x2y
x2

xy
x
y
1

 = 0, (3.33)

which produces, as the third row, the equation y − x, as we do (up to a change
of sign) after (3.26). In pure linear algebra, we can do no further, since we really
require y times this equation. This means considering

1 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 −1 0
0 0 1 0 0 0 0 0 −1
1 0 0 0 −1 0 0 0 0
0 1 0 0 0 −1 0 0 0
0 0 0 0 1 0 0 0 −1

x2y2

x2y
x2

xy2

xy
x
y2

y
1

= 0. (3.34)

3.3. NONLINEAR MULTIVARIATE EQUATIONS: DISTRIBUTED 119

Eliminating here (using row 1 to kill the leading term in row 4, and the same
with row 2 against row 5) gives

1 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 −1 0
0 0 1 0 0 0 0 0 −1
0 0 0 0 −1 0 1 0 0
0 0 0 0 0 −1 0 1 0
0 0 0 0 1 0 0 0 −1

x2y2

x2y
x2

xy2

xy
x
y2

y
1

= 0, (3.35)

and now row 4 can kill the leading term in row 6, to give

1 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 −1 0
0 0 1 0 0 0 0 0 −1
0 0 0 0 −1 0 1 0 0
0 0 0 0 0 −1 0 1 0
0 0 0 0 0 0 1 0 −1

x2y2

x2y
x2

xy2

xy
x
y2

y
1

= 0. (3.36)

The last line of this corresponds to y2−1. To use this to deduce an equation for
x, we would need to consider x times this equation, which would mean adding
further rows and columns to the matrix.

In this formulation, the statement “G is a Gröbner base for (F)” corresponds
to the existence (not the uniqueness, as reduction is not unique) of matrices X,
Y and R such that

X.F = G
Y.G = F
R.G = 0

(3.37)

where F and G are the matrix versions of F and G: the first two lines say that
F and G generate the same ideal, and the last that G is a Gröbner basis.

No-one would actually suggest doing this in practice, any more than any-one
would compute a g.c.d. in practice by building the Sylvester matrix (which is
actually the univariate case of this process), but the fact that it exists can be
useful in theory, as we will find that the Sylvester matrix formulation of g.c.d.
computation is useful in chapter 4. See section 5.9.3.

3.3.6 Example

Consider the three polynomials below.

g1 = x3yz − xz2,

120 CHAPTER 3. POLYNOMIAL EQUATIONS

g2 = xy2z − xyz,
g3 = x2y2 − z.

The S-polynomials to be considered are S(g1, g2), S(g1, g3) and S(g2, g3). We
use a purely lexicographical ordering with x > y > z. The leading terms of
g2 = xy2z − xyz and g3 = x2y2 − z are xy2z and x2y2, whose l.c.m. is x2y2z.
Therefore

S(g2, g3) = xg2 − zg3 = (x2y2z − x2yz)− (x2y2z − z2) = −x2yz + z2.

This polynomial is non-zero and reduced with respect to G, and therefore G is
not a Gröbner basis. Therefore we can add this polynomial (or, to make the
calculations more readable, its negative) to G — call it g4. This means that the
S-polynomials to be considered are S(g1, g2), S(g1, g3), S(g1, g4), S(g2, g4) and
S(g3, g4).

Fortunately, we can make a simplification, by observing that g1 = xg4, and
therefore the ideal generated by G does not change if we suppress g1. This sim-
plification leaves us with two S-polynomials to consider: S(g2, g4) and S(g3, g4).

S(g2, g4) = xg2 − yg4 = −x2yz + yz2,

and this last polynomial can be reduced (by adding g4), which gives us yz2−z2.
As it is not zero, the basis is not Gröbner, and we must enlarge G by adding
this new generator, which we call g5. The S-polynomials to be considered are
S(g3, g4), S(g2, g5), S(g3, g5) and S(g4, g5).

S(g3, g4) = zg3 − yg4 = −z2 + yz2,

and this can be reduced to zero (by adding g5). In fact, this reduction follows
from Buchberger’s lcm (third) criterion, proposition 42, as we have already
computed S(g2, g3) and S(g2, g4).

S(g2, g5) = zg2 − xyg5 = −xyz2 + xyz2 = 0.

S(g4, g5) = zg4 − x2g5 = −z3 + x2z2 = x2z2 − z3,

where the last rewriting arranges the monomials in decreasing order (with re-
spect to <). This polynomial is already reduced with respect to G, G is
therefore not a Gröbner basis, and we must add this new polynomial to G
— let us call it g6. The S-polynomials to be considered are S(g3, g5), S(g2, g6),
S(g3, g6), S(g4, g6) and S(g5, g6). The reader can check that G reduces all these
S-polynomials to zero, and that G is therefore a Gröbner basis of the ideal, viz.

g2 = xy2z − xyz,
g3 = x2y2 − z,
g4 = x2yz − z2,
g5 = yz2 − z2,

3.3. NONLINEAR MULTIVARIATE EQUATIONS: DISTRIBUTED 121

g6 = x2z2 − z3.

No power of x, y or z occurs alone, so we see that the variety is certainly not
zero-dimensional, even though we started with three equations in three variables,
and z is undetermined. If z ̸= 0, then g5 can be divided by z2 to give y = 1 and
then g3 becomes x2 − z, hence this part of the solution variety is a parabola.
But if z = 0, all equations except g3 collapse, and we have x2y2 = 0. Hence
this part of the solution variety is two straight lines x = z = 0 and y = z = 0,
each in fact of multiplicity four. Hence the solution is in fact of dimension one,
a fact that was not evident when we started.

3.3.7 The Gianni–Kalkbrener Theorem

In this section, we will consider the case of dimension 0, i.e. finitely many
solutions over K. We first remark that the situation can be distinctly more
challenging than in the case of linear equations, which we illustrate by means
of two examples.

1. G = {x2−1, y2−1}. This is a Gröbner base with respect to any ordering.
There are four irreducible monomials {1 = x0y0, x1y0, x0y1, x1y1}, and
hence four solutions, x = ±1, y = ±1.

2. G = {x2 − 1, y2 − 1, (x − 1)(y − 1)}. This is also a Gröbner base with
respect to any ordering. There are three irreducible monomials {1, x, y},
and hence three solutions. There are x = 1, y = ±1, but when x = −1,
we only have y = 1. The additional polynomial (x−1)(y−1), which rules
out the monomial xy, rules out the solution x = y = −1. Another way of
looking at this is that, when x = 1, the polynomial (x−1)(y−1) vanishes,
but when x = −1, it adds an extra constraint.

Can we generalise this? The answer is ‘yes’, at least for purely lexicographical
Gröbner bases of zero-dimensional ideals. If the order is xn < xn−1 < · · · < x1
then such a Gröbner base G must have the form

pn(xn)

pn−1,1(xn−1, xn), . . . , pn−1,kn−1(xn−1, xn),

pn−2,1(xn−2, xn−1, xn), . . . , pn−2,kn−2(xn−2, xn−1, xn),

· · ·
p1,1(x1, · · · , xn−1, xn), . . . , p1,k1(x1, · · · , xn−1, xn),

where ki is the number of polynomials pi,j involving xi but not any xℓ for ℓ < i
and18

degxi
(pi,j) ≤ degxi

(pi,j+1) (3.38)

18It is tempting to write < rather than ≤ in (3.38). However, this is not always possible,
even though, by the time we come to use the pk,j in Algorithm 11, the non-zero pk,j(α)
will indeed be in a strict order of degxk

. We can, and should, sort the pk,j by the purely
lexicographic order.

122 CHAPTER 3. POLYNOMIAL EQUATIONS

Figure 3.4: Gianni–Kalkbrener Algorithm

Algorithm 10 (Gianni–Kalkbrener) GK(G,n)
Input: A Gröbner base G for a zero-dimensional ideal I in n variables with
respect to lexicographic order.
Output: A list of solutions of G.

S := {xn = RootOf(pn)}
for k = n− 1, . . . , 1 do

S := GKstep(G, k, S)
return S

Algorithm 11 (Gianni–Kalkbrener Step) GKstep(G, k,A)
Input: A Gröbner base G for a zero-dimensional ideal I with respect to lexico-
graphic order, an integer k, and A a list of solutions of Gk+1.
Output: A list of solutions of Gk.

B := ∅
for each α ∈ A

i := 1
while (L := (lcxk

(pk,i))(α)) = 0 do i := i+ 1
if L is invertible with respect to α
see section 3.1.5

then B := B ∪ {(α ∪ {xk = RootOf(pk,i(α))})}
else # α is split as α1 ∪ α2

B := B ∪GKstep(G, k, {α1}) ∪GKstep(G, k, {α2})
return B

and pi,ki is monic in xi. Let Gk = G ∩ k[xk, . . . , xn], i.e. those polynomials in
xk, . . . , xn only.

Theorem 23 (Gianni–Kalkbrener [Gia89, Kal89a]) Let α be a solution of
Gk+1. Then if lcxk

(pk,i) vanishes at α, then (pk,i) vanishes at α. Furthermore,
the lowest degree (in xk) polynomial of the pk,i not to vanish at α, say pk,mα

,
divides all of the other pk,j at α. Hence we can extend α to solutions of Gk by
adding xk = RootOf(pk,mα

).

Put another way, if pk,mα allows a solution extending α, so do pk,mα+1, pk,mα+2,
This gives us an algorithm (Figure 3.4) to describe the solutions of a zero-

dimensional ideal from such a Gröbner base G. This is essentially a generalisa-
tion of back-substitution into triangularised linear equations, except that there
may be more than one solution, since the equations are non-linear, and possibly
more than one equation to substitute into.

In practice, particularly if we are interested in keeping track of multiplicities
of solutions, it may be more efficient to perform a square-free decomposition

3.3. NONLINEAR MULTIVARIATE EQUATIONS: DISTRIBUTED 123

(Definition 38) of pn, and initialise S to a list of the RootOf of each of its
square-free factors, and also associate the multiplicity to each solution.

In case 2. above, the three equations are G = {p2 := x2−1, p1,1 := (x−1)(y−
1), p1,2 := y2− 1}. Taking xn = x, we start off with S = {x = RootOf(x2− 1)},
and we call GKstep on this. The initial value of L is RootOf(x2 − 1) − 1, and
we ask whether this is invertible. Adopting a common-sense (i.e. heuristic)
approach for the moment, we see that this depends on which root we take: for
+1 it is not invertible, and for −1 it is. Hence GKstep makes two recursive calls
to itself, on x = 1 and x = −1.

GKstep(G, 1, {x = 1}) Here L := lcx1(p1,1(x = 1)) is 0, so we consider p1,2,
whose leading coefficient is 1, so y = RootOf(y2 − 1).

GKstep(G, 1, {x = −1}) Here L := lcx1(p1,1(x = −1)) is −2, and y = 1.

There is a larger worked example of this later, at equation (3.48), and a gen-
eralisation of 2 above at http://staff.bath.ac.uk/masjhd/JHD-CA/WorkedGK.
html.

Theorem 23 relies on a special case of a more general result.

Theorem 24 (Elimination Theorem) Suppose {u1, . . . , uk} ⊂ {x1, . . . , xn}
and ≺ is an elimination ordering (page 112), only considering the ui if the
ordering on the rest of the variables is a tie. If G is a Gröbner basis for an ideal
I with respect to ≺, then G∩k[u1, . . . , uk] is a Gröbner basis for I∩k[u1, . . . , uk]
[BW93, Proposition 6.15]. I ∩ k[u1, . . . , uk] is called an elimination ideal for I
with respect to the variables {u1, . . . , uk}.

Theorem 23 can be generalised in several ways to non-zero-dimensional ide-
als, but not completely [FGT01, Examples 3.6, 3.11]. The first is particularly
instructive for us.

Example 9 Let I = ⟨ax2 + x + y, bx + y⟩ with the order a ≺ b ≺ y ≺ x. The
Gröbner base is B1∪B2 and there are no polynomials in (a, b) only (so the ideal
is at least two-dimensional), in (a, b, y) we have B2 := {ay2 + b2y − by}, and
in all variables B1 := {ax2 + x + y, axy − by + y, bx + y}. We then have the
following situation for values of a and b.

normally B2 determines y (generally as the solution of a quadratic), then x =
−y/b except when b = 0,when ay2 = 0 so y = 0, and ax2 +x = 0, so x = 0
or x = −1/a.

a = b = 0 B2 vanishes, so we would be tempted, by analogy with Theorem 23,
to deduce that y is undetermined. But in fact B1|a=b=0 = {x+ y, y, y}, so
y = 0 (and then x = 0).

a = 0, b = 1 Again B2 vanishes. This time, B1|a=0,b=1 = {x+ y, 0, x+ y}, and
y is undetermined, with x = −y.

This example is taken up again as Example 15.

http://staff.bath.ac.uk/masjhd/JHD-CA/WorkedGK.html
http://staff.bath.ac.uk/masjhd/JHD-CA/WorkedGK.html

124 CHAPTER 3. POLYNOMIAL EQUATIONS

3.3.8 The Faugère–Gianni–Lazard–Mora Algorithm

Definition 58 The Gallo–Mishra degree of a polynomial f ∈ K[x1, . . . , xn],
degGM(f), is

∑
i degxi

(f).

We have deg(f) ≤ degGM(f) ≤ ndeg(f). When f = xk1 + · · ·+ xkn, degGM(f) =
nk but deg(f) = k.

Theorem 25 ([GM91, Lemma 3.1]) Let I = (f1, . . . , fs) be a zero-dimen-
sional ideal in K[x1, . . . , xn], and degGM(fi) ≤ d. Then for every variable xj
there is a univariate polynomial hj ∈ I ∩ K[xj] with deg(hj) ≤ 2(d + 1)2n.
Furthermore hj =

∑
bi,jfi with degGM(bi,jfi) ≤ 4(d+ 1)2n.

We have seen in the previous section that, for a zero-dimensional ideal, a purely
lexicographical Gröbner base is a very useful concept, and Theorem 25 shows
that the univariate polynomial is “not too big”. But these bases are generally
the most expensive to compute, with a worst-case complexity of O(dn

3

) for
polynomials of degree d in n variables [CGH88]. A total degree, reverse lexico-

graphic Gröbner base, on the other hand, has complexity O(dn
2

), or O(dn) if
the number of solutions at infinity is also finite [Laz83]. If one prefers practical
evidence, we can look at (4.27), which has a simple Gröbner base of (4.28),
but 120-digit numbers occur in the intermediate calculations if we compute the
Gröbner base in a total degree order, and numbers with tens of thousands of
digits when computed in a lexicographic order. The computing time19 is 1.02
or 2.04 seconds in total degree (depending on the order of variables), but 40126
seconds (over 11 hours) in lexicographic.

Hence the following algorithm [FGLM93] can be very useful, with >′ being
total degree, reverse lexicographic and >′′ being purely lexicographical , though
it does have uses in other settings as well.

Algorithm 12 (FGLM)
Input: A Gröbner base G for a zero-dimensional ideal I with respect to >′; an
ordering >′′.
Output: A Gröbner base H for I with respect to >′′.

H := ∅; i := j := 0
Enumerate the monomials irreducible under H in increasing order for >′′

#When H is a Gröbner base, this is finite by proposition 40
#This enumeration needs to be done lazily — see (*)
for each such m

Let m
∗→

G
v

if v =
∑j

k=1 ckvk
then hi+1 := m−

∑j
k=1 ckmk

H := H ∪ {hi+1}; i := i+ 1
Changes “irreducible under H” (*)

19Axiom 3.4 on a 3GHz Intel P4.

3.3. NONLINEAR MULTIVARIATE EQUATIONS: DISTRIBUTED 125

else j := j + 1; mj := m; vj := v
return H
#It is not totally trivial that H is a Gröbner base, but it is [FGLM93].

Since this algorithm is basically doing linear algebra in the space spanned by the
irreducible monomials under G, whose dimension D is the number of solutions
(proposition 40), it is not surprising that the running time seems to be O(D3),
whose worst case is O(d3n). Strictly speaking, this analysis refers to the number
of arithmetic operations, ignoring any growth in coefficient sizes.

Open Problem 9 (Complexity of the FGLM Algorithm (I)) The com-
plexity of the FGLM algorithm (Algorithm 12) is O(D3) where D is the number
of solutions. Can faster matrix algorithms such as Strassen–Winograd [Str69,
Win71] (see Notation 47) speed this up? We note that this is not trivial, since
the rows are “arriving one at a time” rather than being presented all at once.
See [FGHR13, FSEDT14] for recent progress: in particular the latter claims
O(nDω).

Open Problem 10 (Complexity of the FGLM Algorithm (II)) The com-
plexity of the FGLM algorithm (Algorithm 12) is O(D3) where D is the number
of solutions. Can we do any better in practice if the linear algebra is sparse?
Some progress in this direction has been made in [FM17, HNRS20, NS20].
[BND22] has a faster algorithm provided the ideal satisfies the Shape Lemma
(Theorem 26) and a natural stability condition.

As an example of the FGLM algorithm, we take the system Aux from their
paper20, with three polynomials

abc+ a2bc+ ab2c+ abc2 + ab+ ac+ bc

a2bc+ a2b2c+ b2c2a+ abc+ a+ c+ bc

a2b2c+ a2b2c2 + ab2c+ ac+ 1 + c+ abc

The total degree Gröbner basis has fifteen polynomials, whose leading monomi-
als are

c4, bc3, ac3, b2c2, abc2, a2c2, b3c, ab2c, a2bc, a3c, b4, ab3, a2b2, a3b, a4.

This defines a zero-dimensional ideal (c4, b4 and a4 occur in this list), and we
can see that the irreducible monomials are

1, c, c2, c3, b, bc, bc2, b2, b2c, b3, a, ac, ac2, ab, abc, ab2, a2, a2c, a2b, a3 :

twenty in number (as opposed to the 64 we would have if the basis only had
the polynomials a4 + · · · , b4 + · · · , c4 + · · ·). If we wanted a purely lexicographic
base to which to apply Gianni-Kalkbrener, we would enumerate the monomials
in lexicographic order as

20The system is obtained as they describe, except that the substitutions are x5 = 1/c,
x7 = 1/a.

126 CHAPTER 3. POLYNOMIAL EQUATIONS

1 (irreducble)

c (irreducble)

c2 (irreducble)

c3 (irreducble)

c4 which reduces to − 185
14 −

293
42 a

3 − 1153
42 a2b + 509

7 ab2 − 323
42 b

3 − 2035
42 a2c −

821
21 abc + 173

6 b2c − 751
14 ac

2 + 626
21 bc

2 + 31
42 c

3 − 449
14 a

2 + 1165
14 ab − 772

21 b
2 +

550
21 ac−

429
7 bc+ 184

21 c
2 − 407

6 a− 281
42 b−

4799
42 c

...

c20 which reduces to − 156473200555876438
7 + 1355257348062243268

21 bc2 −
2435043982608847426

21 a2c− 455474473888607327
3 a− 87303768951017165

21 b−
5210093087753678597

21 c+ 1264966801336921700
7 ab− 995977348285835822

7 bc−
2106129034377806827

21 abc+ 136959771343895855
3 b2c+ 1119856342658748374

21 ac+
629351724586787780

21 c2 − 774120922299216564
7 ac2 − 1416003666295496227

21 a2b+
1196637352769448957

7 ab2 − 706526575918247673
7 a2 − 1536916645521260147

21 b2 −
417871285415094524

21 a3 − 356286659366988974
21 b3 + 373819527547752163

21 c3, which
can be expressed in terms of the previous ones as p = −1 + 6 c+ 41 c2 −
71 c3 + 41 c18− 197 c14− 106 c16 + 6 c19− 106 c4− 71 c17− 92 c5− 197 c6−
145 c7 − 257 c8 − 278 c9 − 201 c10 − 278 c11 − 257 c12 − 145 c13 − 92 c15.
The polynomial c20 − p gets added to H: all higher powers of c are
therefore expressible, and need not be enumerated.

Open Problem 11 (Coefficient growth in the FGLM Algorithm) We ob-
serve above that the coefficient growth in the expression of c20 in terms of the
>′ monomials is far greater than its expression in terms of the >′′ monomials
(powers of c). Could fraction-free methods as in Theorem 15 do better?

b which can be expressed in terms of the previous ones as
q = − 9741532

1645371 −
8270
343 c+ 32325724

548457 c2 + 140671876
1645371 c3 − 2335702

548457 c
18 +

13420192
182819 c14 + 79900378

1645371 c
16 + 1184459

1645371 c
19 + 3378002

42189 c4 − 5460230
182819 c

17 +
688291
4459 c5 + 1389370

11193 c6 + 337505020
1645371 c7 + 118784873

548457 c8 + 271667666
1645371 c9 +

358660781
1645371 c10 + 35978916

182819 c11 + 193381378
1645371 c12 + 553986

3731 c13 + 43953929
548457 c15. b− q

is added to H: and all multiples of b are therefore expressible, and need
not be enumerated.

a which can be expressed in terms of the previous ones as r = 487915
705159 c

18 −
4406102
705159 c −

16292173
705159 c14 − 17206178

705159 c2 − 1276987
235053 c

16 − 91729
705159 c

19 + 377534
705159 −

801511
26117 c

3 − 26686318
705159 c4 + 4114333

705159 c
17 − 34893715

705159 c5 − 37340389
705159 c6 − 409930

6027 c7 −
6603890
100737 c

8− 14279770
235053 c9− 15449995

235053 c10− 5382578
100737 c

11− 722714
18081 c

12− 26536060
705159 c13−

13243117
705159 c15. a − r is added to H, and there are no more monomials to

consider.

3.3. NONLINEAR MULTIVARIATE EQUATIONS: DISTRIBUTED 127

Figure 3.5: Algorithm 13

Algorithm 13
Input: A set S of polynomials
Output: A ‘description of solutions’

G :=Buchberger(S,>tdeg)
if G is not zero-dimensional (Proposition 40)

then return “not zero-dimensional”
else Proposition 40 says how many solutions

H :=FGLM(G,>plex)
Use Gianni–Kalkbrener to solve H
We can check the solution count against Proposition 40

These last three give us the Gröbner base in a purely lexicographical order,
which looks like

{
c20 + · · · , b+ · · · , a+ · · ·

}
. As there are twenty solutions in

reasonably general position (the polynomial in c alone does factor, but is square-
free), we only need one polynomial per variable, as is often the case. The
complete version of this, and another worked example, are given at http://

staff.bath.ac.uk/masjhd/JHD-CA/FGLMexample.html.
The existence of this algorithm leads to the process in Figure 3.5 for ‘solving’

a zero-dimensional set of polynomial equations. In the author’s experience,
describing the solutions of a set of polynomial equations when the dimension
is not zero is still rather an art form, but much aided by the computation of
Gröbner bases: see the description at the end of Section 3.3.6.

Other ways of computing Gröbner bases over Q will be looked at in section
4.6.

3.3.9 The Gröbner Walk

Though the Gianni–Kalkbrener algorithm only works in dimension 0, we may
still want lexicographical-order Gröbner bases in higher dimensions, again balk
at the cost of computing them directly, and look for an alternative. The FGLM
algorithm instrinsically relies on the dimension being zero. Another method,
which does not, is the Gröbner walk, due originally to [CKM97], see also
[AGK97, Tra00, FJLT07]. The fundamental observation is the following.

Lemma 6 ([MR88, Lemma 2.6]) A given ideal I only has finitely many possi-
ble (across all possible orderings) leading monomial ideals, and hence for this
ideal there are only finitely many essentially different orderings.

The space of orderings is then partitioned into polyhedral sets: a partition
known as the Gröbner Fan of I.

Example 10 (Due to [Cox07]) Consider21 the ideal I := ⟨x2− y3, x3− y2 +

21The author is grateful to Amir Hashemi for directing him to this example.

http://staff.bath.ac.uk/masjhd/JHD-CA/FGLMexample.html
http://staff.bath.ac.uk/masjhd/JHD-CA/FGLMexample.html

128 CHAPTER 3. POLYNOMIAL EQUATIONS

Figure 3.6: Algorithm 14

Algorithm 14 (Extended Buchberger)

Input: finite G0 = {g(0)1 , . . . , g
(0)
m } ⊂ R[x1, . . . , xn]; monomial ordering >.

Output: G = {g1, . . . , gk} a Gröbner base for (G0) with respect to >.

Matrix M = (mi,j) such that gi =
∑
mi,jg

(0)
j

G := G0; n := |G|; M:=n× n Identity
we consider G as {g1, . . . , gn}
P := {(i, j) : 1 ≤ i < j ≤ n}
while P ̸= ∅ do

Pick (i, j) ∈ P ;
P := P \ {(i, j)};
Let S(gi, gj)

∗→
G
h # tracking M

If h ̸= 0 then
lm(h) /∈ (lm(G))
gn+1 := h; G := G ∪ {h};
P := P ∪ {(i, n+ 1) : 1 ≤ i ≤ n};
n := n+ 1;
Add new row to M

G :=Interreduce(G) # (3.29)

We note that we have to keep track of the mi,j during the reduction process as
well as during the S-polynomial computation. We use the version that does the
inter-reduction of the final basis, noting that this has also to update the mi,j .

3.3. NONLINEAR MULTIVARIATE EQUATIONS: DISTRIBUTED 129

x⟩.

1. If we choose the purely lexicographic ordering ≺1:= x < y, then the
Gröbner base is G1 := ⟨ x8︸︷︷︸

A

−3x6 + 3x4 − x3 − x2, xy − x7︸ ︷︷ ︸
B

+2x5 − x3 +

x2, y2 − x3︸ ︷︷ ︸
C

−x⟩, where we have underlined the leading term and the term

that might overtake it if the ordering changed (if any). We can think of
≺1 as weighting y infinitely more than x. Suppose we weight y as λ times
x, where λ is large but finite. As λ decreases, situation A always has lead-
ing term x8, situation B has leading term xy as long as λ > 6, but with
λ = 6, both xy and x7 have weight 7. At situation B, the critical value is
λ = 3/2, so B is the critical situation.

2. If λ is slightly less than 6, the Gröbner base is now G2 := ⟨ x7︸︷︷︸
D

+2x5+x3−

x2 +xy, x2y − x6︸ ︷︷ ︸
E

−2x4− x2, y2 − x3︸ ︷︷ ︸
C

−x⟩. Situation E has a critical value

of λ = 4, so this is the next critical value. ≺2 is any weighted ordering
with λ ∈ (4, 6).

. . . The process continues until we reach the other lexicographic order ≺7:=
x > y.

7. Here the Gröbner base is G7 := ⟨ y9︸︷︷︸
F

−2y6 − y4 + y3, x− y7︸ ︷︷ ︸
G

+y4 − y2⟩,

and looking at situation G tells us that this is valid whenever λ < 1/7/

Hence the fan is [∞, 6), (6, 4), (4, 32), (3
2 ,

2
3), (2

3 ,
1
4), (1

4 ,
1
7), (1

7 , 0].

The key idea of the Gröbner Walk can now be seen as “walking” across the
fan from the starting order to the finishing order. We first need a variant of
Algorithm 9, given in Figure 3.6, which is to Algorithm 9 as Algorithm 5 is to
Algorithm 2.

Algorithm 15 (Gröbner Walk)
Input: A Gröbner base G for an ideal I with respect to >′; an ordering >′′.
Output: A Gröbner base H for I with respect to >′′.

The idea is to construct (generally incrementally) a sequence of orders >1=>′,
>2, >3, . . .>k=>′′ and corresponding Gröbner bases G1 = G, . . . , Gk = H.
We use the matrix representation of orderings, so that >i is given by the matrix
Mi — see page 112. M2 is special — its first row is the first row of M1, and the
remaining rows are the corresponding rows of Mk. All subsequent Mi have the
same rows two onwards, and their first rows are a sequence of ‘hybrids’ between
the first row of M2 and the first row of Mk. Let ωi be the first row of Mi. The
reader who is familar with homotopy methods may care to view this algorithm
as a homotopy method between ω1 = ω2 and ωk. There are then two open
questions.

130 CHAPTER 3. POLYNOMIAL EQUATIONS

1. Which hybrids, i.e. which intermediate orderings, do we need? The
answer, at least for the simple version of the Gröbner walk, is to let
ωi = (1 − ti)ω1 + tiωk, so t1 = t2 = 0 and tk = 1. The ti are then
computed by NextCritical.

2. How do we compute Gi, given Gi−1? Näıvely, we could use Algorithm 9
for >i, ignoring the fact that Gi−1 is a Gröbner base for >i−1, an ordering
“fairly similar” to >i. We will see that we can do better.

Definition 59 Let ω = (ω1, . . . , ωn) be a vector of (non-negative) rational num-
bers. The ω-degree of a monomial

∏
xai
i is the sum

∑
ωiai. A polynomial is said

to be ω-homogeneous if every term has the same ω-degree. A set of polynomi-
als is said to be ω-homogeneous if each of them separately is ω-homogeneous.22

The ω-initial form of a polynomial p, denoted initω(p), is the sum of all terms
of maximal ω-degree. If > is a monomial ordering the first row of whose matrix
is ω, we write init> as well as initω.

With Algorithm 14, we can express step 2 in the Gröbner Walk as “when the
initials change, run Buchberger’s algorithm (14) on the new initials, then use
the results to update the whole Gröbner base”, as described in Figure 3.7. This
depends crucially on the fact that we are only making minimal changes to the
order, and the initials: see results in [AGK97].

The theoretical complexity of the Gröbner walk has not been analysed. The
experimental results in [AGK97] show that, on zero dimensional ideals, it can be
ten or more times faster than their implementation of FGML. Their implemen-
tation of the walk contains several improvements over the one we hve outlined.
There are two main sources of inefficiency in the algorithm as we have outlined
it.

1. If many new terms suddenly appear in initω(G), the computation of Al-
gorithm 14 can become quite close to a full Gröbner base computation by
Algorithm 9. This happens when our walk passes through the intersection
of several polyhedral cones in the Gröbner fan, and can be avoided by
perturbing the walk [AGK97, §3].

2. In general, the t computed by NextCritical, especially if we perturb to
walk to avoid the previous problem, can become quite complicated rational
numbers. We “solve” this by clearing denominators, but then have to deal
with large integers, as seen in the examples.

The worked versions of the examples of section 3.3.8 for this algorithm are given
at http://staff.bath.ac.uk/masjhd/JHD-CA/GWalkexample.html. We note
that, at least in Maple, for examples of dimension zero the FGLM process
seems ten times faster than the Gröbner walk, which rather contradicts the
experimental results in [AGK97].

22Note that we are not insisting that all terms in the set have the same ω-degree, merely
that within each polynomial they have the same ω-degree.

http://staff.bath.ac.uk/masjhd/JHD-CA/GWalkexample.html

3.3. NONLINEAR MULTIVARIATE EQUATIONS: DISTRIBUTED 131

Figure 3.7: Body of Algorithm 15

i:=2; >1:=>′; ω := first row of M>′

>2:= ordering whose first row is ω, rest from >′′

τ := first row of M>′′

while (>i ̸=>′′)
G′ := initω(G)
G′′,M :=Algorithm 14(G′, >i)
H :=Transform(G,M,>i)
t :=NextCritical(H,ω, τ)
G := H; i := i+ 1; ω := ω + t(τ − ω)
>i:=Ordering with matrix as >′′ but first row ω

where

• Algorithm 14 is applied to an ω-homogeneous set of polynomials, many
of which will, generically, be monomials. This allows or some efficiency
improvements, see [AGK97].

• Transform(G,M,>) computes hi =
∑

j mi,jgj in order >;

• NextCritical(H,ω, τ) computes the least t > 0 such that initω(H) ̸=
initω+t(τ−ω)(H).

132 CHAPTER 3. POLYNOMIAL EQUATIONS

Open Problem 12 (Compare FGLM and Gröbner Walk) Perform more
extensive experiments comparing the FGLM and Gröbner Walk examples.

There are timings in [FJLT07, p. 310] for a special class of one-dimensional
ideas in 5–10 variables. There the walk varies between 16 times faster to five
times slower than direct Gröbner basis computation.

The introduction of the Gröbner Fan allows us to define another idea.

Definition 60 (Universal Gröbner Basis) G is said to be a universal Gröbner
Basis for an indeal I is it is a Gröbner basis for any admissible ordering.

From our current point of view, the existence of a universal Gröbner basis is
immediate from Lemma 6: one just takes the union of the Gröbner bases for all
the orderings.

Example 11 (Due to [Cox07]) In the setting of Example 10, the universal
Gröbner basis for I will be G1 ∪ · · · ∪G7, i.e.{

y3 − x2, x3 − y2 + x, xy3 − y2 + x, x3y − x2 + xy, y6 − xy2 + y3,
y9 + 2 y6 − y4 + y3, x6 + 2x4 − x2y + x2, y7 + y4 − y2 + x,
x8 + 3x6 + 3x4 − x3 + x2, x7 + 2x5 + x3 − x2 + xy

}
.

3.3.10 Factorization and Gröbner Bases

It may happen, either initially or during the computation of a Gröbner base, that
we observe that a polynomial fi factors as fi,1fi,2 (or more, but for simplicity
we consider the case of two factors. Since fi(x1, . . . , xn) = 0 if and only if
one of fi,1(x1, . . . , xn) or fi,2(x1, . . . , xn) is zero, we can reduce the problem
to two, hopefully simpler, ones. In terms of varieties, V (f1, . . . , fi, . . . , fk) =
V (f1, . . . , fi,1, . . . , fk) ∪ V (f1, . . . , fi,2, . . . , fk). For “random” problems, this is
unlikely23 to happen, but people do not generally ask “random” questions.

This observation24 can be powerful, but is not as simple to implement as
might be expected. There are in fact two families of uses of factorization.

3.3.10.1 Squarefree Factorization

As we have observed, square-free factorization of a polynomial f (Definition 38),
i.e. computing

f =

n∏
i=1

f ii (2.20)

where the fi are relatively prime and have no repeated factors, is relatively
easy, and, if we use modular methods (Chapter 4) particularly cheap when

23A “random” zero-dimensional system will have a ‘shape basis’ (Definition 61, and the
nonlinear polynomial is a “random” polynomial, and therefore factors with zero probability.

24Another case of (near)-simultaneous discovery: [Dav87] (who could solve in 96 seconds
problems that could not be solved in two hours), [Cza89], [MMN89, NM92], and [Hie92, Hie93]
(solving Quantum Yang–Baxter equations).

3.3. NONLINEAR MULTIVARIATE EQUATIONS: DISTRIBUTED 133

the decomposition is trivial. Taking advantage of this is straightforward: one
modifies algorithm 9, so that, if any h has a non-trivial decomposition h =∏n

i=1 h
i
i, we replace it by

∏n
i=1 hi, i.e. dropping the repetitions.

We are no longer computing the Gröbner base of (G0), but rather of some
ideal I with (G0) ⊆ I ⊆

√
(G0). Nevertheless, I has the same zeroes as (G0),

and often this is all that matters.
If one is going to do this, one might as well check that the original polynomial

in G0 are square-free, and if not replace them by their square-free parts.

3.3.10.2 Complete Factorization

Rather than just a square-free decomposition, we could ask for a complete fac-
torization h =

∏m
i=1 h

ni
i . Then one ‘clearly’ modifies algorithm 9, so that,

instead of adding h to G, one forks m copies of the algorithm, one with each
G ∪ {hi} rather than one with G ∪ {h}. Although [Dav87] reported “a success
beyond our wildest hopes”, going from “out of memory in over two hours” to
“solved in five minutes”, the process involved a great deal of duplication, which
has to be eliminated, either on-the-fly ([Dav87] saw a 20% speed-up as a result)
or subsequently ([Hie93] reported “The raw output often contained repeats and
subcases”). Getting what looked like good performance involved both work on
the system internals, and also recognising that many polynomials were homoge-
neous, and hence could be dehomogenised (thus having one less variable) before
factoring.

It was also necessary to make various changes to the factorization code in
Reduce to improve the detection of irreducible polynomials, even beyond the
methods already implemented, which included those of Section 5.2.1 for uni-
variate polynomials: a variant of these operating directly on multivariates was
used.

This method has been implemented in Maple, as the Solve command of the
Groebner package.

3.3.11 The Shape Lemma

Let us look again at example 2 of section 3.3.7. Here we needed three equations
to define an ideal in two variables. We note that interchanging the rôles of x
and y does not help (in this case, it might in others). However, using other
coordinates than x and y definitely does. If we write the equations in terms of
u = x+ y, v = x− y instead, we get the basis

[−4 v + v3, v2 − 4 + 2u] : (3.39)

three values for v (0, 2 and−2), each with one value of u (2, 0 and 0 respectively),
from which the solutions in x, y can be read off. Note that ordering v before u
would give the basis

[u2 − 2u, uv, v2 − 4 + 2u], (3.40)

which is not of this form: it has three polynomials in two variables.

134 CHAPTER 3. POLYNOMIAL EQUATIONS

This kind of operation is called, for obvious reasons, a rotation. Almost all
rotations will place the equations “in general position”: and many theoretical
approaches to these problems assume a “generic rotation” has been performed.
In practice, this is a disaster, since sparsity is lost.

Definition 61 ([BMMT94]) A basis for a zero-dimensional ideal is a shape
basis if it is of the form

{g1(x1), x2 − g2(x1), . . . , xn − gn(x1)} .

This is a Gröbner basis for any ordering in which ‘degree in x1’ is the first
criterion: in the terminology of matrix orderings (page 112), any ordering where
the first row of the matrix is (λ, 0 . . . , 0).

For a shape basis, the Gianni–Kalkbrener process is particularly simple: “de-
termine x1 and the rest follows”. Almost all zero-dimensional ideals have shape
bases. The precise criterion (•) in the theorem below is somewhat technical,
but is satisfied if there are no repeated components.

Theorem 26 (Shape Lemma) [BMMT94, Corollary 3] After a generic rota-
tion, a zero-dimensional ideal has a shape basis if, and only if,

• each primary component is simple or of local dimension 1.

Furthermore [BMMT94, Lemma 2], such a rotation need only be 1-generic, i.e.

have matrix

(
1 v
0 I

)
for some generic vector v.

Their paper generalises this to ideals of higher dimension, but the complexity
in notation is not worth it for our purposes.

A word of warning is in order here. The Shape Lemma is a powerful theo-
retical tool, but its application can be costly. Consider example 2 (page 121):
G = {x2− 1, y2− 1, (x− 1)(y− 1)}. This is certainly not a shape basis, since it
has more polynomials than indeterminates. This is inevitable, since the variety
is not equiprojectable (see Definition 71 below) onto either x or y. If we write
s = x + y, t = x − y, then the basis becomes {−4 t + t3,−4 + t2 + 2 s} for the
ordering25 s > t, which is a shape basis. However, consider the similar basis
G′ = {x2n−1, y2n−1, (xn−1)(yn−1)}. Similar rotations will work, but t is now
the root of a polynomial of degree 3n2 with at least 3n+ 1 nonzero coefficients,
and quite large ones at that, e.g. for n = 3{

8469703983104− 1328571568128 t3 + 56109155544 t6 − 3387236203 t9

+149161506 t12 − 11557977 t15 + 279604 t18 − 1053 t21 − 78 t24 + t27,

−586877251095044672 t+ 11229793345003520 t4 − 363020550569195 t7

+24557528419410 t10 − 3328382464425 t13 + 88786830300 t16 − 417476125 t19

−23303630 t22 + 307217 t25 + 259287804304663680 s
}
.

25But not for t > s, since s defines the other line, besides the x and y axes, going through
two of the points.

3.3. NONLINEAR MULTIVARIATE EQUATIONS: DISTRIBUTED 135

3.3.12 The Hilbert function

Let I be any ideal (other than the whole ring) of k[x1, . . . , xn]. Let A be the
algebra k[x1, . . . , xn]/I, i.e. the set of all polynomials under the equivalence
relation f ≡ g if there is an h ∈ I with f = g + h.

Proposition 44 If G is a Gröbner base for I, then A is generated, as a k-

vector space, by M := {m monomial ∈ k[x1, . . . , xn]|m ∗→
G
m}, i.e. the set of

irreducible monomials.

We have already seen (Proposition 40) that the variety corresponding to I is
zero-dimensional if, and only if, M is finite. In this case, |M | is the number of
solutions (counted with multiplicity).

The Hilbert function is a way of measuring M when it is infinite.

Definition 62 Let Al be the subset of A where there is a representative poly-
nomial of total degree ≤ l. Al is a finite-dimension vector space over k. Let HI

be the function N→ N defined by

HI(l) = dimkAl. (3.41)

Proposition 45 If G is a Gröbner base for I, then Al is generated, as a k-

vector space, by M := {m monomial ∈ k[x1, . . . , xn]|tdeg(m) ≤ l ∧m ∗→
G
m},

i.e. the set of irreducible monomials of total degree at most l.

Note that, while M itself will depend on G (and therefore on the ordering used),
Definition 62 defines an intrinsic property of A, and hence |M | is independent
of the order chosen.

Theorem 27 ([BW93, Lemma 9.21])

(
l + d
d

)
≤ HI(l) ≤

(
l + n
n

)
.

Theorem 28 ([BW93, Part of Theorem 9.27]) Let G be a Gröbner base
for I ≤ k[x1, . . . , xn] under a total degree order. Let I have dimension d, and
let

N = max
{

degxi
(lm(g)) | g ∈ G; 1 ≤ i ≤ n

}
.

Then there is a unique polynomial hI ∈ Q[X] such that HI(l) = hI(l) for all
l ≥ nN . hI is called the Hilbert polynomial of I.

3.3.13 Comprehensive Gröbner Bases and Systems

This idea was introduced in [Wei92] (see also [Wei03]).

Example 12 (Comprehensive Gröbner Basis) Consider26 first the exam-
ple of H1 := {x+1, uy+x} ⊂ Q[u, x, y]. Under any term order with x < y, this
forms a (zero-dimensional) Gröbner base in Q(u)[x, y]. However, if we substi-
tute u = 0, we get {x+ 1, x}, which is not a Gröbner base at all. If we consider

26I am grateful to John Abbott for discussions about this example.

136 CHAPTER 3. POLYNOMIAL EQUATIONS

instead H2 := {x + 1, uy − 1}, which is equivalent in Q(u)[x, y], substituting
u = 0 gives us {x + 1,−1}, which is a Gröbner basis (admittedly redundant)
equivalent to {−1} — no solutions. In fact H2 is what we want — a Gröbner
basis which is comprehensive in the informal sense that it is valid, not only for
symbolic u, but for all values of u.

As a formal definition, we have the following.

Definition 63 (Comprehensive Gröbner Basis) Let K be an integral do-
main, R = K[u1, . . . , um] and T = R[x1, . . . , xn], and fix an ordering ≤ on
the monomials in x1, . . . , xn. Let G be a finite subset of T . G is said to be a
Comprehensive Gröbner basis if, for all fields K ′ and all ring homomorphisms
σ : R → K ′ (extended to homomorphisms σ : T → K ′[x1, . . . , xn]), σ(G) is a
Gröbner basis (under ≤) in K ′[x1, . . . , xn].

It is not obvious that these exist, but they do [Wei92, Theorem 2.7]. The con-
struction of these proceeds via the related concept of a Comprehensive Gröbner
System, but we need a preliminary definition.

Definition 64 (Algebraic Partition) Let K be an integral domain, R =
K[u1, . . . , um] and S ⊆ Km. A finite set {S1, . . . , St} of nonempty subsets
of S is called an algebraic partition of S if it satisfies the following properties

1.
⋃t

i=1 Si = S.

2. Si ∩ Sj = ∅ if i ̸= j.

3. For each i, Si = VK(I
(1)
i) \VK(I

(2)
i) for some ideals I

(1)
i , I

(2)
i of R, where

VK(I) is V (I) ∩Km.

Each Si is called a segment.

Definition 65 (Comprehensive Gröbner System) Let {S1, . . . , St} be an
algebraic partition of S ⊆ Km as in the previous definition, let T = R[x1, . . . , xn],
and fix an ordering ≤ on the monomials in x1, . . . , xn. Let F be a finite subset of
T . A finite set G := {(S1, G1), . . . , (Ss, Gs)} satisfying the following properties
is called a comprehensive Gröbner system (CGS) of F over S with parameters
u1, . . . , um w.r.t. ≤:

1. Each Gi is a finite subset of (F);

2. For each c ∈ Si, Gi(c) := {g(c, x1, . . . , xn)|g(u1, . . . , um, x1, . . . , xn) ∈ Gi}
is a Gröbner basis of the ideal (F (c)) in C[x1, . . . , xn] with respect to ≤,
where F (c) := {f(c, x1, . . . , xn)|f(u1, . . . , um, x1, . . . , xn) ∈ F};

3. For each c ∈ Si, lc(g)(c) ̸= 0 for any element g of Gi.

In addition, if each Gi(c) is a minimal (reduced) Gröbner basis, G is said to
be minimal (reduced). Being monic is not required. When S is the whole space
Km, the phrase “over S” is usually omitted. The question of local (i.e. with
respect to a fixed term ordering) canonicity, akin to Proposition 34 for Gröbner
bases, is discussed in [KY20].

3.3. NONLINEAR MULTIVARIATE EQUATIONS: DISTRIBUTED 137

Example 13 (Comprehensive Gröbner System) In the setting of Exam-
ple 12, we partition Q as {S1 := {0}, S2 := Q \ S1}. The Gröbner basis corre-
sponding to S2 is either H1 or H2 (or any other variant), and these are Gröbner
bases by the gcd Criterion (Proposition 41) as long as the leading term of uy+x
is uy. Hence u = 0 is a special case, and our polynomials are uy︸︷︷︸

=0

+x and x+1,

whose S-polynomial (or indeed reduction) is

 uy︸︷︷︸
=0

+x

 − (x+ 1) = uy︸︷︷︸
=0

−1.

So the Gröbner basis corresponding to S1 is {uy − 1}.

Computing a Comprehensive Gröbner System is conceptually straightforward:
we start with the trivial partition {S}, and run Buchberger’s Algorithm (9).
Every time we have to decide on the zeroness or not of a leading coefficient,

either in the S(gi, gj)
∗→

G
h step or in deciding whether h = 0 (directly or via

the Criteria), and that decision depends on the ui, i.e. whether a polynomial

p in the ui is zero or not, we split our set Si = VK(I
(1)
i) \ VK(I

(2)
i) into Si′ =

VK(I
(1)
i ∪ {p}) \ VK(I

(2)
i) and Si′′ = VK(I

(1)
i) \ VK(I

(2)
i ∪ {p}) and continue

Algorithm 9 over each set separately, but keeping the apparently zero terms. In
practice, the same polynomials p keep cropping up, and substantial ingenuity is
needed to reduce or eliminate duplication.

Theorem 29 ([Wei92, Proposition 3.4(i)]) If G := {(S1, G1), . . . , (Ss, Gs)}
is a Comprehensive Gröbner System for F over S, then G′ :=

⋃s
i=1Gi is a

Comprehensive Gröbner Basis for F .

There is a variant of the Gröbner Walk (section 3.3.9) for Comprehensive Gröbner
Systems: see [HDB17].

3.3.14 Coefficients other than fields

Most of the theory of this section, notably theorem 16, goes over to the case
when R is a P.I.D. (definition 14) rather than a field, as described in [BW93,
section 10.1]. However, when it comes to computation, things are not quite so
obvious. What is the Gröbner base of {2x, 3y} [Pau07]? There are two possible
answers to the question.

• {2x, 3y} [Tri78].

• {2x, 3y, xy} (where xy is computed as x(3y)− y(2x)) [Buc84].

We note that xy = x(3y) − y(2x) ∈ (2x, 3y), so we need xy to reduce to zero.
We therefore modify definition 49 as follows

Definition 66 Let f, g ∈ R[x1, . . . , xn]. Suppose the leading coefficients of f
and g are af and ag, and the leading monomials mf and mg. Let a be a least
common multiple of af and ag, and write a = afbf = agbg. Let m be the least

138 CHAPTER 3. POLYNOMIAL EQUATIONS

common multiple of mf and mg. The S-polynomial of f and g, written S(f, g)
is defined as

S(f, g) = bf
m

mf
f − bg

m

mg
g. (3.42)

Let cfaf + cgag = gcd(af , ag), and define the G-polynomial of f and g, written
G(f, g), as

G(f, g) = cf
m

mf
f + cg

m

mg
g. (3.43)

Note that (3.42) is the same as (3.28) up to a factor of gcd(af , ag). The S-
polynomial is defined up to unit factors, whereas the G-polynomial is much less
well-defined, but it turns out not to matter.

For the example quoted above, S(2x, 3y) = 0 (which follows from Proposition
41), while G(2x, 3y) = xy. Algorithm 9 goes over to this setting, execpt that
we have to add G-polynomials as well as S-polynomials, and some care has to
be taken to eliminate G-polynomials first — see [BW93, table 10.1].

3.3.15 Non-commutative Ideals

Much of the general mechanism of ideals generalises to the case of non-commut-
ative ideals, provided we are careful to distinguish left, right or two-sided ideals.
However, the theory is notably weaker. In particular we have the following
opposite of theorem 1 and its corollary.

Proposition 46 K⟨x1, . . . , xn⟩ is not noetherian for n ≥ 2.

Hence Buchberger’s algorithm 9 might not terminate, and in general it does not
[Mor86].

In fact, not only does this approach not work, but no approach can, as
demonstrated by this result.

Proposition 47 ([KRW90]) Ideal membership is insoluble in Q⟨x1, x2⟩.

One case of great interest is when R is some field of (expressions representing)
functions, and the “indeterminates” are differential or difference operators.

Example 14 R is Q(x, y) and the indeterminates are ∂
∂x and ∂

∂y , so that we

are working in R[∂
∂x ,

∂
∂y]. Here the “indeterminates” commute with each other,

but not with R, since ∂
∂x (xf) = f + x ∂

∂xf , i.e.
∂
∂xx = 1 + x ∂

∂x .

We should note that the result of multiplying a term by an indeterminate is

not necessarily a term, e.g. ∂
∂x

(
x ∂
∂x

)
= ∂

∂x + x ∂2

∂x2 . This makes characterising
a Gröbner base harder, but the following definition is an appropriate generali-
sation of the last clause of theorem 16 in the setting where the indeterminates
commute with each other.

Definition 67 [Pau07, Definition 4] A finite subset G of I \ {0}, where I is a
left-ideal, is a Gröbner basis of I iff, for all monomials m, the R-ideal (lc(f)|f ∈
I ∧ lm(f) = m) is generated by {lc(g)|g ∈ G ∧ lm(g) divides m}.

3.4. NONLINEAR MULTIVARIATE EQUATIONS: RECURSIVE 139

If R is a principal ideal domain, it is possible to define S-polynomials and
G-polynomials as in the previous section, but in general we need to consider
more complicated (but still finitely many) combinations [Pau07]. This leads
to an effective test for a Gröbner base in this setting, i.e. we need to check
that finitely many combinations reduce to zero. We also get a generalisation
of Buchberger’s algorithm [Pau07, Proposition 10]: if the combination does not
reduce to zero, add it. Termination is non-trivial, however.

3.4 Nonlinear Multivariate Equations: Recur-
sive

Whereas the previous section looked at polynomials as living in k[x1, . . . , xn]
thought of (irrespective of implementation) is a distributed way (page 54), with
a certain order on the monomials, it is equally possible to think of them in a
recursive way (page 54), but now with an order on the variables, rather than
the monomials. Just as in previous section a set was only a Gröbner base, etc.,
with respect to a given term ordering, so here a set is only triangular etc. with
respect to a given variable ordering. We assume that the variables x1, . . . , xn
are ordered as x1 < . . . < xn, so that xn is the most important variable.

3.4.1 Triangular Sets and Regular Chains

An alternative approach to polynomial equation solving is that of characteristic
[Rit32, Wu86] or triangular [Laz91] sets, or regular chains.27 There have been
various attempts to reconcile the various theories: see [ALM99] for an early
one28 and [AM99] for a practical comparison. We can regard regular chains as
an approach based on recursive views of polynomials and pseudo-division, while
Gröbner bases are based on a distributed view and reduction (Definition 47).

Definition 68 Let p be a polynomial. The main variable of p, denoted mvar(p),
is the most important variable of p. The initial of p, written init(p), is its leading
coefficient, when regarded as a univariate polynomial in mvar(p).

If S = {p1, . . . , pk} is a finite set of polynomials, we write

init(S) = lcm1≤i≤kinit(pi).

It should be noted that many authors define init(S) as
∏

1≤i≤k init(pi). Since
we are normally concerned with the zeros of init(S), the two definitions have
the same consequences, and ours leads to smaller polynomials.

Definition 69 A set T of polynomials is said to be triangular if different poly-
nomials have different main variables.

27Terminology in this area has been confused: we are following a recent reconciliation of
terminology.

28But this has problems, as pointed out in [Wan16].

140 CHAPTER 3. POLYNOMIAL EQUATIONS

Example 2 of section 3.3.7 shows that there may not always be an obvious29

triangular set generating a particular ideal. If we have a triangular set, then
the structure of the ideal, and the variety, is relatively obvious.

Definition 70 Let T be a triangular set generating an ideal I in k[x1, . . . , xn].
Then every variable xi which occurs as a main variable is called algebraic, and
the set of such variables is denoted AlgVar(T). The other variables are referred
to as parameters.

Proposition 48 For a triangular set T , the dimension of I(T) is n−|AlgVar(T)|.

3.4.2 Zero Dimension

Much of the theory applies to positive dimension as well, but we will only
consider in this section the case of zero-dimensional ideals/varieties. Let V be
a zero-dimensional variety, and Vk be its projection onto x1, . . . , xk, i.e.

Vk = {(α1, . . . , αk) : ∃(α1, . . . , αn) ∈ V }.

Definition 71 A zero-dimensional variety V is equiprojectable iff, for all k,
the projection Vk → Vk−1 is an nk : 1 mapping for some fixed nk. Note that this
definition depends on the order of the xi: a variety might be equiprojectable
with respect to one order, but not another, as in (3.39) versus (3.40).

Such an equiprojectable variety will have
∏
nk points (i.e. solutions, not count-

ing multiplicity, to the equations).
The variety V of Example 2 of section 3.3.7 is {(x = −1, y = 1), (x =

1, y = ±1)} and is not equiprojectable. In fact, its equations can be written as
{(x2−1), (x−1)(y−1) + (x+ 1)(y2−1)}, which is a triangular set with y more
important than x (main variables x and y respectively). However, the second
polynomial sometimes has degree 1 in y (if x = −1), and sometimes degree 2.
Hence we need a stronger definition.

Definition 72 A list, or chain, of polynomials f1, . . . , fk is a regular chain if:

1. whenever i < j, mvar(fi) ≺ mvar(fj) (therefore the chain is triangular);

2. init(fi) is invertible modulo the ideal fj : j < i).

Proposition 49 Every equiprojectable variety corresponds to a zero-dimensional
regular chain, and vice versa.

However, V of Example 2 of section 3.3.7 can be written as V = V1 ∪ V2
where V1 = {(x = −1, y = 1)} and V2 = {(x = 1, y = ±1)}, each of which
is equiprojectable. The corresponding regular chains are T1 = {x+1, y−1} and
T2 = {x− 1, y2 − 1}.

29{x2 − 1, (x+1)(y− 1) + (x− 1)(y2 − 1)} is a triangular generating set [Xia11], but is not
a Gröbner basis.

3.4. NONLINEAR MULTIVARIATE EQUATIONS: RECURSIVE 141

Theorem 30 (Gianni–Kalkbrener (triangular variant)) Every zero-dim-
ensional variety can be written as a union of disjoint equiprojectable varieties
— an equiprojectable decomposition.

In fact, each solution description in Algorithm 10 is a description of an equipro-
jectable variety.

This theorem can be, and was, proved independently, and the decomposition
into regular chains (the union of whose varieties is the original variety) can be
computed directly. This gives us an alternative to algorithm 13: compute the
regular chains corresponding to the equiprojectable decomposition, and solve
each one separately [Laz92].

It appears that the triangular decomposition approach is more suitable to
modular methods (chapter 4, especially section 4.6) than the Gröbner-base ap-
proach, but both aspects are areas of active research.

3.4.3 Positive Dimension

Here we consider the case of solution sets of positive dimension (over the alge-
braic closure, e.g. over the complexes). As in Theorem 30, the ultimate aim is
to express a variety as a union (preferably a disjoint union) of “nicer” varieties,
or other sets. However, the situation is more difficult here. Two points are
either equal or disjoint, but in positive dimension we can have intersections, or
even strict inclusions.

Definition 73 [Quasi-algebraic System] If P and Q are two (finite) sets of
polynomials, we call the ordered pair (P,Q) a quasi-algebraic system, and we
write Z(P,Q), the zeros of the quasi-algebraic system, for V (P) \V (

∏
Q), with

the convention that if Q is empty,
∏
Q = 1, so V (Q) = ∅.

Z(P,Q) = {x ∈ Kn|(∀p ∈ P p(x) = 0) ∧ (∀q ∈ Q q(x) ̸= 0)} .

We say that (P,Q) is consistent if Z(P,Q) ̸= ∅. Such a set Z(P,Q) is referred
to as a quasi-variety.

In Definition 50, we defined the variety of a set of polynomials, but we need some
more concepts, all of which depend on having fixed an order of the variables.

Definition 74 If T is a triangular system, we define the pseudo-remainder
of p by T to be the pseudo-remainder of pseudo-dividing p by each qi ∈ T
in turn (turn defined by decreasing order of mvar(qi)), regarded as univariate
polynomials in mvar(qi).

This is a generalization of Definition 36 (page 70).

Definition 75 Let S be a finite set of polynomials. The set of regular zeros of
S, written W (S), is Z(S, {init(S)}) = V (S) \ V ({init(S)}). For (a1, . . . , an) to
be in W (S), where S = {p1, . . . , pk}, we are insisting that all of the pi vanish
at this point, but none of the init(pi).

142 CHAPTER 3. POLYNOMIAL EQUATIONS

For Example 2 of section 3.3.7, the variety is {(x = −1, y = 1), (x = 1, y = ±1)}.
If we take y > x, then the inital of the set of polynomials is lcm(1, x − 1, 1) =
x − 1, so only the zero with x = −1, y = 1 is regular. Conversely, if we take
x > y, the initial is y − 1 and only the zero with y = −1, x = 1 is regular. This
emphasises that W depends on the variable ordering. It is also a property of
the precise set S, not just the ideal ⟨S⟩.

In this case, W (S) was in fact a variety (as always happens in dimension 0).
In general, this is not guaranteed to happen: consider the (trivial) triangular
system S = {(x−1)y−x+1} with y > x. Since this polynomial is (x−1)(y−1),
V (S) is the two lines x = 1 and y = 1. However, W (S) is the line y = 1 except
for the point (1, 1). In fact this is the only direct description we can give,
though we could say that W (S) is “almost” the line y = 1. This “almost” is
made precise as follows.

Definition 76 If W is any subset of Kn, the Zariski closure of W , written30

W , is the smallest variety containing it:

W =
⋂
{V (F) |W ⊆ V (F)},

which is itself a variety by Proposition 37.

In the example above, W (S) = V (y − 1).

3.4.3.1 An example

This example is from [AM99, p. 126]31. Suppose we have, in two dimensions,
a manipulator consisting of an arm of length 1 fixed at the origin, and with
another arm, also of length 1, at its other end. We wish the far end of the
manipulator to reach the point (a, b) in the plane. Let θ1 be the angle that the
first arm makes with the x axis, and write c1 = cos θ1, s1 = sin θ1. Let θ2 be
the angle that the second arm makes with the first. Then we have the following
equations

c1 + cos(θ1 + θ2) = a (3.44)

s1 + sin(θ1 + θ2) = b (3.45)

s21 + c21 = 1 (3.46)

s22 + c22 = 1, (3.47)

where the last two equations state that the arms have length 1. We can apply
the addition formulae for trigonometric functions to (3.44) and (3.45) to get

c1 + c1c2 − s1s2 = a 3.44′,

s1 + c1s2 + c2s1 = b 3.45′.

30Note that we use the same notation for algebraic closure and Zariski closure.
31The author is grateful to Russell Bradford for explaining the geometric context.

3.4. NONLINEAR MULTIVARIATE EQUATIONS: RECURSIVE 143

Rewriting these equations as polynomials, assumed to be zero, and using the
order

c2 > s2 > c1 > s1 > b > a,

we get

S = {c2c1 − s2s1 + c1 − a, c2s1 + s2c1 + s1 − b, c21 + s21 − 1, c22 + s22 − 1},

which is not triangular since c2 is the main variable of three different equations.
[AM99] implement the method of [Laz91] to express V (S) as a (disjoint)

union
W (T1) ∪W (T2) ∪W (T3),

where

T1 = {(b2 + a2)(4s21 − 4bs1 + b2 + a2)− 4a2, 2ac1 + 2bs1 − b2 − a2,

2as2 + 2(b2 + a2)s1 − b2 − a2b, 2c2 − b2 − a2 + 2},

T2 = {a, 2s1 − b, 4c21 + b2 − 4, s2 − bc1, 2c2 − b2 + 2},

T3 = {a, b, c21 + s21 − 1, s2, c2 + 1}.

3.4.3.2 Another Example

This was also considered as Example 9 (page 123).

Example 15 Let I = ⟨ax2 + x+ y, bx+ y⟩ with the order a ≺ b ≺ y ≺ x. The
full triangular decomposition (obtained from Maple’s RegularChains package
with option=lazard) is{

[bx+ y, ay + b2 − b], [x, y], [ax+ 1, y, b], [x+ y, a, b− 1]
}
.

The first two components correspond to two two-dimensional surfaces (in fact the
second one is a plane), whereas the second two correspond to one-dimensional
solutions (hyperbola and straight line).

3.4.3.3 Regular Zeros and Saturated Ideals

Definition 77 If T is a triangular system, define the saturated ideal of T to
be

sat(T) = {p ∈ K[x1, . . . , xn]|∃n ∈ N init(T)np ∈ (T)}
= {p ∈ K[x1, . . . , xn]|prem(p, T) = 0} .

In other words it is the set of polynomials which can be reduced to zero by T
after multiplying by enough of the initials of T so that division works. In terms
of the more general concept of saturation I : S∞ of an ideal ([Bou61, p. 90]),
this is (T) : (init(T))∞.

144 CHAPTER 3. POLYNOMIAL EQUATIONS

Theorem 31 ([ALM99, Theorem 2.1]) For any non-empty triangular set
T ,

W (T) = V (sat(T)).

In the example motivating Definition 76, sat(S) is generated by y−1, and indeed
W (S) = V (sat(S)).

3.4.4 Conclusion

Whether we follow the Gianni–Kalkbrener approach directly (algorithm 13) or
go via triangular sets, the solutions to a zero-dimensional family of polynomial
equations can be expressed as a union of (equiprojectable) sets, each of which
can be expressed as a generalised RootOf construct. For example, if we take the
ideal

{−3x− 6 + x2 − y2 + 2x3 + x4,−x3 + x2y + 2x− 2 y,−6 + 2x2 − 2

y2 + x3 + y2x,−6 + 3x2 − xy − 2 y2 + x3 + y3},

its Gröbner basis (purely lexicographic, y > x) is

[6− 3x2− 2x3 +x5,−x3 +x2y+ 2x− 2 y, 3x+ 6−x2 + y2− 2x3−x4]. (3.48)

There are seven irreducible monomials: 1, x, x2, x3, x4, y and xy. We know
that x satisfies a quintic, and y then satisfies

(
x2 − 2

)
y−x3+2x. When x2 = 2,

this vanishes, so our quintic for x decomposes into (x2 − 2)(x3 − 3), and the
whole solution reduces to〈

x2 − 2, y2 − x
〉
∪
〈
x3 − 3, y − x

〉
. (3.49)

Unfortunately, we do not have a convenient syntax to express this other than
via the language of ideals. We are also very liable to fall into the ‘too many
solutions’ trap, as in equation (3.8): Maple resolves the first component (in
radical form) to {

y =
4
√

2, x =
√

2
}
, (3.50)

and the second one to {
y =

3
√

3, x =
3
√

3
}
, (3.51)

both of which lose the connections between x and y (x = y2 in the first case,
x = y in the second).

We are also dependent on the choice of order, since with x > y the Gröbner
basis is

[6− 3 y4 − 2 y3 + y7, 18− 69 y2 − 9 y4 − 46 y + 23 y5 − 2 y6 + 73x], (3.52)

and no simplification comes to mind, short of factoring the degree seven poly-
nomial in y, which of course is (y3 − 3)(y4 − 2), and using the choice here to
simplify the equation for x into either x− y or x− y2.

3.4. NONLINEAR MULTIVARIATE EQUATIONS: RECURSIVE 145

Maple’s RegularChains package, using the technology of section 3.4.1, pro-
duces essentially equation (3.49) for the order y > x, and for x > y produces

[[
(
2 y + y3 + 4 y2 + 2

)
x− 8− 2 y2 − 2 y3 − 2 y, y4 − 2],

[
(
5 y + 3 + 4 y2

)
x− 12− 5 y2 − 3 y,−3 + y3]],

essentially the factored form of 3.52.

3.4.5 Triangular Sets and Gröbner Bases

Much of this section comes from [Wan16]. Let P be a set of polynomials in
k[x1, . . . , xn] and G its completely reduced Gröbner Basis with respect to the
purely lexicographic ordering <lex.

Definition 78 The W-characteristic set C of P is the set obtained by taking
the least (under <lex) element of G whose main variable is v, for every v ∈
AlgVar(G).

Since there is at most one polynomial with any given main variable, this is
clearly triangular.

Theorem 32 ([Wan16, Proposition 3.1]) Let C be the W-characteristic set
of P . Then:

1. For any p ∈ ⟨P ⟩, prem(p, C) = 0;

2. ⟨C⟩ ⊆ ⟨P ⟩ ⊆ sat(C);

3. W (C) ⊆ Z(P) ⊆ Z(C).

3.4.6 Complexity Bounds

Recall the definition of Gallo–Mishra degree (Definition 58).

Notation 23 (Gallo–Mishra Assumption) Assume, after renumbering if nec-
essary, that AlgVar(T) = {xl+1, . . . , xn}, and that we have an ordering with the
non-algebraic variables before the algebraic ones. Let r = n− l.

Theorem 33 ([GM91, Theorem 3.4]) Let I = (f1, . . . , fs) be an ideal in
K[x1, . . . , xn], and degGM(fi) ≤ d. Then I has a characteristic set G =
(g1, . . . , gr) where:

1. mvar(gj) = xj+l;

2. degGM(gj) ≤ 4(s+ 1)(9r)2rd(d+ 1)4r
2

;

3. gj =
∑
ai,jfi where degGM(ai,jfi) ≤ 11(s+ 1)(9r)2rd(d+ 1)4r

2

.

This theorem is less useful than it might seem, for it supposes that we know
one of the options for AlgVar(T) before we start the process. In reality, we may
not even know |AlgVar(T)|. [GM91] refers to [DFGS91], but that deals with
unmixed ideals (and we may not know that in advance) and is exponential with
O(n2) as the exponent, rather than O(r2).

146 CHAPTER 3. POLYNOMIAL EQUATIONS

3.4.7 Regular Decomposition

TO BE COMPLETEDAs in Maple

3.5 Equations and Inequalities

While it is possible to work in more general settings (real closed fields), we will
restrict our attention to solving systems over R. Consider the two equations

x2 + y2 = 1 (3.53)

x2 + y2 = −1. (3.54)

Over the complexes, there is little to choose between these two equations, both
define a one-dimensional variety. Over R, the situation is very different: (3.53)
still defines a one-dimensional variety (a circle), while (3.54) defines the empty
set, even though we have only one equation in two variables.

Definition 79 ([ARS+13]) We say that a complex (hyper)-surface V := {(x1,
. . . , xn)|p1(x1, . . . , xn) = · · · = pk(x1, . . . , xn) = 0} is real if every complex
polynomial vanishing over VR := V ∩ Rn also vanishes over V . Algebraic
Geometers would say that V is the Zariski closure of VR.

With the definition, (3.53) defines a real surface (in fact a curve), but (3.54)
does not, since 1 vanishes over V ∩Rn (which is the empty set), but not over
V .

The above example shows that we can essentially introduce the constraint
x ≥ 0 by adding a new variable y and the equation y2 − x = 0. We can also
introduce the constraint x ̸= 0 by adding a new variable z and xz − 1 = 0
(essentially insisting that x be invertible). Hence x > 0 can be introduced.
Having seen that ≥ and > can creep in through the back door, we might as well
admit them properly, and deal with the language of real closed fields, i.e. the
language of fields (definition 15) augmented with the binary predicate > and
the additional laws:

1. Precisely one of a = b, a > b and b > a holds;

2. a > b and b > c imply a > c;

3. a > b implies a+ c > b+ c;

4. a > b and c > 0 imply ac > bc.

This is the domain of real algebraic geometry , a lesser-known, but very im-
portant, variant of classical algebraic geometry. Suitable texts on the subject
are [BPR06, BCR98]. However, we will reserve the word ‘algebraic’ to mean

3.5. EQUATIONS AND INEQUALITIES 147

a set defined by equalities only, and reserve semi-algebraic for the case when
inequalities (or inequations32) are in use. More formally:

Definition 80 An algebraic proposition is one built up from expressions of
the form pi(x1, . . . , xn) = 0, where the pi are polynomials with integer coeffi-
cients, by the logical connectives ¬ (not), ∧ (and) and ∨ (or). A semi-algebraic
proposition is the same, except that the building blocks are expressions of the
form pi(x1, . . . , xn)σ0 where σ is one of =, ̸=, >,≥, <,≤. The language of semi-
algebraic propositions is also called the Tarski language L.

This language is in fact redundant, since ̸=,≥,≤ can be replaced with the help
of ¬, but corresponds more closely to natural usage. The reader will also notice
that it is not quite the language of real closed fields described above, since we
do not allow division. This is partly for ease of subsequent development, but
also allows us to sidestep “division by zero” questions, as raised in problem 1 of
section 1.2.3. Hence the proposition p

q > 0 has to be translated as

(q > 0 ∧ p > 0) ∨ (q < 0 ∧ p < 0), (3.55)

which is not true when q = 0. If this is not what we mean, e.g. when p and q
have a common factor, we need to say so.

Open Problem 13 (Better treatment of division) (3.55) is equivalent to
pq > 0. However, p

q ≥ 0 is not equivalent to pq ≥ 0, but rather to pq ≥ 0 ∧ q ̸=
0. In general, the polynomial theorists tend to dismiss the problem as above.
The logician tends to worry much more about the problem: consider [AP10,
Appendix, lines 1–12] for an example of rational function manipulation. For
some practical considerations, see [UDE22].

3.5.1 Applications

It turns out that many of the problems one wishes to apply computer algebra
to can be expressed in terms of real semi-algebraic geometry. This is not totally
surprising, since after all, the “real world” is largely real in the sense of R.
Furthermore, even if problems are posed purely in terms of equations, there
may well be implicit inequalities as well. For example, it may be implicit that
quantities are non-negative, or that concentrations is biochemistry lie in the
range [0, 1].

Robot motion planning . . .TO BE COMPLETED
It is also often important to prove unsatisfiability , i.e. that a semi-algebraic

formula has no solutions. [Mon09] gives several examples, ranging from program
proving to biological systems. The program proving one is as follows. One
wishes to prove that I is an invariant (i.e. if it was true at the start, it is true

32Everyone agrees that an equation a = b is an equality. a > b and its variants are tradition-
ally referred to as inequalities. This only leaves the less familiar inequation for a ̸= b. Some
treatments ignore inequations, since “a ̸= b”=“a > b ∨ a < b”, but in practice it is useful to
regard inequations as first-class objects.

148 CHAPTER 3. POLYNOMIAL EQUATIONS

at the end) of a program which moves from one state to another by a transition
relation τ . More formally, one wishes to prove that there do not exist two states
s, s′ such that s ∈ I, s′ /∈ I, but s→τ s

′. Such a pair (s, s′) would be where “the
program breaks down”, so a proof of unsatisfiability becomes a proof of program
correctness. This places stress on the concept of ‘proof’ — “I can prove that
there are no bad cases” is much better than “I couldn’t find any bad cases”.

3.5.2 Real Radical

. We recall the second part of Definition 51: the radical of an ideal I, denoted√
I, is defined as √

I = {p|∃m : pm ∈ I} .

Definition 81 Let A = R[x1, . . . , xk] (it is possible to be more general, and
talk about real closed fields). The real radical of an ideal I ⊂ A, denoted re

√
I,

is defined as

re
√
I =

{
p|∃m, k ∈ N, ri ∈ R+, gi ∈ A : p2m +

k∑
i=1

rig
2
i ∈ I

}
.

3.5.3 Quantifier Elimination

A fundamental result of algebraic geometry is the following, which follows from
the existence of resultants (section A.1).

Theorem 34 A projection of an algebraic set is itself an algebraic set.

For example, the projection of the set defined by{
(x− 1)

2
+ (y − 1)

2
+ (z − 1)

2 − 4, x2 + y2 + z2 − 4
}

(3.56)

on the x, y-plane is the ellipse

8x2 + 8 y2 − 7− 12x+ 8xy − 12 y. (3.57)

We can regard equation (3.56) as defining the set

∃z
(

(x− 1)
2

+ (y − 1)
2

+ (z − 1)
2

= 4 ∧ x2 + y2 + z2 = 4
)

(3.58)

and equation (3.57) as the quantifier-free equivalent

8x2 + 8 y2 − 12x+ 8xy − 12 y = 7. (3.59)

Is the same true in real algebraic geometry? If P is a projection operator,
and ℜ denotes the real part, then clearly

P (ℜ(U) ∩ ℜ(V)) ⊆ ℜ(P (U ∩ V)). (3.60)

3.5. EQUATIONS AND INEQUALITIES 149

However, the following example shows that the inclusion can be strict. Consider{
(x− 3)

2
+ (y − 1)

2
+ z2 − 1, x2 + y2 + z2 − 1

}
Its projection is (10− 6x− 2 y)

2
, i.e. a straight line (with multiplicity 2). If we

substitute in the equation for y in terms of x, we get z =
√
−10x2 + 30x− 24,

which is never real for real x. In fact ℜ(U) ∩ ℜ(V) = ∅, as is obvious from
the geometric interpretation of two spheres of radius 1 centred at (0, 0, 0) and
(3, 1, 0). Hence the methods we used for (complex) algebraic geometry will not
translate immediately to real algebraic geometry.

The example of y2−x, whose projection is x ≥ 0, shows that the projection
of an algebraic set need not be an algebraic set, but might be a semi-algebraic
set. Is even this guaranteed? What about the projection of a semi-algebraic
set? In the language of quantified propositions, we are asking whether, when F
is an algebraic or semi-algebraic proposition, the proposition

∃y1 . . . ∃ymF (y1, . . . , ym, x1, . . . , xn) (3.61)

has a quantifier-free equivalentG(x1, . . . , xn), whereG is a semi-algebraic propo-
sition. We can generalise this.

Problem 3 (Quantifier Elimination) Given a quantified proposition33

Q1y1 . . . QmymF (y1, . . . , ym, x1, . . . , xn), (3.62)

where F is a semi-algebraic proposition and the Qi are each either ∃ or ∀, does
there exist a quantifier-free equivalent semi-algebraic proposition G(x1, . . . , xn)?
If so, can we compute it?

The fact that there is a quantifier-free equivalent is known as the Tarski–
Seidenberg Principle [Sei54, Tar51]. The first constructive answer to the ques-
tion was given by Tarski [Tar51], but the complexity of his solution was in-
describable34. A better (but nevertheless doubly exponential) solution had
to await the concept of cylindrical algebraic decomposition (CAD) [Col75] de-
scribed in the next section.

Notation 24 Since ∃x∃y is equivalent to ∃y∃x, and similarly for ∀, we extend
∃ and ∀ to operate on blocks of variables, so that, if x = (x1, . . . , xn), ∃x is
equivalent to ∃x1 . . . ∃xn. If we use this notation to rewrite equation 3.62 with
the fewest number of quantifiers, the quantifiers then have to alternate, so the
formula is (where the yi are sets of variables)

∀y1∃y2∀y3 . . . F (y1,y2, . . . , x1, . . . , xn), (3.63)

33Any proposition with quantified variables can be converted into one in this form, so-called
prenex normal form — see any standard logic text.

34In the formal sense, that there was no elementary function which could describe it, i.e.
no tower of exponentials of fixed height would suffice!

150 CHAPTER 3. POLYNOMIAL EQUATIONS

or

∃y1∀y2∃y3 . . . F (y1,y2, . . . , x1, . . . , xn). (3.64)

In either form, the number of (block) quantifiers is one more than the number
of alternations.

3.5.4 Algebraic Decomposition

Definition 82 An algebraic decomposition of Rn is an expression of Rn as
the disjoint union of non-empty connected sets, known as cells, each defined as

p1(x1, . . . , xn)σ0 ∧ · · · ∧ pm(x1, . . . , xn)σ0, (3.65)

where the σ are one of =, >,<. Equation (3.65) is known as the defining formula
of the cell C, and denoted Def(C).

These should properly be called semi-algebraic decompositions, but this termi-
nology has stuck. Note that (3.65) need not define a non-empty connected set
— external information is required to show this. We should note that these
definitions are a very restricted form of definition 80. Here are some examples.

1. R1 can be decomposed as {x < 0} ∪ {x = 0} ∪ {x > 0}.

2. R1 cannot be decomposed as {x2 = 0} ∧ {x2 > 0}, as the second set is
not connected. Rather, we need the previous decomposition.

3. R1 cannot be decomposed as

{(x2 − 3)2 − 2 = 0} ∧ {(x2 − 3)2 − 2 > 0} ∧ {(x2 − 3)2 − 2 < 0},

as the sets are not connected. Rather, we need the decomposition (writing
(x2 − 3)2 − 2 as f)

{f > 0 ∧ x < −2} ∪ {f = 0 ∧ x < −2} ∪ {f < 0 ∧ x < 0} ∪
{f = 0 ∧ x > −2 ∧ x < 0} ∪ {f > 0 ∧ x > −2 ∧ x < 2} ∪

{f = 0 ∧ x > 0 ∧ x < 2} ∪ {f < 0 ∧ x > 0} ∪
{f = 0 ∧ x > 2} ∪ {f > 0 ∧ x > 2}.

4. R2 can be decomposed as {(x2+y2) < 0}∪{(x2+y2) = 0}∪{(x2+y2) > 0}.

5. R2 cannot be decomposed as {xy < 1} ∪ {xy = 1} ∪ {xy > 1}, as the last
two sets are not connected. Rather, we need the more complicated

{xy < 1} ∪
{xy = 1 ∧ x > 0} ∪ {xy = 1 ∧ x < 0} ∪
{xy > 1 ∧ x < 0} ∪ {xy > 1 ∧ x > 0}.

3.5. EQUATIONS AND INEQUALITIES 151

6. R2 cannot be decomposed as {f < 0} ∪ {f = 0} ∪ {f > 0}, where f =(
x2 + y2 − 1

) (
(x− 3)2 + y2 − 1

)
, as the first two sets are not connected.

Rather, we need the more complicated

{f < 0 ∧ x < 3
2} ∪ {f < 0 ∧ x > 3

2} ∪ {f = 0 ∧ x < 3
2}

∪{f = 0 ∧ x > 3
2} ∪ {f > 0}

The reader may complain that example 3 is overly complex: can’t we just write

{f > 0 ∧ x < −2} ∪ {x = −
√

3 +
√

2} ∪ {f < 0 ∧ x < 0} ∪

{x = −
√

3−
√

2 < 0} ∪ {f > 0 ∧ x > −2 ∧ x < 2} ∪

{x =
√

3−
√

2} ∪ {f < 0 ∧ x > 0} ∪ {x =
√

3 +
√

2} ∪ {f > 0 ∧ x > 2}?

In this case we could, but in general theorem 10 means that we cannot35: we
need RootOf constructs, and the question then is “which root of . . .”. In example
3, we chose to use numeric inequalities (and we were lucky that they could be
chosen with integer end-points). It is also possible [CR88] to describe the roots
in terms of the signs of the derivatives of f , i.e.

{f > 0 ∧ x < −2} ∪ {f = 0 ∧ f ′ < 0 ∧ f ′′′ < 0} ∪ {f < 0 ∧ x < 0} ∪
{f = 0 ∧ f ′ > 0 ∧ f ′′′ < 0} ∪ {f > 0 ∧ x > −2 ∧ x < 2} ∪

{f = 0 ∧ f ′ < 0 ∧ f ′′′ > 0} ∪ {f < 0 ∧ x > 0} ∪
{f = 0 ∧ f ′ > 0 ∧ f ′′′ > 0} ∪ {f > 0 ∧ x > 2}

(as it happens, the sign of f ′′ is irrelevant here). This methodology can also
be applied to the one-dimensional regions, e.g. the first can also be defined as
{f > 0 ∧ f ′ > 0 ∧ f ′′ < 0 ∧ f ′′′ < 0}.

We may ask how we know that we have a decomposition, and where these
extra constraints (such as x > 0 in example 5 or x < 3

2 in example 6) come
from. This will be addressed in the next section, but the brief answers are:

• we know something is a decomposition because we have constructed it
that way;

• x = 0 came from the leading coefficient (with respect to y) of xy − 1,
whereas 3

2 in example 6 is a root of Discy(f).

We stated in definition 82 that the cells must be non-empty. How do we
know this? For the zero-dimensional cells {f = 0 ∧ x > a ∧ x < b}, we can rely
on the fact that if f changes sign between a and b, there must be at least one
zero, and if f ′ does not36, there cannot be more than one: such an interval can
be called an isolating interval . In general, we are interested in the following
concept.

35And equation (3.11) demonstrates that we probably wouldn’t want to even when we could!
36Which will involve looking at f ′′ and so on.

152 CHAPTER 3. POLYNOMIAL EQUATIONS

Definition 83 A sampled algebraic decomposition of Rn is an algebraic de-
composition together with, for each cell C, an explicit point Sample(C) in that
cell.

By ‘explicit point’ we mean a point each of whose coordinates is either a rational
number, or a precise algebraic number: i.e. a defining polynomial37 together
with an indication of which root is meant, an isolating interval, a sufficiently
exact38 numerical approximation or a Thom’s Lemma [CR88] list of signs of
derivatives.

Definition 84 A decomposition D of Rn is said to be sign-invariant for a
polynomial p(x1, . . . , xn) if and if only if, for each cell C ∈ D, precisely one of
the following is true:

1. ∀x ∈ C p(x) > 0;

2. ∀x ∈ C p(x) < 0;

3. ∀x ∈ C p(x) = 0;

It is sign-invariant for a set of polynomials if, and only if, for each polynomial,
one of the above conditions is true for each cell.

It therefore follows that, for a sampled decomposition, the sign throughout the
cell is that at the sample point. A stronger concept is provided by the following
definition.

Definition 85 A decomposition D of Rn is said to be order-invariant for a
polynomial p(x1, . . . , xn) if and if only if, for each cell C ∈ D, precisely one of
the following is true:

1. ∀x ∈ C p(x) > 0; and

2. ∀x ∈ C p(x) < 0;

3. ∃k ∈ N such that:

(3a) ∀x ∈ C all derivatives of p of order at most k vanish at x; and

(3b) ∀x ∈ C there exists a derivative ∂k+1p
∂xi1 ...∂xik+1

which does not vanish at x

• note that it may be different order k + 1-derivatives at different points of
C.

It is order-invariant for a set of polynomials if, and only if, for each polynomial,
one of the above conditions is true for each cell. Order-invariance is a strictly
stronger concept than sign-invariance.

37Not necessarily irreducible, though it is normal to insist that it be square-free.
38By this, we mean an approximation such that the root cannot be confused with any other,

which generally means at least an approximation close enough that Newton’s iteration will
converge to the indicated root. Maple’s RootOf supports such a concept.

3.5. EQUATIONS AND INEQUALITIES 153

3.5.5 Cylindrical Algebraic Decomposition

The idea of Cylindrical Algebraic Decomposition is due to [Col75]. The presen-
tation here is more general (see Observation 6), and largely unpublished. The
purpose of Cylindrical Algebraic Decomposition is well-described by [BM20].

CAD is a data structure that provides an explicit geometric rep-
resentation of a semi-algebraic set in Rn [. . .] This data struc-
ture supports a number of important operations on semi-algebraic
sets/Tarski formulas, including satisfiability of formulas (equiva-
lently determining whether a semi-algebraic set is non-empty), deter-
mining the dimension of a semi-algebraic set, quantifier elimination
for quantified Tarski formulas, and more.

Notation 25 (Coordinates for CAD) Let n > m be positive natural num-
bers, and let Rn have coordinates x1, . . . , xn, with Rm having coordinates x1, . . . , xm.

Definition 86 An algebraic decomposition D of Rn is said to be cylindrical
over a decomposition D′ of Rm if the projection onto Rm of every cell of D is a
cell of D′. The cells of D which project to C ∈ D′ are said to form the cylinder
over C, denoted Cyl(C). For a sampled algebraic decomposition, we also insist
that the sample point in C be the projection of the sample points of all the cells
in the cylinder over C. This definition is usually stated when m = n−1, but the
greater generality is theoretically worth having, even though we only currently
know how to compute these when m = n− 1.

Cylindricity is by no means trivial.

Example 16 Consider the decomposition of R2 = S1 ∪ S2 ∪ S3 where

S1 = {(x, y) | x2 + y2 − 1 > 0},
S2 = {(x, y) | x2 + y2 − 1 < 0},
S3 = {(x, y) | x2 + y2 − 1 = 0}.

This is an algebraic decomposition, and is sign-invariant for x2 + y2 − 1. How-
ever, it is not cylindrical over any decomposition of the x-axis R1. The projec-
tion of S2 is (−1, 1), so we need to decompose R1 as

(−∞,−1) ∪ {−1} ∪ (−1, 1) ∪ {1} ∪ (1,∞). (3.66)

S3 projects onto [−1, 1], which is the union of three sets in (3.66). We have to
decompose S3 into four sets:

S3,1 = {(−1, 0)}, S3,2 = {(1, 0)},
S3,3 = {(x, y) | x2 + y2 − 1 = 0 ∧ y > 0},
S3,4 = {(x, y) | x2 + y2 − 1 = 0 ∧ y < 0}.

S1 splits into eight sets, one above each of (−∞,−1) and (1,∞) and two above
each of the other components of (3.66). It is obvious that this is the minimal

154 CHAPTER 3. POLYNOMIAL EQUATIONS

refinement of the original decomposition to possess a cylindric decomposition.
Furthermore in this case no linear transformation of the axes can reduce this.
If we wanted a sampled decomposition, we could choose x-coordinates of −2,
−1, 0, 1 and 2, and y-coordinates to match, from {0,±1,±2}.

Cylindricity is fundamental to solving problem 3 via the following two proposi-
tions.

Proposition 50 Let

∃xn . . . ∃xm+1P (x1, . . . , xn) (3.67)

be an existentially quantified formula, D be a sampled algebraic decomposition
of Rn which is sign-invariant for all the polynomials occurring in P , and D′

be a sampled algebraic decomposition of Rm such that D is cylindrical over D′.
Then a quantifier-free form of (3.67) is∨

C′∈D′:∃C∈Cyl(C′)P (Sample(C))

Def(C ′). (3.68)

Proposition 51 Let

∀xn . . . ∀xm+1P (x1, . . . , xn) (3.69)

be a universally quantified formula, D be a sampled algebraic decomposition of
Rn which is sign-invariant for all the polynomials occurring in P , and D′ be
a sampled algebraic decomposition of Rm such that D is cylindrical over D′.
Then a quantifier-free form of (3.69) is∨

C′∈D′:∀C∈Cyl(C′)P (Sample(C))

Def(C ′). (3.70)

These two propositions lead to a solution of problem 3.

Theorem 35 ([Col75]) Let x0, . . . ,xk be sets of variables, with xi = (xi,1, . . . ,

xi,ni
), and let Ni =

∑i
j=0 nj. Let P (x0, . . . ,xk) be a semi-algebraic proposition,

Di be an algebraic decomposition of RNi such that each Di is cylindric over Di−1

and Dk is sign-invariant for all the polynomials in P . Then a quantifier-free
form of

Qkxk . . . Q1x1P (x0, . . . ,xk) (3.71)

(where the Qi are ∀ or ∃) is ∨
C′∈D0∀∃C∈Cylk(C′)P (Sample(C))

Def(C ′), (3.72)

where by ∀∃ we mean that we are quantifying across the coordinates of Sample(C)
according to the quantifiers in (3.71).

3.5. EQUATIONS AND INEQUALITIES 155

We can use the (sampled) cylindrical algebraic decomposition in example 16 to
answer various questions.

Example 17 ∀y x2 + y2 − 1 > 0. For the sampled cells ⟨(−∞,−1), (x =
−2, y = 0)⟩ and ⟨(1,∞), (x = 2, y = 0)⟩, the proposition is true at the sample
points, hence true everywhere in the cell. For all the other cells in (3.66), there
is a sample point for which it is false (in fact, y = 0 always works). So the
answer is (−∞,−1) ∪ (1,∞).

Example 18 ∃y x2 + y2 − 1 > 0. For every cell in (3.66), there is a sample
point above it for which the proposition is true, hence we deduce that the answer
is (3.66), which can be simplified to true.

We should note (and this is both one of the strengths and weaknesses of this
approach) that the same cylindrical algebraic decomposition can be used to
answer all questions of this form with the same order of (blocks of) quantified
variables, irrespective of what the quantifiers actually are.

Example 19 (∃y x2 + y2 − 1 > 0) ∧ (∃y x2 + y2 − 1 < 0). This formula
is not directly amenable to this approach, since it is not in prenex form. In
prenex form, it is ∃y1∃y2

(
(x2 + y21 − 1 > 0) ∧ (x2 + y22 − 1 < 0)

)
and we need

an analogous39 decomposition of R3 cylindric over R1. Fortunately, (3.66)
suffices for our decomposition of R1, and the answer is (−1 < x < 1), shown
by the sample point (x = 0, y1 = 2, y2 = 0), and by the fact that at other sample
points of R1, we do not have y1, y2 satisfying the conditions.

We should note that it is not legitimate to reduce the formula to

∃y
(
(x2 + y2 − 1 > 0) ∧ (x2 + y2 − 1 < 0)

)
,

since that is trivially false. It is, however, legitimate to solve two separate
problems, ∃y x2+y2−1 > 0 (which is true, with y = 2) and ∃y x2+y2−1 < 0
(which is −1 < x < 1), and combine to get −1 < x < 1.

Open Problem 14 (RAG Formulation 1) It is pretty obviously simpler to
solve two two-dimensional problem than one three-dimensional one, but in gen-
eral the correct translation of an arbitrary statement such as that of Example
19 into the most efficient problem formulation is a hard one.

However, it could be argued that all we have done is reduce problem 3 to
the following one.

Problem 4 Given a quantified semi-algebraic proposition as in theorem 35,
produce a sign-invariant decomposition Dk cylindrical over the appropriate Di

such that theorem 35 is applicable. Furthermore, since theorem 35 only talks
about “a” quantifier-free form, we would like the simplest possible such Dk (see
[Laz88]).

39Easier said than done. Above x = −1 we have nine cells:{y1 < 0, y1 = 0, y1 > 0} × {y2 <
0, y2 = 0, y2 > 0}, and the same for x = 1, whereas above (−1, 1) we have 25, totalling 45.

156 CHAPTER 3. POLYNOMIAL EQUATIONS

Figure 3.8: Cylindrical Decomposition after Collins

Sn ⊂ R[x1, . . . , xn] Rn Rn decomposed I by Dn

↓ Proj ↓ ↑ Lift Cyl
Sn−1 ⊂ R[x1, . . . , xn−1] Rn−1 Rn−1 decomposed I by Dn−1

↓ Proj ↓ ↑ Lift Cyl
· · · · · · ↓ · · · · · ·
S2 ⊂ R[x1, x2] R2 R2 decomposed I by D2

↓ Proj ↓ ↑ Lift Cyl
S1 ⊂ R[x1] R1 −→︸︷︷︸

Problem 1

R1 decomposed I by D1.

Proj The projection operator we wish to use.

Lift The corresponding lifting operator.

I The necessary invariant of the decomposition and polynomials that we wish
to preserve.

There is no common term for such a decomposition: we will call it block-
cylindrical .

Observation 6 Collins’ original presentation of Cylindrical Algebraic Decom-
position insisted that every decomposition of Rm, generated by x1, . . . , xm was
cylindrical, in the sense of Definition 86, over every Rk generated by x1, . . . , xk.

Currently, this is the only sort of decomposition we know how to compute,
but, since the weaker form of block-cylindrical is all we need for quantifier elim-
ination, we have given the more general definition.

3.5.6 Computing Algebraic Decompositions

Though many improvements have been made to it since, the basic strategy
for computing algebraic decompositions is still generally40. that due to CollinsAdd reference for TD be-

ing better. [Col75], and is to compute them cylindrically, as illustrated in the Figure 3.8.
From the original proposition, we extract the set of polynomials Sn. We then
project this set into Sn−1 in n − 1 variables, and so on, until we have a set
of univariates S1. We then isolate, or otherwise describe, the roots of these
polynomials, as described in problem 1, to produce a decomposition D1 of R1,
and then successively lift this to a decomposition D2 of R2 and so on, each Di,
and the polynomials at that level, satisfying the invariant I and cylindrical over
Di−1.For Collins, IC was the Dk being sign-invariant for Sk and the Sk+1 being
delineable over Dk.

40But [CMXY09] have an alternative strategy based on triangular decompositions, as in
section 3.4, which often turns out to have advantages. There are also techniques for real
quantifier elimination based on Comprehensive Gröbner Bases (Definition 65) [FIS15].

3.5. EQUATIONS AND INEQUALITIES 157

Definition 87 (Delineable: [Col75, p. 139]) We say that a set Sk+1 ⊂
R[x1, . . . , xk+1] of polynomials (with A =

∏
f∈Sk+1

f) is delineable over a set

Dk ⊂ Rk if there are functions f1, . . . , fm : Dk → C such that:

1. f1, . . . , fm are continuous functions Dk → C;

2. for all i : 1 ≤ i ≤ m there is a positive integer ei such that fi(a1, . . . , ak) is
a root of A(a1, . . . , ak, x) of multiplicity precisely ei for all (a1, . . . , ak) ⊂
Dk;

3. If (a1, . . . , ak) ∈ Dk, b ∈ C and A(a1, . . . , ak, b) = 0 then for some i,
b = fi(a1, . . . , ak);

4. for some ℓ : 0 ≤ ℓ ≤ m, f1, . . . fℓ are real-valued with f1 < f2 < · · · fℓ and
fℓ+1, . . . , fm are all non-real.

Essentially, f1, . . . , fℓ define the real branches of A(a1, . . . , ak, b) = 0 in Dk ×C
and fℓ+1, . . . , fm define the non-real branches, the real branches have constant
multiplicity and do not touch.

Note that the projection from Si+1 to Si must be such that a decomposition
Di satisfying invariant I can be lifted to a decomposition Di+1 satisfying invari-
ant I. Note also that the decomposition thus produced will be block-cylindric
for every possible blocking of the variables, since it is block-cylindric for the
finest such.

Projection turns out to be a trickier problem than might be expected. One’s
immediate thought is that one needs the discriminants (with respect to the
variable being projected) of all the polynomials in Si+1, since this will give all
the critical points where the number of real roots of a given polynomial changes.
Then one sees that one needs the resultants of all pairs of such polynomials,
since this is where they intersect. Example 5 (page 150) shows that one might
need leading coefficients. Then there are issues of what happens when leading
coefficients vanish. This led Collins [Col75] to consider the following projection
operation ProjC for a set A of polynomials in x1, . . . , xn, where xn is the
variable being projected.

Notation 26 Define the following sets, where we assume A has k polynomials
of degree d.

B is the set of non-constant (with respect to xn) iterated reducta (Notation 13)
of all elements of A: ≤ kd elements.

L is the set of all leading coefficients of B, which is the same as saying all the
coefficients of non-constant terms of A: ≤ kd elements.

S1 is the set of all principal subresultant coefficients (Definition 116) pscj(g,
∂g
∂xn

)

for all g ∈ B: ≤ kd2 elements.

S2 is the set of all principal subresultant coefficients pscj(g1, g2) for all g1, g2 ∈
B : g1 ̸= g2: ≤ k2d3 elements.

158 CHAPTER 3. POLYNOMIAL EQUATIONS

ProjC(A) is L ∪ S1 ∪ S2: O(k2d3) elements.

[Col75, essentially Theorem 5] showed that this projection operator is sufficient
for Figure 3.8 to be valid: more precisely the following.

Theorem 36 ([Col75]) If A is a set of polynomials in x1, . . . , xn] and D is a
cylindrical decomposition of Rn−1 sign-invariant for ProjC(A), then the polyno-
mials of A are delineable over every cell of D and D can be lifted to a cylindrical
decomposition of Rn sign-invariant for A.

The problem with this is the size of ProjC(A). McCallum [McC84, McC88] saw
that one could do better if one used order-invariance (Definition 85) instead.

Notation 27 Let B be a square-free basis for the primitive parts of A. Define
the following sets, where we assume A has k polynomials of degree d.

C The set of all contents of A.

B A square-free basis for the primitive parts of A.

C{ The set of all41 coefficients of B.

D The set of all discriminants of B.

R The set of all resultants of B, i.e. {Resxn
(Bi, Bj) : 1 ≤ i < j ≤ |B|}

ProjM (A) is C ∪ C{ ∪ D ∪R.

It might seem relatively hard to say how big ProjM (A) is, since the process of
square-free decomposition might not decrease d, but might increase k.

Definition 88 ([McC84]) We say that a set of polynomials has the (m, d)
property if it can be partitioned into m sets of polynomials such that the product
of the elements of any one set has degree at most d (in each variable taken
separately.

Proposition 52 If A has the (m, d) property, then so does a square-free basis
for it, the set of all discriminants has the (m, 2d2) property, and the set of all

resultants (R above) has the (m(m+1)
2 , 2d2) property.

In these terms, there is a good bound for ProjM (A).

Lemma 7 ([BDE+14, Lemma 11]42) If A has the (m, d) property, then ProjM (A)

has the
(⌊

(m+1)2

2

⌋
, 2d2

)
property.

41This is in fact overkill, as noted in [Col75, p. 176] and [McC88, §6]. If p ∈ B, we need
lc(p) because p may have an asymptote where lc(p) vanishes. Inside this space, there may be a
further asymptote when lc(red(p)) vanishes, and so on. Hence we can stop taking coefficients
of a given p ∈ B as soon as we can prove that they can’t all vanish simultaneously, and we
can certainly stop at a constant coefficient. [Bro01, Theorem 3.1] contains a further result
which means that we need only add the leading coefficient, at the (cheap, see [Bro01, p. 472
“At first glance”]) cost of analysing the simultaneous zeros of the coefficients of the projection
polynomials.

3.5. EQUATIONS AND INEQUALITIES 159

Theorem 37 ([McC84, McC88]) If A is a set of polynomials in x1, . . . , xn]
and D is a cylindrical decomposition of Rn−1 order-invariant for ProjM (A),
then the polynomials of A are analytic-delineable over every cell of D on which
they do not vanish identically and D can be lifted to a cylindrical decomposition
of Rn order-invariant for A′: those elements of A that do not vanish identi-
cally on some cell of D. “Analytic-delineable” is a slightly stronger form of
“delineable” (Definition 87: the details do not concern us here.

The condition about elements of A not vanishing identically is known as stating
that A is well-oriented. Hence if A and all the ProjM (A), ProjM (ProjM (A)),
. . . are well-oriented, then Theorem 37 means that we can produce an order-
invariant decomposition of Rn for A. Note that, although “order-invariant” is
a stronger condition than “sign-invariant”, the fact that ProjM is much smaller
than ProjC means that we have a much more efficient algorithm when it works,
i.e. when it does not detect the failure of well-orientedness. Note that there is
no silent failure: the algorithm is either correct or states “I have detect a lack
of well-orientedness”. There is a further improvement in [Bro00].

What do we do when it does fail? In the notation of Figure 3.8, McCallum
suggests that, if we detect that a polynomial fk ∈ Si vanishes identically over
some cell of Di−1, we should augment Si with all the partial derivatives ∂fk

∂xj

(1 ≤ j ≤ i) and project Si again. To the best of the author’s knowledge, this
has never been implemented due to the control-flow complexities it introduces,
and the usual solution is to give up and use ProjC (or a variant due to [Hon90]).

Lazard [Laz94] suggested a further improvement to the projection operator,
ProjL, which is obtained from ProjM (Notation 27) by replacing the set C{ of
all coefficients by just the leading and trailing coefficients, and claimed that this
was unconditionally correct, but for an invariant IL strictly stronger than IC
(and incomparable with IM), and on condition that one had a different lifting
procedure LiftL. There were problems with the proof, and a new proof was
given in [MPP19]. The process was further improved in [BM20]

3.5.7 Describing Solutions

If describing the roots of a general polynomial in one variable was tricky (Section
3.5.5), it is more so in two or more dimensions: not that the mathematics doesn’t
exist, but rather that we are, in general, unused to dealing with it. Consider the
example f := y3 − 7 y2 + 14 y − x− 8 in Figure 3.9. Above each value of x, y is
given by a univariate polynomial, whose roots can be described is terms of the
signs of the derivatives, by Thom’s Lemma (Lemma 4). The top and bottom
branches of the curve are defined by f = 0, f ′ > 0, but are distinguished by the
signs of f ′′. Similarly, the two inflection points are defined by f = f ′ = 0, but
are again distinguished by the signs of f ′′. However, the middle branch, f = 0,
f ′ < 0, is unhelpfully split by f ′′ = 0 into two parts. We could (though doing
so algorithmically has never, to the author’s knowledge, been solved) remove
this distinction and just define the branch as f = 0, f ′ < 0. Since the Collins

160 CHAPTER 3. POLYNOMIAL EQUATIONS

Figure 3.9: y3 − 7 y2 + 14 y − x− 8: Thom’ Lemma

projection ProjC includes all the derivatives, it is capable of expressing the
solutions in the Thom’s Lemma manner.

Conversely, and perhaps more naturally, we can try counting the branches,
just as we might count the roots of a univariate polynomial (starting from ∞).
This is shown in Figure 3.10. Here the top branch is split: it starts off being
the third root of f , but as we cross the (x-value of the) inflection point of the
other branch, it becomes the first root (passing momentarily through the pont
at which it is the second root). Unlike the previous description, this split cannot
be removed. Note also that “the first root” is not continuous, jumping from the
bottom branch to the top branch at this x-value.

3.5. EQUATIONS AND INEQUALITIES 161

Figure 3.10: y3 − 7 y2 + 14 y − x− 8: indexing

162 CHAPTER 3. POLYNOMIAL EQUATIONS

Here is an edited version43 of the output from Maple on this problem.

 [RC, [[−4,−4], [−1,−1]]] y < R (f1, i1)
[RC, [[−4,−4], [1/4, 1/2]]] y = R (f1, i1)
[RC, [[−4,−4], [2, 2]]] R (f1, i1) < y

x < R (f3, i1)

[RC, [[− 271
128 ,−

135
64], [−1,−1]]] y < R (f2, i1)

[RC, [[− 271
128 ,−

135
64], [12 ,

5
8]]] y = R (f2, i1)

[RC, [[− 271
128 ,−

135
64], [158 ,

15
8]]] ∧

(
R (f2, i1) < y,
y < R (f2, i2)

)
[RC, [[− 271

128 ,−
135
64], [258 ,

13
4]]] y = R (f2, i2)

[RC, [[− 271
128 ,−

135
64], [5, 5]]] R (f2, i2) < y

x = R (f3, i1)

[RC, [[− 95
128 ,−

95
128], [−1,−1]]] y < R (f1, i1)

[RC, [[− 95
128 ,−

95
128], [3/4, 1]]] y = R (f1, i1)

[RC, [[− 95
128 ,−

95
128], [138 ,

13
8]]] ∧

(
R (f1, i1) < y,
y < R (f1, i2)

)
[RC, [[− 95

128 ,−
95
128], [94 ,

5
2]]] y = R (f1, i2)

[RC, [[− 95
128 ,−

95
128], [258 ,

25
8]]] ∧

(
R (f1, i2) < y,
y < R (f1, i3)

)
[RC, [[− 95

128 ,−
95
128], [154 , 4]]] y = R (f1, i3)

[RC, [[− 95
128 ,−

95
128], [5, 5]]] R (f1, i3) < y

∧
(

R (f3, i1) < x,
x < R (f3, i2)

)

[RC, [[5/8, 81
128], [0, 0]]] y < R (f2, i1)

[RC, [[5/8, 81
128], [118 , 3/2]]] y = R (f2, i1)

[RC, [[5/8, 81
128], [114 ,

11
4]]] ∧

(
R (f2, i1) < y,
y < R (f2, i2)

)
[RC, [[5/8, 81

128], [4, 338]]] y = R (f2, i2)
[RC, [[5/8, 81

128], [6, 6]]] R (f2, i2) < y

x = R (f3, i2)

 [RC, [[2, 2], [3, 3]]] y < R (f1, i1)
[RC, [[2, 2], [174 , 9/2]]] y = R (f1, i1)
[RC, [[2, 2], [6, 6]]] R (f1, i1) < y

R (f3, i2) < x

f1 := Z 3 − 7 Z 2 + 14 Z − x− 8;
f2 := 14 Z 2 + (−9x− 72) Z + 21x+ 70
f3 := 27 Z 2 + 40 Z − 36

This splits R2 into 23 cells, which is the minimum for any cylindrical decom-
position with y projected first. In the other direction, we just have three cells:
“below the curve”, “on the curve” and “above the curve”. This sort of varia-
tion depending on projection order is not unusual: [BD07] have examples in n

variables where the number of cells is constant for some projections, and 22
O(n))

for others. The variation is not universal though: there are also examples with

22
O(n))

cells for all projection orders.
The drawback of this representation is that “the ith branch of” is not semi-

algebraic in the sense of Definition 80, and we need to convert to the other
in order to stay within the semi-algebraic language. One might think that

43Common polynomials have been pulled out, and various abbreviations, such as R(f, i1)
for RootOf(f, index = real1), have been used.

3.5. EQUATIONS AND INEQUALITIES 163

this involved adding derivatives in order to apply Thom’s Lemma (Lemma 4),
and that these derivatives wouldneed to enter into the projection phase, thus
moving us a long way back to the original Collins projection from the more
efficient current ones, but fortunately this is not the case.

3.5.8 Complexity

Let us suppose that there are s polynomials involved in the input formula (3.62),
of maximal degree d. Then such a cylindrical algebraic decomposition can be

computed in time O
(

(sd)2
O(k))

)
.

There are examples [BD07, DH88], which shows that this behaviour is best-
possible, indeed the projection onto R1 might have a number of components
doubly-exponential in k. This is true even for [BD07], where the polynomials
are “only” linear.

While this behaviour is intrinsic to cylindrical algebraic decomposition, it is
not necessarily intrinsic to quantifier elimination as such. If a is the number of
alternations of quantifiers (Notation 24) in the problem (so a < k), then there
are algorithms [Bas99, for example] whose behaviour is singly-exponential in

k but doubly-exponential in a; typically O
(

(sd)O(k2)2O(a))
)

. The construction

of [BD07, DH88] makes extensive use of ∨ symbols, and this is essential, as
[RESW14] have shown that, with no ∨ symbols in (3.62), the linear problem
can be solved in polynomial time, essentially by a series of reductions to linear
programming, which can be solved in polynomial time [Kha79, Kar84]. See also
Open Problem 16.

One particular special case is that of no alternations. Hence, using the
fact that ∃x (P (x) ∨Q(x)) is equivalent to (∃xP (x))∨ (∃xQ(x)), an existential
problem is equivalent to a set44 of problems of the form

∃x

 ∧
fi∈F

fi(x) ≥ 0

 ∧
 ∧

gi∈G

gi(x) = 0

 ∧(∧
hi∈H

hi(x) ̸= 0

)
. (3.73)

This is generally referred to as the existential theory of the reals. Since the
truth of a universal problem is equivalent to the falsity of an existential problem
(∀xP (x)⇔ ¬∃x¬P (x)), this is all we need to consider.

Given a problem (3.73), cylindrical algebraic decomposition will yield such
an x, if one exists, and failure to yield one is a proof that no such x exists.
However, this is a somewhat unsatisfactory state of affairs in practice, since,
computationally, we are relying not just on the correctness of the theory of
cylindrical algebraic decomposition, but also on the absence of bugs in the im-
plementation.

An alternative is provided by the Positivstellensatz approach [Ste74].

44There may be singly-exponential blow-up here as we convert into disjunctive normal form,
but this is small compared to the other exponential issues in play!

164 CHAPTER 3. POLYNOMIAL EQUATIONS

Theorem 38 ([PQR09, Theorem 3]) The set of solutions to (3.73) is empty
if, and only if, there are:

s ∈ con(F) where con(F), the cone of F , is the smallest set generated by F and
the set of squares of all elements of R[x] wich is closed under multiplication
and addition;

g ∈ (G) the ideal generated by G;

m ∈ mon(H) where mon(H), the (multiplicative) monoid of H is the set of all
products (including 1 = the empty product) of elements of H;

such that s+ g +m2 = 0. Furthermore, there is an algorithm to find such s, g
and m (if they exist) in Q[x] provided F , G and H ⊂ Q[x].

Partial Proof. If s + g + m2 = 0 but x is a solution to (3.73), then s(x) +
g(x)+m(x)2 is of the form “non-negative + zero + strictly positive”, so cannot
be zero.

We can think of (s, g,m) as a witness to the emptiness of the set of solutions
to (3.73). Again, failure to find such an (s, g,m) is a proof of the existence of
solutions provided we trust the correctness of Theorem 38 and the correctness
of the implementation.

3.5.9 Further Observations

1. The methodology outlined in figure 3.8, and indeed that of [CMXY09],
has the pragmatic drawback that the decomposition computed, as well as
solving the given problem (3.62), solves all other problems of the same
form with the same polynomials and the variables in the same order. For
example, a decomposition which allows us to write down a quantifier-free
equivalent of

∀x4∃x3p(x1, x2, x3, x4) > 0 ∧ q(x1, x2, x3, x4) < 0 (3.74)

will also solve

∀x4∃x3p(x1, x2, x3, x4) > 0 ∧ q(x1, x2, x3, x4) < 0 (3.75)

and even

∃x4∃x3∀x2p(x1, x2, x3, x4) < 0 ∧ q(x1, x2, x3, x4) ≥ 0 (3.76)

The process of Partial Cylindrical Algebraic Decomposition [CH91] can
make the lifting process (right hand side ↑ in Figure 3.8) more efficient, but
still doesn’t take full account of the structure of the incoming quantified
formula.

2. If F is of the form p(y1, . . . , ym, x1, . . . , xn) = 0∧ ϕ̂(y1, . . . , ym, x1, . . . , xn),
or can be transformed into this form, then, as observed in [Col98] we are

3.5. EQUATIONS AND INEQUALITIES 165

only concerned in Theorem 35 with those cells on which p is zero, and
the polynomials in ϕ̂ do not need to be sign-invariant elsewhere. This was
formalised in [McC99], where p was described as an equational constraint.

This idea has been further generalised in [BDE+13] to cases where ev-
ery part of F has an equational constraint, but not necessarily the same
one, and in [BDE+14] to cases where only parts of F have equational
constraints, and/or where there is more than one equational constraint.
[EBD15], building on [McC01], shows how to handle more than one equa-
tional constraint, using the observation that, in p1(y1, . . . , ym, x1, . . . , xn) =

0 ∧ p2(y1, . . . , ym, x1, . . . , xn) = 0 ∧ ϕ̂, Resxn
(p1, p2) is also an equational

constraint after we project out xn.

3. Yet a further approach to Quantifier Elimination has recently been im-
plemented [FIS15, FIS16], though based on an idea of [Wei98], that a
suitable Comprehensive Gröbner System (see Section 3.3.13) can let one
write down the quantifier-free equivalent to a formula.

4. It is tempting to think that “the problem is the data structure”, and maybe
if we used Straight-Line Programs (page 56), or some other data structure,
we could do better. However, this hope is destroyed by [CGH+03] who
state:

In this paper we are going to argue that the non-polynomial
complexity character of the known symbolic geometric elimi-
nation procedures is not a special feature of a particular data
structure (like the dense, sparse or arithmetic circuit encoding
of polynomials), but rather a consequence of the information
encoded by the respective data structure . . .

and their Theorem 4 (which is too complicated to state here in detail), says
that any universal elimination procedure for the theory of algebraically
closed firleds of charactersitic zero must have non-polynomial complexity.

Open Problem 15 (Not all CADs are outputs of our algorithms) Consider
the H-shaped set

(x = −1&y ∈ (−1, 1)) ∪ (−1 < x < 1&y = 0) ∪ (x = 1&y ∈ (−1, 1)).

Then indeed a cylindrical algebraic decomposition is

x < −1 one cell

x = −1 five cells (y < −1, y = −1, −1 < y < 1, y = 1, y > 1)

−1 < x < 1 three cells (y < 0, y = 0, y > 0)

x = 1 five cells

x > 1 one cell

but not one we know how to compute. Indeed, the author is not sure know how
to state it formally to QEPCAD or Maple. TO BE COMPLETED

166 CHAPTER 3. POLYNOMIAL EQUATIONS

3.6 Virtual Term Substitution

The idea of Virtual Term Substitution was introduced by [Wei94]45: our pre-
sentation owes much to [KSD16].

3.6.1 The Weak Case

Problem 5 Let us consider first a special case of Problem 3, ∃xϕ(x,u), with
the following additional constraints:

1. ϕ is positive, i.e. expressed purely in terms of ∧ and ∨, with no ⇒ or ¬;

* (this can be achieved by standard laws of logic, then converting ¬(a < b)
into a ≥ b etc.)

2. each elementary formula is pi(x)σi0 with σi ∈ {=,≤,≥};

* (we will see later how to lift this restriction)

3. each polynomial in such a formula is at most quadratic in x;

* (this restriction has been investigated in [Wei94] — see also higher below,
but most practical uses of the Virtual Term Substitution method seem to
be with linear/quadratic formulae).

We wish to rewrite this as a logical formula ψ(u).

We consider the values of u to be fixed. Then in principle (we will need to
worry about degeneracies), each pi defines one (linear) or two (quadratic) critical
points. Furthermore, because of point 2, it is sufficient to consider the truth of
ϕ at the critical points, since, if ϕ(x,u) is true, ϕ(x↓,u) and ϕ(x↑,u) are also
true, where x↓ and x↑ are the critical points immediately ≤ and ≥ x (we will
therefore need to worry later on about the case of x less than, or greater than,
any critical point).

We handle the question of degeneracies by considering, not just critical points
e, but rather guarded points46 (γ, e) where γ is a logical formula in u, and e is
only to be considered if γ is true. We then consider each polynomial pi in ϕ,
depending on its degree in x.

linear Suppose pi is f1x+ f0. Then the corresponding guarded point is(
f1 ̸= 0,

−f0
f1

)
(3.77)

quadratic Suppose pi is f2x
2 + f1x + f0, with ∆ := f21 − 4f2f0. Then the

corresponding guarded points are(
f2 ̸= 0 ∧∆ ≥ 0,

−f1 −
√

∆

2f2

)
, (3.78)

45Foreshadowed by [Wei88] for the linear case.
46The concept is as old as Virtual Term Substitution, but this terminology is our own.

3.6. VIRTUAL TERM SUBSTITUTION 167(
f2 ̸= 0 ∧∆ ≥ 0,

−f1 +
√

∆

2f2

)
(3.79)

and (
f2 = 0 ∧ f1 ̸= 0,

−f0
f1

)
. (3.80)

higher One need merely read the discussion in Section 3.1.2 to see that cubic
equations would generate many more guarded points. Worse, as seen in
(3.10), we may need to involve complex numbers. See [Wei94] for details.

However, the points defined in (3.77)–(3.80) are not defined in the Tarski lan-
guage L of semi-algebraic propositions (Definition 80), and hence we cannot just
substitute them for x in pi(x). It is for this reason that we speak of Virtual Term
Substitution. We use the notation [x//t] to denote substituting, in this sense, t
for x in the whole proposition pi(x)σi0, noting that this takes propositions in L
to Boolean combinations of propositions in L.

Example 20 (f(x, u) = 0[x//
g1+g2

√
g3

g4
]) Since f is a polynomial, it is clear

that f(
g1+g2

√
g3

g4
,u) =

g∗
1+g∗

2

√
g3

g∗
4

for suitable expressions g∗1 , g
∗
2 and g∗4 .

g∗1 + g∗2
√
g3

g∗4
= 0 ⇒ g∗1 + g∗2

√
g3 = 0

⇒ |g∗1 | = |g∗2
√
g3| ∧

(sign(g∗1) ̸= sign(g∗2) ∨ sign(g∗1) = sign(g∗2) = 0)

⇒ g∗1
2 − g∗2

2g3 = 0 ∧ g∗1g∗2 ≤ 0.

Substituting the other root gives g∗1
2− g∗2

2g3 = 0∧ g∗1g∗2 ≥ 0, so the combination
reduces to g∗1

2 − g∗2
2g3 = 0. as we might (with hindsight!) have expected. The

cases of ≥ and ≤ are more complicated. TO BE COMPLETED

In general, if the guarded points from the piσi0 in ϕ are {(βi,j , ei,j)}, then
Virtual Term Substitution (with the restrictions of Problem 5) is

∃xϕ(x,u)
VTS
=⇒

∨
i

∨
j

(βi,j ∧ (ϕ[x//ei,j])) (3.81)

Unfortunately the right-hand side of (3.81) does not satisfy the constraints of
Problem 5), not least because of the ̸= operations in the guards of (3.77)–(3.80),
hence we cannot apply two levels of Virtual Term Substitution to ∃x1∃x2ϕ(x1, x2,u)
until we can lift restriction 2.

3.6.2 The Strict Case

If we consider a strict inequality (>, < or ̸=), i.e. lifting restriction 2, this again
defines a certain number of intervals, but the end-points no longer satisfy the
strict inequality: we need interior points.

168 CHAPTER 3. POLYNOMIAL EQUATIONS

The initial version of Virtual Term Substitution [Wei88] solved this problem
via using the point 1

2 (zi + zj), i.e. the arithmetic mean, for the interval (zi, zj).
However, this has two serious drawbacks:

1. we do not know the order of the zi(u), hence we need to add all possible
arithmetic means: 1

2n(n− 1) of them if there are n such zi;

2. if zi and zj are independent quadratic expressions, then the arithmetic
mean is

1

2

(−gi,1 ±√gi,3
2gi,4

+
−g,1 ±

√
gj,3

2gj,4

)
,

which is not of the form
g1+g2

√
g3

g4
, so the reasoning of Example 20 does

not apply.

Hence the alternative approach is to use infinitesimals: for a strict quadratic

inequality we would add four points
−gi,1±

√
gi,3

2gi,4
± ϵ. This is in fact overkill

as it wil give us two points in most strict intervals, and we only need add
−gi,1±

√
gi,3

2gi,4
− ϵ, and a +∞ term to allow for upper unbounded intervals where

we would otherwise have no point.
However, we need to handle these terms, as is shown in the next two exam-

ples.

Example 21 (p(x) < 0[x//t − ϵ]) (where p is a polynomial and t is a regular
(non-infinitesimal) term).

p(x) < 0[x//t− ϵ] ⇒

(
p(x) < 0 ∨

(
p(x) = 0 ∧

(
p′(x) > 0 ∨

(
p′(x) = 0 ∧ (p′′(x) < 0 ∨ · · ·

))))
[x//t]

Example 22 (ax2 + bx + c < 0[x//∞])

ax2 + bx+ c < 0[x//∞] ⇒ a < 0 ∨
(
a = 0 ∧

(
b < 0 ∨ (b = 0 ∧ c < 0)

))
With these extensions, equation (3.81) is still valid, with restriction 2 lifted.

3.6.3 Nested Quantifiers

Consider
∃x1∃x2ϕ(x1, x2,u). (3.82)

We first consider ∃x2ψ(x2,v), where v is x1||u (|| signifying concatenation) and
ψ is ϕ with the arguments reshuffled. As in (3.81), this is converted, eliminating
x2, into ∨

i

∨
j

(βi,j(v) ∧ ((pi(x2,v)σi0)[x2//ei,j(v)])) ,

3.6. VIRTUAL TERM SUBSTITUTION 169

which we can write as Ψ(x1,u) after replacing v by x1||u. This satisfies re-
striction 1, and we have lifted restriction 2. The only problem is restriction 3:
there is no guarantee that, even if ϕ is only quadratic in x1, that Ψ will be.
In practice, though, Ψ often does, or can be made to (see [KSD16, §5] for a
useful technique), satisfy restriction 3. We then apply the same technique to
∃x1Ψ(x1,u) to obtain∨

i′

∨
j′

(
β′
i′,j′(u) ∧

(
(p′i′(x1,u)σ′

i′0)[x1//e
′
i′,j′(u)]

))
,

as desired.
There is an important practical47 point, though. We have suggested applying

“the same technique” to

∃x1
∨
i

∨
j

(βi,j(x1||u) ∧ ((pi(x2, x1||u)σi0)[x2//ei,j(x1||u)])) ,

but we are much better off applying it to the equivalent

N∨
i=1

Ni∨
j=1

∃x1 (βi,j(x1||u) ∧ ((pi(x2, x1||u)σi0)[x2//ei,j(x1||u)])) , (3.83)

so that we are solving
∑
Ni problems each the complexity, at least informally

speaking, of the original, rather than one problem
∑
Ni times as long.

3.6.4 Universal quantifiers

So far we have merely treated existential ∃ quantifiers. This is, in one sense, all
we need do, since ∀xϕ(x) ⇔ ¬∃x¬ϕ(x). The formula ¬ϕ(x) breaks constraint
1, but the standard laws of logic, such as

¬(ϕ ∨ ψ)⇔ (¬ϕ) ∧ (¬ϕ) (3.84)

will deal with this problem. There are two remarks we can make about the
complexity of this process.

1. We may as well work with blocks of quantifiers (as in Notation 24), i.e.
transform ∀xϕ(x) into ¬∃x¬ϕ(x).

2. If the innermost block is existential, then after eliminating these quan-
tifiers, we are left with an expression of the form (3.83), i.e. a large
disjunction, which we were processing clause-by-clause. When we negate
this, we get a large conjunction, which has to be processed in its entirety.
Eliminating the ∃x will give another disjunction, but this again negates
to a large conjunction which has to be processed in its entirety. It seems
to be this process that makes the complexity heavily dependent on the
number of alternations.

47And indeed important from the point of complexity theory, as pointed out by [Wei88, p.
25].

170 CHAPTER 3. POLYNOMIAL EQUATIONS

3.6.5 Complexity of VTS

The general method we have outlined above was foreshadowed by [Wei88] for
the linear case. In particular that paper proved that the complexity of linear
quantifier elimination was singly exponential in the number of variables, but
doubly exponential in the number of alternations (see Notation 24). A similar
claim was made for the quadratic case in [Stu96], but was not proved.

Open Problem 16 (Complexity of VTS) Show, either in the quadratic case,
or more generally, that the complexity of quantifier elimination by Virtual Term
Substitution is exponential in the number of variables, and only doubly exponen-
tial in the number of alternations.

Sturm wrote to the author as follows. “At the time of writing I had blindly
believed that this holds also for the quadratic case. This is still my intuition,
but there is no proof.

I had furthermore assumed that the argument would remain correct when
generalizing to arbitrary degrees. After [C.W. Brown] told me in Timis,oara
that there is both a combinatorial and a size-of-polynomials aspect of double
exponential complexity, I am not at all certain about this anymore.”

3.6.6 Higher Degrees

[LPJ14] considers an arbitrary-degree VTS, using Sturm–Habicht

3.6.7 How many real roots

Suppose we have n polynomials in n variables, where each polynomial has degree
at most d, and there are t distinct monomials (with non-zero coefficients) in
total. Suppose furthermore that these form a zero-dimensional system. Then
the number of real roots is bounded by

Bézout dn (as that’s the bound on complex roots).

Descartes If n = 1, t− 1 positive solutions, so 2t− 1 in all.

[Kho91] 2

(
t
2

)
(n+ 1)t positive solutions.

[BS07] e2+3
4 2(n−t−1)(n−t−2)/2nn−t−1 positive solutions.

[LRW03] n = 2 and trinomials, so we can take t = 5 after a scaling exercise,
has at most 5 positive roots, as opposed to the 21035 = 248832 of [Kho91]]
or even the 20 of [BS07].

[BBS06] If t = n + 2 and the monomials form a primitive circuit (a technical
condition described in the paper) then there are at most 2n+ 1 solutions,
and there are examples which achieve this.

3.7. CONCLUSIONS 171

[BCTC19] Assuming that the coefficients of the polynomials are independent
Gaussians of any variance, the expected number of zeros of the random

system in the positive orthant is bounded from above by 1
2n−1

(
t
n

)
.

[BCTC19, Question 1.1] asks the following question.

Open Problem 17 (Central open problem in fewnomial theory) Fix the
number n of variables. Is the number of nondegenerate positive solutions of a
fewnomial system with t exponent vectors bounded by a polynomial in t?

3.7 Conclusions

1. The RootOf construct is inevitable (theorem 10), so should be used, as
described in footnote 4 (page 85). Such a notation can avoid the “too
many solutions” trap — see equations (3.50) and (3.51). We should find
a way of extending it to situations such as equation (3.49).

2. While matrix inversion is a valuable concept, it should generally be avoided
in practice.

3. Real algebraic geometry is not simply “algebraic geometry writ real”: it
has different problems and needs different techniques.

172 CHAPTER 3. POLYNOMIAL EQUATIONS

Chapter 4

Modular Methods

In chapter 2, describing the subresultant method of computing greatest common
divisors, we said the following.

This algorithm is the best method known for calculating the g.c.d.,
of all those based on Euclid’s algorithm applied to polynomials with
integer coefficients. In chapter 4 we shall see that if we go beyond
these limits, it is possible to find better algorithms for this calcula-
tion.

Now is the time to fulfil that promise, which we do by describing the historically-
first “advanced” algorithm, first with a simple example (section 4.1), and then
its greatest success, g.c.d. calculation, first in one variable (section 4.2), then in
two (section 4.3) and several (section 4.4) variables. We will then look at other
applications (section 4.5), and finally at Gröbner bases (section 4.6).

The basic idea behind these algorithms is shown in Figure 4.1: instead of
doing a calculation in some (large) domain R, we do it in several smaller domains
Ri, possibly discard some of these, piece the result together to R′

1···k, regard this

Figure 4.1: Diagrammatic illustration of Modular Algorithms

R
calculation

- - - - - - - - - - - - - - - - - - - -> R

k×reduce ↓ ↑
interpret
& check

R1
calculation−→ R1

...
...

...

Rk
calculation−→ Rk

combine
−→

?discard
R′

1···k

R′
1···k indicates that some of the Ri may have been rejected by the

compatibility checks, so the combination is over a subset of R1, . . . , Rk.

173

174 CHAPTER 4. MODULAR METHODS

as being in R and check that it is indeed the right result. The key questions are
then the following.

1. Are there domains Ri for which the behaviour of the computation in Ri

is sufficiently close to that in R for us to make deductions about the com-
putation in R from that in Ri? Such Ri will generally be called “good”.

2. Can we tell, either immediately or with hindsight, whether an Ri is
“good”? It will often turn out that we can’t, but may be able to say
that, given Ri and Rj , one of them is definitely “bad”, and preferably
which.

3. How many reductions should we take? In practice we will only count
“good” reductions, so this question is bound up with the previous one.

4. How do we combine the results from the various Ri? The answer to this
will often turn out to be a variant of the Chinese Remainder Theorem.

5. How do we check the result? Can we be absolutely certain that this result
is in fact the answer to the original question? In category speak, does
Figure 4.1 commute?

A common choice for the Ri is given by the following.

Notation 28 Let n be a positive number. By Zn we mean the integers consid-
ered modulo n.

Proposition 53 Zn is a commutative ring with a multiplicative identity (the
number 1 itself).

Example 23 Note that we can’t say that Zn is an integral domain (Definition
11), since, for example, in Z6 2 × 3 = 0, even though neither 2 nor 3 are zero
in Z6.

Proposition 54 Let p be a prime number. Then Zp is a field.

Proof. Since p is a prime, the problem of Example 23 can’t happen, and Zp is
certainly an integral domain. Let n ∈ Zp be nonzero, and apply the Extended
Euclidean Algorithm (in Z) to the integers n and p. Since gcd(n, p) = 1, we
find a, b such that an+ bp = 1. Then an ≡ 1 (mod p), so a = n−1 and hence
inverses exist.

4.1 Matrices: a Simple Example

Suppose we wish to calculate the determinant, or possibly the inverse, D of an
n × n matrix M , and for simplicity we will assume that n is even. If the size
of the entries (degree for polynomials, or number of bits/words for integers) is

4.1. MATRICES: A SIMPLE EXAMPLE 175

s, then the determinant will have size at most1 ns, since it is the sum of n!
products of n entries from the matrix.

4.1.1 Matrices with integer coefficients: Determinants

If we use the fraction-free methods of Theorem 15, then, just before clearing
column k, the entries should have size roughly2 bounded by ks, and at the
end, the last entry, which is the determinant, is (roughly) bounded by ns. But
consider the half-way state, after we have eliminated n/2 columns. The entries
are:

row 1 n entries of size s: total ns;

row 2 n− 1 entries of size 2s: total 2(n− 1)s;

row 3 n− 2 entries of size 3s: total 3(n− 3)s;

. . .

row n/2 n/2 entries of size (n/2)s: total (n/2)2s;

Total
∑n/2

i=1 i(n+ 1− i)s =
(

n3

12 + n2

4 + n
6

)
s.

next n/2 rows n/2 elements of size (n/2)s in each row, totalling n3

8 s

Grand total 5
24n

3s+O(n2s).

Since the final result has size ns, we are storing, and manipulating, 5
24n

2 times
as much data as are needed — a quantifiable case of intermediate expression
swell. Can we do better?

Let the pi be a family of distinct primes3, chosen so that arithmetic modulo
p is fast, typically 31-bit or 63-bit primes4. Since D is the sum of products
of entries of the matrix, we can evaluate D (mod p) (which we will write as
Dp) either by computing D, and then reducing it modulo p, or by computing
(modulo p) the determinant of the matrix Mp: in symbols

det(M)p = det(Mp). (4.1)

The latter takes O(n3) operations, by classical arithmetic, to which we should
add O(n2s) for the initial reduction modulo p.

1Not quite for integers, since a + b can be bigger than either a or b, but we’ll ignore this
complication, which does not affect the general point.

2Again, we need “roughly” in the integer case, since there is again the question of carries,
as in note1.

3For this example, we do not actually need them to be primes, merely relatively prime,
but the easiest way to ensure this is for them to be primes.

4We therefore take the cost of arithmetic modulo p to be constant — O(1). Strictly
speaking, we should allow for the possibility that our problem is so large that there are not
enough small primes. But such a problem would not fit in the computer in the first place, and
the computer algebra community systematically (and often silently) ignores this possibility.
We can replace O by Õ if we are really worried about it.

176 CHAPTER 4. MODULAR METHODS

The Hadamard bounds (Propositions 87 and 88: see [AM01] for an analysis
of the extent to which they are over-estimates — roughly 0.22n decimal digits)
will give us a number D0 such that |D| ≤ D0, log2D0 ≤ n

2 s(log2 n). If we know
Dpi

for enough primes such that N :=
∏
pi > 2D0, we can use the Chinese

Remainder Theorem (Theorem 56 and Algorithm 47) to deduce DN . If we
choose it in the range −N

2 < DN < N
2 , then DN = D, and we are done.

The number of primes needed is O(logD0) = O(ns log n). Hence the cost of
all the determinants is O((n3 + n2s)ns log n) = O(n4s log n + n3s2 log n). The
cost of the Chinese Remainder Algorithm is, by Proposition 98, O(log2D0) =
O(n2s2 log2 n), which is dominated by the second term in the determinant ost.
For large n, the first term dominates, but for large s, the second term might
dominate. Hence we have proved the following, slightly clumsy, statement.

Proposition 55 The cost of computing the determinant of an n × n matrix
with integer entries bounded by 2s is O

(
max(n4s log n, n3s2 log n)

)
.

If we attempt to simplify this, we can write O(n4s2 log n), which doesn’t look
much different from (3.25)’s O(n5s2 log2 n), and this is true in terms of worst-
case complexity with respect to each of n and s considered separately. But if,
for example, s and n are both k, then (3.25) is O(k7 log2 k) and Proposition 55
is O(k5 log k). An even better method is mentioned in Section 5.9.4.

4.1.2 Matrices with polynomial coefficients: Determinants

Assume our matrix entries are polynomials in x, of degree at most d, over a
(sufficiently large) ring R which supports the polynomial Chinese Remainder
Theorem (Appendix A.4) — in practice Q or Q(y1, . . . , yn). One method is
the fraction-free computations of Theorem 15, then the same analysis as at the
start of the previous section shows that we have intermediate expression swell.
Can we do better?

Suppose we know that the degree (in x) of the determinant is less than N ,
and let v1, . . . , vN be N distinct values in R. Then, using the notation Zx−v to
mean “Z, but replacing x by the value v” (which for polynomial Z is the same
as the remainder on dividing Z by x− v), we have

det(M)x−v = det(Mx−v). (4.2)

Proposition 56 If M is an n × n matrix whose entries are polynomials in x
of degree at most d, then the degree of det(M) is at most nd.

If we assume no expression growth in the elements of R (unrealistic, but
simplifying), the cost of computing Mx−v is O(n2d) operations in K, and the
cost of evaluating the determinant is O(n3). The cost of the Chinese Remainder
Algorithm is, by Proposition 99, O(N2) = O((nd+ 1)2).

4.1. MATRICES: A SIMPLE EXAMPLE 177

Proposition 57 The cost of computing the determinant of an n × n matrix
with polynomial entries of degree bounded by d is O

(
max(n4d, n3d2)

)
coefficient

operations.

In practice, if we had polynomial entries with integer coefficients, we would
reduce the polynomial determinant calculation to many integer ones, and do
these by the method of section 4.1.1. The analysis becomes rather tedious, but
it is still possible to show that the complexity is always better than fraction-free
methods.

Open Problem 18 (Matrix Determinant costs) In Open Problem 6, we
saw that the obvious calculation of costs did not seem to have been borne out
by (admittedly old) experiments. What is the practical validity of these calcula-
tions?

4.1.3 Conclusion: Determinants

Hence we have simple answer to the questions on page 174.

1. Are there good reductions from R?: yes, every reduction.

2. How can we tell if Ri is good? — always.

3. How many reductions should we take? This depends on bounding the size
of det(M). In the polynomial case, this is easy from the polynomial form
of the determinant: Proposition 56. In the integer case, the fact that we
are adding n! products makes the estimate more subtle: see Proposition
87.

4. How do we combine the results — one of Algorithms 47 (integer) or 48
(polynomial).

5. How do we check the result: irrelevant.

4.1.4 Linear Equations with integer coefficients

Now suppose that we wish to actually solve a linear system M.x = a with
coefficients in Z, rather than simply compute the determinant (which we will
assume is nonzero). As before, one option is the fraction-free method (Corol-
lary 5) followed by back-substitution, and it can be shown that the cost of the
back-substitution is asymptotically the same as that of the fraction-free trian-
gularization.

Let p be a prime not dividing det(M). We know (3.14) that x = M−1.a, and
hence xp = (M−1.a)p = (M−1)p.ap = Mp

−1.ap. If we knew the xp for enough
p, we ought to be able to recover x. However, the entries of x are rational
numbers, not integers. There is a general answer to this problem in Section
4.5.2.3, but in fact we can do better here. We know that the denominators of x
all divide det(M), so we shall solve the related problem

y = (det(M))M−1.a, (4.3)

178 CHAPTER 4. MODULAR METHODS

whose solution y is a vector of integers, again bounded by the Hadamard bounds
(Propositions 87 and 88).

Algorithm 16 (Modular Linear Equations)
Input: M an n× n non-singular matrix, a an n-vector over Z
Output: x an n-vector over Q with M.x = a

1. for enough (N) primes pi
2. reduce M mod pi to get Mi, and a to get ai
3. triangularize Mi||ai
4. if Mi is non-singular
5. Backsubstitute to solve yi = (det(Mi))Mi

−1.ai.
6. Reconstruct det(M) from the det(Mi).
7. Reconstruct y from the yi.
8. Return y/ det(M) (after cancellation).

The cost of steps 2 and 3 are O(n2s) and O(n3), as in section 4.1.1. Step 5
costs O(n2) operations. Step 6 costs, by Proposition 98, O(log2 |det(M)|) =
O(n2s2 log2 n) operations, and step 7 costs n times as much. Step 8 as the same
order of complexity as step 7, as we are computing n gcds of numbers of size
bounded by the Hadamard bounds. Hence the total cost is

O
(
N(n2s+ n3) + n(n2s2 log2 n)

)
(4.4)

operations. The number of primes we actually need is given by the Hadamard
bounds5, i.e. ns log n, and the number of primes that we have to discard is
(at most) the same, as these must divide the determinant. The total cost is
therefore

O(n3s2 log n︸ ︷︷ ︸
evaluation

+ n4s log n︸ ︷︷ ︸
det/solving

+ n3s2 log2 n︸ ︷︷ ︸
CRT/simplify

) = O(n4s log n+n3s2 log2 n) (4.5)

(where we have annotated the causes of the various summands): almost the
same as Proposition 55, and the extra factor of log n multipliying n3s2 is caused
by the fact that the Chinese Remainder Theorem is no longer negligeable, as
we have to reconstruct n numbers.

4.1.5 Linear Equations with polynomial coefficients

This is sufficiently similar that we will skip the details.

4.1.6 Conclusion: Linear Equations

Hence we have simple answer to the questions on page 174.

5Though it doesn’t change the asymptotics, these logarithms are logB , where B is the size
of our working primes. Hence if B = 231, we have log231 rather than loge, saving a factor of
21.

4.2. GCD IN ONE VARIABLE 179

1. Are there good reductions from R?: yes, all reductions except those that
annihilate the determinant — a finite number.

2. How can we tell if Ri is good? — if the determinant is nonzero.

3. How many reductions should we take? This depends on bounding the size
of det(M). In the polynomial case, this is easy from the polynomial form
of the determinant: Proposition 56. In the integer case, the fact that we
are adding n! products makes the estimate more subtle: see Proposition
87.

4. How do we combine the results — one of Algorithms 47 (integer) or 48
(polynomial).

5. How do we check the result: irrelevant.

4.1.7 Matrix Inverses

The same techniques as linear equations apply: indeed we could (though proba-
bly should not) compute the columns of the inverse as the solutions of M.x = ei,
where ei has a 1 in the ith position, and zero elsewhere.

4.2 Gcd in one variable

Let us consider Knuth’s example (from which page 69 was modified):

A(x) = x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5; (4.6)

B(x) = 3x6 + 5x4 − 4x2 − 9x+ 21. (4.7)

Let us suppose that these two polynomials have a common factor, that is a
polynomial P (of non-zero degree) which divides A and B. Then there is a
polynomial Q such that A = PQ. This equation still holds if we take each
coefficient as an integer modulo 5. If we write P5 to signify the polynomial P
considered as a polynomial with coefficients modulo 5, this equation implies that
P5 divides A5. Similarly, P5 divides B5, and therefore it is a common divisor6

of A5 and B5. But calculating the g.c.d. of A5 and B5 is fairly easy:

A5(x) = x8 + x6 + 2x4 + 2x3 + 3x2 + 2x;
B5(x) = 3x6 + x2 + x+ 1;
C5(x) = remainder(A5(x), B5(x)) = A5(x) + 3(x2 + 1)B5(x) = 4x2 + 3;
D5(x) = remainder(B5(x), C5(x)) = B5(x) + (x4 + 4x2 + 3)C5(x) = x;
E5(x) = remainder(C5(x), D5(x)) = C5(x) + xD5(x) = 3.

Thus A5 and B5 are relatively prime, which implies that P5 = 1. As the leading
coefficient of P has to be one, we deduce that P = 1.

6Note that we cannot deduce that P5 = gcd(A5, B5): a counter-example is A = x − 3,
B = x+ 2, where P = 1, but A5 = B5 = x+ 2, and so gcd(A5, B5) = x+ 2, whereas P5 = 1.

180 CHAPTER 4. MODULAR METHODS

The concept of modular methods is inspired by this calculation, where there
is no possibility of intermediate expression swell, for the integers modulo 5 are
bounded (by 4). Obviously, there is no need to use the integers modulo 5: any
prime number p will suffice (we chose 5 because the calculation does not work
modulo 2, for reasons to be described later, and 3 divides one of the leading
coefficients). In this example, the result was that the polynomials are relatively
prime. This raises several questions about generalising this calculation to an
algorithm capable of calculating the g.c.d. of any pair of polynomials:

1. how do we calculate a non-trivial g.c.d.?

2. what do we do if the modular g.c.d. is not the modular image of the g.c.d.
(as in the example in the footnote6)?

3. how much does this method cost?

4.2.1 Bounds on divisors

Before we can answer these questions, we have to be able to bound the coeffi-
cients of the g.c.d. of two polynomials.

Theorem 39 (Landau–Mignotte Inequality [Lan05, Mig74, Mig82]) Let
Q =

∑q
i=0 bix

i be a divisor of the polynomial P =
∑p

i=0 aix
i (where ai and bi

are integers). Then

q
max
i=0
|bi| ≤

q∑
i=0

|bi| ≤ 2q
∣∣∣∣ bqap
∣∣∣∣
√√√√ p∑

i=0

a2i .

These results are corollaries of statements in Appendix A.2.2.
If we regard P as known and Q as unknown, this formulation does not

quite tell us about the unknowns in terms of the knowns, since there is some
dependence on Q on the right, but we can use a weaker form:

q∑
i=0

|bi| ≤ 2p

√√√√ p∑
i=0

a2i .

When it comes to greatest common divisors, we have the following result.

Corollary 11 (Landau–Mignotte for g.c.d.s) Every coefficient of the g.c.d.

of A =
∑α

i=0 aix
i and B =

∑β
i=0 bix

i (with ai and bi integers) is bounded by

2min(α,β) gcd(aα, bβ) min

 1

|aα|

√√√√ α∑
i=0

a2i ,
1

|bβ |

√√√√ β∑
i=0

b2i

 .

Proof. The g.c.d. is a factor of A and of B, the degree of which is, at most,
the minimum of the degrees of the two polynomials. Moreover, the leading

4.2. GCD IN ONE VARIABLE 181

coefficient of the g.c.d. has to divide the two leading coefficients of A and B,
and therefore has to divide their g.c.d.

A slight variation of this corollary is provided by the following result.

Corollary 12 Every coefficient of the g.c.d. of A =
∑α

i=0 aix
i and B =

∑β
i=0 bix

i

(where ai bi are integers) is bounded by

2min(α,β) gcd(a0, b0) min

 1

|a0|

√√√√ α∑
i=0

a2i ,
1

|b0|

√√√√ β∑
i=0

b2i

 .

Proof. If C =
∑γ

i=0 cix
i is a divisor of A, then Ĉ =

∑γ
i=0 cγ−ix

i is a divisor of

Â =
∑α

i=0 aα−ix
i, and conversely. Therefore, the last corollary can be applied

to Â and B̂, and this yields the bound stated.
It may seem strange that the coefficients of a g.c.d. of two polynomials can

be greater than the coefficients of the polynomials themselves. One example
which shows this is the following (due to Davenport and Trager):

A = x3 + x2 − x− 1 = (x+ 1)2(x− 1);
B = x4 + x3 + x+ 1 = (x+ 1)2(x2 − x+ 1);

gcd(A,B) = x2 + 2x+ 1 = (x+ 1)2.

This example can be generalised, as say

A = x5 + 3x4 + 2x3 − 2x2 − 3x− 1 = (x+ 1)4(x− 1);
B = x6 + 3x5 + 3x4 + 2x3 + 3x2 + 3x+ 1 = (x+ 1)4(x2 − x+ 1);

gcd(A,B) = x4 + 4x3 + 6x2 + 4x+ 1 = (x+ 1)4.

In fact, Mignotte [Mig81] has shown that the number 2 in Theorem 39 is asymp-
totically the best possible, i.e. it cannot be replaced by any smaller c.

Open Problem 19 (Extending Mignotte to g.c.d.) Show7 that the same
is true of corollaries 11 and 12.

4.2.2 The modular – integer relationship

In this sub-section, we answer the question raised above: what do we do if
the modular g.c.d. is not the modular image of the g.c.d. calculated over the
integers?

Lemma 8 If p does not divide the leading coefficient of gcd(A,B), the degree
of gcd(Ap, Bp) is greater than or equal to that of gcd(A,B).

Proof. Since gcd(A,B) divides A, then (gcd(A,B))p divides Ap. Similarly, it
divides Bp, and therefore it divides gcd(Ap, Bp). This implies that the degree
of gcd(Ap, Bp) is greater than or equal to that of gcd(A,B)p. But the degree of

7The author is grateful to John Abbott for pointing out that this isn’t trivial!

182 CHAPTER 4. MODULAR METHODS

gcd(A,B)p is equal to that of gcd(A,B), for the leading coefficient of gcd(A,B)
does not cancel when it is reduced modulo p.

This lemma is not very easy to use on its own, for it supposes that we know
the g.c.d. (or at least its leading coefficient) before we are able to check whether
the modular reduction has the same degree. But this leading coefficient has
to divide the two leading coefficients of A and B, and this gives a formulation
which is easier to use.

Corollary 13 If p does not divide the leading coefficients of A and of B (it
may divide one, but not both), then the degree of gcd(Ap, Bp) is greater than or
equal to that of gcd(A,B).

As the g.c.d. is the only polynomial (to within an integer multiple) of its degree
which divides A and B, we can test the correctness of our calculations of the
g.c.d.: if the result has the degree of gcd(Ap, Bp) (where p satisfies the hypothesis
of this corollary) and if it divides A and B, then it is the g.c.d. (to within an
integer multiple).

It is quite possible that we could find a gcd(Ap, Bp) of too high a degree.
For example, in the case cited above, gcd(A2, B2) = x + 1 (it is obvious that
x+ 1 divides the two polynomials modulo 2, because the sum of the coefficients
of each polynomial is even). The following lemma shows that this possibility
can only arise for a finite number of p.

Lemma 9 Let C = gcd(A,B). If p satisfies the condition of the corollary above,
and if p does not divide Resx(A/C,B/C), then gcd(Ap, Bp) = Cp.

Proof. A/C and B/C are relatively prime, for otherwise C would not be the
g.c.d. of A and B. By the corollary, Cp does not vanish. Therefore

gcd(Ap, Bp) = Cp gcd(Ap/Cp, Bp/Cp).

For the lemma to be false, the last g.c.d. has to be non-trivial. This implies that
the resultant Resx(Ap/Cp, Bp/Cp) vanishes, by proposition 79 of the Appendix.
This resultant is the determinant of a Sylvester matrix, and |Mp| = (|M |)p, for
the determinant is only a sum of products of the coefficients. In the present case,
this amounts to saying that Resx(A/C,B/C)p vanishes, that is that p divides
Resx(A/C,B/C). But the hypotheses of the lemma exclude this possibility.

Definition 89 If gcd(Ap, Bp) = gcd(A,B)p, we say that the reduction of this
problem modulo p is good, or that p is of good reduction8. If not, we say that
p is of bad reduction..

This lemma implies, in particular, that there are only a finite number of values
of p such that gcd(Ap, Bp) does not have the same degree as that of gcd(A,B),
that is the p which divide the g.c.d. of the leading coefficients and the p which

8This is often shortened to saying “p is a good prime” or “a lucky prime”.. This terminology
is always with respect to a specific problem: given any prime p, it is usually trivial to produce
a problem for which p is bad.

4.2. GCD IN ONE VARIABLE 183

divide the resultant of the lemma (the resultant is non-zero, and therefore has
only a finite number of divisors). In particular, if A and B are relatively prime,
we can always find a p such that Ap and Bp are relatively prime.

Observation 7 It would be tempting to conclude “the probabiliy that p is bad is
the probability that p divides this resultant, i.e. 1/p. However, a given resultant
either is, or is not, divisible by p: there is no probability involved. If we consider
the space of all (A,B) pairs9, then we have to allow for p dividing the leading
coefficients. This argument would also assume that the distribution of resultants
is the same as the distribution of integers, and this seems not to be the case: very
few resultants are actually prime, for example. Nevertheless, it is an empirical
observation that the probability of p being bad does seem to be proportional to
1/p.

An alternative proof that there are only finitely primes of bad reduction can be
deduced from Lemma 12. We can summarize this section in the following.

Theorem 40 (Good Reduction Theorem (Z)) If p does not divide gcd(aα, bβ)
(which can be checked for in advance) or Resx(A/C,B/C), then p is of good re-
duction. Furthermore, if p divides Resx(A/C,B/C) but not gcd(aα, bβ), then
the gcd computed modulo p has a larger degree than the true result.

4.2.3 Computing the g.c.d.: one large prime

In this section we answer the question posed earlier: how do we calculate a non-
trivial g.c.d.? One obvious method is to use the Landau-Mignotte inequality,
which can determine an M such that all the coefficients of the g.c.d. are bounded
by M , and to calculate modulo a prime number greater than 2M . This method
translates into Algorithm 17/Figure 4.2 (where Landau_Mignotte_bound(A,B)
applies corollary 11 and/or corollary 12, and find_large_prime(2M) produces
a different prime > 2M each tine it is called within a given invocation of the al-
gorithm). We restrict ourselves to monic polynomials, and assume modular_gcd
gives a monic result, to avoid the problem that a modular g.c.d. is only defined
up to a constant multiple.

Algorithm 17 (Modular GCD (Large prime version))
Input: A,B monic polynomials in Z[x].
Output: gcd(A,B)

M :=Landau_Mignotte_bound(A,B);
do p :=find_large_prime(2M);

if p does not divide gcd(lc(A), lc(B))
then C :=modular_gcd(A,B, p);

if C divides A and C divides B
then return C

forever #Lemma 9 guarantees termination

184 CHAPTER 4. MODULAR METHODS

Figure 4.2: Diagrammatic illustration of Algorithm 17

Z[x] - - - - - -> Z[x]

reduce ↓ ↑
interpret
& check

Zp[x]
gcd−→ Zp[x]

We can think of the use of modular_gcd as a Monte Carlo Algorithm (Section
1.4.2) and Algorithm 17 as an instance of Figure 1.2 converting a Monte Carlo
algorithm into a Las Vegas (“always correct/probably fast”) one.

If the inputs are not monic, the answer might not be monic. For example,
x + 4 divides both 2x2 + x and 2x2 − x − 1 modulo 7, but the true common
divisor over the integers is 2x+1, which is 2(x+4) (mod 7). We do know that
the leading coefficient of the g.c.d. divides each leading coefficient lc(A) and
lc(B), and therefore their g.c.d. g = gcd(lc(A), lc(B)). We therefore compute

C := pp(g × modular gcd(A,B, p)︸ ︷︷ ︸
computed modulo p,
then interpreted in Z

) (4.8)

instead, where the pp is needed in case the leading coefficient of the g.c.d. is a
proper factor of g.

It is tempting to argue that this algorithm will only handle numbers of the
size of twice the Landau–Mignotte bound, but this belief has two flaws.

• While we have proved that there are only finitely many bad primes, we
have said nothing about how many there are. The arguments can in fact
be made effective, but the results tend to be unduly pessimistic, since it is
extremely unlikely that all the bad primes would be clustered just above
2M .

• In theory, and indeed very often in practice [ABD88], the division tests
could yield very large numbers if done as tests of the remainder being zero:
for example the remainder on dividing x100 by x − 10 is 10100. This can
be solved by a technique known as “early abort” trial division.

Proposition 58 If h, of degree m, is a factor of f of degree n, the coef-
ficient of xn−m−i in the quotient is bounded by

(
n−m

i

)
1

lc(h) ||f ||.

This is basically Corollary 27. Hence, as we are doing the trial division,
we can give up as soon as we find a coefficient in the quotient that exceeds
this bound, which is closely related to M (the difference relates to the
leading coefficient terms).

9Technically, the limit as H → ∞ of all pairs with coefficients at most H.

4.2. GCD IN ONE VARIABLE 185

For example, if we take p = 7 in the example at the start of this chapter,
we find that the g.c.d. of A7 and B7 is x + 10 (it could equally well be
x + 3, but x + 10 makes the point better). Does x + 10 divide B? We
note that ||B|| ≈ 23.92. Successive terms in the quotient are 3x5 (and 3
is a permissible coefficient), −30x4 (and 30 <

(
5
1

)
× 23.92) and 305x3, at

which point we observe that 305 >
(
5
2

)
× 23.92 = 239.2, so this cannot be

a divisor of B. Hence 7 was definitely unlucky.

With this refinement, it is possible to state that the numbers dealt with
in this algorithm are “not much larger” than 2M , though considerable
ingenuity is needed to make this statement more precise.

If we apply this algorithm to the polynomials at the start of this section, we

deduce that
√∑8

i=0 a
2
i =

√
113,

√∑6
i=0 b

2
i = 2

√
143, and hence corollary 11

gives a bound of

26 min

(√
113,

2

3

√
143

)
≈ 510.2, (4.9)

so our first prime would be 1021, which is indeed of good reduction. In this
case, corollary 12 gives a bound of

26 min

(
1

5

√
113,

2

21

√
143

)
≈ 72.8, (4.10)

so our first prime would be 149. In general, we cannot tell which gives us the
best bound, and it is normal to take the minimum.

Open Problem 20 (Improving Landau–Mignotte for g.c.d.) A significant
factor in the Landau–Mignotte bound here, whether (4.9) or (4.10), was the
2min(8,6) contribution from the degree of the putative g.c.d. But in fact the expo-
nent is at most 4, not 6, since the g.c.d. cannot have leading coefficient divisible
by 3 (since A does not). Hence the g.c.d. must have at most the degree of the
g.c.d. modulo 3, and modulo 3 B has degree 4, so the gc.d. must have degree at
most 4.

Can this be generalised, in particular can we update our estimate “on the
fly” as upper bounds on the degree of the g.c.d change, and is it worth it? In
view of the ‘early success’ strategies discussed later, the answer to the last part
is probably negative.

4.2.4 Computing the g.c.d.: several small primes

While algorithm 17 does give us some control on the size of the numbers being
considered, we are still often using numbers larger than those which hindsight
would show to be necessary. For example, in (4.6), (4.7) we could deduce co-
primeness using the prime 5, rather than 1021 from (4.9) or 149 from (4.10). If
instead we consider (x− 1)A and (x− 1)B, the norms change, giving 812.35 in
(4.9) (a prime of 1627) and 116.05 in (4.10) (a prime of 239). Yet primes such
as 5, 11, 13 etc. will easily show that the result is x− 1. Before we leap ahead

186 CHAPTER 4. MODULAR METHODS

Figure 4.3: Algorithm 18

Algorithm 18 (Modular GCD (Small prime version))
Input: A,B polynomials in Z[x].
Output: gcd(A,B) (up to an integer multiple)

M :=Landau_Mignotte_bound(A,B);
g := gcd(lc(A), lc(B));
p := find_prime(g);
D := g × modular_gcd(A,B, p);
if deg(D) = 0 then return 1
N := p; # N is the modulus we will be constructing
while N < 2M repeat (*)

p := find_prime(g);
C := g × modular_gcd(A,B, p);
if deg(C) = deg(D)

then D := Algorithm 48(C,D, p,N);
N := pN ;

else if deg(C) < deg(D)
C proves that D is based on primes of bad reduction
if deg(C) = 0 then return 1
D := C;
N := p;

else #D proves that p is of bad reduction, so we ignore it
D := pp(D); # In case multiplying by g was overkill
if D divides A and B,

then return D
else start again (all primes must have been bad)

The “early abort” of Proposition 58 is needed for these divsibility checks if we
are to maintain a “numbers not much larger than 2M” guarantee.

and use such primes, though, we should reflect that, had we taken (x − 10)A
and (x − 10)B, 5 would have suggested x as the gcd, 11 would have suggested
x+ 1, 13 would have suggested x+ 3 and so on.

The answer to this comes in observing that the smallest polynomial (in terms
of coefficient size) which is congruent to x modulo 5 and to x+ 1 modulo 11 is
x−10 (it could be computed by algorithm 48). More generally, we can apply the
Chinese Remainder Theorem (Theorem 56) to enough primes of good reduction,
as follows. We assume that find_prime(g) returns a prime not dividing g, a
different one each time. The algorithm is given in Figure 4.3, with a diagram in
Figure 4.4. This gets the “polynomial part” of the g.c.d. correct, by Corollary
13: we still need to get the content right by Gauss’ Lemma (Theorem 6) as in
Algorithm 3.

Observation 8 The reader may think that Algorithm 18 is faulty: line (*)

4.2. GCD IN ONE VARIABLE 187

Figure 4.4: Diagrammatic illustration of Algorithm 18

Z[x] -> Z[x]

k×reduce ↓ ↑
interpret
& check

Zp1
[x]

gcd−→ Zp1
[x]

...
...

...

Zpk
[x]

gcd−→ Zpk
[x]

 C.R.T.−→ Z′
p1···pk

[x]

Z′
p1···pk

[x] indicates that some of the pi may have been rejected by the compat-
ibility checks, so the product is over a subset of p1 · · · pk.

in Figure 4.3 iterates until N ≥ 2M , which would be fine if we were actually
computing the g.c.d. But we have forced the leading coefficient to be g, which
may be overkill. Hence aren’t we in danger of trying to recover g times the true
g.c.d., whose coefficients may be greater than 2M?

In fact there is not a problem. The proof of Corollary 11 relies on estimating
the leading coefficient of gcd(A,B) by g, and so the bound is in fact a bound for
the coefficients after this leading coefficient has been imposed.

Having said that, we can’t “mix and match”. If we decide that Corollary 12
provides a better lower bound than Corollary 11, then we must go for “imposed
trailing coefficients” rather than “imposed leading coefficients”, or, and this is
the way the author has tended to implement it, compute the g.c.d. of Â and B̂,
and reverse that.

We should note the heavy reliance on Corollary 13 to detect bad reduction. We
impose g as the leading coefficient throughout, and make the result primitive
at the end as in the large prime variant.

4.2.5 Computing the g.c.d.: early success

While Algorithm 18 will detect a g.c.d. of 1 early, it will otherwise compute as
far as the Landau–Mignotte bound if the g.c.d. is not 1. While this may be
necessary, it would be desirable to terminate earlier if we have already found
the g.c.d. This is easily done by replacing the line

then D := Algorithm 48(C,D, p,N);

by the code in Figure 4.5. We should note that we return an E which divides
the inputs, and is derived from modular images, and therefore has to be the
greatest common divisor by Corollary 13.

188 CHAPTER 4. MODULAR METHODS

Figure 4.5: “Early termination” g.c.d. code
For D = D′ to work, we have to be using a symmetric representation of numbers
modulo N , i.e. in the range [−N/2, N/2]. Otherwise −1, say, will never stabilise,
but be 2 (mod 3), 14 (mod 15), 104 (mod 105) etc. as we use more primes.
This representation is obtained with mods in Maple.

then D′ := D
D := Algorithm 48(C,D, p,N);
if D = D′ #We may have found the answer

then E := pp(D);
if E divides A and B

then return E;
Otherwise this was a false alert, and we continue as normal.

4.2.6 An alternative correctness check

So far we have suggested computing the putative g.c.d. G, then checking that
it really divides both, and relying on Corollary 13 to say that G is therefore a
greatest common divisor. An alternative approach is to compute the co-factors,
i.e. A′ such that A = A′G and B′ such that B = B′G at the same time, and
use these as the check. So let us assume that modular gcd cofactors returns
a triple [G,A′, B′] modulo p. The Algorithm (19) is given in Figure 4.6, and the
diagram in Figure 4.4 is still relevant.

Observation 9 It is tempting to conjecture that we do not need to make both
the multiplication checks at the end, but this is false: consider A = H, B =
H + 3p1 · · · pk, when the algorithm will find H as the putative g.c.d., since the
Landau–Mignotte bound will ignore the large extra term in B, and only the
multiplication check for B will detect this.

Observation 10 Early termination can perfectly well be applied to this variant:
at any time gA = DA′ and gB = DB′ over the integers, we can finish.

4.2.7 Conclusion

Observation 11 We have presented this material as if there were a choice
between one large prime (Algorithm 17) and several small ones (Algorithms 18,
19). In practice, of course, a computer regards all numbers less than 32 bits (and
increasingly 64 bits) as ‘small’, so an implementation would generally use the
largest ‘small’ primes it could in Algorithms 18, 19, and thus often one prime
will suffice, and we have the same effect as Algorithm 17.

Combining this with Observation 7 we can see that bad reduction should be
very rare, and indeed the author has found constructing test cases to be quite
difficult.

Let us see how we have answered the questions on page 174.

4.2. GCD IN ONE VARIABLE 189

Figure 4.6: Algorithm 19

Algorithm 19 (Modular GCD (Alternative small prime version))
Input: A,B polynomials in Z[x].
Output: G := gcd(A,B), A′, B′ with A = A′G, B = B′G.

M :=Landau_Mignotte_bound(A,B);
g := gcd(lc(A), lc(B));
p := find_prime(g);
[D,A′, B′] := modular_gcd_cofactors(A,B, p);
if deg(D) = 0 then return [1,A,B]
D := gD # g is our guess at the leading coefficient of the g.c.d.
N := p; # N is the modulus we will be constructing
while N < 2M repeat

p := find_prime(g);
[C,A1, B1] := modular_gcd_cofactors(A,B, p);
if deg(C) = deg(D)

then D := Algorithm 48(C,D, p,N);
A′ := Algorithm 48(A1, A

′, p,N);
B′ := Algorithm 48(B1, B

′, p,N);
N := pN ;

else if deg(C) < deg(D)
C proves that D is based on primes of bad reduction
if deg(C) = 0 then return [1,A,B]
D := C; A′ = A1; B′ = B1;
N := p;

else #D proves that p is of bad reduction, so we ignore it
if gA = DA′ and gB = DB′

then G := pp(D) gcd(cont(A), cont(B)); # Theorem 6
A′ := A′/lc(G); B′ := B′/lc(G); # Fix leading coefficients
return [G,A′, B′]

else all primes must have been bad, and we start again

190 CHAPTER 4. MODULAR METHODS

1. Are there “good” reductions from Z to Zp? Yes — all primes except those
that divide both leading coefficients (Lemma 8) and do not divide a certain
resultant (Lemma 9). The technique of Lemma 12 (page 212) will show
that there are only finitely many bad primes, but does not give a bound.

2. How can we tell if p is good? We can’t, but given two different primes
p and q which give different results, we can tell which is definitely bad:
Corollary 13.

3. How many reductions should we take? We want the apparently good
primes to have a product greater than twice the Landau–Mignotte bound
(Corollaries 11 and 12). Alternatively we can use early termination as in
Figure 4.5.

4. How do we combine? Chinese Remainder Theorem (Algorithm 48).

5. How do we check the result? If it divides both the inputs, then it is a
common divisor, and hence (Corollary 13) has to be the greatest.

All these algorithms use modular computations as Monte Carlo (“always fast/
probably correct”) algorithms (Section 1.4.2), converted into a Las Vegas (“al-
ways correct/probably fast”) one in the style of Figure 1.2 because we have
correctness checks. In fact, because we can bound the number of bad primes (as
opposed to just the probability of a prime being bad) we are actually guaran-
teed polynomial running time, so these Las Vegas algorithms are in fact perfectly
normal algorithms, though the upper limits on the running times so obtained
are almost always gross over-estimates.

4.3 Polynomials in two variables

The same techniques can be used to compute the greatest common divisor of
polynomials in several variables. This is even more important than in the case of
univariate polynomials, since the coeffcient growth observed on page 70 becomes
degree growth in the other variables.

4.3.1 Degree Growth in Coefficients

As a trivial example of this, we can consider

A = (y2 − y − 1)x2 − (y2 − 2)x+ (2y2 + y + 1);

B = (y2 − y + 1)x2 − (y2 + 2)x+ (y2 + y + 2).

The first elimination gives

C = (2y2 − 4y)x+ (y4 − y3 + 2y2 + 3y + 3),

4.3. POLYNOMIALS IN TWO VARIABLES 191

and the second gives

D = −y10 + 3 y9 − 10 y8 + 11 y7 − 23 y6 + 22 y5 − 37 y4 + 29 y3 − 32 y2 + 15 y − 9.

Since this is a polynomial in y only, the greatest common divisor does not depend
on x, i.e. ppx(gcd(A,B)) = 1. Since contx(A) = 1, contx(gcd(A,B)) = 1, and
hence gcd(A,B) = 1, but we had to go via a polynomial of degree 10 to show
this. Space does not allow us to show bigger examples in full, but it can be
shown that, even using the subresultant algorithm (Algorithm 4), computing
the g.c.d. of polynomials of degree d in x and y can lead to intermediate10

polynomials of degree O(d2).
Suppose A and B both have degree dx in x and dy in y, with A =

∑
aix

i

and B =
∑
bix

i). After the first division (which is in fact a scaled subtraction
C := acB − bcA), the coefficients have, in general, degree 2dy in y. If we
assume11 that each division reduces the degree by 1, then the next result would
be λB − (µx + ν)C where µ = bc has degree dy in y and λ and ν have degree
3dy. This result has degree 5dy in y, but the subresultant algorithm will divide
through by bc, to leave a result D of degree dx − 2 in x and 4dy in y. The next
result would be λ′C− (µ′x+ ν′)D where µ′ = lcx(C) has degree 2dy in y and λ′

and ν′ have degree 6dy. This result has degree 10dy in y, but the subresultant
algorithm will divide by a factor of degree 4, leaving an E of degree 6dy in y.
The next time round, we will have degree (after subresultant removal) 8dy in y,
and ultimately degree 2dxdy in y when it has degree 0 in x.

If this is not frigntening enough, consider what happens if, rather than being
in x and y, our polynomials were in n+ 1 variables x and y1, . . . , yn. Then the
coefficients (with respect to x) of the initial polynomials would have degree
dy, and hence (at most) (1 + dy)n terms, whereas the result would have (1 +
2dxdy)n terms, roughly (2dx)n, or exponentially many, times as many terms as
the inputs.

Although the author knows of no way of formalising this statement, expe-
rience suggests that, even if f and g are sparse, i.e. have many fewer than
(1 + dy)n terms, the intermediate results are dense, and so the blowup ratio is
even worse.

If we wish to consider taking greatest common divisors of polynomials in
several variables, we clearly have to do better. Fortunately there are indeed
better algorithms. The historically first such algorithm is based on Algorithm
18, except that evaluating a variable at a value replaces working modulo a prime.

Open Problem 21 (Alternative Route for Bivariate Polynomial g.c.d.)
Is there any reasonable hope of basing an algorithm on Algorithm 17? Intuition
says not, and that, just as Algorithm 18 is preferred to Algorithm 17 for the uni-
variate problem, so should it be here, but to the best of the author’s knowledge
the question has never been explored.

10We stress this word. Unlike the integer case, where the coefficients of a g.c.d. can be
larger than those of the original polynomials, the degree in y of the final g.c.d. cannot be
greater than the (minimum of) the degrees (in y) of the inputs.

11This is the “normal p.r.s. assumption: see footnote 37 (page 75).

192 CHAPTER 4. MODULAR METHODS

The reader will observe that the treatment here is very similar to that of the
univariate case, and may well ask “can the treatments be unified?” Indeed
they can, and this was done in [Lau82], but the unification requires rather more
algebraic machinery than we have at our disposal.

Notation 29 From now until section 4.4, we will consider the bivariate case,
gcd(A,B) with A,B ∈ R[x, y] ≡ R[y][x], and we will be considering evaluation
maps replacing y by v ∈ R, writing Ay−v for the result of this evaluation.

This notation is analogous to the previous section, where Ap was the remainder
on dividing A by p.

Observation 12 Clearly R[x, y] ≡ R[x][y] also, and the definition of g.c.d. is
independent of this choice. Algorithmically, though, it seems as if we must make
such a choice. Some systems may already have imposed a default choice, but if
we have a free hand it is usual to choose as the main variable (x in Notation
29) the one which minimises min(deg(A),deg(B)).

4.3.2 The evaluation–interpolation relationship

In this sub-section, we answer a question analogous to that in section 4.2.2:
what do we do if the g.c.d. of the evaluations is not the image under evaluation
of the g.c.d. calculated before evaluation?

Lemma 10 If y− v does not divide the leading coefficient (in x) of gcd(A,B),
the degree (in x) of gcd(Ay−v, By−v) is greater than or equal to that of gcd(A,B).

Proof. Since gcd(A,B) divides A, then (gcd(A,B))y−v divides Ay−v. Similarly,
it divides By−v, and therefore it divides gcd(Ay−v, By−v). This implies that the
degree of gcd(Ay−v, By−v) is greater than or equal to that of gcd(A,B)y−v.
But the degree of gcd(A,B)y−v is equal to that of gcd(A,B), for the leading
coefficient of gcd(A,B) does not cancel when it is evaluated at v.

This lemma is not very easy to use on its own, for it supposes that we know
the g.c.d. (or at least its leading coefficient) before we are able to check whether
the modular reduction has the same degree. But this leading coefficient has
to divide the two leading coefficients of A and B, and this gives a formulation
which is easier to use.

Corollary 14 If y−v does not divide the leading coefficients (in x) of A and of
B (it may divide one, but not both), then the degree (in x) of gcd(Ay−v, By−v)
is greater than or equal to that of gcd(A,B).

As the g.c.d. is the only polynomial (to within a multiple from R[y]) of its degree
(in x) which divides A and B, we can test the correctness of our calculations
of the g.c.d.: if the result has the degree (in x) of gcd(Ay−v, By−v) (where v
satisfies the hypothesis of this corollary) and if it divides A and B, then it is
the g.c.d. (to within a multiple from R[y]).

4.3. POLYNOMIALS IN TWO VARIABLES 193

As in section 4.2.2, it is quite possible that we could find a gcd(Ay−v, By−v)
of too high a degree: consider A = x− 1, B = x− y and the evaluation y 7→ 1.
The following lemma shows that this possibility can only arise for a finite number
of v.

Lemma 11 Let C = gcd(A,B). If v satisfies the condition of the corollary
above, and if y − v does not divide Resx(A/C,B/C), then gcd(Ay−v, By−v) =
Cy−v.

Proof. A/C and B/C are relatively prime, for otherwise C would not be the
g.c.d. of A and B. By the corollary, Cy−v does not vanish. Therefore

gcd(Ay−v, By−v) = Cy−v gcd(Ay−v/Cy−v, By−v/Cy−v).

For the lemma to be false, the last g.c.d. has to be non-trivial. This implies
that the resultant Resx(Ay−v/Cy−v, By−v/Cy−v) vanishes, by proposition 79 of
the Appendix. This resultant is the determinant of a Sylvester matrix12, and
|My−v| = (|M |)y−v, for the determinant is only a sum of products of the coef-
ficients. In the present case, this amounts to saying that Resx(A/C,B/C)y−v

vanishes, that is that y− v divides Resx(A/C,B/C). But the hypotheses of the
lemma exclude this possibility.

Definition 90 If gcd(Ay−v, By−v) = gcd(A,B)y−v, we say that the evaluation
of this problem at v is good, or that y − v is of good reduction. If not, we say
that y − v is of bad reduction.

This lemma implies, in particular, that there are only a finite number of values v
such that gcd(Ay−v, By−v) does not have the same degree as that of gcd(A,B),
that is the y− v which divide the g.c.d. of the leading coefficients and the y− v
which divide the resultant of the lemma (the resultant is non-zero, and therefore
has only a finite number of divisors). In particular, if A and B are relatively
prime, we can always find a v such that Ay−v and By−v are relatively prime.

We can summarize this section as follows.

Theorem 41 (Good Reduction Theorem (polynomial)) If y−v does not
divide gcd(aα, bβ) (which can be checked for in advance) or Resx(A/C,B/C),
then v is of good reduction. Furthermore, if y − v divides Resx(A/C,B/C) but
not gcd(aα, bβ), then the gcd computed modulo y − v has a larger degree than
the true result.

12There’s a subtle point here. The resultant of polynomials of degrees m and n is the
determinant of an (m + n)2 matrix. Hence if y − v divides neither leading coefficient, the
Sylvester matrix of Ay−v and By−v is indeed the reduction of the Sylvester matrix of A and
B. If y−v divides one leading coefficient, but not the other, the Sylvester matrix of Ay−v and
By−v is smaller, and the reader should check that this only makes a difference of a product
of that leading coefficient which doesn’t vanish when v is substituted for y.

194 CHAPTER 4. MODULAR METHODS

4.3.3 G.c.d. in Zp[x, y]

By Gauss’ Lemma (Theorem 6),

gcd(A,B) = gcd(contx(A), contx(B)) gcd(ppx(A),ppx(B)),

and the real problem is the second factor.

Observation 13 While the content of A =
∑m

i=0 aix
i can be computed as

gcd(am, gcd(am−1, gcd(am−2, . . . , a0) . . .)),

the following process is more efficient in practice (asymptotically, it’s only worth
a constant factor on what is asymptotically the cheaper operation, but in practice
it is worthwhile), and is valid over any g.c.d. domain R with a concept of
‘size’ equivalent to degree. The point is that the g.c.d. of the hi has to divide
the ransom combination h as well, and, unless we’re unlucky, there will be no
spurious factors in gcd(g, h).

Algorithm 20 (Content)
Input: A =

∑m
i=0 aix

i ∈ R[x].
Output: contx(A)

S := {ai} # Really a set, as duplicates don’t matter
g := minimal degree element of S; S := S \ {g}
if g is a unit

then return 1
g := gcd(g, h :=

∑
hi∈S λihi) # λi random

if g is a unit
then return 1

for h ∈ S
if g does not divide h

then g := gcd(g, h)
if g is a unit

then return 1
return g

We present an Algorithm (21), analogous to Algorithm 18, for the g.c.d. of
primitive polynomials. It would equally be possible to start from Algorithm 19.
There is also an ‘early termination’ version, analogous to the code in Figure 4.5.

We should note the caveat on find_value in Figure 4.8: although we know
there are only a finite number of bad values v, since Zp is finite it is possible
for too many, indeed all, values in Zp to be bad, and we may need to move to
an algebraic extension of Zp to have enough good values.

4.3.4 G.c.d. in Z[x, y]

We know how to compute g.c.d.s in Zp[x], and wish to compute g.c.d.s in Z[x, y].
We have seen the building blocks in the previous sections, diagrammatically in

4.3. POLYNOMIALS IN TWO VARIABLES 195

Figure 4.7: Diagrammatic illustration of Algorithm 21

Zp[y][x] -> Zp[y][x]

k×reduce ↓ ↑
interpret
& check

Zp[y]y−v1 [x]
gcd−→ Zp[y]y−v1 [x]

...
...

...

Zp[y]y−vk [x]
gcd−→ Zp[y]y−vk

[x]

 C.R.T.−→ Zp[y][x]∏′
(y − v1) · · · (y − vk)

∏′
indicates that some of the vi may have been rejected by the compatibility

checks, so the product is over a subset of (y − v1) · · · (y − vk).

Figure 4.8: Algorithm 21

Algorithm 21 (Bivariate Modular GCD)
Input: A,B primitive polynomials in Zp[y[[x].
Output: gcd(A,B)

g := gcd(lcx(A), lcx(B));
v := find_value(g);
D := gmodular_gcd(Ay−v, By−v, p);
if deg(D) = 0 then return 1
N := y − v; # N is the modulus we will be constructing
while degy(N) ≤ min(degy(A),degy(B)) repeat

v := find_value(g);
C := gmodular_gcd(Ay−v, By−v, p);
if deg(C) = deg(D)

then D := Algorithm 50(C,D, y − v,N);
N := (y − v)N ;

else if deg(C) < deg(D)
C proves that D is based on values of bad reduction
if deg(C) = 0 then return 1
D := C;
N := y − v;

else #D proves that v is of bad reduction, so we ignore it
D := pp(D); # In case multiplying by g was overkill
Check that D divides A and B, and return it
If not, all values must have been bad, and we start again

find_value(g) finds a new value v each time, such that gy−v does not vanish.
It is conceivable that we will exhaust Zp, in which case we have to move to
choosing v from an algebraic extension of Zp. Indeed it is possible that there
are no values v in Zp such that gy−v does not vanish, e.g. g = y(y − 1)(y − 2)
when p = 3.

196 CHAPTER 4. MODULAR METHODS

Figure 4.9: Diagrammatic illustration of g.c.d.s in Z[x, y] (1)

Z[y][x] -> Z[y][x]

k×reduce ↓ ↑
interpret
& check

Z[y]y−v1 [x]
gcd−→ Z[y]y−v1 [x]

...
...

...

Z[y]y−vk [x]
gcd−→ Z[y]y−vk [x]
↑

C.R.T.−→ Z[y][x]∏′

(y − v1) · · · (y − vk)

using Algorithm 18/19

Figure 4.10: Diagrammatic illustration of g.c.d.s in Z[x, y] (2)

Z[y][x] -> Z[y][x]

k×reduce ↓ ↑
interpret
& check

Zp1
[y][x]

gcd−→ Zp1
[y][x]

...
...

...

Zpk
[y][x]

gcd−→ Zpk
[y][x]

↑

C.R.T.−→ Z[y][x]∏′

p1 · · · pk

using Algorithm 21

figures 4.3 and 4.7. We have a choice of ways of combining these constructions,
though, depending on what we choose as the intermediate domain.

Z[x] Here we use an analogue of Figure 4.7 to reduce us to the univariate
case. The corresponding diagram then looks like Figure 4.9. There is one
complication we should note, though. We are now applying the Chinese
Remainder Theorem to polynomials in Z[y], rather than Zp[y], and Z is
not a field. Indeed, the Theorem does not always apply over Z, since,
for example, the polynomial satisfying f(0) = 0 and f(2) = 1 is f = 1

2y,
which is in Q[y] but not Z[y].

Should this happen, we actually know that all reductions so far are wrong,
because they are compatible in degree, but cannot be right. Hence we start
again.

Zp[y][x] Here we use an analogue of Figure 4.2 to reduce us to the case of Figure
4.7. The overall structure is shown in Figure 4.10.

Open Problem 22 (Which is the Better Route for Bivariate g.c.d.?) As
far as the author can tell, the question of which route to follow has not been sys-
tematically explored. The initial literature [Bro71b, Algorithm M] and the more

4.4. POLYNOMIALS IN SEVERAL VARIABLES 197

recent survey [Lau82] assume the route in Figure 4.10. [Bro71b] explicitly as-
sumes that p is large enough that we never run out of values, i.e. that the
algebraic extension at the end of Figure 4.8 is never needed.

Implementations the author has seen tend to follow the route in Figure 4.9.
This is probably for pragmatic reasons: as one is writing a system one first
wishes for univariate g.c.d.s, so implements Algorithm 18 (or 19). Once one
has this, Figure 4.9 is less work.

There is a natural tendency to believe that Figure 4.10 is better, as all num-
bers involved are bounded by p untl the very last Chinese Remainder calculations.
On the other hand, if the g.c.d. is actually 1, but the first prime chosen is un-
lucky, one will reconstruct all the way back to a bivariate before realising the
problem.

Let us look at the questions on page 174.

1. Are there ”good” reductions from R? Yes, since there are only finitely
many bad reductions, but it is possible that we will need to go to an
algebraic extension if we are working over a finite field: see the caveat on
find_value in Figure 4.8.

2. How can we tell if an evaluation v is good? We can’t, but given two
different evaluations v and w which give different results, we can tell which
is definitely bad: Corollary 14.

3. How many reductions should we take? If d bounds the degree in y of the
g.c.d., then we only need d+ 1 good reductions. We don’t have the same
problem as in the univariate case, when our bounds were almost certainly
pessimistic, but it is nevertheless common to use early termination as in
Figure 4.5.

4. How do we combine the results — Algorithm 50.

5. How do we check the result? If it divides both the inputs, then it is a
common divisor, and hence (Corollary 14) has to be the greatest.

As on page 190, these algorithms use modular/evaluation computations as
Monte Carlo (“always fast/probably correct”) algorithms (Section 1.4.2), con-
verted into a Las Vegas (“always correct/probably fast”) one in the style of
Figure 1.2 because we have correctness checks. In fact, because we can bound
the number of bad evaluations and bad primes (as opposed to just the proba-
bility of an evaluation/prime being bad) we are actually guaranteed polynomial
running time. It is even truer here that the upper limits on the running times
so obtained are almost always gross over-estimates.

4.4 Polynomials in several variables

There is no conceptual difficulty in generalising the work of the previous section
to n variables. In principle, there are n possible diagrams corresponding to

198 CHAPTER 4. MODULAR METHODS

Figures 4.9-4.10, but in practice the choice is between ‘modular last’ (Figure
4.9) and ‘modular first’ (Figure 4.10), and the author has never seen a hybrid
algorithm whch reduces, say,

Z[y][z][x]→ Z[y][z]z−v[x]→ Zp[y][z]z−v[x]→ Zp[y]y−v′ [z]z−v[x].

Theorem 42 ([Bro71b, (95)]) Suppose f, g ∈ Z[x1, . . . , xn]. Let l bound the
lengths of the integer coefficients of f and g, and d bound their degree in each
of the xi. Then under the following assumptions:

1. classical O(N2) multiplication and division of N -word numbers or N -term
polynomials;

2. no bad values are found, either for primes or for evaluation points;

3. that the answer, and corresponding quotients, have coefficient lengths at
most l;

4. that we can use single-word primes;

the running time of the ‘modular first’ (Figure 4.10) algorithm is

O
(
l2(d+ 1)n + (d+ 1)n+1

)
.

This contrasts with the subresultant algorithm’s bound [op. cit. (80)] (assuming
the p.r.s. are normal) of

O
(
l2(d+ 1)4n22n

2

3n
)
,

so the dependence on (d+1)n has essentially gone from quartic to linear. (d+1)n

is the maximal number of terms in the input, so this “modular first” algorithm
is “almost optimal” in the sense of Definition 20 for dense inputs.

The real challenge comes with the potential sparsity of the polynomials.
The factor (d + 1)n in the running time comes simply from the fact that a
dense polynomial of degree d in n variables has that many terms, and we will
need (d + 1)n−1 univariate g.c.d.s (therefore (d + 1)n coefficients) to deduce
these potential terms. Furthermore it is possible for sparse polynomials to have
dense g.c.d.s: the following elegant univariate example is due to [Sch03a] (see
also (2.21)):

gcd(xpq − 1︸ ︷︷ ︸
f(x)

, xp+q − xp − xq + 1︸ ︷︷ ︸
g(x)

) =
(xp − 1)(xq − 1)

x− 1
= xp+q−1 − xp+q−2 ± · · · − 1︸ ︷︷ ︸

h(x)

.

(4.11)

4.4. POLYNOMIALS IN SEVERAL VARIABLES 199

Example 24 (Dense g.c.d.s) Therefore

gcd(f(x1)f(x2) · · · f(xk), g(x1)g(x2) · · · g(xk)) = h(x1)h(x2) · · ·h(xk), (4.12)

and the righthand side has (2 min(p, q))
k
terms, whereas the arguments to gcd

have 2k and 4k terms.
In fact, we can be slightly more subtle and take

gcd(f(x1)g(x2)f(x3)g(x4) · · · g(xk), g(x1)f(x2)g(x3)f(x4) · · · f(xk)), (4.13)

with the same gcd but where the arguments have 8k/2 ≈ 2.8k terms.

Problem 6 (Sparse g.c.d.) Produce an algorithm for sparse multivariate g.c.d.
whose running time is polynomial, ideally linear, in the number of terms in the
inputs and output. If we can’t find a deterministic algorithm, maybe we can find
a Las Vegas (section 1.4.2) one.

The ‘modular first’ (Figure 4.10) algorithm does not solve this problem as it
will attempt to interpolate

∏
(d1 + 1) terms if the g.c.d. has degree di in xi.

The problem was first addressed, in Las Vegas style, in [Zip79a, Zip79b].

4.4.1 A worked example

Let f be

x5y7z4 + x4y8z4 + x4y7z4 + x3y7z4 + x2y8z4 + x5y3z5 + x4y4z5+
x3y4z6 + x2y7z4 + x2y5z6 − x5y7 + x5yz6 − x4y8 + x4y3z5+
x4y2z6 − x3y4z5 − x2y5z5 + x2y4z6 − x4y7 + x4yz6 − x2y4z5 − x3y7−
x2y8 − x2y7 − x5y3 − x4y4 − x4y3 − x5y − x4y2 − x4y + x3z+
x2yz − x3 − x2y + x2z − x2 + xz + yz − x− y + z − 1

(4.14)
and g be

x6y7z4 − x4y7z4 + x6y3z5 + x4y7z3 + x4y4z6 − x6y7 + x6yz6 + x4y7z2

−x4y4z5 − 2x2y7z4 + x4y7z − 2x4y3z5 + x2y7z3 − 2x2y4z6 + 2x4y7+
x4y3z4 − 2x4yz6 + x2y7z2 + 3x2y4z5 + x4y3z3 + x4yz5 + x2y7z−
x6y3 + x4y3z2 + x4yz4 + 3x2y7 + x4y3z + x4yz3 − x6y + 3x4y3+
x4yz2 + x4yz + 3x4y + x4z − x4 − x2z + 2x2 − 2 z + 3

(4.15)
polynomials with 42 and 39 terms respectively (as against the 378 and 392 they
would have if they were dense of the same degree).

Let us regard x as the variable to be preserved throughout. If we compute
gcd(f |z=2, g|z=2) (which would require at least13 8 y values) we get (assuming
that z = 2 is a good reduction)

gcd(f, g)|z=2 =
(
15 y7 + 31 y3 + 63 y

)
x4 +

(
15 y7 + 32 y4 + 1

)
x2 + 1. (4.16)

13In fact, with y = 0 both f and g drop in x-degree, whereas with y = −2 we get a g.c.d.
with x-degree 5, as y = −2 is a root of the resultant in Lemma 11.

200 CHAPTER 4. MODULAR METHODS

We note that each coefficient (with respect to x) has at most three terms. A
dense algorithm would compute five more equivalents of (4.16), at different
z values, and then interpolate z polynomials. Each such computation would
require 8 y values. Instead, if we believe14 that (4.16) describes accurately the
dependence of the g.c.d. on y, we should be able to deduce these equivalents
with only three y values. Consider

gcd(f |z=3,y=1, g|z=3,y=1) = 525x4 + 284x2 + 1
gcd(f |z=3,y=−1, g|z=3,y=−1) = −525x4 + 204x2 + 1

gcd(f |z=3,y=2, g|z=3,y=2) = 6816x4 + 9009x2 + 1

 (4.17)

We should interpolate the coefficients of x4 to fit the template ay7 + by3 + cy,
and those of x2 to fit the template a′y7 + b′y4 + c, while those of x0 should fit
the template a′′y0, i.e. be constant. Considering the coefficients of x4, we have
to solve the equations

a+ b+ c = 525
−a− b− c = −525

27a+ 23b+ 2c = 6816

 . (4.18)

Unfortunately, these equations are under-determined (the second is minus twice
the first), so we have to add another equation to (4.17), e.g.

gcd(f |z=3,y=3, g|z=3,y=3) = 91839x4 + 107164x2 + 1,

which adds 37a+ 33b+ 3c = 91839 to (4.18) and the augmented system is now
soluble, as a = 40, b = 121, c = 364.

This process gives us an assumed (two assumptions are now in play here:
that z = 3 is a good reduction, and that (4.16) describes the sparsity structure
gcd(f, g) accurately) value of

gcd(f, g)|z=3 =
(
40 y7 + 121 y3 + 364 y

)
x4+

(
40 y7 + 243 y4 + 1

)
x2+1. (4.19)

Similarly we can deduce that

gcd(f, g)|z=4 =
(
85 y7 + 341 y3 + 1365 y

)
x4 +

(
85 y7 + 1024 y4 + 1

)
x2 + 1

gcd(f, g)|z=5 =
(
156 y7 + 781 y3 + 3906 y

)
x4 +

(
156 y7 + 3125 y4 + 1

)
x2 + 1

gcd(f, g)|z=6 =
(
259 y7 + 1555 y3 + 9331 y

)
x4 +

(
259 y7 + 7776 y4 + 1

)
x2 + 1

gcd(f, g)|z=7 =
(
400 y7 + 2801 y3 + 19608 y

)
x4 +

(
400 y7 + 16807 y4 + 1

)
x2 + 1

gcd(f, g)|z=8 =
(
585 y7 + 4681 y3 + 37449 y

)
x4 +

(
585 y7 + 32768 y4 + 1

)
x2 + 1

(4.20)
(each requiring, at least, three y evaluations, but typically no more).

If we now examine the coefficients of x4y7, and assume that in gcd(f, g) there
is a corresponding term x4y7p(z), we see that p(2) = 15 (from (4.16)), p(3) = 40
(from (4.19)), and similarly p(4), . . . , p(8) from (4.20). Using Algorithm 49, we

14We refer to this as the Zippel assumption, after its introduction in [Zip79a, Zip79b], and
formalize it in Definition 92.

4.4. POLYNOMIALS IN SEVERAL VARIABLES 201

deduce that p(z) = z3 + z2 + z + 1. We can do the same for all the other
(presumed) xiyj terms in the g.c.d., to get the following final result:

x4
(
y7
(
z3 + z2 + z + 1

)
+ y3

(
z4 + z3 + z2 + z + 1

)
+

y
(
z5 + z4 + z3 + z2 + z + 1

))
+ x2

(
y7
(
z3 + z2 + z + 1

)
+ y4z5 + 1

)
+ 1.

(4.21)
We still need to check that it does divide g and g, but, once we have done so,
we are assured by Corollary 14 that it is the greatest common divisor.

4.4.2 Converting this to an algorithm

There are, however, several obstacles to converting this to an algorithm: most
centring around the linear systems such as (4.18). First, however, we must
formalize the assumption made on page 200.

Definition 91 We define the skeleton of a polynomial f ∈ R[x1, . . . , xn], de-
noted Sk(f), to be the set of monomials in a (notional) distributed representation
of f .

Definition 92 We say that an evaluation ϕ : R[x1, . . . , xn] → R[xi : i /∈ S],
which associates a value in R to every xi : i ∈ S, satisfies the Zippel assumption
for f if it preserves the skeleton in the variables not in S, i.e. ψ(Sk(f)) =
Sk(ϕ(f)), where ψ deletes the powers of xi : i ∈ S from monomials.

Another way of saying this is to write f (notionally) in R[xi : i ∈ S][xi : i /∈
S], where the outer [. . .] is represented distributedly, and say that ϕ satisfies the
Zippel assumption for f if it maps no non-zero coefficient of ϕ to zero.

For example, if f = (y2 − 1)x2 − x, Sk(f) = {x2y2, x2, x}. If ϕ : y 7→ 1,
then ϕ(f) = −x, so Sk(ϕ(f)) = {x}, but ψ(Sk(f)) = {x2, x}, so this ϕ does
not satisfy the Zippel assumption (it have mapped y2 − 1 to 0). However, if
ϕ : y 7→ 2, ϕ(f) = 3x2 − x and Sk(ϕ(f)) = {x2, x}, so this ϕ satisfies the Zippel
assumption.

Hence the assumption on page 200 was that z 7→ 2 satisfies the Zippel
assumption. Let us now look at the problems surrounding (4.18). In fact, there
are three of them.

1. The equations might be under-determined, as we saw there.

2. We need to solve a t × t system, where t is the number of terms being
interpolated. This will normally take O(t3) coefficient operations, and, as
we know from section 3.2.3, the coefficients may also grow during these
operations.

3. The third problem really goes back to (4.17). We stated that

gcd(f |z=3,y=−1, g|z=3,y=−1) = −525x4 + 204x2 + 1,

202 CHAPTER 4. MODULAR METHODS

Figure 4.11: Diagrammatic illustration of sparse g.c.d.

R[y][x] -> R[y][x]

↓ k×reduce ↑
interpret
& check

R[y]yn−v1 [x]
gcd−→ R[y]yn−v1 [x]
↙ Sk

R[y]yn−v2 [x]
gcd′

−→ R[y]yn−v2 [x]
...

...
...

R[y]yn−vk [x]
gcd′

−→ R[y]yn−vk [x]

C.R.T.−→ R[y][x]∏′

(yn − v1) · · · (yn − vk)

∏′
indicates that some of the vi may have been rejected by the compatibility

checks, so the product is over a subset of (yn − v1) · · · (yn − vk).
gcd is a recursive call to this algorithm, while gcd′ indicates a g.c.d. computation
to a prescribed skeleton, indicated by Sk: Algorithm 24.

but we could equally well have said that it was 525x4 − 204x2 − 1, at
which point we would have deduced that the equivalent of (4.18) was
inconsistent. In fact, Definition 31 merely defines a greatest common
divisor, for the reasons outlined there. We therefore, as in Algorithm 18,
impose gcd(lc(f), lc(g)), as the leading coefficient of the greatest common
divisor.

To solve the first two problems, we will use the theory of section A.5, and
in particular Corollary 30, which guarantees that a Vandermonde matrix is
invertible. In fact, we will need to solve a modified Vandermonde system of
form (A.12), and rely on Corollary 31. If, instead of random values for y, we
had used powers of a given value, we would get such a system in place of (4.18).

We now give the interlocking set of algorithms, in Figures 4.12–4.14. We
present them in the context of the diagram in Figure 4.11.

4.4.3 Worked example continued

We now consider a larger example in four variables. Let f and g be the polyno-
mials in Figures 4.15 and 4.16, with 104 and 83 terms respectively (as against
the 3024 and 3136 they would have if they were dense of the same degree).

Let us regard x as the variable to be preserved throughout. f |w=1 and g|w=1

are, in fact, the polynomials of (4.14) and (4.15), whose g.c.d. we have already
computed to be (4.21).

We note that the coefficients (with respect to x) have fifteen, six and one
term respectively, and f and g both have degree seven in w. We need to compute
seven more equivalents of (4.21), at different w values, and then interpolate w
polynomials. Let us consider computing gcd(f |w=2, g|w=2) under the assump-
tions that 1 and 2 are good values of w, and that (4.21) correctly describes the

4.4. POLYNOMIALS IN SEVERAL VARIABLES 203

Figure 4.12: Algorithm 22: Sparse g.c.d.

Algorithm 22 (Sparse g.c.d.)
Input: A,B polynomials in R[y][x].
Output: gcd(A,B)

Ac := contx(A); A := A/Ac; # Using Algorithm 20, which
Bc := contx(B); B := B/Bc; # calls this algorithm recursively
g :=Algorithm 22(lcx(A), lcx(B)); # one fewer variable
G :=failed

while G =failed # Expect only one iteration
G :=Algorithm 23(g, gA, gB);

return ppx(G)× Algorithm 22(Ac, Bc); # one fewer variable

Figure 4.13: Algorithm 23: Inner sparse g.c.d.

Algorithm 23 (Inner sparse g.c.d.)
Input: g leading coefficient; A,B polynomials in R[y][x].
Output: gcd(A,B), but with leading coefficient g

or failed if we don’t have the Zippel assumption

dn := min(degyn
(A),degyn

(B)) # (over)estimate for degyn
(gcd(A,B))

v0 :=random(lc(A), lc(B)); #assumed good and satisfying Zippel for gcd(A,B);
P0 :=Algorithm 23(g|yn−v0 , A|yn−v0 , B|yn−v0)
if P0 =failed

return failed # Don’t try again
dx := degx(P0)
i := 0
while i < d

v :=random(lc(A), lc(B)); #assumed good
Pi+1 :=Algorithm 24(Sk(P0), g|yn−v, A|yn−v, B|yn−v)
if degx(Pi+1) > dx # Either vj in Algorithm 24 or

continue round the loop # |yn−v was not a good evaluation
if degx(Pi+1) < dx

return failed # |yn−v0 was not a good evaluation
i := i+ 1; vi := v # store v and the corresponding P

C :=Algorithm 50({Pi}, {vi}) # Reconstruct
if C divides both A and B

return C
else return failed

random(lc(A), lc(B)) chooses a value not annihilating both leading coefficients

204 CHAPTER 4. MODULAR METHODS

Figure 4.14: Algorithm 24: Sparse g.c.d. from skeleton

Algorithm 24 (Sparse g.c.d. from skeleton)
Input: Sk skeleton, g leading coefficient; A,B polynomials in R[y][x].
Output: gcd(A,B) assumed to fit Sk, but with leading coefficient g

or the univariate gcd if this doesn’t fit Sk
Note that y is (y1, . . . , yn−1) since yn has been evaluated

dx := degx(Sk)
t := max0≤i≤dxterm count(Sk, xi))
v = (v1, . . . , vn−1):= values in R
for j := 1 . . . t

C := gcd(Ay=vj , By=vj)
if degx(C) ̸= dx

return C # We return the univariate

Pj :=
gy=vj

lc(C) C # impose leading coefficient

G := 0
for i := 0 . . . dx

S := [yn : xiyn ∈ Sk]
R := [m|y=v : m ∈ S]
V := [coeff(xi, Pj) : j = 1 . . .length(S)]
W :=Algorithm 52(R, V)
for j = 1 . . .length(S)

G := G+WjSjx
i

return G

Figure 4.15: f from section 4.4.3

4w6x4y7z + 2w5x5y7z + 2w5x4y8z − 4w6x4y7 − 2w5x5y7 − 2w5x4y8−
2w5x4y7z + 2w5x4y7 + 2wx4y7z4 + x5y7z4 + x4y8z4 + 6w7x4y3z+
3w6x5y3z + 3w6x4y4z + 4w6x4yz4 + 2w5x5yz4 + 2w5x4y2z4 − x4y7z4−
6w7x4y3 − 3w6x5y3 − 3w6x4y4 − 3w6x4y3z − 4w6x4yz3 − 2w5x5yz3−
2w5x4y2z3 − 2w5x4yz4 + 2wx2y7z4 + x3y7z4 + x2y8z4 + 3w6x4y3+
2w5x4yz3 − 4wx4y7z + 2wx4y3z5 + 2wx2y4z6 − 2x5y7z + x5y3z5−
2x4y8z + x4y4z5 + x3y4z6 − x2y7z4 + x2y5z6 + 2wx4y7 + 2wx4yz6−
2wx2y4z5 + x5y7 + x5yz6 + x4y8 + 2x4y7z − x4y3z5 + x4y2z6 − x3y4z5−
x2y5z5 − x2y4z6 − x4y7 − x4yz6 + x2y4z5 − 4wx4yz4 − 2wx2y7 − 2x5yz4−
2x4y2z4 − x3y7 − x2y8 − 6wx4y3z + 4wx4yz3 − 3x5y3z + 2x5yz3−
3x4y4z + 2x4y2z3 + 2x4yz4 + x2y7 + 4w7z + 2w6xz + 2w6yz + 4wx4y3

+2x5y3 + 2x4y4 + 3x4y3z − 2x4yz3 − 4w7 − 2w6x− 2w6y − 2w6z
−2x4y3 + 2w6 − 2wx4y − x5y − x4y2 + x4y + 2wx2z + x3z + x2yz−
2wx2 − x3 − x2y − x2z − 2wz + x2 − xz − yz + 2w + x+ y + z − 1

4.4. POLYNOMIALS IN SEVERAL VARIABLES 205

Figure 4.16: g from section 4.4.3

2w5x6y7z + 2w6x4y7z − 2w5x6y7 + 2w6x4y7 − 2w5x4y7z + x6y7z4+
3w6x6y3z + 2w5x6yz4 + wx4y7z4 + 3w7x4y3z − 3w6x6y3 + 2w6x4yz4−
2w5x6yz3 + 2wx4y7z3 + 3w7x4y3 − 3w6x4y3z + 2w6x4yz3 − 2w5x4yz4+
2wx4y7z2 + wx2y7z4 − 2x6y7z + x6y3z5 − x4y7z3 + x4y4z6 + wx4y3z5+
2wx2y7z3 + wx2y4z6 + x6y7 + x6yz6 − x4y7z2 − x4y4z5 − x2y7z4 − wx4y7+
2wx4y3z4 + wx4yz6 + 2wx2y7z2 + wx2y4z5 + x4y7z − x4y3z5 − x2y7z3−
x2y4z6 + 2wx4y3z3 + 2wx4yz5 + 2wx2y7z − 2x6yz4 − x4y7 − x4y3z4−
x4yz6 − x2y7z2 + 2wx4y3z2 + wx2y7 − 3x6y3z + 2x6yz3 − x4y3z3 − x4yz5−
x2y7z + 2w6x2z − wx4y3z + 2x6y3 − x4y3z2 + x4yz4 + 2w7z − 2w6x2−
2wx4y3 + 2wx4yz2 + 2x4y3z − x4yz3 + 2w7 − 2w6z + 2wx4yz − x6y−
x4yz2 + wx4y − x4yz + x4z + wx2z − x4 + wx2 − 2x2z − wz + x2 − w + z

Table 4.1: g.c.d.s of univariate images of f and g
y z gcd(f |w=2,y,z, g|w=2,y,z)
2 3 19612x4 + 9009x2 + 127
4 9 15381680x4 + 28551425x2 + 127
8 27 43407439216x4 + 101638909953x2 + 127

16 81 144693004136768x4 + 372950726410241x2 + 127
32 243 495206093484836032x4 + 1383508483289120769x2 + 127
64 729 1706321451043380811520x4 + 5160513838422975053825x2 + 127

...
...

...
215 315 19841169176522147209214289933300473966170786477572096x4+

821125029267868660742578644189289158324777001819308033x2

+127

sparsity structure of gcd(f, g).
We take evaluations with y = 2i and z = 3i. For simplicity, let us consider

the coefficient of x2, which, we know from (4.21), is assumed to have the shape

y7
(
a1z

3 + a2z
2 + a3z + a4

)
+ a5y

4z5 + a6. (4.22)

Hence, taking the coefficients of x2 from Table 4.1,

2733a1 + 2732a2 + 273a3 + 27a4 + 2435a5 + a6 = 9009(
2733

)2
a1 +

(
2732

)2
a2 +

(
273
)2
a3 +

(
27
)2
a4 +

(
2433

)2
a5 + a6 = 28551425(

2733
)3
a1 +

(
2732

)3
a2 +

(
273
)3
a3 +

(
27
)3
a4 +

(
2433

)3
a5 + a6 = 10 . . .(

2733
)4
a1 +

(
2732

)4
a2 +

(
273
)4
a3 +

(
27
)4
a4 +

(
2433

)4
a5 + a6 = 37 . . .(

2733
)5
a1 +

(
2732

)5
a2 +

(
273
)5
a3 +

(
27
)5
a4 +

(
2433

)5
a5 + a6 = 13 . . .(

2733
)6
a1 +

(
2732

)6
a2 +

(
273
)6
a3 +

(
27
)6
a4 +

(
2433

)6
a5 + a6 = 51 . . .

(4.23)

206 CHAPTER 4. MODULAR METHODS

This is indeed a system of linear equations

4.4.4 Conclusions

Let us look at the questions on page 174.

1. Are there evaluations which are not merely good in the sense of the pre-
vious section, but also satisfy the Zippel assumption? The answer is yes.
For the evaluation yn = v to be good, v must not annihilate both leading
coefficients (checked for in random) and must not be a root of the relevant
resultant (Corollary 14). For the Zippel assumption to be violated, a cer-
tain coefficient must vanish under the ψ of Definition 92. There are only
finitely many such, and each such only has finitely many roots, hence in
all there are only finitely many bad values for each xi.

2. How can we tell if an evaluation should be used? The tests in Algorithm
23 apply.

3. How many reductions should we take? The number of good reductions at
each stage xi is 1+min(degxi

(f),degxi
(g)), by the usual argument on the

degree of a g.c.d.

Open Problem 23 (Bad reductions in Zippel’s algorithm) An in-
teresting question is how many bad reductions there can be. If the degree
in each variable is at most d, then the number of values that annihilate
both leading coefficients is at most d, and the number that divide the rele-
vant resultant is at most 2d2, the degree of the resultant. The challenge is
to bound the number that violate the Zippel assumption, which we showed
was finite in point 1.

It seems to the author, though he has not seen this in the literature, that,
as a polynomial with t terms can have at most 2t−1 roots (Proposition 26),
the number of Zippel-bad values is bounded by twice the number of terms
in the g.c.d. being computed. Though we have no good a priori bound on
this (Example 24), it means that the number of Zippel-bad reductions is
linear in the size of the output.

Conjecture 1 Let df , dg be the degrees of f in the main variable x, d
be maxi min(degyi

(f),degyi
(g)), d′ be maxi(degyi

(f)+degyi
(g)) and t the

number of terms in gcd(f, g). Then the running time of Zippel’s algorithm
is bounded by d+ (df + dg)d′︸ ︷︷ ︸

kills Res

+2t

min(df , dg)dt︸ ︷︷ ︸
cost

, (4.24)

where we multiply the number of evaluations (allowing for the maximal
number of failed ones) by the cost of a successful calculation. There is
also an O(t2) cost of the linear algebra, but this is dominated by the cost
of the evaluations.

4.5. FURTHER APPLICATIONS 207

4. How do we combine? This is the main subtlety of this method, using the
theory of section A.5.

5. How do we check the result? We have used the “If C divides both A andB”
test, as in Algorithm 17 et seq . We could consider using a “reconstruction
of cofactors” argument, as in Algorithm 19. To the best of the author’s
knowledge, this route has not been explored experimentally. However,
there is a strong argument against it: it would require the evaluations to
satisfy the Zippel assumption for the cofactors as well as for the g.c.d.,
and intuitively this seems like asking for trouble.

A variant on this algorithm is presented in [HM16], which uses an interpolation
technique from [GLL09], and this seems to be the current state of the art, though
there is no formal complexity analysis.

In practice these methods seem to solve Open Problem 2, a g.c.d. algorithm
whose running time is polynomial in the number of terms in the input and
outputs, even though (4.24) is O(t2), rather than the O(t) we would need for
the algorithm to be optimal.

4.5 Further Applications

4.5.1 Resultants and Discriminants

The resultant of two polynomials f =
∑n

i=0 aix
i and g =

∑m
i=0 bix

i is defined
(Definition 116) as the determinant of a certain (m+n)×(m+n) matrix Syl(f, g).
Hence if Syl(f, g)|p = Syl(f |p, g|p) (or the equivalent for |y−v), the theory of
Section 4.1 holds. But the only way this can fail to hold is if Syl(f |p, g|p) is no
longer an (m + n) × (m + n) matrix, i.e. if an or bm evaluate to zero. Hence
again we have simple answer to the questions on page 174.

1. Are there ”good” reductions from R: yes — all evaluations which do not
reduce anbm to zero, and this can be tested a priori .

2. How can we tell if Ri is good?: in advance!

3–5 As in Section 4.1.

4.5.2 Linear Systems

We consider the matrix equation

M.x = a, (3.13)

and the case of M and a having integer entries, and reduction modulo a prime:
the polynomial version is very similar. Conceptually, this has the well-known
solution

x = M−1.a. (3.14)

208 CHAPTER 4. MODULAR METHODS

This formulation shows the fundamental problem: M−1, and x itself, might
not have integer entries. In fact, if p divides det(M), (M|p)−1 does not exist.
There are two solutions to this problem.

4.5.2.1 Clear Fractions

If we compute det(M) first, by the method of section 4.1, we can clear denom-
inators in (3.14), and get

x̂ := det(M)x = det(M)M−1.a, (4.25)

i.e.

M.x̂ = det(M)a. (4.26)

If we avoid primes dividing det(M), we can solve (4.26) for enough primes
(suitable bounds are given in Corollary 26), reconstruct integer entries in x̂,
and then divide through by det(M).

4.5.2.2 Solve with Fractions

If (3.13) is soluble modulo p, its solution xp is indeed congruent to x when
evaluated at p, i.e. x|p = xp. If we use many primes pi (discarding those for
which (3.13) is not soluble), and apply Algorithm 47 to the vectors xpi

, we
get a vector xN such that xN ≡ x (mod N), where N =

∏
pi. However, the

entries of x are rationals, with numerator and denominator bounded, say, by B
(see Corollary 26), rather than integers. How do we find the entries of x from
xN? This problem has a long history in number theory, generally under the
name Farey fractions, but was first considered in computer algebra in [Wan81].
Since we will have occasion to use this solution elsewhere, we consider it in more
generality in the next section.

If we assume this problem solved, we then have the following answer to the
questions on page 174.

1. Are there good primes?: yes — all that do not divide det(M)

2. How can we tell if a prime p is bad? Equation (3.13) is not soluble modulo
p.

3. How many reductions should we take? Enough such that the product of
the good primes is greater than 2B2.

4. How do we combine? Algorithm 25.

5. How do we check the result? If we use the bound from Corollary 26),
we do not need to check. However, there are “early success” variations,
analogous to section 4.2.5, where we do need to check, which can be done
by checking that M.x = a: an O(n2) arithmetic operations process rather
than the O(n3) of solving.

4.6. GRÖBNER BASES 209

4.5.2.3 Farey reconstruction

In this section, we consider the problem of reconstructing an unknown fraction
x = n/d, with |n|, |d| < B, given that we know x ≡ y (mod N), i.e. n ≡ yd
(mod N), where N > 2B2. We first observe that this representation is unique,
for if n′/d′ (similarly bounded) is also congruent to y, then nd′ ≡ ydd′ ≡ n′d,
so nd′ − n′d ≡ 0 (mod N), and the only solution satisfying the bounds is
nd′ − n′d = 0, i.e. n/d = n′/d′.

Actually finding n and d is done with the Extended Euclidean Algorithm
(see Algorithm 5).

Algorithm 25 (Farey Reconstruction)
Input: y,N ∈ N
Output: n, d ∈ Z such that |n|, |d| <

√
N/2 and n/d ≡ y (mod N), or

failed if none such exist.

i := 1;
a0 := N ; a1 := y; a := 1; d := 1; b := c := 0
#Loop invariant: ai = ay + bN ; ai−1 = cy + dN ;

while ai >
√
N/2 do

ai+1 = rem(ai−1, ai);
qi :=the corresponding quotient: #ai+1 = ai−1 − qiai
e := c− qia; e′ := d− qib; #ai+1 = ey + e′N
i := i+ 1;
(c, d) = (a, b);
(a, b) = (e, e′)

if |a| <
√
N/2 and gcd(a,N) = 1

then return (ai, a)
else return failed

Correctness of this algorithm, i.e. the fact that the first ai <
√
N/2 corre-

sponds to the solution if it exists, is proved in [WGD82], using [HW79, Theorem
184]. The condition gcd(a,N) = 1 was stressed by [CE95], without which we
may return meaningless results, such as (−2, 2), when trying to reconstruct 5
(mod 12).

4.6 Gröbner Bases

If coefficient growth is a major problem in g.c.d. computations, it can be even
more apparent in Gröbner basis computations. [Arn03] gives the example of{

8x2y2 + 5xy3 + 3x3z + x2yz, x5 + 2 y3z2 + 13 y2z3 + 5 yz4,
8x3 + 12 y3 + xz2 + 3, 7x2y4 + 18xy3z2 + y3z3

} (4.27)

whose Gröbner base, computed with practically any order, is{
x, y3 +

1

4
, z2
}
. (4.28)

210 CHAPTER 4. MODULAR METHODS

Both (4.27) and (4.28) involve very manageable numbers, but computing with
total degree orders gives intermediate terms such as

80791641378310759316435307942453674533 . . . 364126736536799662381920549

31979005164817514134306974902709502756 . . . 247397413295611141592116516
yx3

(where the ellipses stand for 60 deleted digits)15, and a lexicographic order
gives coefficients with tens of thousands of digits. Can the same ideas allow us
to bypass such huge intermediate expressions?

Observation 14 [Tra88] proposed a very simple efficiency improvement, known
as the Gröbner trace idea. We should only compute and reduce an S-polynomial
over Q if the equivalent computation modulo p yields a non-zero polynomial.
This isn’t guaranteed correct, so a final check, either using Theorem 16(1) or on
the lines of Theorem 45, is necessary, but can be a great time-saver in practice.

We should note that there can be various differences between the Gröbner base
computed over the rationals and that computed modulo p.

Example 25 These examples are taken from [Win88].

1. (From [Ebe83]). Let F = {xy2 − 2y, x2y + 3x}. Then (under any order)
S(F1, F2) = 5xy. Hence if this is non-zero, it reduces the other elements
of F to {x, y}, which is a Gröbner base. But if this is zero (i.e. if we are
working modulo 5), then F is already a Gröbner base (Theorem 16 clause
1).

2. Let F = {7xy+y+4x, y+2} Then (under any order) S(F1, F2) = −10x+y.

p = 2 This is therefore y, which is F2. Hence a reduced Gröbner base is
{y}: infinitely many solutions (x unconstrained).

p = 5 This is therefore y, which reduces F2 to 2, hence the Gröbner base
is {1}: no solutions.

Otherwise We get a Gröbner base of {y + 2, 5x+ 1}, with one solution.

3. Let F = {4xy2 + 16x2 − 4 z + 1, 2 y2z + 4x+ 1,−2x2z + 2 y2 + x} with a
purely lexicographic ordering z > y > x. Then the Gröbner base over the
integers is

32x7 + 232x6 − 34x4 − 44x3 + x2 + 30x+ 8,
2745 y2 + 112x6 − 756x5 − 11376x4 − 65x3 + 756x2 + 1772x+ 2,
10980 z − 6272x6 − 45504x5 + 216x4 + 3640x3 − 36846x2 − 412x− 2857.

(4.29)

p = 2 Here F is immediately {1, x2 + 1, 1} and there are no solutions,
which is a classic “p divides the leading coefficient” issue.

15This computation was performed with Axiom. [Arn03], computing with Macauley, quotes
intermediate numbers of 80,000 digits.

4.6. GRÖBNER BASES 211

p = 7 Though there might not seem to be a problem (none of the leading
coefficients above are divisible by 7), in fact S(S(F1, F3), S(F1, F2))
reduces S(F1, F2) to 14 ∗ x2 ∗ y2 + y2 − 8 ∗ x4 − 2 ∗ x3 + 8 ∗ x + 2,
and the leading monomial here vanishes modulo 7. In fact, though
the computation follows a different route, we get out a Gröbner basis
of the same shape as (4.29).

If we reverse the order, though, events take a somewhat different course.
The Gröbner base over the integers is

16 z7 − 8 z6 + z5 + 52 z4 + 75 z3 − 342 z2 + 266 z − 60,
1988 y2 − 76752 z6 + 1272 z5 − 4197 z4 − 251555 z3 − 481837 z2

+1407741 z − 595666,
3976x+ 37104 z6 − 600 z5 + 2111 z4 + 122062 z3 + 232833 z2

−680336 z + 288814.

(4.30)

Here 1988 is divisible by 7, and we might expect a different result modulo
7, which indeed we get:

z6 + 4 z5 + z4 + 6 z3 + 5 z2 + 2 z + 2,
y2z + 3 z5 + 6 z4 + 5 z3 + 6 y2 + 3 z + 4,
y4 + 5 y2 + 6 z5 + 2 z4 + 4 z3 + 5 y2 + 4 z2 + 6 z + 5,
x+ 2 z5 + 4 z4 + z3 + 4 y2 + 2 z.

(4.31)

This example shows that the badness of the prime might depend, not just
on the input polynomials, but also on the ordering chosen. Both (4.30)
and (4.31) have 14 solutions (as does (4.29), since this does not depend
on the order), but the bases have different leading monomial ideals.

The rest of this section is substantially based on [Arn03]16: a p-adic ap-
proach to Gröbner bases is described in section 5.9.3. As in that paper, we
assume that our ideal is homogeneous, i.e. that it can17 be generated by a set
of generators each of which is homogeneous (Definition 54). If we wish to han-
dle non-homogeneous ideals with respect to a total degree ordering18, we can
homogenize, compute the Gröbner basis and dehomogenize, as in [MM84]. This
may not be optimal, see [GMN+91, p. 49] and Open Problem 24 later. [IPS11]
have shown that the assumption of homogeneity is not strictly necessary.

4.6.1 General Considerations

Given the blow-up in coefficients that can arise when computing Gröbner bases,
we might wish to compute them by a modular method.

16A somewhat different approach is taken in [IPS11]: they distinguish good/bad primes by
majority voting — their algorithm deleteUnluckyPrimesSB. This idea is used in the Singular
polynomial algebra system. They also use the Gröbner trace idea: subsequent primes do not
try an S-polynomial which the first prime reduced to 0.

17Note that there may well be sets of generators which are not homogeneous.
18And we generally wish to do so, before, if necessary, using the FGLM Algorithm (12) to

compute a lexicographical base.

212 CHAPTER 4. MODULAR METHODS

Definition 93 Given a specific computation C (by which we mean specifying not
just the ordering, but all the choices in Algorithm 9, or any other algorithm for
computing a Gröbner base) of a Gröbner base G from an input S over Q, denoted
G := C(S), we say that the prime p is of good reduction if lt(G) = lt(C(Sp)),
i.e. we get the same leading term ideal when we apply C modulo p as when we
apply it over Q. If not, we say that p is of bad reduction.

Lemma 12 For a given S and C, there are only finitely many primes of bad
reduction.

Proof. If we compare C(S) and C(Sp), they can only start differing when a
leading coefficient in the computation of C(S) vanishes when considered modulo
p, because the computation of S-polynomials, and reduction, is entirely driven
by leading terms. But there are only finitely many such coefficients, and hence
only finitely many bad primes: the set of divisors of these coefficients.

We should note that this proof is far less effective than the proof of Lemma 9,
but it is sufficient for our purposes. Another proof is given in [Win88, Theorem
1], which in fact shows that the set of bad primes depends only on the input
and the ordering, not on the computation.

Note that we cannot follow the plan of section 4.2.3 as we do not know a
bound on all the integers appearing (and anyway, the idea is to compute with
smaller integers). If we try to follow the plan of section 4.2.4, we hit a snag.
Suppose that two computations modulo different primes (say p and q) give us
different leading term ideals. Then one is certainly bad, but which? We do not
have a simple degree comparison as in the g.c.d. case.

4.6.2 The Hilbert Function and reduction

We recall the Hilbert function from section 3.3.12, which will turn out to be
a key tool in comparing Gröbner bases, as earlier we have used degrees for
comparing polynomials.

Theorem 43 ([Arn03, Theorem 5.3]) Let (f1, . . . , fk) generate the ideal I
over Q, and the ideal Ip modulo p. Then

∀n ∈ N : HI(n) ≤ HIp(n). (4.32)

Definition 94 p is said to be Hilbert-good if, and only if, we have equality in
(4.32).

Observation 15 Note that we do not have a test for Hilbert-goodness as such,
but we do have one for Hilbert-badness: If HIp(n) < HIq (n) then q is definitely
Hilbert-bad.

Example 26 (Bigatti [Big15]) Let S be the set {x2, x (x− 3 y) , xy2, xyz, xz (y − 5 z)}.
Over various characteristics its Gröbner bases (always using tdeg(x,y,z)) and
(first few values of) Hilbert functions are:

4.6. GRÖBNER BASES 213

0 {xy, x2, xz2}; (1,3,4,4,5,6,7,8,9,10)

3 {x2, xz2, xyz, xy2}; (1,3,5,4,5,6,7,8,9,10)

5 {xy, x2}; (1,3,4,5,6,7,8,9,10,11)

7 {xy, x2, xz2}; (1,3,4,4,5,6,7,8,9,10)

HI3(2) = 5 > HI5(2) = 4, so p = 3 is proved to be bad by p = 5. But
HI3(3) = 4 < HI5(3) = 5, so p = 5 is proved to be bad by p = 3. To the
best of the author’s knowledge, modular Gröbner bases are the only modular
calculation in which two primes can prove each other bad.

Proposition 59 If p is of good reduction for C(S), then it is Hilbert-good for
the ideal generated by S.

Theorem 44 ([Arn03, Theorem 5.6]) Let (g1, . . . , gt) be a Gröbner base un-
der < for the ideal generated by (f1, . . . , fs) over Q, and (g′1, . . . , g

′
t′) be a

Gröbner base under < for the ideal generated by (f1, . . . , fs) modulo p. In both
cases these bases are to be ordered by increasing order under <. Suppose that p
is Hilbert-good for this ideal. Then:

1. lt(g′1) ≤ lt(g1);

2. If lt(g′j) = lt(gj) for 1 ≤ j ≤ i, then lt(g′i+1) ≤ lt(gi+1).

This result means that, for Hilbert-good primes, we can compare the sequence
of lt(gi) for relative luckiness as we compared degrees in the case of g.c.d.s: at
the first point i where they differ, the prime with the lesser lt(gi) is definitely
of bad reduction.

Example 27 (importance of caveat above) If we consider example 26, and
hadn’t checked Hilbert functions, we would deduce that p = 3 proved that p = 7
was bad, since xy < x2. In fact p = 7 is good and generates precisely the right
ideal.

Arnold’s original example was more complicated.

Example 28 ([Arn03, Example 5.7]) Let I = ⟨3 y2x−5 yx2+2x3,−7 y3x+
5 y2x2, 7 y6−2 y3x3+yx5⟩. We use the ordering ‘total degree then lexicographic,
with y > x’, and consider the primes 5 and 2.

I5 has Gröbner base {
3 y2x+ 2x3, 29 yx3, x5, y6

}
, (4.33)

whereas I2 has Gröbner base{
y2x+ yx2, y6 + yx5

}
. (4.34)

214 CHAPTER 4. MODULAR METHODS

Table 4.2: Hilbert functions for example 28
l HI5(l) HI2(l) Ml

0 1 1 {1}
1 3 3 {1, x, y}
2 6 6 {1, x, y, x2, xy, y2}
3 9 9 {1, x, y, x2, xy, y2, x3, x2y, y3}
4 12 {1, x, y, x2, xy, y2, x3, x2y, y3, x4, x3y, y4}
4 11 {1, x, y, x2, xy, y2, x3, x2y, y3, x4, y4}

We can tabulate the Hilbert functions as in Table 4.2, though in fact we know
they are different, since I5 has dimension zero and I2 does not, and hence the
Hilbert polynomials have different degree. Either way, Hilbert functions tell us
that 2 is definitely not good.

If we just looked at the leading terms, we would note that xy2, the least
leading term, is the same for both I2 and I5, but that x3y < y4 (the next
leading terms), leading us, incorrectly, to infer that 5 was of bad reduction.

In fact, 5 is of good reduction, and the true Gröbner base for I itself (as
determined by Chinese remainder with 7 and 11) is{

3 y2x− 5 yx2 + 2x3, 29 yx3 − 20x4, x5, y6
}
. (4.35)

4.6.3 The Modular Algorithm

We are now most of the way towards a Chinese Remainder Theorem solution
to computing Gröbner Bases for an ideal I⟨f1, . . . , fk⟩. We still have to solve
three issues.

leading coefficients In the case of g.c.d. computations, the modular answer is
only defined up to multiplication by a constant, and the same is true here:
each element of the Gröbner base modulo p can be multiplied, indepen-
dently, by any non-zero constant. For g.c.d.s, we knew a multiple of the
leading coefficient of the answer (i.e. the g.c.d. of the leading coefficients
of the inputs), which we imposed in (4.8) and thereafter. Here we have
no such prior knowledge. We therefore reconstruct a monic Gröbner base,
with rational number coefficients, using Algorithm 25 above.

When do we stop? In the g.c.d. case we had the Landau–Mignotte bound.
For Gröbner bases, while some bounds are known (e.g. [Dah09]), they are
not directly relevant. In practice we take a leaf from Figure 4.5, and say
that, if the Gröbner base doesn’t change when we take a new prime, we
are likely to have terminated.

How do we know correctness? The first issue is that our reconstructed ob-
ject G, while a Gröbner base modulo each prime we used, may not be a
Gröbner base over the rationals. This can be tested by Theorem 16 clause

4.6. GRÖBNER BASES 215

(1), using, as appropriate, the optimizations from Propositions 41 and 42.
But, even if G is a Gröbner base, is it one for I?

Once we know G is a Gröbner base, we can check that I ⊆ ⟨G⟩ simply

by checking that fi
∗→

G
0 for i = 1, . . . , k. Inclusion the other way round

comes from the following theorem.

Theorem 45 ([Arn03, Theorem 7.1]) If G is a Gröbner base, I ⊆ ⟨G⟩ and
lm(G) = lm(Gp) for some Gp a Gröbner base obtained from the generators of I
modulo p, then I = ⟨G⟩.

It is worth noting that we have produced no complexity bound for this
algorithm, just as we have stated none for the original Algorithm 9. In practice
it seems to be especially efficient in cases where the final Gröbner basis has
small coefficients, despite the internmediate expression swell.

Open Problem 24 (Modular Gröbner Bases for Inhomogeneous Ideals)
This algorithm as described is limited, as is [Arn03], to homogeneous ideals with
respect to a total degree ordering. Can it be generalized? [IPS11, Remark 2.5]
claims that it can be, at the cost of either

• being content with a probabilistic algorithm, which may return a G such
that ⟨f1, . . . , fk⟩ ⊂ ⟨G⟩; or

• homogenizing first — however they say “experiments showed that this is
usually not efficient since the standard basis of the homogenized input
often has many more elements than the standard basis of the ideal that
we started with”.

Open Problem 25 (Reconstructed Bases might not be Gröbner) We
stated that it was possible that the reconstruction of modular Gröbner bases might
not be a Gröbner base. This certainly seems to be theoretically possible, though
we have given no examples of this.

1. Give examples where this happens. This is probably trivial, but what might
be harder is to give ones where the primes were nevertheless good, and the
problem is that we did not take enough of them.

2. Or show that this cannot in fact happen when the primes are of good
reduction.

4.6.4 Conclusion

Let us see how we have answered the questions on page 174.

1. Are there ”good” reductions p? Yes, by Lemma 12 there are only finitely
many primes of bad reduction, though we have no bounds on the number.

216 CHAPTER 4. MODULAR METHODS

Figure 4.17: Algorithm 26

Algorithm 26 (Modular Gröbner base)
Input: S = {f1, . . . , fk} homogeneous polynomials in Z[x1, . . . , xn].
Output: G a Gröbner base for ⟨S⟩ over Q.

p := find_prime(S);
G := modular_GB(S, p);
GQ :=Algorithm 25(G, p)
N := p; # N is the modulus we will be constructing
while true repeat

p := find_prime(S);
G′ := modular_GB(S, p);
if HG, HG′ are incomparable

then start again # All primes are bad (see Example 26)
else if HG < HG′

then # Do nothing: p is of bad reduction
else if HG > HG′

G := G′; N := p; # previous primes were bad
GQ :=Algorithm 25(G, p)

Hilbert Functions agree: on to Theorem 44
else if lm(G) < lm(G′) #Comparison in the sense of Theorem 44

then # Do nothing: p is of bad reduction
else if lm(G) > lm(G′)

G := G′; N := p; previous primes were bad
GQ :=Algorithm 25(G, p)

else if G′ ≡ GQ (mod p) # Stabilization as in Figure 4.5
and GQ is a Gröbner base

and ∀ifi
∗→

GQ

0
return GQ #Correct by Theorem 45

else G := Algorithm 48(G′, G, p,N);
N := pN ;
GQ :=Algorithm 25(G,N)

find_prime finds a prime that does not divide any lc(fi) (otherwise we’re
bound to be following a different computation, and almost certain to have bad
reduction).
modular_GB computes a monic modular Gröbner base, either via Algorithm 9
or any other such (Observation 4).

4.7. CONCLUSIONS 217

2. How can we tell if p is good? Following [Arn03], we have a two-stage
process for comparing p and q when Gp and Gq differ: we first compare
Hilbert functions (Theorem 43), then leading monomial ideals (Theorem
44).

3. How many reductions should we take? We have no bound, but rely on
stabilization, as in Figure 4.5.

4. How do we combine? Algorithm 47 and Algorithm 25.

5. How do we check the result? Theorem 45. [IPS11] propose doing a further
modular check, but this works for them as it is essentially the equivalent
of waiting for stabilization in Algorithm 26.

4.7 Conclusions

Let us look generally at our key questions for modular calculations.

1. Are there ”good” reductions from R? All the examples we have seen answer
this question positively, and indeed, if we are using modular arithmetic
to mimic calculations that we could have done without it, then the argu-
ment of Lemma 12 shows that there are always only finitely many bad
reductions.

2. How can we tell if Ri is good? This tends to have a problem-specific
answer, and is always one of the major challenges. Sometimes it may be
immediately evident (as when a set of linear equations becomes insoluble
(mod p)), sometimes we may have different results in different-looking
domains R1 and R2 and be able to say that one is definitely wrong (as in
the case of gcd), and sometimes we may need to resort to majority voting
(see note 16).

3. How many reductions should we take? Sometimes we can compute bounds,
but sometimes we have to rely on stabilization as in Figure 4.5 and Al-
gorithm 26. Even if bounds exist, stabilization is often more efficient in
practice.

4. How do we combine? Either via a version of Chinese Remainder, or by
Farey Reconstruction (Section 4.5.2.3).

5. How do we check the result? This also tends to have a problem-specific
answer, and is generally the other major challenge.

How good are these algorithms, and what are the challenges?

Section 4.1 For matrix determinants, these methods are definitely better than
the classical methods (see Proposition 55), though there is a further im-
provement in Section 5.9.4. There is an Open Problem (18) on the differ-
ence between theory and practice, though.

218 CHAPTER 4. MODULAR METHODS

gcd The theoretical state of computations in general is hampered by the ab-
sence of a solution to Open Problems 2 and 3 (page 78), i.e. the absence
of an algorithm whose complexity depends only on the number of terms,
not the degrees. The remaining analyses ignore this challenge.

Section 4.2 Univariate polynomial g.c.d. seems to be about as good as it can
get algorithmically, though there are useful engineering improvements to
the Landau–Mignotte bound in practice (Open Problem 20).

Section 4.3 Bivariate polynomial g.c.d. is also about as good as it can get
algorithmically, though we have posed Open Problem 22.

Section 4.4 Multivariate polynomial g.c.d., based on the bivariate work, seems
as good as it can get algorithmically for dense polynomials. For sparse
polynomials, the work of Zippel explained in this section is good, and
empirically the complexity is essentially a function of the number of terms
in the output, but there is definitely scope for a proper theoretical analysis,
and probably substantial room for practical improvement.

Section 4.5 This depends on the precise application, but the remarks above
about Section 4.1 apply.

Section 4.6 The computation of Gröbner bases by modular techniques is prob-
ably the area where there is the greatest room for improvement, but it is
challenging.

Chapter 5

p-adic Methods

In this chapter, we wish to consider a different problem, that of factoring poly-
nomials. We will see that this cannot reasonably be solved by the methods
of the previous chapter, and we need a new technique for solving problems in
(large) domains via small ones. The technique is based on the mathematical
concept of p-adic numbers, and its fundamental result, Hensel’s Lemma. The
basic idea behind these algorithms is shown in Figure 5.1: instead of doing a
calculation in some (large) domain R, we do it in several smaller domains Ri,
pick one of these (say Rl) as the best one, grow the solution to some larger

domain R̂l, regard this as being in R and check that it is indeed the right result.

5.1 Introduction to the factorization problem

For simplicity, we will begin with the case of factoring a univariate polynomial
over Z. More precisely, we consider the following.

Problem 7 Given f ∈ Z[x], compute polynomials fi ∈ Z[x] (1 ≤ i ≤ k) such
that:

Figure 5.1: Diagrammatic illustration of Hensel Algorithms

R
calculation

- -> R

k×reduce ↓ ↑
interpret
& check

R1
calculation−→ R1

...
...

...

Rk
calculation−→ Rk

choose−→ Rl

grow−→ R̂l

219

220 CHAPTER 5. p-ADIC METHODS

1. f =
∏k

i=1 fi;

2. each fi is irreducible in Z[x], i.e. any polynomial g that divides fi is either
an integer or has the same degree as fi.

We might wonder whether we wouldn’t be better off considering fi ∈ Q[x], but
in fact the answers are the same.

Proposition 60 Any factorization over Q[x] of a polynomial f ∈ Z[x] is (up
to rational multiples) a factorization over Z[x].

Proof. Let f =
∏k

i=1 fi with fi ∈ Q[x]. By clearing denoninators and removing
contents, we can write fi = cigi with gi ∈ Z[x] and primitive and ci ∈ Q. Hence

f =
(∏k

i=1 ci

)(∏k
i=1 gi

)
, and, since the product of primitive polynomials is

primitive (Lemma 2),
∏k

i=1 ci is an integer, and can be absorbed into, say, g1.
Even knowing that we have only to consider integer coefficients does not

seem to help much — we still seem to have an infinite number of possibilities
to consider. In fact this is not quite the case.

Notation 30 Let the polynomial f =
∑n

i=0 aix
i to be factored have degree n,

and coefficients bounded by H. Let us suppose we are looking for factors of
degree at most d.

Corollary 15 (to Theorem 39) It is sufficient to look for factors of degree
d ≤ n/2, whose coefficients are bounded by 2dH.

One might have hoped that it was sufficient to look for factors whose coefficients
are bounded by H, but this is not the case. [Abb13a] gives the example of

f = x80 − 2x78 + x76 + 2x74 + 2x70 + x68 + 2x66 + x64 + x62 + 2x60 + 2x58

−2x54 + 2x52 + 2x50 + 2x48 − x44 − x36 + 2x32 + 2x30 + 2x28 − 2x26

+2x22 + 2x20 + x18 + x16 + 2x14 + x12 + 2x10 + 2x6 + x4 − 2x2 + 1

whose factors have coefficients as large as 36, i.e. 18 times as large as the
coefficients of f . Non-squarefree polynomials are even worse: [Abb13a, p. 548]
gives the example of

−1− x+ x2 − x3 + x4 + x5 + x6 + x8 + x10 − x11
−x12 − x13 + x14 − x15 − x17 − x18 + x20 + x21 =(

1 + 4x+ 8x2 + 14x3 + 21x4 + 28x5 + 34x6 + 39x7 + 42x8 + 43x9 + 41x10

+37x11 + 32x12 + 27x13 + 21x14 + 15x15 + 9x16 + 4x17 + x18
)

(x− 1)
3

Although some caution is in order, his table appears to show coefficient growth
behaving like 0.7×1.24d, where d is the degree of a polynomial with coefficients
at most ±1.

Corollary 16 To detect all irreducible factors of f (except possibly for the last
one, which is f divided by all the factors of degree ≤ n/2), it suffices to consider(
2dH

)d+1
polynomials.

5.2. MODULAR METHODS 221

We can in fact do better, since the leading coefficient of the factor must divide
an, and similarly the trailing coefficient must divide a0, so we get 2d(d−1)Hd+1,
and in practice such “brute force” methods1 can easily factor low-degree poly-
nomials, but the asymptotics are still very poor.

5.2 Modular methods

Hence we might want to use modular methods. Assuming always that p does
not divide an, we know that, if f is irreducible modulo p, it is irreducible over
the integers. Since, modulo p, we can assume our polynomials are monic, there
are only pd polynomials of degree d, this gives us a bound that is exponential in
d rather than d2. In fact, we can do better by comparing results of factorizations
modulo different primes.

Example 29 Suppose f is quartic, and factors modulo p into a linear and a
cubic, and modulo q into two quadratics (all such factors being irreducible), we
can deduce that it is irreducible over the integers, since no factorization over the
integers is compatible with both pieces of information.

Definition 95 For a square-free polynomial f , define its factorization shape to
be the multiset2 of the degrees of all the irreducible factors in a given factor-
ization of f into irreducibles. Roughly speaking, this is the “degrees of all the
irreducible factors”, but we have to be slightly careful, since if (x − 1) is an
irreducible factor, so is (−x + 1), and we don’t want to count both. Note that
the factorization shape is independent of which factorization we take.

If f is not known to be square-free, then we have to take a multiset of (degree,
multiplicity) pairs. This case is not useful in practice, but because a square-free
decomposition can be larger than the starting point (Observation 2, page 78),
it can be useful in theory: see section 5.8.2.

In this language, we are saying that the factorization shape modulo p has to
be a splitting of the factorization shape over the integers.

5.2.1 The Musser test

Definition 96 The sumset of a factorisation shape is the set of all sums of
subsets of the factorisation shape.

The sumset of a factorisation shape modulo p is therefore the set of all possible
degrees of factors over the integers. Example 29 has two factorisation shapes
{1, 3} and {2, 2}, whose sumsets are {0, 1, 3, 4} and {0, 2, 4}. The intersection
of these sumsets is {0, 4}, so no proper factorisation over Z is possible.

It is an old experimental observation [Mus78] that, if a polynomial can be
proved irreducible by intersecting sumsets of factorisation shapes, five shapes,

1Sometimes known as Newton’s algorithm.
2That is, a set but allowing repetitions, so {2, 2, 1} and {2, 1, 1, 1} would be different

multisets, but of course are both the set {2, 1}.

222 CHAPTER 5. p-ADIC METHODS

i.e. five primes, are nearly always sufficient to prove it. The question of con-
verting this into a certificate of polynomial irreducibililty is discussed in [Abb20,
§2.1].

This test was formally analysed in [PPR15], and very substantial experimen-
tal evidence is presented in their Figure 1. The bottom line is that we should
probably take seven or even eight primes. The rest of this subsection is some-
what more technical, and can be skipped by the reader not familiar with Galois
Theory and permutation groups. Observation 16 explains [PPR15].

Definition 97 The Galois group of a polynomial f = an
∏n

i=1(x−αi) ∈ Z[x] is
the set of all automorphisms of Q(α1, . . . , αn) which leaves Q fixed. The Galois
group is determined by its action on the αi, and is therefore a subgroup of the
symmetric group Sn.

Proposition 61 f is irreducible if, and only if, its Galois group is transitive
(for all roots α and β, there is a permutation of the Galois group taking α to
β).

Example 30 Various Galois groups are as follows.

x2 − 2 Here the roots are α =
√

2 ≈ 1.4142 and β = −
√

2 ≈ −1.4142. Apart
from the identity permutation, the only option is to exchange α and β.
Hence the Galois Group is C2 = ⟨(α, β)⟩. The cycle types are (1, 1) and
(2).

(x2 − 2)(x2 − 3) Here the roots are α =
√

2 ≈ 1.4142, β = −
√

2 ≈ −1.4142,
γ =

√
3 ≈ 1.732 and δ = −

√
3 ≈ −1.732. Apart from the identity

permutation, the only options are to exchange α and β, exchange γ and δ,
or possibly both. Sending α to γ, say, is not possible as α2 = 2 but γ2 = 3.
Hence the Galois Group is C2 × C2 = ⟨(α, β), (γ, δ)⟩. The cycle types are
(1, 1, 1, 1), (1, 1, 2) and (2, 2). Note that this group is not transitive.

x4 + 1 Here the roots are α = 1+i√
2

, β = 1−i√
2

= 1
α , γ = −α and δ = −β. One

option is to send α to β, which replaces i by −i, and is therefore the
permutation (α, β)(γ, δ), and another is to replace

√
2 by −

√
2, which is

the permutation (α, γ)(β, δ). Hence the Galois group contains, and is in
fact generated by, these two permutations: it is often known as the Klein
4-group, or V . The cycle types are (1, 1, 1, 1) and (2, 2). This group is
transitive, but every cycle shape in this group is a valid cycle shape in
C2 × C2 from the previous example, which is not transitive.

x8 − 2 Here the roots are αk = 8
√

2e2πik/8, k = 0..7. One option is to replace
8
√

2 by 8
√

2e2πi/8, which cyclically permutes the roots, i.e. (α0, α1, . . . , α7).
Another option is to replace i by −i, which corresponds to the permutation
(α1, α7), (α2, α6), (α3, α5). In fact the Galois group is generated by these
two, and is generally called the dihedral group, with 16 elements.

x7 − 2 Here the roots are αk = 7
√

2e2πik/7, k = 0..6. One option is to re-
place 7

√
2 by 7

√
2e2πi/7, which cyclically permutes the roots, i.e. π1 :=

5.2. MODULAR METHODS 223

(α0, α1, . . . , α6). Another option is to replace i by −i, which is the per-
mutation π2 := (α1, α6), (α2, α5), (α3, α4). However, π3 := (α1, α3, α2, α6,
α4, α5) is in fact also a legal permutation, and the group is generated by
π1 and π3 (since π2 = π3

3) and has 42 elements.

Proposition 62 ([vdW34]) For any n, almost all polynomials of degree n
have Galois group Sn, or, more precisely, the probability of a polynomial having
Galois group Sn is 1, i.e.

lim
H→∞

|{polynomials of degree n with coefficients ≤ H and group Sn}|
|{polynomials of degree n with coefficients ≤ H}|

= 1.

Corollary 17 For any n, almost all polynomials of degree n are irreducible,
since Sn is transitive.

Hence, to make a statement about “almost all polynomials”, it suffices to con-
sider those with Galois group Sn. Of course, the polynomials that one encoun-
ters in practice may well not be random, and questions relating to other Galois
groups are discussed in [DS00].

The next question is how the factorisation shapes mod p relate to the Galois
group, which is settled by the following result.

Proposition 63 (Frobenius Density Theorem) The density of prime num-
bers q for which f(x) (mod q) has factorisation shape {d1, . . . , dk} is equal to
the density in the Galois group G ≤ Sn of f(x) of elements of Sn with cycle
type (d1, . . . , dk).

Hence, if we assume the Galois group of f is Sn, the factorisation shape of f(x)
(mod q) is distributed the same way as random permutations from Sn, and the
concept of sumset generalises.

Definition 98 (See Definition 96) The sumset I(σ) of a permutation σ is
the set of all sums of subsets of the cycle shape of the permutation.

Proposition 64 ([PPR15, Theorem 1.5]; [EFG15, Theorem 1.1]) There
is a constant b4, independent of n, such that

PrS4
n

(I(σ1) ∩ I(σ2) ∩ I(σ3) ∩ I(σ4) = {0, n}) > b4,

where the probability is taken uniformly over quadruples of permutations. This
means that, if the Galois group is Sn, four

3 primes have a nonzero probability of
detecting transitivity (i.e. irreducibility) and in fact of detecting that the group
is Sn [DS00], [PPR15, Theorem 1.3 and discussion].

Emprically [PPR15, Figure 1], b4 ≈ 0.5. Similarly b5 seems to be about 0.7 (for
small n, the probability is larger, which is presumably why [Mus78] recommends
five primes), and b7 > 0.9.

Observation 16 Since determining that a polynomial is irreducible if one thinks
it factors is much more expensive than modulo p factorisation, we should prob-
ably take seven, or even eight primes, rather than the five of [Mus78].

3Four is minimal: [EFG15, Theorem 1.2].

224 CHAPTER 5. p-ADIC METHODS

5.3 Factoring modulo a prime

Throughout this section, we let p be an odd4 prime, and f a polynomial of
degree n which is square-free modulo p. There are three common methods for
factoring f : two due to Berlekamp and one to Cantor & Zassenhaus, and various
subsequent improvements, largely in terms of asymptotic complexity. A survey
of this field is [vzGP01]. Most implementers of systems use (variants of) the
Cantor–Zassenhaus algorithm, for reasons explained at the start of Section 5.7.

Although the author knows of no major implementations, the asymptotically
fastest factoring algorithm at the moment of writing seems to be [KU08], which
for polynomials of degree n over a field with q elements takes time Õ(n3/2 log q+
n log2 q).

5.3.1 Berlekamp’s small p method

This is due to [Ber67]. We first need to state some facts about arithmetic modulo
a prime p.

Proposition 65 If a and b are two integers modulo p, then (a+ b)p ≡ ap + bp.

If we expand (a+ b)p by the Binomial Theorem, all intermediate coefficients are
divsible by p.

Proposition 66 ap ≡ a modulo p.

Corollary 18 Every integer modulo p is a root of xp − x, and therefore

xp − x = (x− 0)(x− 1) . . . (x− (p− 1)).

These facts extend to polynomials.

Proposition 67 Let a(x) be a polynomial, then a(x)p ≡ a(xp) modulo p.

Let us now suppose that f factorises into r irreducible polynomials:

f(x) = f1(x)f2(x) . . . fr(x)

(r is unknown for the present). Since f has no multiple factors, the fi are
relatively prime. Let s1, . . . , sr be integers modulo p. By the Chinese Remainder
Theorem (Algorithm 48)there is a polynomial v such that

v ≡ si (mod p, fi(x)), (5.1)

and moreover, the degree of v is less than that of the product of the fi, that is
f . Such a polynomial v is useful, for if si ̸= sj , then gcd(f, v − si) is divisible

4It is possible to generalise these methods to the case p = 2, but the cost, combined with the
unlikelihood of 2 being a good prime, means that computer algebraists (unlike cryptographers)
rarely do so.

5.3. FACTORING MODULO A PRIME 225

by fi, but not by fj , and therefore leads to a decomposition of f . We have the
following relation:

v(x)p ≡ spj ≡ sj ≡ v(x) (mod fj(x), p),

and, by the Chinese remainder theorem,

v(x)p ≡ v(x) (mod f(x), p). (5.2)

But, on replacing x by v(x) in Corollary 18

v(x)p − v(x) ≡ (v(x)− 0)(v(x)− 1) . . . (v(x)− (p− 1)) (mod p). (5.3)

Thus, if v(x) satisfies (5.2), f(x) divides the left hand side of (5.3), and each of
its irreducible factors, the fi, divides one of the polynomials on the right hand
side of (5.3). But this implies that v is equivalent to an integer modulo fi, that
is that v satisfies (5.1). We have proved (by Knuth’s method [Knu81, p. 422])
the following result.

Theorem 46 The solutions v of (5.1) are precisely the solutions of (5.2).

We have already said that the solutions of (5.1) provide information about the
factorisation of f , but we still have the problem of finding them. Berlekamp’s
basic idea is to note that (5.2) is a linear equation for the coefficients of v. This
remark may seem strange, but it is a consequence of Proposition 67. In fact, if
n is the degree of f , let us consider the matrix

Q =

q0,0 q0,1 . . . q0,n−1

q1,0 q1,1 . . . q1,n−1

...
...

...
qn−1,0 qn−1,1 . . . qn−1,n−1

 ,

where
xpk ≡ qk,n−1x

n−1 + · · ·+ qk,1x+ qk,0 (mod f(x), p).

If we consider a polynomial as a vector of its coefficients, multiplication by
Q corresponds to the calculation of the p-th power of the polynomial. The
solutions of (5.2) are thus the eigenvectors of the matrix Q (mod p) for the
eigenvalue 1. Hence the algorithm in Figure 5.2.

Qmight seem expensive to compute, but if we precompute (xi)p (mod (f(x), p)),
it takes O(n3 + log(p)n2) operations (with classical linear algebra, and assum-
ing that p is single-word size). Determining r, the number of irreducible fac-
tors, similarly takes time O(n3) The running time of the full algorithm5 is
O(n3 + p(r − 1)n2), and the average value of r is lnn. This is very fast if p is
small, but may be expensive if p is not small. We note that the algorithm is
completely deterministic, but see section 5.3.5.

5Texts often say O(n3 + prn2), but the rth factor needn’t be calculated this way, as it
follows from knowing all the others.

226 CHAPTER 5. p-ADIC METHODS

Figure 5.2: Algorithm 27; Berlekamp for small p

Algorithm 27
Input: Prime p and f a squarefree (mod p) univariate polynomial
Output: The irreducible factors of f

Calculate Q
Calculate (a basis for) the eigenvectors of Q for the eigenvalue 1,

i.e. (a basis for) the solutions v of (QI)v = 0.
(1, 0, . . . , 0)T is the trivial eigenvector, as integers solve (5.2)
r, the size of the basis, is the number of irreducible factors
if r = 1

then return {f}.
S = ∅
for v a non-trivial eigenvector

Let g be the polynomial whose coefficients are v
for s ∈ {0, . . . , p− 1}

if (h := gcd(g − s, f)) ̸= 1
then S := S ∪ {h}

if |S| = r
then return S

5.3.2 The Cantor–Zassenhaus method

This method, a combination of Algorithms 28 and 29, is generally attributed
to [CZ81]6. It is based on the following generalization of Fermat’s (Little)
Theorem/ Corollary 18.

Proposition 68 ([LN97, Theorem 3.20]) All irreducible polynomials of de-

gree d with coefficients modulo p divide xp
d − x, and in fact

xp
d

− x =
∏
e|d

∗∏
f :deg(f)=e

f, (5.4)

where
∏∗

means that we only take irreducible polynomials.

Corollary 19 All irreducible polynomials of degree d with coefficients modulo

p divide xp
d−1 − 1, except for x itself in the case d = 1. Furthermore, no

irreducible polynomials of degree more than d divide xp
d−1 − 1.

Corollary 20 Half of the irreducible polynomials of degree d (except for x itself

in the case d = 1) with coefficients modulo p divide (x− a)(p
d−1)/2 − 1, for any

a (but a different 50%,depending on a).

6Though [Zip93] credits algorithm 28 to [Arw18], and [vzGP01] credits it to Gauß.

5.3. FACTORING MODULO A PRIME 227

Figure 5.3: Algorithm28: Distinct Degree Factorization

Algorithm 28 (Distinct Degree Factorization)
Input: f(x) a square-free polynomial modulo p, not divisible by x; a prime p
Output: A decomposition f =

∏
fi, where each fi is the product of irreducibles

of degree i.

i:=1
while 2i ≤ deg(f)

g := xp
i−1 (mod f) (*)

fi := gcd(g − 1, f)
f := f/fi
i := i+ 1

if f ̸= 1
then fdeg(f) := f

Note that the computation in line (*) should be done by the repeated squaring
method, reducing modulo f at each stage. We can save time in practice by re-
using the previous g. Various improvements (at least in asymptotic complexity)
are given in [vzGS92].

Hence we deduce Algorithm 28, which splits a square-free polynomial f as
∏
fi,

where each fi is the product of irreducibles of degree i.
If fi has degree i, then it is clearly irreducible: otherwise we have to split

it. This is the purpose of Algorithm 29, which relies on a generalization of
Corollary 20.

Proposition 69 ([CZ81, p. 589]) Let f be a product of r > 1 irreducible
polynomials of degree d modulo p, and g a random (non-constant) polynomial

of degree < d. Then the probability that gcd(g(p
d−1)/2 − 1, f) is either 1 or f is

at most 21−r.

Proposition 70 In classical arithmetic, the running time of the Cantor–Zass-
enhaus Algorithm (i.e. Algorithm 28 followed by Algorithm 29) is O(d3 log p),
where d is the degree of the polynomial being factored.

We do O(d log p) operations7 on polynomials of degree d, where the factor log p

comes from the xp
i

(mod f) computations. We note that Algorithm 28 is
deterministic, but Algorithm 29 is probabilistic.

5.3.3 Berlekamp’s large p method

This method is due to [Ber70]. It has an alternative, matrix-based, form of
Algorithm 28, again deterministic, and a probabilistic equivalent of Algorithm

7Näıvely, we raise x first to the power p− 1, then p2 − 1, and so on until pd/2 − 1, which
looks like O(d2) operations. But in fact we can re-use the previous results.

228 CHAPTER 5. p-ADIC METHODS

Figure 5.4: Algorithm29: Split a Distinct Degree Factorization

Algorithm 29 (Split a Distinct Degree Factorization)
Input: A prime p, a degree d and a polynomial f(x) (mod p) known to be the
product of irreducibles of degree d (and not divisible by x)
Output: The factorization of f (modulo p) into irreducibles of degree d.

if d = deg(f)
then return f # degree d so is irreducible

W := {f}
ans := ∅
while W ̸= ∅ # factors of degree d found
h :=RandomPoly(p,d)

h := h(p
d−1)/2 (mod g) (*)

V := ∅ # list of polynomials to be processed
for g ∈W do

h1 := gcd(h− 1, g)
if deg(h1) = 0 ∨ deg(h1) = deg(g)

then V := V ∪ {g} # we made no progress
else process(h1)

process(g/h1)
W := V

return ans

Here RandomPoly(p,d) returns a random non-constant polynomial modulo p of
degree less than d, and the sub-function process(g1) takes a polynomial g1 which
is a result of splitting g by h1, and adds it to ans if it has degree d, otherwise
adds it to V . Again (*) should be done by repeated squaring, reduing modulo
g every time.

29. We do not go further into it here.

5.3.4 Other Methods

[vdHM20] presents a Tangent Graeffe method. It only finds linear factors, and
requires p to be of the form σ2k + 1 with σ small, but is in theory a factor
of log d faster than the Cantor-Zassenhaus algorithm. Their application was
sparse polynomial interpolation, as in [BOT88], rather than factoring, Here
the constraints on p are acceptable, and the figures quoted there do show a
substantial improvement: ×12 at d = 217 − 1.

5.3.5 Complexity Theory

A dense polynomial of degree n modulo p can be stored in (n+ 1)⌈log2 p⌉ bits,
hence the “small-prime” method of §5.3.1, while polynomial in n, is not poly-

5.4. FROM Zp TO Z? 229

nomial in the size of the input. The methods of §§5.3.2–5.3.3, while polynomial
in the size of the input, are not deterministic.

Open Problem 26 (Factoring modulo p) A deterministic polynomial-time
algorithm is a major challenge of complexity theory. Assuming the General-
ized Riemann Hypothesis, [Evd94] has an algorithm which is polynomial in
log p, nlogn. There are a variety of special-case improvements on this (e.g.
[AIKS14]), but the problem is still open. Removing the dependence on the Gen-
eralized Riemann Hypothesis is also an open problem.

5.4 From Zp to Z?

Now that we know that factoring over the integers modulo p is possible, the
obvious strategy for factoring polynomials over the integers would seem to be
to follow one of algorithms 17 or 18. This would depend on having ‘good’
reduction, which one would naturally define as follows.

Definition 99 (Optimistic) We say that p is of good reduction for the factor-
ization of the polynomial f if the degrees of the irreducible factors of f (modulo
p) are the same as those of the factors of f .

And indeed, if we can find p of good reduction, then we could factorize f .
Unfortunately these are rare, and possibly non-existent.

Corollary 21 (of Proposition 63) If f is a generic (formally speaking, with
Galois group Sn) polynomial of degree n, the probability of its remaining irre-
ducible modulo p is 1/n.

Nevertheless, we could hope that we can piece together results from several
primes to get information. For example, x5 + x+ 3 factors into irreducibles as(

x3 + 7x2 + 3x+ 7
) (
x2 + 4x+ 2

)
mod 11

(and therefore does not have linear factors over Z) and as(
x4 + 5x3 + 12x2 + 8x+ 2

)
(x+ 8) mod 13

(therefore any factorization has a linear factor) and hence must be irreducible
over the integers. This test is described in Section 5.2.1. However, there are
irreducible polynomials which can never be proved so this way.

Example 31 The polynomial x4 + 1, which is irreducible over the integers,
factors into two quadratics (and possibly further) modulo every prime8.

p = 2 Then x4 + 1 = (x+ 1)4.

p = 4k + 1 In this case, −1 is always a square, say −1 = q2. This gives us the
factorisation x4 + 1 = (x2 − q)(x2 + q).

8The Galois group of this polynomial is discussed on page 222.

230 CHAPTER 5. p-ADIC METHODS

p = 8k ± 1 In this case, 2 is always a square, say 2 = q2. This gives us the
factorisation x4 + 1 = (x2 − (2/q)x + 1)(x2 + (2/q)x + 1). In the case
p = 8k + 1, we have this factorisation and the factorisation given in the
previous case. As these two factorisations are not equal, we can calculate
the g.c.d.s of the factors, in order to find a factorisation as the product of
four linear factors.

p = 8k + 3 In this case, −2 is always a square , say −2 = q2. This is a result
of the fact that −1 and 2 are not squares, and so their product must
be a square. This property of −2 gives us the factorisation x4 + 1 =
(x2 − (2/q)x− 1)(x2 + (2/q)x− 1)

This polynomial is not an isolated oddity: [SD69] and [KMS83] proved that there
are whole families of polynomials with this property of being irreducible, but of
factorising compatibly modulo every prime, and indeed compatibly into many
quadratics9. Several people have said that these polynomials are, nevertheless,
“quite rare”, which is true if one takes polynomials at random, but [ABD85]
showed that they can often occur in the manipulation of algebraic numbers.

Even if we have factorizations modulo several primes, a further problem
arises, which we will illustrate with the example of x4 + 3. This factors as

x4 + 3 =
(
x2 + 2

)
(x+ 4) (x+ 3) mod 7

and
x4 + 3 =

(
x2 + x+ 6

) (
x2 + 10x+ 6

)
mod 11. (5.5)

In view of the second factorization, the first has too much decomposition, and
we need only consider the split

x4 + 3 =
(
x2 + 2

) (
x2 + 5

)
mod 7, (5.6)

obtained by combining the two linear factors.
When we come to combine results modulo these two primes by Chinese

Remainder Theorem (Theorem 56) to deduce a congruence modulo 77, we have
a dilemma: do we pair

(
x2 + x+ 6

)
with

(
x2 + 2

)
or
(
x2 + 5

)
? Both seem

feasible.
In fact, both are feasible. The first pairing gives

x4 + 3 =
(
x2 + 56x+ 72

) (
x2 − 56x− 16

)
mod 77, (5.7)

and the second gives

x4 + 3 =
(
x2 + 56x+ 61

) (
x2 − 56x− 5

)
mod 77 : (5.8)

both of which are correct. The difficulty in this case, as in general, is that,
while polynomials over Z7 have unique factorization, as do those over Z11 (and
indeed modulo any prime), polynomials over Z77 (or any product of primes) do
not, as (5.7) and (5.8) demonstrate.

9Which might split into lineas modulo some primes.

5.5. HENSEL LIFTING 231

5.5 Hensel Lifting

Our attempts to use the Chinese Remainder Theorem seem doomed10: we need
a different solution, which is provided by what mathematicians call p-adic meth-
ods, and computer algebraists call Hensel Lifting. This is the topic of the next
four subsections.

5.5.1 Linear Hensel Lifting

This is the simplest implementation of the phase described as ‘grow’ in Figure
5.1: we grow incrementally Zp → Zp2 → Zp3 → · · · → Zpm .

For simplicity, we consider first the case of a monic polynomial f , which
factorizes modulo p as f = gh, where g and h are relatively prime (which implies
that f modulo p is square-free, that is, that p does not divide the resultant of f
and f ′). We use parenthesized superscripts, as in g(1), to indicate the power of
p modulo which an object has been calculated. Thus our factorization can be
written f (1) = g(1)h(1) (mod p1) and our aim is to calculate a corresponding
factorization f (k) = g(k)h(k) (mod pk) such that pk is sufficiently large.

Obviously, g(2) ≡ g(1) (mod p), and therefore we can write g(2) = g(1)+pĝ(2)

where ĝ(2) is a measure of the difference between g(1) and g(2). The same holds
for f and h, so that f (2) = g(2)h(2) (mod p2) becomes

f (1) + pf̂ (2) = (g(1) + pĝ(2))(h(1) + pĥ(2)) (mod p2).

Since f (1) = g(1)h(1) (mod p1), this equation can be rewritten in the form11

[
f (1) − g(1)h(1)

p

]
︸ ︷︷ ︸
computed mod p2

+f̂ (2) = ĝ(2)h(1) + ĥ(2)g(1) (mod p). (5.9)

The left hand side of this equation is known, whereas the right hand side de-
pends linearly on the unknowns ĝ(2) and ĥ(2). Applying the extended Euclidean
Algorithm (5)) to g(1) and h(1), which are relatively prime, we can find polyno-

mials ĝ(2) and ĥ(2) of degree less than g(1) and h(1) respectively, which satisfy
this equation modulo p. The restrictions on the degrees of ĝ(2) and ĥ(2) are
valid in the present case, for the leading coefficients of g(k) and h(k) have to be
1. Thus we can determine g(2) and h(2).

Similarly, g(3) ≡ g(2) (mod p2), and we can therefore write g(3) = g(2) +
p2ĝ(3) where ĝ(3) is a measure of the difference between g(2) and g(3). The same

10In fact, they are doomed for two distinct reasons. The first is that we are not emulating
modulo p a calculation over the integers, so the argument of Lemma 12 does not apply. The
second is that we cannot answer question 4 — how do we combine the results, as our results
are a set with, possibly, no distinguishing features.

11This comes from dividing the previous congruence by p, and hence the term in [. . .] must
be computed modulo p2. The same warning applies throughout this chapter. Note also that
we have applied the rule that A ≡ B (mod p2) means that A/p ≡ B/p (mod p) not
(mod p2).

232 CHAPTER 5. p-ADIC METHODS

Figure 5.5: Algorithm 30

Algorithm 30 (Univariate Hensel Lifting (Linear Two Factor version))

Input: f, g(1), h(1), p, k with f monic, squarefree (mod p) and ≡ g(1)h(1)

(mod p)
Output: g(k), h(k) with f ≡ g(k)h(k) (mod pk)

g := g(1)

h := h(1)

g(r), h(r) := Algorithm 5(g(1), h(1)) in Zp[x]
for i := 2 . . . k

∆ :=
f − gh (mod pi)

pi−1

g(c) := ∆ ∗ h(r) (mod (p, g(1)))
h(c) := ∆ ∗ g(r) (mod (p, h(1)))
g := g + pi−1g(c)

h := h+ pi−1h(c)

return (g, h)

is true for f and h, so that f (3) = g(3)h(3) (mod p3) becomes

f (2) + p2f̂ (3) = (g(2) + p2ĝ(3))(h(2) + p2ĥ(3)) (mod p3).

Since f (2) = g(2)h(2) (mod p2), this equation can be rewritten in the form

f (2) − g(2)h(2)

p2
+ f̂ (3) = ĝ(3)h(2) + ĥ(3)g(2) (mod p). (5.10)

Moreover, g(2) ≡ g(1) (mod p), so this equation simplifies to

f (2) − g(2)h(2)

p2
+ f̂ (3) = ĝ(3)h(1) + ĥ(3)g(1) (mod p).

The left hand side of this equation is known, whilst the right hand side depends
linearly on the unknowns ĝ(3) and ĥ(3). Applying the extended Euclidean algo-
rithm to g(1) and h(1), which are relatively prime, we can find the polynomials
ĝ(3) and ĥ(3) of degrees less than those of g(1) and h(1) respectively, which satisfy
this equation modulo p. Thus we determine g(3) and h(3) starting from g(2) and
h(2), and we can continue these deductions in the same way for every power pk

of p until pk is sufficiently large.
We should note that Euclid’s algorithm is always applied to the same poly-

nomials, and therefore it suffices to perform it once. In fact, we can state the
algorithm in Figure 5.5.

To solve the more general problem of lifting a factorization of a non-monic
polynomial, we adopt the same solution as in the g.c.d. case: we impose the

5.5. HENSEL LIFTING 233

Figure 5.6: Algorithm 31

Algorithm 31 (Univariate Hensel Lifting (Linear version))

Input: f, g
(1)
1 , . . . , g

(1)
n , p, k with f ∈ Z[x] primitive and ≡

∏
g
(1)
i (mod p)

Output: g
(k)
1 , . . . , g

(k)
n with f ≡

∏
g
(k)
i (mod pk)

for j := 1 . . . n

g
(1)
j := lc(f)

lc(g
(1)
j

)
g
(1)
j

F := lc(f)n−1f #leading coefficients imposed
for j := 1 . . . n

g
(r)
j , h

(r)
j := Algorithm 5(g

(1)
j ,
∏

i ̸=j g
(1)
i) in Zp[x]

for i := 2 . . . k

∆ :=
F −

∏
j gj (mod pi)

pi−1

if ∆ = 0
then break #True factorization discovered

for j := 1 . . . n

g
(c)
j := ∆ ∗ h(r)j (mod (p, g

(1)
j))

gj := gj + pi−1g
(c)
j

for j := 1 . . . n
gj := pp(gj) #undo the imposed leading coefficients

return (g1, . . . , gn)

leading coefficient in each factor to be the leading coefficient of the orgiinal
polynomial (which we may as well assume to be primitive). We also address the
problem of lifting n (rather than just 2) factors in Algorithm 31. We have also
incorporated an “early termination” test, which is very useful in practice.

Proposition 71 Assuming classical arithmetic (but ignoring the fact that the
length of numbers is quantised into multiples of the wordlength), the cost of the

lift from pk to pk+1 is
(
k+1
k

)2
the cost of the lift from pk−1 to pk. Hence the

cost of a lift to pk is O(k3).

5.5.2 Quadratic Hensel Lifting

This is an alternative implementation of the phase described as ‘grow’ in Figure
5.1: we grow incrementally Zp → Zp2 → Zp4 → · · · → Zp2m , squaring the
modulus each time.

As in the previous section, we first consider the case of a monic polynomial
with two factors. The lifting from p to p2 proceeds exactly as in the previous
section, and equation (5.9) is still valid. The lifting from p2 to p4 is similar to
the lifting from p2 to p3 in the previous section, and the analogue of equation

234 CHAPTER 5. p-ADIC METHODS

Figure 5.7: Algorithm 32

Algorithm 32 (Univariate Hensel Lifting (Quadratic Two Factor version))

Input: f, g(1), h(1), p, k with f monic and ≡ g(1)h(1) (mod p)

Output: g, h with f ≡ gh (mod p2
k

)

g := g(1)

h := h(1)

for i := 1 . . . k #f ≡ gh (mod p2
i−1

)
g(r), h(r) := Algorithm 5(g, h) in Zp2i−1 [x]

∆ :=
f − gh (mod p2

i

)

p2
i−1

g(c) := ∆ ∗ h(r) (mod (p2
i−1

, g))

h(c) := ∆ ∗ g(r) (mod (p2
i−1

, h))

g := g + p2
i−1

g(c)

h := h+ p2
i−1

h(c) #f ≡ gh (mod p2
i

)
return (g, h)

(5.10) is the following

f (2) − g(2)h(2)

p2
+ f̂ (4) = ĝ(4)h(2) + ĥ(4)g(2) (mod p2). (5.11)

The difference is that this equation is modulo p2 rather than modulo p, and
hence the inverses have to be recomputed, rather than being the same, as (5.10)
can re-use the inverses from (5.9). We give the corresponding Algorithm 32 in
Figure 5.7, an analogue of Algorithm 30, except that the call to Algorithm 5 is
inside the loop, rather than preceding it.

Equally, we can give the general Algorithm 33 in Figure 5.8 as an equivalent
of Algorithm 31. Again, the Extended Euclidean Algorithm is in the innermost
loop, and pratcical experience confirms that this is indeed the most expensive
step. It is also the case that we are repeating work, inasmuch as the calculations
are the same as before, except that the inputs are correct to a higher power of
p than before, and the resuts are required to a higher power of p than before.

Proposition 72 Assuming classical arithmetic (but ignoring the fact that the
length of numbers is quantised into multiples of the word length), the cost of the

lift from p2
k

to p2
k+1

is 4 times the cost of the lift from p2
k−1

to p2
k

. Hence

the cost of a lift to p2
k

is dominated by the cost of the last step, which involves
arithmetic on numbers of length O(2k), and so is O(22k).

5.5. HENSEL LIFTING 235

Figure 5.8: Algorithm 33

Algorithm 33 (Univariate Hensel Lifting (Quadratic version))

Input: f, g
(1)
1 , . . . , g

(1)
n , p, k with f primitive and ≡

∏
g
(1)
i (mod p)

Output: g1, . . . , gn with f ≡
∏
gi (mod p2

k

)

for j := 1 . . . n

g
(1)
j := lc(f)

lc(g
(1)
j

)
g
(1)
j

F := lc(f)n−1f #leading coefficients imposed

for i := 1 . . . k #F =
∏
gj (mod p2

i−1

)

∆ :=
F −

∏
j gj (mod p2

i

)

p2
i−1

if ∆ = 0
then break #True factorization discovered

for j := 1 . . . n

g
(r)
j , h

(r)
j := Algorithm 5(gj ,

∏
l ̸=j gl) in Zp2i−1 [x]

g
(c)
j := ∆ ∗ h(r)j (mod (p2

i−1

, gj))

gj := gj + p2
i−1

g
(c)
j

#F =
∏
gj (mod p2

i

)
for j := 1 . . . n

gj := pp(gj) #undo the imposed leading coefficients
return (g1, . . . , gn)

236 CHAPTER 5. p-ADIC METHODS

5.5.3 Quadratic Hensel Lifting Improved

The main cost in algorithms 32 and 33 is the repeated calls to Algorithm 5. In
fact, for each iteration on k, Algorithm 5 is doing the same calculations, but
to a higher power of p. Do we need to do these calculations from scratch each
time? The answer is that in fact we can re-use the previous calculations.

Consider equation (5.11), where we need the inverses of g(2) and h(2), i.e.
g(r,2) and h(r,2) such that g(2)g(r,2) + h(2)h(r,2) ≡ 1 (mod p2). From the previ-
ous step we know g(r,1) and h(r,1) such that g(1)g(r,1)+h(1)h(r,1) ≡ 1 (mod p1).

Write g(r,2) = g(r,1)+pĝ(r,2) etc., then g(1)g(r,1)+h(1)h(r,1)−1
p +ĝ(2)g(r,1)+g(1)ĝ(r,2)+

h(2)h(r,1) + h(1)ĥ(r,2) ≡ 0 (mod p). This is again a linear equation for the un-

knowns ĝ(r,2) and ĥ(r,2). If we write it as

g(1)ĝ(r,2) + h(1)ĥ(r,2) = ∆(r) (mod p), (5.12)

the similarity with (5.10) is obvious, and ĝ(r,2) = ∆(r)g(r,1) (mod h(1), p),

ĥ(r,2) = ∆(r)h(r,1) (mod g(1), p).
The analogy of Algorithm 32 is then Algorithm 34, given in Figure 5.9. We

do not give an analogy of Algorithm 33, as the notation becomes quite intricate.
TO BE COMPLETEDcitation from MooreNorman

5.5.4 Hybrid Hensel Lifting

In theory, quadratic lifting requires many fewer lifting stages than linear lifting,
and, though the individual steps are more expensive, quadratic lifting should
be faster. This is borne out by simple asymptotic analysis: Proposition 71 says
that the cost of linear lifting to pk is O(k3), while Proposition 72 says that the

cost of quadratic lifting to p2
k′

is O((2k
′
)2). Since we expect k ≈ 2k

′
, quadratic

lifting seems to win.
Reality, though, is more complicated than this asymptotic analysis. Firstly

we are lifting to the least power of p, say pm, greater than 2M , where M is
the appopriate Landau–Mignotte bound. Secondly, number lengths are indeed
quantised into units of the length of the machine word, whereas p itself is nor-
mally small, often12 ≤ 19. Thirdly, the cost of quadratic lifting is dominated by
that of the last step.

In practice, therefore, we tend to use a hybrid: lifting quadratically to begin
with, p, p2, p4, . . . pℓ, and then linearly, p2ℓ, p4ℓ There are two main variants
of this.

• Let ℓ be such that pℓ is the greatest power of p to fit in one machine word.
This means Algorithm 5, generally the most expensive step, is only ever
applied to polynomials with single-word coefficients. Since ℓ may not be
a power of two, the last quadratic lift may be somewhat truncated.

• Let ℓ be the largest power of 2 such that pm can be reached economically
from pℓ. The following procedure is suggested. Let m0 be the greatest

1219 is the seventh odd prime: see Observation 16.

5.5. HENSEL LIFTING 237

Figure 5.9: Algorithm 34

Algorithm 34 (Univariate Hensel Lifting (Improved Quadratic Two Factor version))

Input: f, g(1), h(1), p, k with f monic and ≡ g(1)h(1) (mod p)

Output: g, h with f ≡ gh (mod p2
k

)

g := g(1)

h := h(1)

g(r), h(r) := Algorithm 5(g, h) in Zp[x]

for i := 1 . . . k #f ≡ gh (mod p2
i−1

)

#gg(r) ≡ 1 (mod h, p2
i−1

)

#hh(r) ≡ 1 (mod g, p2
i−1

)

∆ :=
f − gh (mod p2

i

)

p2
i−1

g(c) := ∆ ∗ h(r) (mod (p2
i−1

, g))

h(c) := ∆ ∗ g(r) (mod (p2
i−1

, h))
if i < k

∆(r) := − gg(r)+hh(r)−1

p2i−1 − g(c)g(r) − h(c)h(r)

g(r,c) := ∆(r) ∗ g(r) (mod (p2
i−1

, h))

g(r) := g(r) + p2
i−1

g(r,c)

h(r,c) := ∆(r) ∗ h(r) (mod (p2
i−1

, g))

h(r) := h(r) + p2
i−1

h(r,c)

g := g + p2
i−1

g(c)

h := h+ p2
i−1

h(c) #f ≡ gh (mod p2
i

)
return (g, h)

238 CHAPTER 5. p-ADIC METHODS

power of 2 such that 4m0 ≤ m, and lift quadratically to pm0 . The next
steps depend on where m fits with respect to multiples of m0. The details
are given in [Abb88].

4m0 = m Two more quadratic lifts p2m0 and p4m0 = pm.

4m0 < m ≤ 5m0 Linear lifting p2m0 , p3m0 , p4m0 and p5m0 ≥ pm.

5m0 < m ≤ 6m0 Quadratic lifting to p2m0 , then linear lifting p4m0 and
p6m0 ≥ pm.

6m0 < m ≤ 7m0 Linear lifting p2m0 , p3m0 , p4m0 , p5m0 , p6m0 and p7m0 ≥
pm.

7m0 < m ≤ 8m0 Quadratic lifting to p2m0 , then linear lifting p4m0 , p6m0

and p8m0 ≥ pm.

The choice between these, and the fine-tuning of the choices in the second
option, are very dependent on details of the implementation in practice.

Further details, and a “balanced factor tree” approach, are given in [vzGG99,
§15.5].

TO BE COMPLETED

5.6 The recombination problem

However, as pointed out in section 5.4, the fact that we have a factorization of
f modulo pk, where pk > 2M , M being the Landau–Mignotte bound (Theorem
39), or some alternative (see page 326) on the size of any coefficients in any
factor of f , does not solve our factorization problem. It is perfectly possibly
that f is irreducible, or that f does factor, but less than it does modulo p.

Assuming always that p does not divide lc(f), all that can happen when we
reduce f modulo p is that a factor of f that was irreducible over the integers
now factors modulo p (and hence modulo pk). This gives us the algorithm in
Figure 5.6, first suggested in [Zas69]. To guarantee irreducibility of the factors
found, the loop must try all subsets of T before trying T itself, but this still
leaves a lot of choices for the loop: see 1 below.

The running time of this algorithm is, in the worst case, exponential in r since
2r−1 subsets of S have to be considered (2r−1 since considering T effectively also
considers S \T). Let n be the degree of f , and H a bound on the coefficients of
f , so the Landau–Mignotte bound is at most 2n(n+1)H, and k ≤ logp(2n+1(n+
1)H).

Many improvements to, or alternatives to, this basic algorithm have been
suggested since. In essentially chronological order, the most significant ones are
as follows.

1. [Col79] pointed out that there were two obvious ways to code the “for
subsets T of S” loop: increasing cardinality of T and increasing degree of∏

g∈T g. He showed that, subject to two very plausible conjectures, the

5.6. THE RECOMBINATION PROBLEM 239

Figure 5.10: Algorithm 35: Combine Modular Factors

Algorithm 35 (Combine Modular Factors)
Input: A prime power pk, a monic polynomial f(x) over the integers, a fac-
torisation f =

∏r
i=1 fi modulo pk

Output: The factorization of f into monic irreducible polynomials over the
integers.

ans := ∅
M :=LandauMignotteBound(f)
S := {f1, . . . , fr}
for subsets T of S

h :=
∏

g∈T g (mod pk)

if |h| < M and h divides f
then ans := ans ∪ {h}

f := f/h
S := S \ T
M := min(M,LandauMignotteBound(f))

average number of products actually formed with the cardinality ordering
was O(n2), thus the average running time would be polynomial in n.

2. [LLL82] had a completely different approach to algorithm 35. They asked,
for each d < n, “given f1 ∈ S, what is the polynomial g of degree d which
divides f over the integers and is divisible by f1 modulo pk?”. Unfortu-
nately, answering this question needed a k far larger than that implied by
the Landau–Mignotte bound, and the complexity, while polynomial in n,
was O(n12), at least while using classical arithmetic. This paper intro-
duced the ‘LLL’ lattice reduction algorithm, which has many applications
in computer algebra and far beyond.

3. [ABD85] showed that, by a combination of simple divisibility tests and
“early abort” trial division (Proposition 58) it was possible to make dra-
matic reductions, at the time up to four orders of magnitude, in the con-
stant implied in the statement “exponential in r”.

4. [ASZ00] much improved this, and the authors were able to eliminate whole
swathes of possible T at one go.

5. [vH02] reduces the problem of finding T to a ‘knapsack’ problem, which, as
in method 2, is solved by LLL, but the lattices involved are much smaller
— of dimension r rather than n. At the time of writing, this seems to
be the best known method. His paper quoted a polynomial of degree
n = 180, with r = 36 factors of degree 5 modulo p = 19, but factoring as

240 CHAPTER 5. p-ADIC METHODS

two polynomials of degree 90 over the integers. This took 152 seconds to
factor.

Open Problem 27 (Evaluate [vH02] against [ASZ00]) How does the fac-
torization algorithm of [vH02] perform on the large factorizations successfully
solved by [ASZ00]? Clearly the algorithm of [vH02] is asymptotically faster, but
where is the cut-off point? Note also that [vH02]’s example of x128 − x112 +
x80− x64 + x48− x16 + 1 is in fact a disguised cyclotomic polynomial (as shown
by the methods of [BD89]), being(

x240 − 1
) (
x16 − 1

)
(x80 − 1) (x48 − 1)

=
∏

1 ≤ k < 15

gcd(k, 15) = 1

(
x16 − e2πik/15

)
.

5.7 Univariate Factoring Solved

We can put together the components we have seen to deduce an algorithm
(Figure 5.11) for factoring square-free polynomials over Z[x]. We have chosen to
use the Cantor–Zassenhaus method (Section 5.3.2) for the modular factorisation,
as most implementers today do, simply because it gives the information needed
for the Musser test quite cheaply: we just need Algorithm 28.

Open Problem 28 (Better Choice of ‘Best’ Prime) In algorithm 36, we
picked the ‘best’ prime and the corresponding factorization. In principle, it is
possible to do better, as in Example 32, but the author has seen no system-
atic treatment of this. It is also possible to “improve” the factorization , as in
Example 33, but again the author has seen no systematic treatment of this.

Example 32 Suppose fp factors as polynomials of degree 2, 5 and 5, and fq
factors as polynomials of degree 3, 4 and 5: in terms of number of factors p and
q are equivalent. The factorization modulo p implies that the allowable degrees
of (proper) factors are 2, 5, 7 and 10. The factorization modulo q implies that
the allowable degrees of (proper) factors are 3, 4, 5, 7, 8 and 9. Hence the only
possible degrees of proper factors over the integers are 5 and 7. The factorization
modulo p can yield this in two ways, but the factorization modulo q can only
yield this by combining the factors of degrees 3 and 4. Hence we should do this,
and lift this factorization of fq, rather than the complete factorization.

Example 33 Suppose fp factors as polynomials of degree 1, 3 and 4, and fq
factors as four polynomials of degree 3. p is clearly a better prime than q. But
nevertheless, q tells us that the only non-trivial split is (4, 4), so the factors of
degree 1 and 3 modulo p must combine, hence we can multiply them before
lifting, and so lift only two factors rather than three.

Open Problem 29 (Low-degree Factorization) Although no major system
to the author’s knowledge implements it, it would be possible to use the tools we
have described to implement an efficient procedure to find all factors of limited
total degree d. This would be efficient for three reasons:

5.7. UNIVARIATE FACTORING SOLVED 241

Figure 5.11: Overview of Factoring Algorithm

Algorithm 36 (Factor over Z)
Input: A primitive square-free f(x) ∈ Z[x]
Output: The factorization of f into irreducible polynomials over the integers.

p1 := find_prime(f);
F1 :=Algorithm 28(f, p1)
if F1 is a singleton

return f
S :=AllowableDegrees(F1)
for i := 2, . . . , 7 #7 from Observation 16

pi := find_prime(f);
Fi :=Algorithm 28(f, pi)
S := S∩AllowableDegrees(Fi)
if S = ∅

return f
(p, F) :=best({(pi, Fi)}); #‘best’ in terms of fewest factors
Complete factorization modulo p by Algorithm 29
Improve this in the light of ({(pi, Fi)}); #Open Problem 28 F :=Algorithm 31(f, F, p, logp(2LM(f)))

return Algorithm 35(plogp(2LM(f)), f, F)

find_prime(f) returns an odd prime p, generally as small as possible, such
that f remains square-free modulo p. AllowableDegrees(F) returns the set of
allowable proper factor degrees from a distinct degree (not needing a complete)
modular factorization.
Algorithm 35 can be replaced by any of improvements 1–5 on pages 238–240.

242 CHAPTER 5. p-ADIC METHODS

Table 5.1: Costs of Bivariate Hensel
Linear [Ber98] O(d2xd

2
y)

Linear [MP22] O(d2xdy + dxd
2
y)

Quadratic [vzGG13, Chapter 15] O(M(dxdy) log2(n))

• the Cantor–Zassenhaus algorithm (section 5.3.2) need only run up to max-
imum degree d;

• it should be possible to use smaller bounds on the lifting

• The potentially-exponential recombination process need only run up to total
degree d. In particular, if d = 1, no recombination is needed.

At the moment, the user who only wants low-degree factors has to either program
such a search, or rely on the system’s factor, which may waste large amounts
of time looking for high-degree factors, which the user does not want.

In fact, [Gre15] described a library implemented in Mathemagix, which finds
the factors of degree ≤ d of a polynomial f in time which is polynomial in d
and the sparse bit size (Definition 27) of f . This is a much more powerful claim
than that made above, and relies on key results [Len99a, Len99b] that state,
essentially, that if a non-cyclotomic (Definition 121) polynomial g of degree
≤ d divides f1 + f2, and there is a sufficiently large gap between the degrees
appearing in f1 and f2, then g must divide both f1 and f2 separately.

5.8 Multivariate Factoring

Just as in section 4.3, we can use “evaluating y at the value v”, i.e. working
modulo (y − v), as an analogue of working modulo p. Just as in section 4.3,
having worked modulo (y − v), we can lift this to (y − v)2 and so on. There is
a fairly obvious generalisation of Algorithm 31, given in Algorithm 37, where
we are given f(x, y, x1, . . . , xm) ∈ Z[x1, . . . , xm, y, x] = R[y, x], a value v ∈ Z
and the factorization of f(x, v, x1, . . . , xm) ∈ R[x], and we wish to lift this to a
factorization modulo (y − v)k. In practice, k = 1 + degy(f), for then this lifted
factorization should be the true factorization in R[y, x].

This is linear lifting: there are also analogies of quadratic lifting (Algorithm
33) and hybrid lifting (section 5.5.4), but in practice these are rarely imple-
mented, as in the multivariate setting most of the cost is in the last lift, as the
polynomials have more and more terms as we lift.

5.8.1 Bivariate Complexity

Formal complexity theory of Hensel lifting is quite challenging but there have
been studies in the bivariate modulo p case, where we wish to factor F (x, y)
(assumed square-free), have chosen α such that F (x, α) is still square-free (and
we haven’t had to move to an extension field to find such an α), have factored

5.8. MULTIVARIATE FACTORING 243

Figure 5.12: Algorithm 37

Algorithm 37 (Multivariate Hensel Lifting (Linear version))

Input: f, g
(1)
1 , . . . , g

(1)
n , v, k with f ∈ R[y][x] primitive and ≡

∏
g
(1)
i (mod (y−

v))

Output: g
(k)
1 , . . . , g

(k)
n with f ≡

∏
g
(k)
i (mod (y − v)k)

for j := 1 . . . n

g
(1)
j := lc(f)

lc(g
(1)
j

)
g
(1)
j

F := lc(f)n−1f #leading coefficients imposed
for j := 1 . . . n

g
(r)
j , h

(r)
j := Algorithm 5(g

(1)
j ,
∏

i ̸=j g
(1)
i) in R[x]

for i := 2 . . . k

∆ :=
F −

∏
j gj (mod (y − v)i)

(y − v)i−1

if ∆ = 0
then break #True factorization discovered

for j := 1 . . . n

g
(c)
j := ∆ ∗ h(r)j (mod ((y − v), g

(1)
j))

gj := gj + (y − v)i−1g
(c)
j

for j := 1 . . . n
gj := pp(gj) #undo the imposed leading coefficients

if f ̸=
∏

j gj
then return “bad evaluation”

return (g1, . . . , gn)

244 CHAPTER 5. p-ADIC METHODS

F (x, α) =
∏n

i=1 fi(x)(1) and wish to lift this to F (x, y) =
∏n

i=1 fi(x, y)(k).
Assume that F has degree dx in x and dy in y. Then Table 5.1 gives the
cost of three algorithms, where M(d) is the cost of multipliying polynomials of
degree d. Note that fast arithmetic doesn’t really help linear lifting, because of
the unbalanced nature of the multiplications.

The first observation from Table 5.1 is that if dx and dy are similar, then
Karatsuba multiplication (Appendix B.3) is not good enough, as this would

give O(d
2 log2 3≈3.14
x) versus the O(d3x) of [MP22], and we need a faster method

(Appendix B.4). There are some experimental data in [MP22, Table 2], which
show that doubling dx and dy multiplies the times of [Ber98] by ∼ 16, [MP22] by
∼ 8 and the quadratic one by ∼ 5, as we might expect. [MP22] is always faster
than [Ber98], but the quadratic method is a lot slower, and will only get faster
at dx = dy = 216, i.e. multi-gigabyte polynomials. However13 the quadratic
pimplementation is purely that, not the hybrid approach from §5.5.4).

5.8.2 A “Good Reduction” Complexity Result

Of course, it is possible that v is a “bad reduction” for f , in that f(x, v, x1, . . . , xn)
factors more than f(x, y, x1, . . . , xn) does. Unlike the modulo p case, where we
saw in Example 31 that this might always happen, in practice14 these cases
are rare. Indeed, if m ≥ 1, i.e. we are factoring trivariates or beyond, we can
efficiently pick a good reduction, by the following result.

Theorem 47 ([vzG85, Theorem 4.5]) Let f be a representation of a multi-
variate polynomial. Then there is a reduction from the problem of finding the
factorisation shape of f (Definition 95) to that of finding the factorisation shape
of bivariates, which is polynomial in the size and degree of f , for any of the sizes
in (2.8).

5.8.3 Sparsity Results

We have already seen (section 2.3.7) that the complexity questions associated
to sparse polynomials are challenging, and indeed

xp − 1 = (x− 1)(xp−1 + xp−2 + · · ·+ x+ 1) (5.13)

shows that a sparse univariate polynomial can have completely dense factors
(we use a prime p rather than a general exponent n to ensure that the factors
shown are in fact irreducible).

13Private discussion with the authors of [MP22].
14This can be proved for reductions to two or more variables, in the sense that the “bad

reduction” values satisfy polynomials of degree as most d2 − 1 (characteristic 0, [Rup86]) or
12d6 (characteristic p, [Kal95]), where d is the degree of the polynomial in the variables not
being reduced.

5.8. MULTIVARIATE FACTORING 245

5.8.3.1 Multivariate Cyclotomics

There are two possible generalisations of (5.13) to multivariates:

(x1 . . . xn)p − 1 =
(x1 . . . xn − 1)

(
(x1 . . . xn)p−1 + (x1 . . . xn)p−2 + · · ·+ x1 . . . xn + 1

)
;

(5.14)

n∏
i=1

(xpi − 1) =

(
n∏

i=1

(xi − 1)

)(
n∏

i=1

(xp−1
i + xp−2

i + · · ·+ xi + 1)

)
, (5.15)

If we write these equations as f = gh, and if we write tf for the number of
monomials in the distributed15 representation of f , then (5.14) has tf = 2 and
th = p, as in the univariate case, and (5.15) has tf = 2n and th = pn — in

particular if n = p, th is not polynomial in tf , being t
log2 log2 tf
f . Might there be

still worse examples, say where tf was polynomial in n and the degree, but th
was exponential? It has recently been shown that not.

Theorem 48 ([DdO14, Theorem 1]) If f , a polynomial in n variables, of
degree at most d in each variable, factors as f = gh then

tg = O
(

max
(
t
O(log tf log log tf)
f , dO(log d)

))
. (5.16)

5.8.3.2 Low Degree Factors

Equations (5.14) and (5.15) show that the factors may have exponentially-many
terms compared with the original. But these are the high-degree factors — what
about the low-degree ones?

Notation 31 Let f =
∑t

i=1 aix
αi,1

1 · · ·xαi,n
n be a polynomial is distributed form.

The bit length of f , L(f) is the number of bits required to represent f :

L(f) =

t∑
i=1

(1 + ⌈log2 |ai|⌉)
n∑

j=1

⌈log2 |αi,j |⌉

 .

The 1+ is to allow for storing the sign of the coefficients. L(f) ≤ L(f) as L(f)
only considers the coefficients.

Theorem 49 ([AnKS07, Theorem 1]) There is a deterministic algorithm
that, given f ∈ Z[x, y] and d ≥ 1, computes all irreducible factors of f ∈ Q[x, y]
of degree ≤ d together with their multiplicities, in (dL(f))O(1) bit operations.

15The theory and implementations of this chapter have all been in terms of recursive rep-
resentations, but the theory appears to be better expressed in terms of distributed represen-
tations.

246 CHAPTER 5. p-ADIC METHODS

Figure 5.13: Algorithm 38

Algorithm 38 (Wang’s EEZ Hensel Lifting)
Input: f ∈ Z[x1, . . . , xn, x] squarefree and primitive (no integer common fac-
tor)
Output: Factorization of f over Z

Write f =
∑d

i=0 ci(x1, . . . , xn)xi

Recursively, factor cd(x1, . . . , xn) as ΩF e1
1 . . . F ek

k

Choose integers a1, . . . , an such that (see [Wan78, p. 1218] for feasibility)

1. cd(a1, . . . , an) ̸= 0

2. f (0)(x) := f(a1, . . . , an, x) is square-free

3. Each Fi(a1, . . . , an) is divisible by a prime pi, not dividing any
Fj(a1, . . . , an) : j < i, Ω or cont(f (0)).

Factor f (0)(x) = c
∏m

i=1 f
(0)
i (x)

[In practice, repeat the previous steps a few times, to ensure m minimal, and
hence reduce the possibility of bad reduction]

#Then f =
∏m

i=1 fi where fi(a1, . . . , an, x) = f
(0)
i (x).

Use the pi to distribute the Fi among the leading coefficients of the fi,
to get hi but with the correct leading coefficient

For k := 1 . . . n
#f(x1, . . . , xk−1, ak, . . . , an, x) =

∏
hi(x1, . . . , xk−1, ak, . . . , an, x)

#We know what the leading coefficients are
Use a variant of Algorithm 37 to lift this to

f(x1, . . . , xk, ak+1, . . . , an, x) =
∏
hi(x1, . . . , xk, ak+1, . . . , an, x)

5.8.4 The Leading Coefficient Problem

It seems too good to be true, that the multivariate generalization of Hensel
lifting needed no new concepts. While this is true as it stands, there is a major
snag in practice with Algorithm 37, and that is the cost of imposing leading
coefficients. In the univariate case, all this meant was that we had to lift very
slightly further, but in the multivariate case we are lifting factors of F , which
may well have many more terms than f . Solving this problem was (one of) the
major contributions of the EEZ algorithm proposed in [Wan78], which can best
be described as “discovered leading coefficients” rather than “imposed leading
coefficients”.

5.9. OTHER APPLICATIONS 247

Example 34 ([Wan78, p. 1218]) Consider16

f(x, y, z) = (4z2y4 + 4z3y3 − 4z4y2 − 4z5y)x6 + · · · .

The leading coefficient factors as 4yz2(y + z)2(y − z). A suitable evaluation is
(y = −14, z = 3) when

F1 = y → −14︸︷︷︸
p1=7

;F2 = z → 3︸︷︷︸
p2=3

;F3 = y + z → −11︸︷︷︸
p3=11

;F4 = y − z → −17︸︷︷︸
p4=17

.

f(x,−14, 3) = f
(0)
1 f

(0)
2 f

(0)
3 = (187x2− 23)(44x2 + 42x+ 1)(126x2− 9x+ 28), so

f
(0)
1 has p3p4, f

(0)
2 has 4p3 and f

(0)
3 has p1p

2
2. Hence the leading coefficients, are

in fact (y+z)(y−z), −4(y+z) and −yz2. The lift, with these leading coefficients,
rather than the whole of 4z2y4 + 4z3y3 − 4z4y2 − 4z5y, imposed, works fine.
The polynomial f has 88 terms when expanded, whereas if we imposed leading
coefficients in the style of algorithm 37, we would be lifting against an F with
530 terms.

5.9 Other Applications

5.9.1 Factoring Straight-Line Programs

This is discussed in [Kal89b], with Monte Carlo algorithms. For Q[x1, . . . , xn],
his algorithm is polynomial in the degree, the size of the straight-line program
determining the input, the size of the numerators and common denominator
of the coefficients and the logarithm of the error probability. Th eoutputs are
straight-line programs for the factors. These can then be converted into the
standard sparse representation by means of algorithms such as Proposition 9.
Forthermore, since these algorithms can be set to fail if asked to convert poly-
nomials with more than T terms, we have a polynomial-time algorithm that
returns the usual sparse format factors, or straight-line programs if these would
have more than T terms in sparse format.

5.9.2 p-adic Greatest Common Divisors

The entire p-adic/Hensel construction is applicable to the computation of great-
est common divisors as well.

5.9.2.1 Univariate Greatest Common Divisors

Since it is practically as cheap to use the largest possible single word prime as it
is to use a small one, and the probability that p is bad seems to be proportional
to 1/p (Observation 7), we take one such large p (possibly a second just to check
that we don’t have bad reduction), and compute hp = gcd(fp, gp). This gives

16There is a typographical error: see http://staff.bath.ac.uk/masjhd/JHD-CA/

Wangp1220.html.

http://staff.bath.ac.uk/masjhd/JHD-CA/Wangp1220.html
http://staff.bath.ac.uk/masjhd/JHD-CA/Wangp1220.html

248 CHAPTER 5. p-ADIC METHODS

us a factorization fp = hpfp. Since we are not sure of the leading coefficient,
we will impose gcd(lc(f), lc(g)) as the leading coefficient of hp and lc(f) as
that of fp. We then lift this (Algorithm 31 or 33, or hybrid: section 5.5.4) to

a factorization of gcd(lc(f), lc(g))f = h
(k)
p f

(k)

p for a suitable k (as in section

4.2.1), interpret h
(k)
p as a polynomial over the integers, make it primitive, and

check that it divides f and g.

5.9.2.2 Multivariate Greatest Common Divisors

Assume we have two polynomials f, g ∈ R[y][x] (where typicallyR = Z[1, . . . , xn])
and we wish to compute their greatest common divisor. We may as well (The-
orem 6) assume that they are primitive with respect to x. We take a value v
(normally in Z or the base ring of R) for y (possibly a second just to check
that we don’t have bad reduction), and compute hy=v = gcd(fy=v, gy=v). This
gives us a factorization fy=v = hy=vfy=v. Since we are not sure of the leading
coefficient, we will impose gcd(lcx(f), lcx(g)) as the leading coefficient of hy=v

and lcx(f) as that of fy=v. We then lift this (generally Algorithm 37) to a

factorization of gcd(lcx(f), lc(g))f = h
(k)
y=vf

(k)

y=v for a suitable k, interpret h
(k)
y=v

as a polynomial in R[y][x], make it primitive, and check that it divides f and g.

5.9.3 p-adic Gröbner Bases

This section is largely taken from [Win88]. The importance of, and difficulties
with, moving from computations over Q to finite domains are described in
section 4.6. In particular we note the definition of bad reduction and the fact
(Lemma 12) that there are only finitely many primes of bad reduction.

Suppose we are given F as input, and wish to compute its Gröbner base
G. We can choose a prime p (it would certainly be a good idea to choose a p
not dividing any leading coefficient of F), and compute a Gröbner base G(1)

modulo p = p1. In the matrix formulation of Gröbner base theory (section
3.3.5), it follows that there exist matrices X, Y and R such that

X(1).F = G(1)

Y (1).G(1) = F
R(1).G(1) = 0

(mod p) (3.37′)

where F and G(1) are the matrix versions of F and G(1). We might then be
tempted to lift these equations, by analogy with (5.9), but there is a snag.

Since G(1) is a Gröbner base, it reduces F to zero, and hence the monomials
needed to write Y (1).G(1) = F are at most those of F (or possibly lower ones that
don’t actually occur in a sparse representation of F). Similarly R(1).G(1) = 0 is
the statement that all S-polynomials reduce to 0, and hence the highest degree
that any xi can need is its highest degree in G(1). However, there is no such
tidy bound for X(1). Fortunately [Win88, Theorem 2] shows that we only need
to lift the other two, whose degrees are bounded.

5.9. OTHER APPLICATIONS 249

So we consider
Y (2).G(2) = F
R(2).G(2) = 0

(mod p2) (5.17)

write G(2) = G(1) + pĜ(2) etc. as in (5.9), divide through by p and get

Y (1).Ĝ(2) + Ŷ (2).G(1) = F−Y (1).G(1)

p

R̂(2).G(1) +R(1).Ĝ(2) = 0
(mod p) (5.18)

Just as (3.37) did not guarantee uniqueness, these equations don’t necessarily
have a unique solution. Indeed G is not unique, since we can multiply by any
rational (without a p part), so we need to impose that G and every G(k) is

monic. Then the Ĝ(2) part is unique [Win88, Theorem 4] as long as p is lucky.
This lifting process can be continued until we reach a sufficiently high power

of p, at which point we can convert the coefficients from being modulo pk to Q
by the techniques of Algorithm 25. But what is a sufficiently high power? This
is somewhat of a conundrum, unsolved in [Win88]. We can try taking a leaf
out of section 4.2.5, and say that, if the solution stabilises, we will verify if it is
correct.

Stabilisation This is harder to check than in section 4.2.5, since we are looking
for rational not integer coefficients. Hence it is not correct to check that
Ĝ(k) = 0: generally it never will be. Instead, we have to check that the
reconstitutions by Algorithm 25 are equal. Doing this efficiently, rather
than reconstructing completely and discovering that the two are not equal,
is an interesting programming task.

Verification We need to check two things: F
∗→

G
0 and that G is a Gröbner

base, i.e. that every S(gi, gj)
∗→

G
0.

Unluckiness of the prime p can manifest itself in one of three ways.

1. Failure to lift. [Win88, Theorem 4] only guarantees a lift (unique for every

Ĝ(k)) if p is lucky. In some sense, this is the best case, since we at least
know that p is unlucky.

2. Failure to stabilise — we just compute forever.

3. Failure to verify — if we terminate in a genuine Gröbner base G over
the rationals, but F does not reduce to 0, then indeed p must have been
unlucky. However, if the reconstructed G is not a Gröbner base over the
rationals, we do not know whether p was unlucky, or the stabilisation was
an accident and computing further will give the right result.

Open Problem 30 (p-adic Gröbner bases) Convert the above, and [Win88],
into a genuine algorithm for computing Gröbner bases p-adically. In particular,
is it possible to use the “majority voting” idea of [IPS11] (footnote 16 on page
211) to improve the chances of having good reduction.

250 CHAPTER 5. p-ADIC METHODS

5.9.4 p-adic determinants

[ABM99] describes a method for computing determinants which is “largely p-
adic”, in the sense that “most of” det(M) is computed via a p-adic solution
to some linear systems, the l.c.m. of whose denominators is typically det(M),
and generally a large factor D of det(M), and then computing det(M)/D by a
Chinese Remainder approach. The expected complexity is

O(n4 + n3(log n+ s)2),

where s is the length of the entries.

5.10 Conclusions

In this and the previous chapter, we have seen two different methods for com-
puting in “large” domains via “small” ones: the modular method (Figure 4.1)
and the p-adic/Hensel method (Figure 5.1). Both suffer from “bad reduction”
in that the calculation in the small domain may not be a faithful representa-
tion of the calculation in the large domain. Although the p-adic/Hensel method
only needs one small domain, we may compute more than one to minimise the
probability of bad reduction. How do the two fare on various examples?

Linear Algebra Section 4.1 presented the modular approach for computing
the determinant and other tasks of linear algebra. [Dix82] presents a p-
adic approach for solving Ax = b which he claims to be somewhat faster
— O(n3 log2 n) rather than O(n4). However he admits that the modular
approach is probably better for determinants themselves: a belief contra-
dicted by [ABM99]. TO BE COMPLETED

gcd computation TO BE COMPLETED

Factorization Here p-adic methods are basically the only choice.

Gröbner bases Here the p-adic methods of Section 5.9.3 have so many un-
solved issues that the modular methods of Section 4.6 seem the only real-
istic possibility.

In sum, both have their unique strengths, and can also compete in several areas.

Chapter 6

Algebraic Numbers and
Functions

Definition 100 An algebraic number is a root of a polynomial with integer
coefficients, i.e. α such that f(α) = 0 : f ∈ Z[t]. The set of all algebraic
numbers is denoted by A. An α ∈ A \ Q will be referred to as a non-trivial
algebraic number. If f is monic, we say that α is an algebraic integer.

Allowing f ∈ Q[t] gives us no advantage, since we can clear denominators
without affecting whether f(α) = 0. Of course, “monic” only makes sense over
Z[t].

Notation 32 Let A stand for the set of all algebraic numbers, so that Q ⊂
A ⊂ C.

Definition 101 An algebraic function is a root of a polynomial with poly-
nomial coefficients, i.e. α such that f(α) = 0 : f ∈ Z[x1, . . . , xn][t]. If
α /∈ Q(x1, . . . , xn), we will say that α is a non-trivial algebraic function.

As above, allowing f ∈ Q(x1, . . . , xn)[t] gives us no advantage, since we can
clear denominators without affecting whether f(α) = 0.

In either case, if f is irreducible, there is no algebraic way of distinguishing
one root of f from another. For example,

√
2 ≈ 1.4142 and −

√
2 ≈ −1.4142 are

both roots of t2 − 2 = 0, but distinguishing them involves operations outside
the language of fields, e.g. by saying that

√
2 ∈ [1, 2] but −

√
2 ∈ [−2,−1]: see

Section 6.5.

Notation 33 Let f(t) be the polynomial defining α, and write f =
∑n

i=0 ait
i

with an ̸= 0. Until Section 6.4, we will assume that f is irreducible.

Definition 102 If f in Definition 100 or 101 is irreducible and primitive, we
say that f is the minimal polynomial of α. Strictly speaking, we have only
defined f up to associates, but this is usually ignored in theory, though it can

251

252 CHAPTER 6. ALGEBRAIC NUMBERS AND FUNCTIONS

Figure 6.1: Non-candidness of algebraics

> (sqrt(2)+1)*(sqrt(2)-1);

1/2 1/2

(2 - 1) (2 + 1)

> expand(%);

1

be tedious in practice: see the description of the canonicalUnitNormal property
in [DT90] for a pragmatic solution.

It is perfectly possible to work with α as if it were another variable, but replacing

αn by
(∑n−1

i=0 aiα
i
)
/an. A simple example of this is shown in the Maple session

in Figure 6.1, which also demonstrates the lack of candidness (i.e. the expression
appears to contain

√
2, but doesn’t really) if we don’t expand.

Observation 17 Introduction of denominators of an can be very tedious in
practice, so several systems will work internally with monic f . For example,
Maple itself does not, but its high-performance algorithms [vHM02, vHM04] so.

However, mere use of a polynomial-style expand command, which gave us canon-
ical forms in the case of polynomials, is insufficient to give us even normal forms
when we allow algebraic numbers, as seen in Figure 6.2. Here, simplify has

Figure 6.2: Algebraic numbers in the denominator

> (sqrt(2)+1)-1/(sqrt(2)-1);

1/2

2 + 1 - 1

1/2

2 - 1

> expand(%);

1/2

2 + 1 - 1

1/2

2 - 1

> simplify(%);

0

to “clear denominators”. This process, which may have seemed quite obscure
when it was introduced at school, is, from our present point of view, quite easy

6.1. REPRESENTATIONS OF FINITE FIELDS 253

to understand. Consider an expression

E :=
p(α)

q(α)
(6.1)

where p and q are polynomials in α, of degree less than n. If we apply the
extended Euclidean algorithm (Algorithm 5) to q(t) and f(t), we get h(t) =
gcd(f, q) and polynomials c, d such that cf + dq = h. Assuming h = 1 (as is
bound to be the case if f is irreducible), we see that

E =
p(α)

q(α)

=
d(α)p(α)

d(α)q(α)

=
d(α)p(α)

c(α)f(α) + d(α)q(α)

(since f(α) = 0)
= d(α)p(α),

and this is purely a polynomial in α.
In the case of Figure 6.2, f(t) = t2− 1 and p(t) = 1, q(t) = t− 1. The gcd is

indeed 1, with f = −1, d = t+ 1. Hence 1√
2−1

=
√
2+1

(
√
2+1)(

√
2−1)

=
√

2 + 1. Such

is the simplicity of this approach that it is usual to insist that f is irreducible,
however in section 6.4 we will explain an alternative approach.

OOnce we have agreed to clear denominators, we are representing algebraic
numbers or functions as elements of Q(x1, . . . , xn)[α − 1, . . . , αm] where the
degrees in αi are less than the degree of the corresponding minimal polynomial.
In practice it may be more convenient to use a common denominator approach,
i.e. store an algebraic number as n/d where n ∈ Z[x1, . . . , xn][α − 1, . . . , αm]
and d ∈ Z[x1, . . . , xn] with no common factor between d and all the coefficients
in n.

6.1 Representations of Finite Fields

If we are working in a finite field F , and the user explicitly calls for an algebraic
extension, e.g. α := RootOf(x2 + x+ 1), then we are almost certainly going to
represent α as above, noting that there is actually no need for a denominator
as we are working over a field.

But often, as in Figure 6.3, the user will just call for a finite field K := Fpn

without specifying the generator, since all finite fields of the same size pn are
isomorphic: in other words there is only one abstract field.

6.1.1 Additive Representation

The obvious thing to do is to proceed as Maple has done, and pick an irreducible
polynomial f of the right degree (assuring ourselves that it is irreducible modulo

254 CHAPTER 6. ALGEBRAIC NUMBERS AND FUNCTIONS

Figure 6.3: An unspecified field in Maple

> K:=GF(2,4);

4

K := Z[2] [T] / <T + T + 1>

> g:=K:-random();

3

g := 1 + T + T

> K:-‘*‘(g,g);

3

1 + T

p, and not just over the integers, of course).
Maple picks the polynomial at random, but it may be more efficient to choose

a polynomial that is sparse, and also one where the terms other than xn are
of as low a degree as possible, to reduce the impact of carries. The last time
the author implemented finite fields, he essentially1 started xn + 1, xn + 2, . . . ,
xn + (p−1), xn +x+ 1, xn +x+ 2, . . . until he found an irreducible polynomial.

In this representation, addition takes n coefficient operations, and multipli-
cation, at least if done näıvely, O(n2). Karatsuba-style multiplication (Excursus
B.3) may well be worthwhile if n is at all large2

If n is not prime, we might build the field in stages, e.g. if n = n1n2 (with
the ni relatively prime) we can write K := Fp(α, β) where α and β have minimal
polynomials of degree n1, n2 respectively. This is generally only done if the user
asks for it, though there is no reason why a system couldn’t do it automatically.

6.1.2 Multiplicative representation

An alternative is to note that the multiplicative groups of a finite field (i.e. all
elements except 0) is always cyclic, and to pick, as well as f , a generator g of
that group, i.e. such that, while gp

n−1 = 1, no previous power of g is 1. See
Figure 6.4, where we have verified that g3 and g5 are not 1 (which is in fact
sufficient)

0 is then a special case, but all other elements β are just stored as the
integer m such that β = gm. Multiplication is then just one integer addition
(gm) · (gm′

) = gm+m′
, with reduction if m+m′ ≥ pn − 1.

The downside of this representation is that addition is more complicated,
and in general requires conversion to additive form (expensive) and back (very
expensive, known as the “discrete logarithm problem”). For large fields, the cost

1There were some optimisations to skip patently reducible polynomials
2A general consensus for integer multiplication is n ≥ 16, so one would expect the same

to hold here, but the author knows of no study here. Since, once the field is built, one is
probably going to do many operations with the same n, it might be worth the field-building
operation doing some work to determine the best multiplication, since if n is not an exact
power of 2, the Karatsuba method needs padding or other adaptations.

6.2. REPRESENTATIONS OF ALGEBRAIC NUMBERS 255

Figure 6.4: Primitive elements in Maple

> g:=K:-PrimitiveElement();

3

g := 1 + T + T

> K:-‘^‘(g,3);

2 3

T + T

> K:-‘^‘(g,5);

2

T + T

of addition, if it is required, therefore rules out the multiplicative representation.
For smaller fields, though, there is a useful trick.

We first note that gm + gm
′

= gm
(

1 + gm
′−m

)
, so the general problem of

addition reduces to the problem of adding 1.

Definition 103 Define Zg, generally known as the Zech logarithm3 as the
function such that gZg(m) = 1 + gm, with Zg(m) being a special symbol −∞
if gm = −1.

Then gm +gm
′

= gm+Zg(m
′−m): a subtraction, a table look up, and an addition

(with range reduction as in the case of multiplication).

6.2 Representations of Algebraic Numbers

The calculations in Figure 6.2 would have been valid whether
√

2 = 1.4142 . . . or√
2 = −1.4142 . . ., but often we care about which specific root of a polynomial

we mean. For quadratics with real roots there is no problem, we (generally
implicitly) use

√
n to mean α such that α2 − n and α ≥ 0. Once we move

beyond quadratics, life is more complicated: as pointed out at (3.10), the three
real roots of x3 − x can only be computed via complex numbers. A slight
perturbation makes thinsg worse: the roots of x3 − x− 1

1000 , numerically

1.000499625,−0.001000001000,−.9994996245 (6.2)

3Named after Julius Zech, author of [Zec49].

256 CHAPTER 6. ALGEBRAIC NUMBERS AND FUNCTIONS

Figure 6.5: An evaluation of Maple’s RootOf construct

Digits := 100;

100

evalf(%);

1.00049962549918118457337015375160406664441926071961647122676591\

7631800401921686516946533704564198509

are given algebraically by{
1
60

3
√

108 + 12 i
√

11999919 + 20 1
3
√

108+12 i
√
11999919

,

− 1
120

3
√

108 + 12 i
√

11999919− 10 1
3
√

108+12 i
√
11999919

−

i
√
3

20

(
1
6

3
√

108 + 12 i
√

11999919− 200 1
3
√

108+12 i
√
11999919

)
,

− 1
120

3
√

108 + 12 i
√

11999919− 10 1
3
√

108+12 i
√
11999919

+

i
√
3

20

(
1
6

3
√

108 + 12 i
√

11999919− 200 1
3
√

108+12 i
√
11999919

) }
,

(6.3)

and these cannot be expressed in terms of real radicals, i.e. the i is intrinsic.
We can avoid this by means of a representation in terms of RootOf constructs:

RootOf(f(z), index=1), . . . ,RootOf(f(z), index=3), (6.4)

or by saying “near” which value these roots are, as well as the polynomial:

RootOf(f(z), 1.0), . . . ,RootOf(f(z),−1.0). (6.5)

We should be careful of the difference between (6.2) and (6.5): the first specifies
three floating-point numbers, but the second specifies three precise algebraic
numbers, which can in theory (and in practice) be evaluated to arbitrary preci-
sion, as shown in Figure 6.5.

6.3 Factorisation with Algebraic Numbers

If we insist, as we do in this section, that the f in Definition 100 or 101 be irre-
ducible, the obvious question is “how do we ensure this?” If f ∈ Z[x1, . . . , xn, t],
then the theory of Chapter 5 will factor f . However, suppose we have defined α
by f , and then wish to define β by g ∈ Z[x1, . . . , xn, α, t]. How do we ensure g is
irreducible? Indeed, even if g does not involve α as such, how do we ensure that
g is irreducible in Z[x1, . . . , xn, α, t], even if it is irreducible in Z[x1, . . . , xn, t]?

This is not just an abstract conundrum. Consider f = t2 − 2, g = t2 − 8.
Both are irreducible in Z[t]. But if α is defined to be a root of f , then g factors
as (t− 2α)(t+ 2α), corresponding to the fact that

√
8 = 2

√
2.

6.4. THE D5 APPROACH TO ALGEBRAIC NUMBERS 257

For the rest of this section we will consider the case of factoring over algebaric
number fields, i.e. polynomials in Q[α1, . . . , αm, x1, . . . , xn], where each αi is
defined by a minimal polynomial in Z[α1, . . . , αi−1][t]. The more general case
of algebraic function fields is discussed in [DT81].

The first remark is that the methods of Section 5.3 extend to factoring over
algebraic extensions of the integers modulo p.

[Wan76, Len87]
TO BE COMPLETED

Open Problem 31 (Algebraic Numbers Reviewed) Reconsider the stan-
dard approach to factoring polynomials with algebraic number/function coeffi-
cients, as described above, in the light of recent progress in factoring polynomials
with integer coefficients, notably [vH02].

6.4 The D5 approach to algebraic numbers

The techniques of the previous section, while they do guarantee irreducibility
of the defining polynomials, are extremely expensive, and often overkill.

In fact, we have already seen4 a technique that does not require factoring,
and that is the Gianni–Kalkbrener algorithm (Algorithms 10, 11). If we consider
again the example at equation (3.48), we see that x satisfies 6−3x2−2x3+x5 =
0. Over Z, this already factors as (x2 − 2)(x3 − 3), and x3 − 3 is irreducible5

over Z[
√

2], so the five possible values of x are α with α2 − 2 = 0, −α, β with
β3 − 3 = 0, γ with γ2 + βγ + β2 = 0 and −γ − β. For each of these there is
corresponding value of y, but it is hard to believe that this is simpler than〈

x2 − 2, y2 − x
〉
∪
〈
x3 − 3, y − x

〉
. (3.49)

[DDDD85]
For g.c.d. computations, see [KM17], who regard their setting as being a

triangular set.
TO BE COMPLETEDTO BE COMPLETED[vHM16]

6.5 Distinguishing roots

In Section 3.5.5 we saw that there are essentially two ways of distinguishing the
real roots of a polynomial f .

interval As well as asserting that f(α) = 0, quote an interval (a, b) such that
it is known that f has precisely one real root in (a, b). Thus

√
2 ≈ 1.4142

would be described as (x2 − 2, (1, 2)) for example. Of course, it could
equally well be (x2−2, (0, 2)), or many other choices. But (x2−2, (−2, 2))

4This is not the historical development of the subject, for which see [DDDD85], but is more
pedagogic from our current point of view.

5Given that x3 − 3 is irreducible over Z, its irreducibility over Z[
√
2] follows from the fact

that the exponent, 2 and 3, are relatively prime. But this is a very ad hoc argument.

258 CHAPTER 6. ALGEBRAIC NUMBERS AND FUNCTIONS

would be invalid (more than one root) and (x2 − 2, (2, 3)) would also be
invalid (no roots).

Thom As well as asserting that f(α) = 0, quote the signs (positive or negative)
of f ′(α), f ′′(α) etc. Here

√
2 ≈ 1.4142 would be described as (x2−2, f ′ >

0, f ′′ > 0). Note that (x2 − 2, f ′ > 0, f ′′ < 0) does not describe a root.

If we want to describe the complex roots, the only known ways are variants of
the interval method.

box As well as asserting that f(α) = 0, quote intervals (a, b) and (c, d) such
that f has ony one root in the box whose corners are a+ ci, b+ ci, b+ di
and a+ di.

circle As well as asserting that f(α) = 0, quote a point a + ci and a radius r
such that α is the only root of f with |α− (a+ ci)| < r.

The two representations are to some extend exchangeable, as every box is con-
tained in a circle and vice versa.

Chapter 7

Calculus

Throughout this chapter we shall assume that we are in characteristic zero, and
therefore all rings contains Z, and all fields contain Q. The emphasis in this
chapter will be on algorithms for integration. Historically, the earliest attempts
at integration in computer algebra [Sla61] were based on rules, and attempts
to “do it like a human would”. These were rapidly replaced by algorithmic
methods, based on the systematisation, in [Ris69b], of work going back to Li-
ouville. Several key texts from this development, and associated commentaries,
are collected in [RS22].

Recently, attempts to get ‘neat’ answers have revived interest in rule-based
approaches, which can be surprisingly powerful on known integrals — see [JR10]
for one recent approach. In general, though, only the algorithmic approach is
capable of proving that an expression in unintegrable.

7.1 Introduction

We defined (Definition 37) the formal derivative of a polynomial purely alge-
braically, and observed (Proposition 2.3.6) that it satisfied the sum and product
laws. We can actually make the whole theory of differentiation algebraic as fol-
lows.

Definition 104 A differential ring is a ring (Definition 8) equipped with an
additional unary operation, referred to as differentiation and normally written
with a postfix ′, which satisfies two additional laws:

1. (f + g)′ = f ′ + g′;

2. (fg)′ = fg′ + f ′g.

A differential ring which is also a field (Definition 15) is referred to as a differ-
ential field.

Definition 37 and Proposition 2.3.6 can then be restated as the following result.

259

260 CHAPTER 7. CALCULUS

Proposition 73 If R is any ring, we can make R[x] into a differential ring by
defining r′ = 0 ∀r ∈ R and x′ = 1.

Definition 105 In any differential ring, an element α with α′ = 0 is referred
to as a constant. For any ring R, we write Rconst for the constants of R, i.e.

Rconst = {r ∈ R | r′ = 0}.

We will use C to stand for any appropriate field of constants.

We will revisit this definition in section 8.4.

Proposition 74 In any differential field(
f

g

)′

=
f ′g − fg′

g2
. (7.1)

The proof is by differentiating f = g
(

f
g

)
to get

f ′ = g′
(
f

g

)
+ g

(
f

g

)′

and solving for
(

f
g

)′
. (7.1) is generally referred to as the quotient rule and can

be given a fairly tedious analytic proof in terms of ϵ/δ, but from our present
point of view it is an algebraic corollary of the product rule. It therefore follows
that K(x) can be made into a differential field.

Notation 34 (Fundamental Theorem of Calculus) (Indefinite) integration
is the inverse of differentiation, i.e.

F =

∫
f ⇔ F ′ = f. (7.2)

The reader may be surprised to see a “Fundamental Theorem” reduced to the
status of a piece of notation, but from the present point of view, that is what
it is. We shall return to this point in section 8.3. The reader may also wonder
“where did dx go?”, but x is, from this point of view, merely that object such
that x′ = 1, i.e. x =

∫
1.

We should also note that we have no choice over the derivative of algebraic
expressions1.

Proposition 75 Let K be a differential field, and θ be algebraic over K with
p(θ) = 0 for some polynomial p =

∑n
i=0 aiz

i ∈ K[z]. Then K(θ) can be made
into a differential field in only one way: by defining

θ′ = −
∑n

i=0 a
′
iθ

i∑n
i=0 iaiθ

i−1
. (7.3)

In particular, if the coefficients of p are all constants, so is θ.

The proof is by formal differentiation of p(θ) = 0.

1It would be more normal to write “algebraic functions” instead of “algebraic expressions”,
but for reasons described in section 8.1 we reserve ‘function’ for specific mappings (e.g. C →
C), and the proposition is a property of differentiation applied to formulae.

7.2. INTEGRATION OF RATIONAL EXPRESSIONS 261

7.2 Integration of Rational Expressions

The integration of polynomials is trivial:∫ n∑
i=0

aix
i =

n∑
i=0

1

i+ 1
aix

i+1. (7.4)

Since any rational expression f(x) ∈ K(x) can be written as

f = p+
q

r
with

{
p, q, r ∈ K[x]
deg(q) < deg(r)

, (7.5)

and p is always integrable by (7.4), we have proved the following (trivial) result:
we will see later that its generalisations, Lemmas 13 and 14, are not quite so
trivial.

Proposition 76 (Decomposition Lemma (rational expressions)) In the
notation of (7.5), f is integrable if, and only if, q/r is.

q/r with deg(q) < deg(r) is generally termed a proper rational function, but,
since we are concerned with the algebraic form of expressions in this chapter,
we will say “proper rational expression.”.

7.2.1 Integration of Proper Rational Expressions

In fact, the integration of proper rational expressions is conceptually trivial (we
may as well assume r is monic, absorbing any constant factor in q):

1. perform a square-free decomposition (Definition 38) of r =
∏n

i=1 r
i
i;

2. factorize each ri completely, as ri(x) =
∏ni

j=1(x− αi,j);

3. perform a partial fraction decomposition (Section 2.3.4) of q/r as

q

r
=

q∏n
i=1 r

i
i

=

n∑
i=1

qi
rii

=

n∑
i=1

ni∑
j=i

i∑
k=1

βi,j,k
(x− αi,j)k

; (7.6)

4. integrate this term-by-term, obtaining∫
q

r
=

n∑
i=1

ni∑
j=i

i∑
k=2

−βi,j,k
(k − 1)(x− αi,j)k−1

+

n∑
i=1

ni∑
j=i

βi,j,1log(x− αi,j). (7.7)

From a practical point of view, this approach has several snags:

1. we have to factor r, and even the best algorithms from the previous chapter
can be expensive;

2. we have to factor each ri into linear factors, which might necessitate the
introduction of algebraic numbers to represent the roots of polynomials;

262 CHAPTER 7. CALCULUS

3. These steps might result in a complicated expression of what is otherwise
a simple answer.

To illustrate these points, consider the following examples.∫
5x4 + 60x3 + 255x2 + 450x+ 274

x5 + 15x4 + 85x3 + 225x2 + 274x+ 120
dx

= log(x5 + 15x4 + 85x3 + 225x2 + 274x+ 120)
= log(x+ 1) + log(x+ 2) + log(x+ 3) + log(x+ 4) + log(x+ 5)

(7.8)

is pretty straightforward, but adding 1 to the numerator gives∫
5x4 + 60x3 + 255x2 + 450x+ 275

x5 + 15x4 + 85x3 + 225x2 + 274x+ 120
dx

= 5
24 log(x24 + 72x23 + · · ·+ 102643200000x+ 9331200000)

= 25
24 log(x+ 1) + 5

6 log(x+ 2) + 5
4 log(x+ 3) + 5

6 log(x+ 4) + 25
24 log(x+ 5)

(7.9)
Adding 1 to the denominator is pretty straightforward,∫

5x4 + 60x3 + 255x2 + 450x+ 274

x5 + 15x4 + 85x3 + 225x2 + 274x+ 121
dx

= log(x5 + 15x4 + 85x3 + 225x2 + 274x+ 121),
(7.10)

but adding 1 to both gives∫
5x4 + 60x3 + 255x2 + 450x+ 275

x5 + 15x4 + 85x3 + 225x2 + 274x+ 121
dx

= 5
∑
α

α ln
(
x+

2632025698

289
α4 − 2086891452

289
α3+

608708804

289
α2 − 4556915

17
α+

3632420

289

)
,

(7.11)

where

α = RootOf
(
38569 z5 − 38569 z4 + 15251 z3 − 2981 z2 + 288 z − 11

)
. (7.12)

Hence the challenge is to produce an algorithm that achieves (7.8) and (7.10)
simply, preferably gives us the second form of the answer in (7.9), but is still
capable of solving (7.11). We might also wonder where (7.11) came from: the
answer is at (7.26).

7.2.2 Hermite’s Algorithm

The key to the method (usually attributed to Hermite [Her72], though infor-
mally known earlier) is to rewrite equation (7.7) as∫

q

r
=
s1
t1

+

∫
s2
t2
, (7.13)

where the integral on the right-hand resolves itself as purely a sum of logarithms,
i.e. is the

∑n
i=1

∑ni

j=i βi,j,1log(x− αi,j) term. Then a standard argument from

7.2. INTEGRATION OF RATIONAL EXPRESSIONS 263

Galois theory shows that s1, t1, s2 and t2 do not involve any of the αi, i.e.
that the decomposition (7.13) can be written without introducing any algebraic
numbers. If we could actually obtain this decomposition without introducing
these algebraic numbers, we would have gone a long way to solving objection 2
above.

We can perform a square-free decomposition (Definition 38) of r as
∏
rii,

and then a partial fraction decomposition to write

q

r
=
∑ qi

rii
(7.14)

and, since each term is a rational expression and therefore integrable, it suffices
to integrate (7.14) term-by-term.

Now ri and r′i are relatively prime, so, by Bezout’s Identity (2.13), there are
polynomials a and b satisfying ari + br′i = 1. Therefore∫

qi
rii

=

∫
qi(ari + br′i)

rii
(7.15)

=

∫
qia

ri−1
i

+

∫
qibr

′
i

rii
(7.16)

=

∫
qia

ri−1
i

+

∫
(qib/(i− 1))

′

ri−1
i

−
(
qib/(i− 1)

ri−1
i

)′

(7.17)

= −
(
qib/(i− 1)

ri−1
i

)
+

∫
qia+ (qib/(i− 1))

′

ri−1
i

, (7.18)

and we have reduced the exponent of ri by one. When programming this method
one may need to take care of the fact that, while qi

ri
i

is a proper rational expres-

sion, qib

ri−1
i

may not be, but the excess is precisely compensated for by the other

term in (7.18).
Hence, at the cost of a square-free decomposition and a partial fraction de-

composition, but not a factorization, we have found the rational part of the
integral, i.e. performed the decomposition of (7.13). In fact, we have done
somewhat better, since the

∫
s2
t2

term will have been split into summands cor-
responding to the different ri.

7.2.3 The Ostrogradski–Horowitz Algorithm

Although quite simple, Hermite’s method still needs square-free decomposition
and partial fractions. Horowitz [Hor69, Hor71] therefore proposed to computer
algebraists the following method, which was in fact already known [Ost45], but
largely forgotten2 in the west. It follows from (7.18) that, in the notation of
(7.14) t1 =

∏
ri−1
i . Furthermore every factor of t2 arises from the ri, and is not

2The author had found no references to it, but apparently it had been taught under that
name.

264 CHAPTER 7. CALCULUS

repeated. Hence we can choose

t1 = gcd(r, r′) and t2 = r/t1. (7.19)

Having done this, we can solve for the coefficients in s1 and s2, and the resulting
equations are linear in the unknown coefficients. More precisely, the equations
become

q = s′1
r

t1
− s1

t′1t2
t1

+ s2t1, (7.20)

where the polynomial divisions are exact, and the linearity is now obvious. The
programmer should note that s1/t1 is guaranteed to be in lowest terms, but
s2/t2 is not (and indeed will be 0 if there is no logarithmic term).

7.2.4 The Trager–Rothstein Algorithm

Whether we use the method of section 7.2.2 or 7.2.3, we have to integrate
the logarithmic part. (7.8)–(7.11) shows that this may, but need not, require
algebraic numbers. How do we tell? The answer is provided by the following
observation3 [Rot76, Tra76]: if we write the integral of the logarithmic part as∑
ci log vi, we can determine the equation satisfied by the ci, i.e. the analogue

of (7.12), by purely rational computations.
So write ∫

s2
t2

=
∑

ci log vi, (7.21)

where we can assume4:

1. s2
t2

is in lowest terms;

2. the vi are polynomials (using log f
g = log f − log g);

3. the vi are square-free (using log
∏
f ii =

∑
i log fi);

4. the vi are relatively prime (using c log pq+d log pr = (c+d) log p+c log q+
d log r);

5. the ci are all different (using c log p+ c log q = c log pq);

6. the ci generate the smallest possible extension of the original field of co-
efficients.

(7.21) can be rewritten as
s2
t2

=
∑

ci
v′i
vi
. (7.22)

3As happens surprisingly often in computer algebra, this was a case of simultaneous dis-
covery.

4We are using “standard” properties of the log operator here without explicit justification:
they are justified in Section 7.3, and revisited in Section 8.6.

7.2. INTEGRATION OF RATIONAL EXPRESSIONS 265

Hence t2 =
∏
vi and, writing uj =

∏
i̸=j vi, we can write (7.22) as

s2 =
∑

civ
′
iui. (7.23)

Furthermore, since t2 =
∏
vi, t

′
2 =

∑
v′iui. Hence

vk = gcd(0, vk)

= gcd
(
s2 −

∑
civ

′
iui, vk

)
= gcd (s2 − ckv′kuk, vk)

since all the other ui are divisible by vk

= gcd
(
s2 − ck

∑
v′iui, vk

)
for the same reason

= gcd (s2 − ckt′2, vk) .

But if l ̸= k,

gcd (s2 − ckt′2, vl) = gcd
(∑

civ
′
iui − ck

∑
v′iui, vl

)
= gcd (clv

′
lul − ckv′lul, vl)

since all the other ui are divisible by vl
= 1.

Since t2 =
∏
vl, we can put these together to deduce that

vk = gcd(s2 − ckt′2, t2). (7.24)

Given ck, this will tell us vk. But we can deduce more from this: the ck are
precisely those numbers λ such that gcd(s2 − λt′2, t2) is non-trivial. Hence we
can appeal to Proposition 79 (page 323), and say that λ must be such that

P (λ) := Resx(s2 − λt′2, t2) = 0. (7.25)

If t2 has degree n, P (λ) is the determinant of a 2n − 1 square matrix, n of
whose rows depend linearly on λ, and thus is a polynomial of degree n in λ
(strictly speaking, this argument only shows that it has degree at most n, but
the coefficient of λn is Res(t′2, t2) ̸= 0).

Algorithm 39 (Trager–Rothstein)
Input: s2, t2 ∈ K[x] relatively prime with degx(s2) < degx(t2), t2 squarefree
Output: A candid5 expression for

∫
s2/t2dx

5In the sense of Definition 6: every algebraic extension occurring in the expression is
necessary.

266 CHAPTER 7. CALCULUS

P (λ) := Res(s2 − λt′2, t2, x)
Write P (λ) =

∏
iQi(λ)i (square-free decomposition)

R := 0
for i in 1 . . . such that Qi ̸= 1

vi := gcd(s2 − λt′2, t2) where Qi(λ) = 0 #deg(vi) = i

R := R+
∑

λ a root of Qi

λ log vi(x)

return R

An alternative formulation is given in [LR90], with an important clarification in
[Mul97]. In practice roots of a Qi which are rational, or possibly even quadratic
over the rationals, are normally made explicit rather than represented as RootOf
constructs. This accounts for answers such as the following:∫

3 x3−2 x2

(x2−2)(x3−x−3)dx =

− ln
(
x2 − 2

)
+

∑
r=RootOf(z3−z−3)

r (3 + 2 r) ln (x− r)

3 r2 − 1
.

The integrands in (7.8–7.11) are all special cases of∫
5x4 − 60x3 + 255x2 − 450x+ a

x5 − 15x4 + 85x3 − 225x2 + 274x− b
dx (7.26)

whose integral is, by Algorithm 39,∑
α

(
5α4 − 60α3 + 255α2 − 450α+ a

)
ln (x− α)

5α4 − 60α3 + 255α2 − 450α+ 274
(7.27)

where α = RootOf
(
z 5 − 15 z 4 + 85 z 3 − 225 z 2 + 274 z − b

)
. (7.11) is of this

form, but (7.8–7.10) show how Algorithm 39 can produce more candid expres-
sions where available, and indeed guarantee not to involve any unnecessary
RootOf constructs.

The same process also leads to∫
1

x2 + 1
dx =

i

2
(ln (1− ix)− ln (1 + ix)) , (7.28)

at which point the reader might complain “I asked to integrate a real function,
but the answer is coming back in terms of complex numbers”. The answer is,
of course, formally correct : differentiating the right-hand side of (7.28) yields

i

2

(
−i

1− ix
− i

1 + ix

)
=
i

2

(
−i(1 + ix

1 + x2
− i(1− ix)

1 + x2

)
=

1

1 + x2
:

the issue is that the reader, interpreting the symbols log etc. as the usual
functions of calculus, is surprised. This question of interpretation as functions
R → R or C → C, will be taken up in section 8.5. In the next section we will
give a totally algebraic definition of log etc.

7.2. INTEGRATION OF RATIONAL EXPRESSIONS 267

7.2.5 Simplest Form?

One of the challenging questions in integration is that of producing, not just
an integral, but rather a simple (and possibly even the simplest, in the sense
of [Car04] — see page 29) integral. This is particularly true of the Trager–
Rothstein Algorithm.

Consider ∫ (
1

x5 + x+ 3
+

1

x5 + x+ 4

)
dx. (7.29)

Integrating the parts separately with Trager–Rothstein gives ∑
R=RootOf(Z5+Z+3)

ln(x−R)

5R4 + 1

+

 ∑
R=RootOf(Z5+Z+4)

∑ ln(x−R)

5R4 + 1

 (7.30)

Placing the integrand over a common denominator, as in∫
2x5 + 2x+ 7

x10 + 2x6 + 7x5 + x2 + 7x+ 12
dx, (7.31)

and integrating with Trager–Rothstein gives

∑
λ=RootOf(P)

λ ln

34550128716350227968λ9 − 3782941241313556992λ8

+296820434508104288λ7 − 28446029435293552λ6

−1356677909795527λ5 − 9297729925568λ4

+4767411826992λ3 − 530445651388λ2

+236636327852λ+ 9228515625x+ 1341798427

(7.32)

where P = −202769665536Z10 + 168581920Z8 + 84290960Z7 + 15778955Z6 +
1028037Z5 − 11200Z4 − 2720Z3 − 385Z2 − 30Z − 1. If we observe (as Maple
does) that P factors, and do some additional simplifications, we get ∑

λ=RootOf(P1)

λ ln

(
−113514688λ4 + 28378672λ3 − 7022988λ2+

1791587λ+ 118125x+ 1792

)+ ∑
λ=RootOf(P2)

∑
λ ln

(
−151248384λ4 + 37812096λ3 − 9422784λ2+

2370816λ+ 118125x+ 756

)
(7.33)

where P1 = 253381Z5− 160Z3− 80Z2− 15Z− 1 and P2 = 800256Z5− 160Z3−
80Z2 − 15Z − 1.

While (7.33) certainly has more structure than (7.32), and is probably sim-
pler in the sense of [Car04], it is nowhere near as nice as (7.30).

Open Problem 32 Algorithmically recover (7.30), or something similar, from
(7.33).

268 CHAPTER 7. CALCULUS

7.3 Theory: Liouville’s Theorem

Definition 106 Let K be a field of expressions. The expression θ is an ele-
mentary generator over K if one of the following is satisfied:

(a) θ is algebraic over K, i.e. θ satisfies a polynomial equation with coefficients
in K;

(b) θ (assumed to be nonzero)6 is an exponential over K, i.e. there is an η
in K such that θ′ = η′θ, which is only an algebraic way of saying that
θ = exp η;

(c) θ is a logarithm over K, i.e. there is an η in K such that θ′ = η′/η, which
is only an algebraic way of saying that θ = log η.

It is conceivable that more than one of these might hold. In line with the con-
structive ethos of this subject, when an elementary generator is specified, an
explicit choice of (a)/(b)/(c) and the necessary η or defining polynomial is as-
sumed to have been stated. See the “N.B.” on page 274.

In the light of this definition, (7.28) would be interpreted as saying∫
1

x2 + 1
dx =

i

2
(θ1 − θ2) , (7.28 restated)

where θ′1 = −i
1−ix and θ′2 = i

1+ix .
We should note that, if θ is a logarithm of η, then so is θ+c for any constant

(Definition 105) c. Similarly, if θ is an exponential of η, so is cθ for any constant
c, including the case c = 0, which explains the stipulation of nonzeroness in
Definition 106(b).

7.3.0.1 Laws relating elementary functions

A consequence of these definitions is that log and exp satisfy the usual laws “up
to constants”.

log Suppose θi is a logarithm of ηi. Then

(θ1 + θ2)′ = θ′1 + θ′2

=
η′1
η1

+
η′2
η2

=
η′1η2 + η1η

′
2

η1η2

=
(η1η2)′

η1η2
,

6This clause is not normally stated, but is important in practice: see the statement about
“up to a constant” later.

7.3. THEORY: LIOUVILLE’S THEOREM 269

and hence θ1 +θ2 is a logarithm of η1η2, a rule normally expressed as (but
see the discussion on page 307 for what happens when we try to interpret
log as a function C→ C)

log η1 + log η2 = log(η1η2). (7.34)

Similarly θ1− θ2 is a logarithm of η1/η2 and nθ1 is a logarithm of ηn1 (for
n ∈ Z: we have attached no algebraic meaning to arbitrary powers).

exp Suppose now that θi is an exponential of ηi. Then

(θ1θ2)′ = θ′1θ2 + θ1θ
′
2

= η′1θ1θ2 + θ1η
′
2θ2

= (η1 + η2)′ (θ1θ2)

and hence θ1θ2 is an exponential of η1 + η2, a rule normally expressed as

exp η1 exp η2 = exp(η1 + η2). (7.35)

Similarly θ1/θ2 is an exponential of η1−η2 and θn1 is an exponential of nη1
(for n ∈ Z: we have attached no algebraic meaning to arbitrary powers).

(1) Suppose θ is a logarithm of η, and ϕ is an exponential of θ. Then

ϕ′ = θ′ϕ =
η′

η
ϕ, so

ϕ′

ϕ
=

η′

η
= θ′,

and θ is a logarithm of ϕ, as well as ϕ being an exponential of θ.

(2) Suppose now that θ is an exponential of η, and ϕ is a logarithm of θ. Then

ϕ′ =
θ′

θ

=
η′θ

θ
= η′,

so η and ϕ differ by a constant. But ϕ, being a logarithm, is only defined
up to a constant.

(1)+(2) These can be summarised by saying that, up to constants, log and
exp are inverses of each other.

Definition 107 Let K be a field of expressions. An overfield K(θ1, . . . , θn) of
K is called a field of elementary expressions over K if every θi is an elementary
generator over K(θ1, . . . , θi−1). A expression is elementary over K if it belongs
to a field of elementary expressions over K.
If K is omitted, we understand C(x): the field of rational expressions.

270 CHAPTER 7. CALCULUS

For example, the expression exp(expx) can be written as elementary over K =
Q(x) by writing it as θ2 ∈ K(θ1, θ2) where θ′1 = θ1, so θ1 is elementary over K,
and θ′2 = θ′1θ2, and so θ2 is elementary over K(θ1).

Observation 18 Other functions can be written this way as well. For example,
if θ′ = iθ (where i2 = −1), then ϕ = 1

2i (θ − 1/θ) is a suitable model for sin(x),
as in the traditional sinx = 1

2i

(
eix − e−ix

)
. Note that ϕ′′ = −ϕ, as we would

hope.

From this point of view, the problem of integration, at least of elementary
expressions, can be seen as an exercise in the following paradigm.

Algorithm 40 (Integration Paradigm)
Input: an elementary expression f in x
Output: An elementary g with g′ = f , or failure

Find fields C of constants, L of elementary expressions over C(x) with f ∈ L and Lconst = C
if this fails

then error "integrand not elementary"

Find an elementary overfield M of L, and g ∈M with g′ = f
if this fails

then error "integral not elementary"

else return g

This looks very open-ended, and much of the rest of this chapter will be de-
voted to turning this paradigm into an algorithm: one that when it returns
"integral not elementary" has actually proved this fact. We will see later on

that the poly-logarithm function and the erf function (defined as erf x =
∫
e−x2

up to a constant multiple) are not elementary, and can be proved so this way.
Other examples of non-elementary functions are:

W the Lambert W function, the solution of W (z) exp(W (z)) = z [CGH+96],
proved non-elementary in [BCDJ08];

ω the Wright ω function, the solution of ω(z) + lnω(z) = z [CJ02], proved
non-elementary in [BCDJ08].

The next section addresses the apparent openendedness of the search for M .
Another problem, addressed in sections 7.3.2 and 7.3.3, is that, for the rest to
be algorithmic, L has to be “sufficiently computable”: in particular we will want
to tell if elements of L are zero or not, i.e. we want L to have normal (Definition
3) representations.

7.3.1 Liouville’s Principle

The first question that might come to mind is that the search for M looks pretty
open-ended. Here we are helped by the following result.

7.3. THEORY: LIOUVILLE’S THEOREM 271

Theorem 50 (Liouville’s Principle) Let f be a expression from some ex-
pression field L. If f has an elementary integral over L, it has an integral of
the following form: ∫

f = v0 +

n∑
i=1

ci log vi, (7.36)

where v0 belongs to L, the vi belong to L̂, an extension of L by a finite number
of constants algebraic over Lconst, and the ci belong to L̂ and are constant.

The proof of this theorem (see, for example, [Rit48]), while quite subtle in places,
is basically a statement that the only new expression in g which can disappear
on differentiation is a logarithm with a constant coefficient.

In terms of the integration paradigm (Algorithm 40), this says that we can
restrict our search for M to M of the form L(c1, . . . , ck, v1, . . . , vk) where the ci
are algebraic over Lconst and the vi are logarithmic over L(c1, . . . , ck).

Another way of putting this is to say that, if f has an elementary integral
over L, then f has the following form:

f = v′0 +

n∑
i=1

civ
′
i

vi
. (7.37)

7.3.2 Finding L

A question that might seem trivial is the opening line of Algorithm 40: “Find
a field C of constants, and a field L of elementary expressions over C(x) with
f ∈ L”. From an algorithmic point of view, this is not so trivial, and indeed is
where many of the theoretical difficulties lie. We can distinguish three major
difficulties.

1. Hidden constants. It is possible to start from a field C, make various
elementary extensions (Definition 106) of C(x) to create L, but have Lconst

be strictly larger than C. Consider, for example, L = Q(x, θ1, θ2, θ3) where
θ′1 = θ1, θ′2 = 2xθ2 and θ′3 = (2x+ 1)θ3. Then(

θ1θ2
θ3

)′

=
θ3 (θ1θ2)

′ − θ1θ2θ′3
θ23

=
θ3θ

′
1θ2 + θ3θ1θ

′
2 − θ1θ2θ′3

θ23

=
θ1θ2θ3 + 2xθ1θ2θ3 − (2x+ 1)θ1θ2θ3

θ23
= 0,

so θ1θ2
θ3

is, unexpectedly, a constant c, and we should be considering
Q(c)(x, θ1, θ2), with θ3 = cθ1θ2. This is perhaps not so surprising if we
give the θi their conventional meanings as exp(x) etc., and write L =
Q(x, exp(x), exp(x2), exp(x2 + x)), where we can clearly write exp(x2 +

272 CHAPTER 7. CALCULUS

x) = exp(x2) exp(x). Of course, θ1 might equally well be 100 exp(x), etc.,
so all we can deduce (in the language of differential algebra) is that the
ratio is a constant c, not necessarily that c = 1.

Equally, we could consider L = Q(x, θ1, θ2, θ3) where θ′1 = 1
x+1 , θ′2 = 1

x−1

and θ′3 = 2x
x2−1 . Then

(θ1 + θ2 − θ3)′ = θ′1 + θ′2 − θ′3

=
1

x+ 1
+

1

x− 1
− 2x

x2 − 1
= 0,

and again we have a hidden constant c = θ1 + θ2 − θ3, and we should be
considering Q(c)(x, θ1, θ2), with θ3 = θ1 + θ2 − c. Again, this is not so
surprising if we give the θi their conventional meanings as log(x− 1) etc.,
where we can clearly write log(x2−1) = log(x−1)+log(x+1). Of course,
θ1 might equally well be 100 + log(x + 1), etc., so all we can deduce (in
the language of differential algebra) is that θ1 + θ2 − θ3 is a constant c,
not necessarily that c = 0.

2. Hidden algebraics. It is possible to start from a field C, make k exponential
and logarithmic extensions (Definition 106) of C(x) to create L, but have
the transcendence degree of L over C(x) be less than k, i.e. for there
to be unexpected algebraic elements of L, where we had thought they
were transcendental. The obvious example is that

√
x = exp(1

2 log x), but
there are more subtle ones, such as the following variant of the exponential
example from the previous item. Consider L = Q(x, θ1, θ2, θ3) where
θ′1 = θ1, θ′2 = 2xθ2 and θ′3 = (2x+ 1

2)θ3. Then(
θ1θ

2
2

θ23

)′

=
θ3
(
θ1θ

2
2

)′ − 2θ1θ
2
2θ

′
3

θ33

=
θ3θ

′
1θ

2
2 + θ3θ1θ

′
2θ

2 − 2θ1θ2θ
′
3

θ33

=
θ1θ

2
2θ3 + 4xθ1θ

2
2θ3 − 2(2x+ 1

2)θ1θ
2
2θ3

θ33
= 0,

so again we have an unexpected constant c. The obvious rewriting now is
Q(c)(x, θ1, θ2, θ3), with θ3 =

√
cθ1θ22. But we might prefer Q(c)(x, θ2, θ3),

and write θ1 = 1
c
θ2
3

θ2
2
.

3. Ineffective constants. The previous two difficulties, have led to the in-
troduction of “new” constants: what are these? Their values arise from
the translation of the language of functions R → R (or C → C) to the
language of differential algebra. We deduced a constant that might be 1,
or might be 100, but equally it might be e, as when the user has both ex

7.3. THEORY: LIOUVILLE’S THEOREM 273

and ex+1 in an expression, when we have to transform ex+1 → e · ex (or
ex → 1

e · e
x+1). This doesn’t seem to be a problem: e is well-known to

be transcendental, so we can effectively regard it as a new indeterminate.
However, there are issues, pointed out in [Ric68] and [Ax71].

The last difficulty is inherent in mathematics, as we see in the following sub-
subsections, while the first two can be seen as failures of candidness (Definition
6), and are addressed in Section 7.3.3.

7.3.2.1 Richardson’s Result

This relates to the interpretation of expressions A, defined as in Definition 106,
as functions.

Notation 35 (Richardson) Let E be a set of expressions representing real,
single-valued, partially-defined, functions of one real variable, and E∗ the set
of functions represented by elements of E. If A ∈ E, A(x) is the function
represented by A.

We use A(x) ≡ B(x) to mean that A and B are defined at the same points, and
equal wherever they are defined.

Theorem 51 ([Ric68, Theorem Two]) If E∗ contains log 2, π, ex, sin(x)

and
+
√
x2, then it is impossible to decide, for A ∈ E, whether A(x) ≡ 0.

If we take such an undecidable A(x), and consider A(x)ex
2

, the integration
problem then becomes undecidable.

7.3.2.2 Transcendental Number Theory

We stated above “e is well-known to be transcendental, so we can effectively
regard it as a new indeterminate”, and indeed this is true. equally, π is known
to be transcendental. But is it legitimate to take e and π to be two new in-
determinates? Otherwise stated, can there be a nontrivial polynomial P such
that P (e, π) = 0? We don’t know: see Section 8.7.

7.3.3 Risch Structure Theorem

This result, [Ris69a, Ris79] roughly speaking, says that the laws in Section
7.3.0.1 are the only relationships between non-constant elementary expressions.

Notation 36 However, to state it precisely, we need some notation.

C Let C be an algebraically closed field of characteristic 0. (Typically we will
think of C as being C, but it might have other parameters in it.)

D Let D be a differential field extending C(x), with x′ = 1.

274 CHAPTER 7. CALCULUS

D1 Let D1 be an extension of D by elementary (Definition 106) generators
θ1, . . . , θm.

(yi, zi) Let (yi, zi)1≤i≤r with z
′
i = y′izi be the (logarithm,exponential) pairs among

the θj, so that if θ′j = η′jθj, zi = θj and yi = ηj, while if θ
′
j = η′j/ηj, yi = θj

and zi = ηj. If θj is algebraic, then there is no corresponding pair.

N.B. [Ris79] has a caution that there might be multiple options here, but from
our point of view, Definition 106 has specified how θi is an elementary
extension.

E Let E = D1(θ) be an extension of D1 by an elementary generator θ.

D The relative algebraic closure of D in E, i.e. those elements of E algebraic
over D.

Theorem 52 (Risch Structure Theorem) Our statement is simplified from
[Ris69a, Ris79]. Suppose θ is algebraic over D1. If θ was specified to be algebraic
(case (a) of Definition 106), there is nothing to prove. Otherwise suppose θ is
defined by z = y′/y, so that in the exponential case (b) θ = z with y ∈ D1, and
in the logarithmic case (c) θ = y with z ∈ D1. Then there are ci ∈ C, f ∈ D
such that

y = f +
∑

ciyi (7.38)

and, after renumbering so that 1, cs+1, . . . , cr are a maximal Q-linear subset of
1, c1, . . . , cr, there are n ̸= 0, ni ∈ Z and g ∈ D such that

zn = g

s∏
i=1

zni
i . (7.39)

The proof is in [Ris79], and relies heavily on the technology of differential al-
gebra. What it means, though, is that, if θ = y, ostensibly a new logarithm,
is actually algebraic, then it is something in D plus a sum of logarithms with
constant coefficients, and if θ = z, ostensibly a new exponential, is actually
algebraic, then it is an nth root of an element of D times a product of rational
powers of exponentials.

This means that working out whether θ is a genuinely new logarithm/expon-
ential or is actually algebraic over D1 reduces to problems in D: unfortunately
section 7.3.2.2 shows that the base case has, at least in principle, serious decid-
ability issues.

7.3.4 Overview of Integration

Notation 37 Throughout sections 7.4–7.7, we assume that we are given an
integrand f ∈ L = C(x, θ1, . . . , θn), where Lconst = C is an effective field of con-
stants, each θi is an elementary generator (Definition 106) over C(x, θ1, . . . , θi−1)
and, if θi in given as an exponential or logarithmic generator, then θi is actually
transcendental over C(x, θ1, . . . , θi−1). Theorem 52 can be used to verify this

7.3. THEORY: LIOUVILLE’S THEOREM 275

last hypothesis. We can therefore regard the transcendental θi as new variables,
and any normal/canonical form for rational functions (see Section 2.2.1) in the
θi will actually be normal/canonical for this differential-algebraic interpretation
of the θi.

Ideally, the solution of the integration problem would then proceed by induc-
tion on n: we assume we can integrate in K = C(x, θ1, . . . , θn−1), and reduce
integration in L to problems of integration in K. It was the genius of Risch
[Ris69b] to realise that a more sophisticated approach is necessary.

Definition 108 For a differential field L, the elementary integration problem
for L is to find an algorithm which, given an element f of L, finds an elementary
overfield M of L, and g ∈M with g′ = f , or proves that such M and g do not
exist.

Definition 109 For a differential field L, the elementary Risch differential
equation problem for L is to find an algorithm which, given elements f and g of
L (with f such that exp(

∫
f) is a genuinely new expression, i.e., for any non-zero

F with F ′ = fF , M = L(F) is transcendental over L and has Mconst = Lconst),
finds y ∈ L with y′ + fy = g, or proves that such a y does not exist. We write
RDE(f, g) for the solution to this problem.

The reader might object “but I can solve this by integrating factors!”. Indeed,
if we write y = z exp(

∫
−f), we get(

z exp(

∫
−f)

)′

+ fz exp(

∫
−f) = g

z′ exp(

∫
−f)− fz exp(

∫
−f) + fz exp(

∫
−f) = g

which simplifies to

z′ exp(

∫
−f) = g

and hence z′ = g exp(
∫
f), z =

∫
g exp(

∫
f) and

y = exp(

∫
−f)

∫
∗
g exp(

∫
f). (7.40)

However, if we come to apply the theory of section 7.5 to the principal integral
(marked

∫
∗) of (7.40), we find the integration problem reduces to solving the

original y′ + fy = g. Hence this problem must be attacked in its own right,
which we do in section 7.7 for the base case f, g ∈ C(x).

Theorem 53 (Risch Integration Theorem) Let L = C(x, θ1, . . . , θn), where
Lconst = C is an effective field of constants, each θi is an elementary generator
(Definition 106) over C(x, θ1, . . . , θi−1) and, if θi is given as an exponential or
logarithmic generator, then θi is actually transcendental over C(x, θ1, . . . , θi−1).
Then:

276 CHAPTER 7. CALCULUS

(a) we can solve the elementary integration problem for L;

(b) we can solve the elementary Risch differential equation problem for L.

Here the proof genuinely is by induction on n, and, when n ̸= 0, the case satisfied
by θn in Definition 106.

(a) n = 0 This was treated in section 7.2.

(b) n = 0 This will be treated in section 7.7.

The Risch induction hypothesis then is that both parts hold for C(x, θ1, . . . , θn−1),
and we prove them for C(x, θ1, . . . , θn).

(a) θn logarithmic This will be treated in section 7.4.

(b) θn logarithmic See [Dav86].

(a) θn exponential This will be treated in section 7.5.

(b) θn exponential See [Dav86].

(a) θn algebraic This will be treated in section 7.6.

(b) θn algebraic See [Bro90, Bro91]. The case n = 1, i.e. algebraic expressions
in C(x, y) with y algebraic over C(x), was solved in [Dav84].

7.4 Integration of Logarithmic Expressions

Let θ = θn be a (transcendental) logarithm over K = C(x, θ1, . . . , θn−1).

Lemma 13 (Decomposition Lemma (logarithmic)) f ∈ K(θ) can be writ-
ten uniquely as p+ q/r, where p, q and r are polynomials of K[θ], q and r are
relatively prime, and the degree of q is less than that of r. If f has an elementary
integral over K, then p and q/r each possess an elementary integral over K.

Proof. By Liouville’s Principle (Theorem 50), if f is integrable, it is of the
form

f = v′0 +

n∑
i=1

civ
′
i

vi
, (7.37 bis)

where v0 ∈ K(θ), ci ∈ C, and vi ∈ K(c1, . . . , cn)[θ]. Write v0 = p0 + q0
r0

,
where p0, q0, r0 ∈ K[θ] with deg(q0) < deg(r0), and re-arrange the vi such that
v1, . . . , vk ∈ K(c1, . . . , cn), but vk+1, . . . , vn genuinely involve θ, and are monic.

Then we can re-arrange (7.37 bis) as

p+
q

r
= p′0 +

k∑
i=1

civ
′
i

vi︸ ︷︷ ︸
in K(c1, . . . , cn)[θ]

+

(
q0
r0

)′

+

n∑
i=k+1

civ
′
i

vi︸ ︷︷ ︸
proper rational expression

, (7.41)

7.4. INTEGRATION OF LOGARITHMIC EXPRESSIONS 277

and the decomposition of the right-hand side proves the result.
This means that it is sufficient to integrate the polynomial part (which we

will do in Algorithm 41) and the rational part (which we will do in Algorithm
42) separately, and that failure in either part indicates that the whole expres-
sion does not have an elementary integral. In other words, there is no cross-
cancellation between these parts.

7.4.1 The Polynomial Part

Let us turn first to the polynomial part. Assume that p =
∑n

i=0 aiθ
i and

p0 =
∑m

i=0 biθ
i. The polynomial parts of equation (7.41) then say that

n∑
i=0

aiθ
i =

m∑
i=0

b′iθ
i +

m∑
i=0

ibiθ
′θi−1 +

k∑
i=1

civ
′
i

vi︸ ︷︷ ︸
independent of θ

. (7.42)

Hence n = m, except for the special case n = m − 1 and bm constant. If we
consider coefficients of θn (assuming n > 0) we have

an = b′n + (n+ 1)bn+1θ
′.

We can integrate this formally (recalling that bn+1 is constant) to get∫
an = bn + (n+ 1)bn+1θ. (7.43)

But an ∈ K, and, by the Risch induction hypothesis (page 276), we have an
integration algorithm for K. In fact, not any integral will do: we want an
answer in K itself, apart possibly from a new logarithmic term of θ, which will
determine bn+1. If

∫
an contained any other logarithms, then multiplying them

by θn would give us a new logarithm with a non-constant coefficient, which is
not allowed by Liouville’s Principle (Theorem 50).

Hence the contribution to
∫
p is bnθ

n + bn+1θ
n+1. However,(

bnθ
n + bn+1θ

n+1
)′

= anθ
n + nbnθ

′θn−1, (7.44)

so we should subtract nbnθ
′ from an−1. Of course, bn is only determined “up

to a constant of integration bnθ”. When we come to integrate an−1, we may
get a term nbnθ, which determines this. The process proceeds until we come
to integrate a0, when any new logarithms are allowed, and the constant of
integration here is that of the whole integration. The corresponding algorithm
is given in Figure 7.1.

7.4.2 The Rational Expression Part

Now for the rational expression part, where we have to integrate a proper ratio-
nal expression, and the integral will be a proper rational expression plus a sum

278 CHAPTER 7. CALCULUS

Figure 7.1: Algorithm 41: IntLog–Polynomial

Algorithm 41 (IntLog–Polynomial)
Input: p =

∑n
i=0 aiθ

i ∈ K[θ].
Output: An expression for

∫
pdx, or failed if not elementary

Ans:=0
for i := n, n− 1, . . . , 1 do

ci :=
∫
aidx # integration in K: (7.43)

if ci =failed or ci /∈ K[θ]
return failed

Write ci = bi + (i+ 1)bi+1θ: bi ∈ K and bi+1 constant

Ans:=Ans+biθ
i + bi+1θ

i+1

ai−1 := ai−1 − iθ′bi # correction from (7.44)
c0 :=

∫
a0dx # integration in K

if c0 =failed

return failed

Ans:=Ans+c0

of logarithms with constant coefficients — see (*) in Algorithm 42. The proper
rational expression part is determined by an analogue of Hermite’s algorithm,
and (7.18) is still valid.

The Trager–Rothstein algorithm is still valid, with that additional clause
that the roots of P (λ), which don’t depend on θ since P (λ) is a resultant,
actually be constants.

Example 35 To see why this is necessary, consider
∫

1
log xdx. Here q1 = 1,

r1 = θ, and P (λ) = Res(1−λ/x, θ, θ) = 1−λ/x (made monic, i.e. λ−x). This
would suggest a contribution to the integral of x log log x, which indeed gives
log x as one term on differentiation, but also a term of log log x, which is not
allowed, since it is not present in the integrand. Hence there is no elementary
integral of 1

log xdx.

Note that
∫

1
x log xdx gives P = λ−1 and an integral of log log x, which is correct.

7.4.3 Conclusion of Logarithmic Integration

There are essentially three ways in which an expression whose “main variable”
is a logarithmic θ, i.e. which is being written in K(θ), can fail to have an
elementary integral.

1. In Algorithm 42, some P (λ), whose roots should be the coefficients of
the logarithms, turns out to have non-constant roots. Again, this would
violate Liouville’s principle. Example 35 is a classic case of this.

7.4. INTEGRATION OF LOGARITHMIC EXPRESSIONS 279

Figure 7.2: Algorithm 42: IntLog–Rational Expression

Algorithm 42 (IntLog–Rational Expression)
Input: s2, t2 ∈ K[θ] relatively prime, degs2 < degt2.
Output: An expression for

∫
s2/t2dx, or failed if not elementary

Ans:=0

Square-free decompose t2 as
∏k

i=1 r
i
i

Write
s2
t2

=

k∑
i=1

qi
rii

for i := 1, . . . , k do
Find ai, bi such that airi + bir

′
i = 1

for j := i, i− 1, . . . , 2 do

Ans:=Ans− qibi

(j − 1)rj−1
i

#(7.18)

qi := qiai + (qibi/(j − 1))
′

P (λ) := Res(qi − λr′i, ri, θ) (made monic)
if P has non-constant coefficients (*)

return failed

Write P (λ) =
∏

j Qj(λ)j (square-free decomposition)

for j in 1 . . . such that Qj ̸= 1
vj := gcd(qi − λr′i, ri) where Qj(λ) = 0 #deg(vj) = j

Ans:=Ans+
∑

λ a root of Q(j)

λ log vj(x)

280 CHAPTER 7. CALCULUS

Notation 38 It is usual to define
∫

1
log x to be the logarithmic integral

function li(x), but this is not an elementary function in the sense of Def-
inition 107. See Table 7.1 (page 298).

2. In Algorithm 41, some ai ∈ K (i > 0) may have an elementary integral,
but one that involves ‘new’ logarithms other than θ, which would violate
Liouville’s Principle.

Example 36 Consider
∫

1
x log(x+ 1) with θ being log(x+ 1). Then a1 =

1
x , and

∫
a1 = log(x), which is not in the original field. If we allow this,

and suggest that the integral has a term of log(x) log(x+ 1), its derivative
also has a term of 1

x+1 log(x), and we seem to be trapped in a vicious cycle.

3. In Algorithm 41, some ai ∈ K may itself fail to have an elementary inte-
gral: this failure cannot be compensated for elsewhere, by Lemma 13.

Example 37 Consider
∫

1
log x log(x + 1) with θ being log(x + 1). Then

a1 = 1
log x , and, as we have seen in Example 35, this does not have an

elementary integral.

Even if we use the logarithmic integral li(x) here, and claim that
∫

1
log x =

li(x), we get a term in the integral of li(x) log(x+1), whose derivative also
has a term of li x

x+1 , and we now need a theory of integrating li-involving
functions, which is beyond the scope of this book and is, as far as the author
knows, unsolved (note that [Che86] only considers elementary integrands).

7.5 Integration of Exponential Expressions

Before we begin the general theory, let us consider the often-made statement
“e−x2

has no integral”. From the point of view of calculus, this is clearly non-
sense: we have a continuous function, so it has an integral. So what is meant is
“there is no formula f which differentiates to e−x2

”. But again this is not true:

[AS64, (7.1.1)] says erf(x) = 2√
π

∫ x

0
e−t2dt, and hence

√
π
2 erf(x) is the formula

we are lookng for. But, of course, the real problem is that [AS64, (7.1.1)] is the
definition, not a useful identity. Armed with the vocabulary of Section 7.3, we
now know the correct statement: “‘e−x2

has no elementary integral”. This we
now proceed to prove.

Example 38 (“e−x2

has no elementary integral”) Following our Paradigm
(Algorithm 40), we choose Q as our field of constants, and L as Q(x, θ) with
θ′ = −2xθ. The integrand is then just θ, Then Liouville’s Principle (Theorem
50), in the form of (7.37) says that

θ = v′0 +

n∑
i=1

civ
′
i

vi
, (7.45)

7.5. INTEGRATION OF EXPONENTIAL EXPRESSIONS 281

where v0 belongs to L, the vi belong to L̂, an extension of L by a finite number
of constants algebraic over Lconst, and the ci belong to L̂ and are constant.
Furthermore, we can assume that vi (i > 0) are actually in L̂const(x)[θ] and
are square-free and relatively prime (making use of property ”log” of Section
7.3.0.1).

1. Write v0 =
∑n

i=−m aiθ
i + v̂0, where v̂0 is a proper rational fraction in

Q(x)(θ) whose denominator is not divisible by θ (as all such factors are
covered in the first summation). We can then perform a square-free de-
composition of the denominator of v̂0, and, as in (7.14), write

v̂0 =
∑ qi

rii
, (7.46)

where the ri are square-free and relatively prime, and the qi are relatively
prime with the ri. (7.45) then becomes

θ =

n∑
i=−m

(a′i − 2ixai)θ
i +
∑ q′i

rii
+
∑ −iqir′i

ri+1
i

+

n∑
i=1

civ
′
i

vi
. (7.47)

But there is an ri+1
i in the denominator of the right-hand side, and nothing

elsewhere to cancel it. This is a contradiction unless there are no ri, i.e.
v̂0 = 0.

2. (7.47) then becomes

θ =

n∑
i=−m

(a′i − 2xiai)θ
i +

n∑
i=1

civ
′
i

vi
. (7.48)

We can now observe that there is a vi in the denominator of the right-
hand side, and nothing elsewhere to cancel it. This is a contradiction
unless there are no vi.

3. So θ =
∑n

i=−m(a′i−2ixai)θ
i, and equating coefficients of θ shows that the

only value of i is 1, and we have

1 = a′1 − 2xa1, (7.49)

with a1 ∈ Q(x).

N.B. The steps so far are an example of the working of this section. (7.49) is
a Risch differential equation, and its solution properly belongs in Section
7.7: nevertheless, having come this far, we may as well finish the example.

4. Write a1 = p+
∑ qi

ri
i

, where p ∈ Q[x], the ri are square-free and relatively

prime in Q[x], and the qi are relatively prime with the ri. (7.49) then
becomes

1 = p′ +
∑ q′i

rii
+
∑ −ir′iqi

ri+1
i

− 2xp−
∑ 2xqi

rii
. (7.50)

282 CHAPTER 7. CALCULUS

But there is an ri+1
i in the denominator of the right-hand side, and nothing

elsewhere to cancel it. This is a contradiction unless there are no ri, i.e.
a1 = p.

5. Write p =
∑n

i=0 cix
i, with ci ∈ Q. Then

1 = p′ − 2xp =

n∑
i=0

icix
i−1

︸ ︷︷ ︸
degree n− 1

−2

n∑
i=0

cix
i+1

︸ ︷︷ ︸
degree n+ 1

, (7.51)

and this is impossible.

Hence θ has no elementary integral.

Now for the general theory. Throughout this section, we let θ = θn be a (tran-
scendental) exponential overK = C(x, θ1, . . . , θn−1), so that θ′ = η′θ. We should

note that this choice is somewhat arbitrary, since θ−1 = θ satisfies θ
′

= −η′θ
and K(θ) ≡ K(θ). Hence negative powers of θ are just as legitimate as positive
powers, and this translates into a difference in the next result: rather than writ-
ing expressions as “polynomial + proper rational expressions”, we will make use
of the following concept.

Definition 110 A generalised (or Laurent) polynomial in θ over K is a sum∑n
i=−m aiθ

i with ai ∈ K.

Lemma 14 (Decomposition Lemma (exponential)) f ∈ K(θ) can be writ-
ten uniquely as p+q/r, where p is a Laurent polynomial, q and r are polynomials
of K[θ] such that θ does not divide r, q and r are relatively prime, and the degree
of q is less than that of r. If f has an elementary integral over K, then each of
the terms of p, and also q/r, have an elementary integral over K.

Proof. By Liouville’s Principle (Theorem 50), if f is integrable, it is of the
form

f = v′0 +

n∑
i=1

civ
′
i

vi
, (7.37 ter)

where v0 ∈ K(θ), ci ∈ C, and vi ∈ K(c1, . . . , cn)[θ]. Write v0 = p0 + q0
r0

, where
p0 ∈ K[θ, 1/θ] is a Laurent polynomial, q0, r0 ∈ K[θ] with deg(q0) < deg(r0) and
θ ̸ |r0, and re-arrange the vi such that v1, . . . , vk ∈ K(c1, . . . , cn), but vk+1, . . . , vn
genuinely involve θ, and are monic. Furthermore, we can suppose that θ does
not divide any of these vi, since log θ = η (up to constants). Unlike Lemma
13, though, it is no longer the case that (log vi)

′
(i > k) is a proper rational

expression. Let ni be the degree (in θ) of vi, then, recalling that we have
supposed that the vi are monic, v′i = niη

′θni+ lower terms, and (v′i−niη′vi)/vi
is a proper rational expression

7.5. INTEGRATION OF EXPONENTIAL EXPRESSIONS 283

Figure 7.3: Algorithm 43: IntExp–Polynomial

Algorithm 43 (IntExp–Polynomial)
Input: p =

∑n
i=−m aiθ

i ∈ K[θ], where θ = exp η.
Output: An expression for

∫
pdx, or failed if not elementary

Ans:=0
for i := −m, . . . ,−1, 1, . . . , n do

bi := RDE(iη′, ai)
if bi =failed

return failed

else Ans:=Ans+biθ
i

c0 :=
∫
a0dx # integration in K

if c0 =failed

return failed

Ans:=Ans+c0

Then we can re-arrange (7.37 ter) as

p+
q

r
= p′0 +

k∑
i=1

civ
′
i

vi
+

n∑
i=k+1

ciniη
′

︸ ︷︷ ︸
in K(c1, . . . , cn)[θ, 1/θ]

+

(
q0
r0

)′

+

n∑
i=k+1

ci(v
′
i − niη′vi)
vi︸ ︷︷ ︸

proper rational expression
θ not dividing the denominator

, (7.52)

and the decomposition of the right-hand side proves the result.

This means that it is sufficient to integrate the polynomial part (which we
will do in Algorithm 43) and the rational part (which we will do in Algorithm
44) separately, and that failure in either part indicates that the whole expres-
sion does not have an elementary integral. In other words, there is no cross-
cancellation between these parts.

7.5.1 The Polynomial Part

In fact, this is simpler than the logarithmic case, since Lemma 14 says that each
summand aiθ

i has to be integrable separately.The case i = 0 is just integration
in K, and all the others are cases of the Risch differential equation problem
(Definition 109).

This translates straightforwardly into Algorithm 43.

284 CHAPTER 7. CALCULUS

Figure 7.4: Algorithm 44: IntExp–Rational Expression

Algorithm 44 (IntExp–Rational Expression)
Input: q, r ∈ K[θ] relatively prime, degq < degr.
Output: An expression for

∫
q/rdx, or failed if not elementary

Ans:=0

Square-free decompose r as
∏k

i=1 r
i
i

Write
q

r
=

k∑
i=1

qi
rii

for i := 1, . . . , k do
Find ai, bi such that airi + bir

′
i = 1

for j := i, i− 1, . . . , 2 do

Ans:=Ans− qibi

(j − 1)rj−1
i

#(7.18)

qi := qiai + (qibi/(j − 1))
′

Cancel any common factor between qi and ri
P (λ) := Res(qi − λ(r′i − (degθri)η

′ri), ri, θ) (made monic)
if P has non-constant coefficients (*)

return failed

Write P (λ) =
∏

j Qj(λ)j (square-free decomposition)

for j in 1 . . . such that Qj ̸= 1
vj := gcd(qi − λr′i, ri) where Qj(λ) = 0 #deg(vj) = j

Ans:=Ans+
∑

λ a root of Q(j)

λ log vj(x)

7.5.2 The Rational Expression Part

The last equation (7.52) of Lemma 14 says that∫
q

r
=

(
n∑

i=k+1

cini

)
︸ ︷︷ ︸
“correction”

η +

(
q0
r0

)
+

n∑
i=k+1

ci(log vi − niη)︸ ︷︷ ︸
proper rational expression

, (7.53)

where the vi are monic polynomials (not divisible by θ) of degree ni. The proper
rational expression part is determined by an analogue of Hermite’s algorithm,
and (7.18) is still valid, though we should point out that the justification involved
stating that gcd(ri, r

′
i) = 1, where the ri were the square-free factors of r0. Since

θ′ = ηθ, this is no longer true if θ|ri, but this is excluded since such factors were
moved into the Laurent polynomial (Definition 110) part.

Hence the Hermite part of Algorithm 44 is identical to the rational and
logarithmic cases. The Trager–Rothstein part is slightly more complicated, since

7.5. INTEGRATION OF EXPONENTIAL EXPRESSIONS 285

v′i/vi is no longer a proper rational expression, which is the cause of the term
marked ‘correction” in (7.53). Suppose we have a term s2/t2 (in lowest terms:
the programmer must not forget this check) left after Hermite’s algorithm, and
write ∫

s2
t2

=
∑

ci(log vi − niη), (7.54)

(7.54) can be differentiated to

s2
t2

=
∑

ci
v′i − niη′vi

vi
. (7.55)

Hence t2 =
∏
vi, which means N := degθt2 =

∑
ni, and, writing uj =

∏
i ̸=j vi,

we can write (7.55) as

s2 =
∑

ci(v
′
i − niη′vi)ui. (7.56)

Furthermore, since t2 =
∏
vi, t

′
2 =

∑
v′iui. Hence

vk = gcd(0, vk)

= gcd
(
s2 −

∑
ci(v

′
i − niη′vi)ui, vk

)
= gcd (s2 − ck(v′k − nkη′vk)uk, vk)

since all the other ui are divisible by vk

= gcd
(
s2 − ck

∑
(v′i − niη′vi)ui, vk

)
for the same reason

= gcd (s2 − ck(t′2 − t2Nη′), vk)

since t2 = viui and N =
∑
ni

But if l ̸= k,

gcd (s2 − ck(t′2 − t2Nη′), vl) = gcd
(∑

civ
′
iui − ck

∑
v′iui, vl

)
t2Nη

′ disappears as vl|t2
= gcd (clv

′
lul − ckv′lul, vl)

since all the other ui are divisible by vl
= 1.

Since t2 =
∏
vl, we can put these together to deduce that

vk = gcd(s2 − ck(t′2 −Nη′t2), t2). (7.57)

Given ck, this will tell us vk. But we can deduce more from this: the ck are
precisely those numbers λ such that gcd(s2 − λ(t2 − Nη′t2)′, t2) is non-trivial.
Hence we can appeal to Proposition 79 (page 323), and say that λ must be such
that

P (λ) := Resθ(s2 − λ(t′2 −Nη′t2), t2) = 0. (7.58)

286 CHAPTER 7. CALCULUS

As t2 has degree N and t′2 −Nη′t2 has degree N − 1, P (λ) is the determinant
of a 2N − 1 square matrix, N of whose rows depend linearly on λ, and thus is a
polynomial of degree N in λ (strictly speaking, this argument only shows that
it has degree at most N , but the coefficient of λN is Res(t′2 −Nη′t2, t2) ̸= 0).

Hence, while we needed to re-prove the result, the application of Trager–
Rothstein is little different from the logarithmic, and indeed rational expression,
case. As in the logarithmic case, we have the caveat (*) that the roots of P must
be constant. An analogous example to that of section 7.4.2 is that of

∫
x

1+ex .
Here s2 = x, t2 = 1 + θ and

Resθ(s2 − λ(t′2 −Nη′t2), t2) = Resθ(x− λ(θ − (1 + θ)), 1 + θ) = x+ λ.

This would suggest a contribution of −x log(1+ex), but this also leaves − log(1+
ex) on differentiating, which contradicts Liouville’s Principle. Computer algebra
systems will give answers such as Maple’s∫

x

1 + ex
dx =

1

2
x2 − x ln (1 + ex)− polylog (2,−ex) , (7.59)

but we have, essentially, just proved that polylog (2,−ex) is not elementary.

7.6 Integration of Algebraic Expressions

The integration of algebraic expressions is normally taught as a bunch of, ap-
parently ad hoc tricks. A typical calculation would be∫

1√
1− x2

dx =

∫
1√

1− sin2 t

d sin t

dt
dt (7.60)

substituting x = sin t

=

∫
1

cos t
cos tdt (7.61)

= t = arccos(x), (7.62)

which we can write as π
2 + i log

(√
1− x2 + ix

)
to show that it really is elemen-

tary, and furthermore does not violate Liouville’s Principle, since the only new
expression is now seen to be a logarithm with a constant coefficient. The π

2 is, of
course, just a particular choice of constant of integration. This leaves numerous
questions.

1. Why x = sin t? x = cos t seems to work, but gives a different result.

2. How do I know which substitutions will work?

3. How can I tell when no substitutions work?

4. What about cases when it only partially works, such as∫
1√

1− x2
√

1− 2x2
dx =

∫
1√

1− 2 sin2 t
dt =?

7.7. THE RISCH DIFFERENTIAL EQUATION PROBLEM 287

5. These inverse functions have branch cuts — what does that mean for the
result?

The last question will be taken up in Chapter 8. The others are material for
this section, and indeed seem difficult, to the point where the great 20th cen-
tury number theorist Hardy [Har16] even conjectured that there was no general
method. Integration theory in the 1960s, typified by the SAINT program [Sla61]
concentrated on “doing it like a human”, i.e. by guessing and substitution.

Risch [Ris70] observed that this wasn’t necessary, and [Dav81, Tra84]7 con-
verted his observations into algorithms, and (partial) implementations.

We may suppose8 that we are integrating f(x, y) where y is algebraic over
C(x), but not just algebraic over C. Then Liouville’s Principle (Theorem 50)
says that, if f has an elementary integral

∫
f = v0 +

n∑
i=1

ci log vi, (7.63)

where v0 ∈ C(x, y), ci ∈ C and vi ∈ C(c1, . . . , cn)(x, y). The difficult part is
computing the ci and the vi: once we have these computed, and their derivatives
subtracted from f , solving

∫
f = v0 can be done by the method of undetermined

coefficients — essentially as in Section 7.2.3.

TO BE COMPLETED

7.7 The Risch Differential Equation Problem

In this section we solve case (b), n = 0 of Theorem 53: viz.

to find an algorithm which, given elements f and g of C(x) (with f
such that exp(

∫
f) is a genuinely new expression, i.e., for any non-

zero F with F ′ = fF , M = C(x, F) is transcendental over C(x) and
has Mconst = C), finds y ∈ C(x) with y′ + fy = g, or proves that
such a y does not exist. This is written as RDE(f, g).

These conditions on f mean that it is not a constant, and its integral is not
purely a sum of logarithms with rational number coefficients.

We will first consider the denominator of y ∈ C(x). We could assume that
C is algebraically closed, so that all polynomials factor into linears, but in fact
we need not. We will assume that we can factor polynomials, though we will
see afterwards that this is algorithmically unnecessary.

7Another case of simultaneous discovery.
8We do this for ease of exposition. In practice it’s a bad idea to use the Primitive Element

construction to reduce multiple algebraic functions to a single one. The implementation in
[Dav81], for example, would work for multiple square roots, but only for these.

288 CHAPTER 7. CALCULUS

7.7.1 The Denominator

Let p be an irreducible polynomial. Let α be the largest integer such that pα

divides the denominator of y, which we can write as pα ∥ den(y). Let β and γ
be such that pβ ∥ den(f) and pγ ∥ den(g). So we can calculate the powers of p
which divide the terms of the equation to be solved:

y′︸︷︷︸
α+1

+ fy︸︷︷︸
α+β

= g︸︷︷︸
γ

.

There are then three possibilities.

1. β > 1. In this case the terms in pα+β and pγ have to cancel, that is we
must have α = γ − β.

2. β < 1 (in other words, β = 0). In this case the terms in pα+1 and pγ must
cancel, that is, we must have α = γ − 1.

3. β = 1. In this case, it is possible that the terms on the left-hand side cancel
and that the power of p which divides the denominator of y′ + fy is less
than α+1. If there is no cancellation, the result is indeed α = γ−1 = γ−β.
So let us suppose that there is a cancellation. We express f and y in partial
fractions with respect to p: f = F/pβ + f̂ and y = Y/pα + ŷ, where the

powers of p which divide the denominators of f̂ and ŷ are at most β−1 = 0
and α− 1, and F and Y have degree less than that of p.

y′ + fy =
−αp′Y
pα+1

+
Y ′

pα
+ ŷ′ +

FY

pα+1
+
f̂Y

pα
+
F ŷ

p
+ f̂ ŷ. (7.64)

For there to be a cancellation in this equation, p must divide −αp′Y +FY .
But p is irreducible and Y is of degree less than that of p, therefore p and
Y are relatively prime. This implies that p divides αp′−F . But p′ and F
are of degree less than that of p, and the only polynomial of degree less
than that of p and divisible by p is zero. Therefore α = F/p′.

Putting these together proves the following result.

Lemma 15 ([Ris69b]) α ≤ max(min(γ− 1, γ− β), F/p′), where the last term
only applies when β = 1, and when it gives rise to a positive integer.

In fact, it is not necessary to factorise the denominators into irreducible poly-
nomials. It is enough to find square-free polynomials pi, relatively prime in
pairs, and non-negative integers βi and γi such that den(f) =

∏
pβi

i and
den(g) =

∏
pγi

i . When β = 1, we have, in theory, to factorise p completely,
but it is enough to find the integral roots of Resx(F − zp′, p), by an argument
similar to Trager’s algorithm for calculating the logarithmic part of the integral
of a rational expression.

We have, therefore, been able to bound the denominator of y by D =
∏
pαi
i ,

so that y = Y/D with Y polynomial. So it is possible to suppress the denomi-
nators in our equation, and to find an equation

RY ′ + SY = T. (7.65)

7.8. WORKED EXAMPLES 289

7.7.2 The Numerator

Let α, β, γ and δ be the degrees of Y , R, S and T . Then (7.65) becomes

RY ′︸︷︷︸
α+β−1

+ SY︸︷︷︸
α+γ

= T︸︷︷︸
δ

. (7.66)

There are again three possibilities9.

1. β − 1 > γ. In this case, the terms of degree α+β− 1 must cancel out the
terms of degree δ, therefore α = δ + 1− β.

2. β − 1 < γ. In this case, the terms of degree α + γ must cancel out the
terms of degree δ, therefore α = δ − γ.

3. β − 1 = γ. In this case, the terms of degree α + β − 1 on the left may
cancel. If not, the previous analysis still holds, and α = δ + 1 − β. To
analyse the cancellation, we write Y =

∑α
i=0 yix

i, R =
∑β

i=0 rix
i and

S =
∑γ

i=0 six
i. The coefficients of the terms of degree α+β−1 are αrβyα

and sγyα. The cancellation is equivalent to α = −sγ/rβ .

Lemma 16 ([Ris69b]) α ≤ max(min(δ−γ, δ+1−β),−sγ/rβ), where the last
term is included only when β = γ + 1, and only when it gives rise to a positive
integer.

Determining the coefficients yi of Y is a problem of linear algebra. In fact, the
system of equations is triangular, and is easily solved.

Example 39 Let us reconsider (7.49), which in our notation is y′ − 2xy = 1,
i.e. f = −2x, g = 1. Since neither f nor g have any denominator, y does not,
i.e. it is purely polynomial, of degree α, and R = 1, S = −2x and T = 1 in
(7.65). Comparing degrees gives us

y′︸︷︷︸
α

+−2xy︸ ︷︷ ︸
α+1

= 1︸︷︷︸
0

, (7.67)

i.e. α = −1, as predicted by Lemma 16. But this is impossible.

The case when K is an algebraic extension of C(x) is treated in [Dav84],
and the more general cases in [Ris69b, Dav86]. The principles are the same, but
the treatment of the cancellation case gets more tedious, both in theory and in
practice.

7.8 Worked Examples

It is possible that there are functions which are not purely logarithmic or purely
exponential. But the hypotheses on K we have stated enable us to integrate
mixed functions, by considering the function as a member of K(θ), where K is
a field of functions and θ is a logarithm or an exponential.

9This is not an accidental similarity, but we refer to [Dav84] for a unifying exposition.

290 CHAPTER 7. CALCULUS

7.8.1 First example

Let us consider the function

−ex log2 x+ log x

(
2(ex + 1)

x

)
+ ex + e2x

1 + 2ex + e2x
. (7.68)

7.8.1.1 The problem

According to Algorithm 40, we must first find our field of definition.
This function belongs to the field of functions Q(x, ex, log x). Therefore we

can write K = Q(x, ex), θ = log x and apply the theory of Section 7.4.

Observation 19 We could equally well write K = Q(x, log x), θ = ex and
apply the theory of Section 7.5. The author, given the choice, either by hand or
when implementing this algorithm, has tended to prefer to put the exponentials
as close to x, i.e. the base of the recursion, as possible. This is due to a desire to
solve the Risch Differential Equations in as small a field as possible. However,
the author knows of no experimental evidence backing up this prejudice.

Open Problem 33 (Monomial order in integration) What is the “right”
(probably measured in computer time) ordering for the various θi in Theorem
53?

7.8.1.2 The logarithmic integral

As an element of K(θ), this function is a polynomial in θ:

θ2
(

−ex

1 + 2ex + e2x

)
+ θ

(
2

x(1 + ex)

)
+

ex

1 + ex
.

Following the method of Algorithm 41, we must integrate the coefficient of the
leading power of θ, that is −ex/(1 + ex)2. This integration takes place in K.

7.8.1.3 Sub-problem 1

This integration takes place in the field L(ϕ), where ϕ = ex and L = Q(x).
The function to be integrated is a proper rational function, and, moreover, ϕ
does not divide the denominator. Therefore the theory of Algorithm 44 applies.
Square-free decomposition is quite easy, and we only have to apply Hermite’s
method to q/r2 where q = −ϕ and r = 1 + ϕ. We find that r′ = ϕ (the symbol
′ always denotes differentiation with respect to x). The Bézout identity has to
be applied to r and r′, which is quite easy in the present case:

(1)r + (−1)r′ = 1.

By substituting these values in Hermite’s method, we find an integral of−q(−1)/(1+
ϕ), and a remainder which cancels completely. Thus the solution of this sub-
problem is −ϕ/(1 + ϕ).

7.8. WORKED EXAMPLES 291

7.8.1.4 Back to the main problem

In the original problem, this gives us a term of the integral, that is −θ2ex/(1 +
ex). But the derivative of this term gives us also terms in θ1. The coefficient of
θ1 to be integrated, according to Algorithm 41 is given by a1−2θ′b2, where a1 is
the original coefficient and b2 is the solution of sub-problem 1. This calculation
gives

2

x(1 + ex)
− 2

x

−ex

1 + ex
=

2

x
.

The integral of this function ought to give the coefficient of θ in the integral (and,
possibly, determine the constant of integration in the previous sub-problem).

7.8.1.5 Sub-problem 2

In theory this integration takes place in the field L(ϕ), where ϕ = ex and
L = Q(x), but in reality it is quite easy to see that the answer is 2 log x.

7.8.1.6 Back to the main problem (2)

In general, the integrals given by the sub-problems in Algorithm 41 must belong
to K, but, as we have seen, they may be allowed to contain θ. That is the case
here, for the integral is 2θ. This implies that the choice of the constant of
integration in the last sub-problem was bad, and that it must be increased by
2/2 = 1, as

(
θ2
)′

= 2θ/x.

So the present state of this problem is that we have integrated the coefficients
of θ2 and of θ1, and we have found the integral to be θ2(1− ex/(1 + ex)), which
simplifies into θ2/(1 + ex). We still have to integrate the coefficient of θ0, that
is ex/(1 + ex).

7.8.1.7 Sub-problem 3

This integration takes place in the field L(ϕ), where ϕ = ex and L = Q(x).
The function to be integrated is not a proper rational function, and has to be
rewritten in the form 1 − 1/(1 + ex). Integration of 1 gives x (plus a constant
of integration, which is the integration constant of the problem). The other
part is a proper rational function q/r, where q = −1 and r = 1 + ex. r is not
divisible by ex and has no multiple factors, therefore its integral must be a sum
of logarithms. By Algorithm 44, we have to calculate

Resϕ(q − λ(r′ −Nη′r), r),

where N = 1 (the degree of r), and η = x. This simplifies into Resϕ(−1 + λ,
1 + ϕ), that is −1 + λ. This polynomial has a root, λ = 1, which is indeed a
constant. Therefore the integral of the rational part is log(1 + ex)− x. The −x
cancels with the x of the other part, and we have log(1 + ex).

292 CHAPTER 7. CALCULUS

7.8.1.8 Conclusion

Thus the solution of the problem is

log2 x

(
1

1 + ex

)
+ log(1 + ex),

which is an element of the original field (possibly extended by constants, but
we haven’t needed to) plus a logarithm with a constant coefficient.

7.8.2 Second example

ex+10 log(x) + 2
(log (x))

3(
−1 + (log (x))

2
)2
x

(7.69)

Here, unlike section 7.8.1, we have10 no choice over the formulation, since the
exponential depends on log x. Hence we write K = Q(x, log x) and θ = exp(x+
10 log(x)). In theory this falls in the scope of “case a: θn exponential” of
Theorem 53, but if we look at θ in more detail, we see that it satisfies

θ′ =

(
1 +

10

x

)
θ (7.70)

(the log(x) part has disappeared), so can be treated by the theory of section 7.7.
Our integral is θ + ϕ, where ϕ does not depend on θ. Hence, by the analogy11

of Lemma 14, we need to integrate the two parts separately.

7.8.2.1 Integration of θ

Here we are trying to integrate θ satisfying (7.70). The answer with be yθ where

y′ +

(
1 +

10

x

)
y = 1. (7.71)

In the notation of Lemma 15, the only interesting polynomial in the denominator
is p = x, when β = 1. This is the anomalous case (7.64). F , the numerator of
p in the coefficient of y, = 10 and p′ = 1, so we deduce that α, the exponent
of p in the denominator of y, is (at most) 10. So we write y = Y/x10 where
Y ∈ Q(x), and substituting this into (7.71) gives

Y ′

x10
− 10Y

x11
+

(
1 +

10

x

)
Y

x10
= 1,

or
xY ′ − 10Y + xY + 10Y = x11 (7.72)

10At least if we are going to treat the problem as posed.
11If we thought the answer was “unintegrable”, we would need to prove this version, but as

we find an integral, we don’t need to.

7.8. WORKED EXAMPLES 293

after clearing denominators.
xY has degree degx(Y)+1 and all the other terms on the left have degree at

most degx(Y), so degx(Y) = 10, and Y = x10 + Y1, where degx(Y1) < degx(Y).
Substituting this into (7.72) gives

xY ′
1 + xY1 = x11 − x11 − 10x10.

So Y1 = −10x9 + Y2 where degx(Y2) < degx(Y1). Continuing in this way gives

Y = x10 − 10x9 + 90x8 − 720x7 + 5040x6 − 30240x5 + 151200x4 −
604800x3 + 1814400x2 − 3628800x+ 3628800,

and it is not difficult (it is tedious) to verify that Y
x10 ex+10 log(x) differentiates

to ex+10 log(x)

7.8.2.2 Integration of ϕ

We remind the reader that ϕ = 2 (log(x))3

(−1+(log(x))2)
2
x

and the theory of section 7.4

applies. In particular, we want Algorithm 42. The partial faction decomposition
is already done, and we are integrating q2/r

2
2 with q2 = 2

x (log(x))3 and r2 =
(log(x))2 − 1. We find a2 and b2 with a2r2 + b2r

′
2 = 1, which in our case are

a2 = −1 and b2 = −x
2 (log(x)). This gives us a contribution of

−q2b2
r2

= − (log(x))4

−1 + (log(x))2
(7.73)

to the answer, and leaves an unintegrated term of

q2a2 + (q2b2)′

r2
=
−2(log(x))3 − 3(log(x))2

x(−1 + (log(x))2)
. (7.74)

At this point the reader might notice that neither (7.73) nor (7.74) are proper
rational functions, but we are saved by the remark after (7.18), that the ex-
cesses cancel. The fractional part of (7.73) is −1

(−1+(log(x))2) , and of (7.74) is
2
x log(x)

(−1+(log(x))2) .

This last has to be integrated by the extension to logarithms of the Trager–
Rothstein algorithm. So let P (λ) be

Reslog(x)(
2

x
log(x)− λ 2

x
log(x),−1 + (log(x))2) = − (1− λ)2

x2
,

which has a root λ = 1 (of multiplicity 2). Hence

v1 = gcd

(
2

x
log(x)− λ 2

x
log(x),−1 + (log(x))2

)
= gcd(0,−1 + (log(x))2)

= −1 + (log(x))2.

294 CHAPTER 7. CALCULUS

Hence this contribution to the integral is

λ log(v1) = log
(
−1 + (log(x))2

)
. (7.75)

Combining (7.75) with the fractional part of (7.73) and the result of the previous
section gives us(

x10 − 10x9 + 90x8 − 720x7 + 5040x6 − 30240x5

+151200x4 − 604800x3 + 1814400x2 − 3628800x+ 3628800

)
ex+10 ln(x)

x10 +
1

−1+(ln(x))2
+ ln

(
−1 + (ln (x))

2
) .

as the final answer.

7.9 Other Functions

7.9.1 Other Elementary Functions

There are other elementary functions than the exponential and logarithmic func-
tions defined in Definition 106, though they can all be deifned in terms of ele-
mentary generators.

sin, cos etc. sinx = − i
2 (θ + 1/θ) where θ′ = iθ, which is differential algebra’s

way of saying“θ ≡ eix”. So we can convert sin / cos (and other trigono-
metric functions) into θ, integrate by the methods we have described, and
convert back.

N.B. But because the conversion is one→many, it is not easy to produce the
“best” answer: for example do we write sin(x) cos(x) or 1

2 sin(2x)?

arctan etc. It is normal to write
∫

1
x2+1 = arctan(x), and the methods of Sec-

tion 7.2.4 will therefore show that arctan(x) = i
2 (log(1− ix)− log(1 + ix)).

Again we can convert and convert back.

N.B. Conversion back can be messy, and it’s possible to treat these as “other
integrals” (see Lemma 17 and the text after it).

7.9.2 Integrands beyond “Elementary”

There are many well-known functions which are not elementary. Example 38
shows that this function, erf(x) = 2√

π

∫ x

0
e−t2dt (the 2√

π
is traditional) is not

elementary, but in differential algebra terms we can define it by having K =
C(x, θ1, θ2) where θ′1 = −2xθ1 (i.e. θ1 = ce−x2

for some constant c) and θ′2 = θ1.
Indeed this can be generalized to give us this extension of “elementary”.

Definition 111 Let K be a field of expressions. The expression θ is a Liouvil-
lian generator over K if one of the following is satisfiedi12:

12The reader will note that this is identical to Definition 106 except that (c) there is replaced
by (c’). (c) is a special case of (c’) with ζ = η′/η.

7.9. OTHER FUNCTIONS 295

(a) θ is algebraic over K, i.e. θ satisfies a polynomial equation with coefficients
in K;

(b) θ (assumed to be nonzero)13 is an exponential over K, i.e. there is an η
in K such that θ′ = η′θ, which is only an algebraic way of saying that
θ = exp η;

(c’) θ is a primitive over K, i.e. there is an ζ in K such that θ′ = ζ, which is
only an algebraic way of saying that θ =

∫
ζ.

It is conceivable that more than one of these might hold. In line with the con-
structive ethos of this subject, when a Liouvillian generator is specified, an ex-
plicit choice of (a)/(b)/(c’) and the necessary η, ζ or defining polynomial is
assumed to have been stated.

The theory of Section 7.4 carries over almost completely to this case. Let θ = θk
be a (transcendental) primitive over K = C(x, θ1, . . . , θk−1).

Lemma 17 (Decomposition Lemma (primitive)) f ∈ K(θ) can be writ-
ten uniquely as p+ q/r, where p, q and r are polynomials of K[θ], q and r are
relatively prime, and the degree of q is less than that of r. If f has an elementary
integral over K, then p and q/r each possess an elementary integral over K.

Proof. As for Lemma 13.
The theory then continues as in Section 7.4: the polynomial part integrates

as in Section 7.4.1, except that, at (7.43), we have to ask whether an has an
integral of the bn + cθ for bn ∈ K and constant c, and the same happens for
an−1, . . . , a1. A slight complication, seen in Example 40 is that we may have
unknown constants in the Risch Differential Equation, but this is manageable.
The rational function part integrates exactly as in Section 7.4.2.

We still need to extend the Risch Differential Equation to this case. The
theory of [Dav86] still applies, but hasn’t been properly written out, as far as
the author knows.

Open Problem 34 (Primitive integration) Extend the logarithmic theory
of [Dav86] to the primitive case.

7.9.3 Examples

Example 40 Consider
∫

erf(x), or in the language of differential algebra,
∫
θ2

where θ′2 = 2√
π
θ1 and θ′1 = −2xθ1, and we are working in C(x, θ1, θ2) with

C = Q(
√
π). We apply the primitive generalization of Section 7.4.1, and assume

the integral is
∑2

i=0 biθ
i
2 with the bi ∈ C(x, θ1) except that b0 might have new

logarithms. There are no θ22 terms in the integrand, so b2 is a constant. The
equivalent of (7.43) is then ∫

1 = b1 + 2b2θ2.

13This clause is not normally stated, but is important in practice: see the statement about
“up to a constant”.

296 CHAPTER 7. CALCULUS

Hence b1 = x + B1 (B1 constant) and b2 = 0. Equating coefficient of θ01 gives
us

0 = (x+B1)
2√
π
θ1 + b′0,

or

b0 =

∫ (
−(x+B1)

2√
π
θ1

)
.

Hence (Algorithm 43) b0 = yθ1 where y′ − 2xy = −(x + B1) 2√
π
. This is an

example of the “slight complication” on page 295, in that this is now a Risch
Differential Equation with parameters (in this case B1). There are no denomi-
nators, and comparing coefficents of x1 shows that y = 1√

π
and B1 = 0.

So we conclude that ∫
erf(x) = x erf(x) +

1√
π
e−x2

.

Example 41 Consider now
∫

erf(ax) erf(bx). This we model as looking for an
anti-derivative of θ3θ4 in C(x, θ1, θ2, θ3, θ4) with C = Q(

√
π); θ′1 = −2a2xθ1,

θ′2 = −2b2xθ2, θ
′
3 = 2a√

π
θ1 and θ′4 = 2b√

π
θ2.

As in the previous example, we apply the primitive generalization of Section
7.4.1, and assume the integral is

∑2
i=0 biθ

i
4 with the bi ∈ C(x, θ1, θ2, θ3) except

that b0 might have new logarithms. Equating coefficients of θ14, we see (the
equivalent of (7.43)) that

∫
θ3 = b1 + 2b2θ4. But by analogy with Example 40,∫

θ3 = xθ3 + 1
a
√
π
θ1, to which we have to add a constant of integration c1.

Hence our integral so far is
(
xθ3 + 1

a
√
π
θ1 + c1

)
θ4, and differentiating this

gives

θ3θ4︸︷︷︸
desired

+
2bx√
π
θ2θ3 +

2b

aπ
θ1θ2 +

c1a

2
√
π
θ2︸ ︷︷ ︸

to process

.

This is again a case for the primitive generalization of Section 7.4.1, now with
θ3 as the main variable. The coefficient of θ13 is

2bx√
π
θ2. (7.76)

This we have to integrate by Algorithm 43, which asks us to solve y′ − 2b2xy =
2bx√
π
, whose solution is y = 1

b
√
π
. This gives us 1

b
√
π
θ2 as the integral of (7.76),

to which we have to add a constant c2. Hence our integral so far is

xθ3θ4 +
1

a
√
π
θ1θ4 +

1

b
√
π
θ2θ3 + c1θ4 + c2θ3,

which differentiates to

θ3θ4︸︷︷︸
desired

+
2(a2 + b2)

πab
θ1θ2 +

2c1b√
π
θ2 +

2c2a√
π
θ1︸ ︷︷ ︸

to process

,

7.9. OTHER FUNCTIONS 297

where the part “to process” lies in C(x, θ1, θ2), and is in fact a polynomial of
degree 1 in θ2. Lemma 14 tells us that each term (with respect to θ2) integrates
separately. We know from Example 38 that the θ02 term, 2c2a√

π
θ1, has no integral

unless c2 = 0.

What about the θ12 term, i.e.
(

2(a2+b2)
πab θ1 + 2c1b√

π

)
θ2? This will integrate to

yθ2 where

y′ − 2a2xy =
2(a2 + b2)

πab
θ1 +

2c1b√
π
. (7.77)

The generalization of Section 7.7.1 to the case of an exponential (in our case
θ1) as the main variable shows that, as there are no denominators depending on
θ1 here, there are none (except possibly a power of θ1) in y.

The generalization of Section 7.7.2 to the case of an exponential (in our case
θ1) as the main variable shows that y has to be a polynomial d1θ1 + d0 with the
di ∈ C(x). Hence

d′1θ1 − 2a2xd1θ1 + d′0 − 2b2x(d1θ1 + d0) =
2(a2 + b2)

πab
θ1 +

2c1b√
π
.

Equating coefficients of θ1, we see that

d′1 − 2a2xd1 − 2b2xd1 =
2(a2 + b2)

πab
.

The main variable is now x, so we are in the setting of Section 7.7: Section
7.7.1 shows that d1 has to be a polynomial, and (unless a2 + b2 = 0) comparing
degrees gives us a contradiction. We ought not to be surprised at this, since we
are (up to constants), integrating θ1θ2, which we can think of as e−(a2+b2)x2

,
and we know from Example 39 that this has no integral elementary over K.

7.9.4 Beyond Liouville’s Principle

The reader might nevertheless be surprised at the “no elementary integral”
conclusion of Example 41, since∫

e−(a2+b2)x2

=

√
π

2
√
a2 + b2

erf
(√

a2 + b2x
)
, (7.78)

and hence

∫
erf(ax) erf(bx) =

e−a2x2

erf (bx)√
πa

+
erf (ax) e−b2x2

b
√
π

+ xerf (ax) erf (bx)

−
√
a2 + b2

ab
√
π

erf
(√

a2 + b2x
)

(7.79)
The point is that the right-hand sides of (7.78) and (7.79) are not elementary
over K: they involve erf

(√
a2 + b2x

)
, which is (and one can regard Example

298 CHAPTER 7. CALCULUS

41 as a proof of this) not elementary over K: we have introduced a new erf
generator. How might we formalize this?

The solution might come in three steps.

Definition We could extend Definition 106 with a fourth option

(d) θ is an erf over K, i.e. there are η1, η2 ∈ K such that η′1 = −2η2η
′
2η1 and

θ′ = η′2η1, which is an algebraic way of saying θ = erf(η2).

This gives us the concept of an “erf-elementary” generator. We then generalize
Definition 107 to a field of erf-elementary expressions over K.

Theorem We now wish to extend Theorem 50 to describe integrals which are
erf-elementary over K. The obvious solution would be to extend (7.36) to∫

f = v0 +

n∑
i=1

ci log vi +

m∑
j=1

dj erf wj . (7.80)

This in fact works, but with some important differences: while the vi are
in K (possibly extended with constants), the wj may be square roots of
elements of the extended K: see [Che85, Theorem 2.1].

Algorithm This is substantially more complicated, and we refer the reader to
[Che85].

Of course, erf is not the only function we might wish to treat this way. There
have been various extensions, which we tabulate in Table 7.1 (as far as the
author knows).

Table 7.1: Extensions of Elementary Integration
Symbol Definition References
erf (erf f)′ = f ′ exp(−f2) [Che85]

li (li f)′ = f ′

log f [Che86]; Notation 38

ei (ei f)′ = f ′ exp(f)
f [Che86]: ei(f) = li(exp(f))

erf and ei [Che89]

ℓ2 (ℓ2 f)′ = − f ′

f log(1− f) [Bad06]

7.9.5 Non-Liouvillian Functions

The solution of the simplest non-polynomial equation yey = x is y = W (x)
where W is the Lambert W function (defined in [CGH+96] to solve this, with
W (e) = 1).

It is possible to prove [BCDJ08] that this is not Liouvillian, i.e. no (finite)
amount of integrals will define it.

It has a closed-form derivative: W (x)′ = W (x)
x(1+W (x)) .

7.10. THE PARALLEL APPROACH 299

Therefore there are integration results here, e.g.∫
1

x(1 +W (x))
= W (x)− log(x),

but the author knows of no general theory, certainly not one capable of proving
unintegrability.

7.10 The Parallel Approach

The methods described so far this chapter have essentially taken a recursive
approach to the problem: if the integrand lives in K(x, θ1, . . . , θn), we have
regarded this as K(x)(θ1)(. . .)(θn), and the results of the previous sections all
justify an “induction on n” algorithm. In this section we will adopt a different
approach, regarding K(x, θ1, . . . , θn) as the field of fractions of K[x, θ1, . . . , θn],
and taking a distributed (page 54), also called parallel as we are treating all the
θi in parallel, view of K[x = θ0, θ1, . . . , θn].

We note that Liouville’s Principle (Theorem 50) can be applied to this set-
ting.

Theorem 54 (Liouville’s Principle, Parallel version) Let f be an expres-
sion from some expression field L = K(x, θ1, . . . , θn). If f has an elementary
integral over L, it has an integral of the following form:∫

f = v0 +

m∑
i=1

ci log vi, (7.81)

where v0 belongs to L, the vi belong to K̂[x, θ1, . . . , θn], an extension of K[x, θ1, . . . , θn]
by a finite number of constants algebraic over K, and the ci belong to K̂.

Other that being more explicit about the domains objects belong to, we are
asserting that the vi are polynomial, which can be assumed since log(p/q) =
log(p)− log(q), or in the language of differential algebra,

(p/q)′

p/q
=
p′

p
− q′

q
.

Notation 39 In (7.81), we write v0 = p
q , where p, q ∈ K[x, θ1, . . . , θn], but are

not necessarily relatively prime.

From now on, until section 7.10.2, we will assume that the θi are transcen-
dental. We can then infer the following algorithm for integrating expressions in
this setting.

Pseudo-Algorithm 45 (Parallel Risch [NM77, Bro07])
Input: L = K(x, θ1, . . . , θn) a purely transcendental differential field with con-
stants K, f ∈ L
Output: g an elementary integral of f , or a proof that there is no such one
satisfying the assumptions of steps (1)–(3).

300 CHAPTER 7. CALCULUS

(1) Decide candidate v1, . . . , vm (we may have too many)

(2) Decide a candidate q (which may be a multiple of the true value)

� The obvious choice is
∏
ri−1
i where den(f) =

∏
rii as a square-free decom-

position, but monomial factors of exponentials ought not to have their
multiplicity decreased. However, this is insufficient in certain cases, e.g.
[Dav82a, DT85, Dav82b].

(3) Decide d̄egree bounds for p (which may be too large), i.e. n0 . . . , nn such
that

p =

n0∑
i0=0

n1∑
i1=0

· · ·
nn∑

in=0

ci0,i1,...,inx
i0

n∏
j=1

θ
ij
j

(4) Clear denominators in the derivative of (7.81)

N.B. In practice we need to do step (4) symbolically before we can do step(3):
see the example on page 301.

(5) Solve the resulting linear equations for the ci and ci0,i1,...,in , but c0,...,0 is
the the constant of integration, and is never determined

(6) if there’s a solution
then reduce p/q to lowest terms and return the result
else “integral not found”

As explained in [Bro07], it is the decisions taken in steps (1)–(3) which mean
that this is not a guaranteed “integrate or prove unintegrable” algorithm. The
work of the previous sections allows partial solutions:

(1) Those v1, . . . , vm which depend on θn
(2) A candidate q (which may be a multiple of the true value)

But the multiple is in K(x, θ1, . . . , θn−1)[θn], not in K[x, θ1, . . . , θn]
(3) A degree bound nn for p as a polynomial in θn

As pointed out in Observation 19, we may have some choice over which θ we
take as θn. If we had complete freedom (i.e. the θi involve only x in their
definition), then we could determine all the ni (i > 0) and that part of q which
depended on the θi. In this case, we would then have a complete algorithm if
we did linear algebra over K(x) rather than K. But the author has never seen
this implemented.

7.10.1 An example

Example (7.68) was written as

−ex log2 x+ log x

(
2(ex + 1)

x

)
+ ex + e2x

1 + 2ex + e2x
,

7.10. THE PARALLEL APPROACH 301

but for this approach we require a distributed format, and a common denomi-
nator with a square-free decomposition, so we write

−xex log2 x+ 2ex log x+ 2 log x+ xex + xe2x

x (1 + ex)
2 .

(1) Decide candidate v1, . . . , vm.

Here The factors of the denominator are x and (1 + ex), hence we might want
to add both log x and log(1 + ex), but in fact log x is already in the field,
so we just add v1 = log(1 + ex).

(2) Decide a candidate q (which may be a multiple of the true value).

Here The “obvious” answer is (1 + ex).

(4) Clear denominators in the derivative of (7.81), i.e.

−xex log2 x+ 2ex log x+ 2 log x+ xex + xe2x

x (1 + ex)
2 =(∑n0

i=0

∑n1

j=0

∑n2

k=0 ci,j,kx
i(log x)j (ex)

k

1 + ex

)′

+
c1e

x

1 + ex
=

c1x(ex + e2x) +
∑
i,j,k

ci,j,k

((
(log x)

j−1
j + (log x)

j
i
)

(1 + ex)xi+

(log x)
j

((k − 1) ex + k)xi+1

)
ekx

x (1 + ex)
2

(3) Decide degree bounds for p (which may be too large), i.e. n0 . . . , n2 such
that

p =

n0∑
i=0

n1∑
j=0

n2∑
k=0

ci,j,kx
i(log x)j (ex)

k
.

Here the leading terms in the numerator of the right-hand side are c1xe
2x and

ci,j,k(k − 1)xi+1(log x)je(k+1)x (generically, i.e. when k ̸= 1). Since the
highest power of ex on the left-hand side is e2x, we deduce that k ≤ 1.
Separating out K = 0 and k = 1 gives us a right-hand side numerator of

c1x(ex + e2x) +
∑
i,j

ci,j,0

((
(log x)

j−1
j + (log x)

j
i
)

(1 + ex)xi−
(log x)

j
exxi+1

)
+

∑
i,j

ci,j,1

((
(log x)

j−1
j + (log x)

j
i
)

(1 + ex)xi+

(log x)
j
xi+1

)
ex

Since the left-hand side has at most x (to the power 1) and log2 x, we can
deduce that i ≤ 1 and j ≤ 2.

302 CHAPTER 7. CALCULUS

(5) Solve the resulting linear equations for the ci and ci0,i1,...,in . The coefficient
of xe2x on the right-hand side is c1+c1,0,1, so we deduce that c1+c1,0,1 = 1.
Taking the c1 and c1,0,1 terms over to the left-hand side, and using this
equality, gives(

−x (log (x))
2

+ 2 ln (x)− x2 (1− c1)
)

ex + 2 log (x)

x (1 + ex)
2 .

This now has no e2x, so we can discard the possibility that k = 1. Hence
we have to solve(

−x (log (x))
2

+ 2 ln (x)− x2 (1− c1)
)

ex + 2 log (x)

x (1 + ex)
2 =∑

i,j

ci,j,0

((
(log x)

j−1
j + (log x)

j
i
)

(1 + ex)xi − (log x)
j

exxi+1
)
.

The leading term14 is −ci,j,0xi+1(log x)jex. To match the leading term on
the left-hand side, we therefore need c0,2,0 = 1.

After subtracting this off, we are left with

exx (c1 − 1)

(1 + ex)
2 ,

so we set c1 = 1.

7.10.2 The Parallel Approach: Algebraic Expressions

TO BE COMPLETED

7.11 Definite Integration

We have shown (Example 39) that
∫

exp(−x2) has no elementary expression,

i.e. that it is a new expression, which we called erf. However,
∫∞
−∞ e−x2

(where
we have attached a precise numerical meaning ex to exp(x)) is well-known to
be π, which is essentially another way of saying that erf(±∞) = ±1, and is
therefore a mater of giving numerical values to functions — see Chapter 8.

TO BE COMPLETEDMeijer etc.

7.12 Other Calculus Problems

7.12.1 Indefinite summation

The initial paper in this area was [Gos78]. Although not expressed that way in
this paper, the key idea [Kar81] is the following, akin to Definition 104.

14Inthis case, under any admissible ordering of the monomials x, log x, ex — life can get
more complicated when this isn’t unambiguous.

7.12. OTHER CALCULUS PROBLEMS 303

Definition 112 A difference ring is a ring (Definition 8) equipped with an
additional unary operation, referred to as differentiation and written15 with a
prefix δ, which satisfies three additional laws:

1. δ(f + g) = δf + δg;

2. δ(fg) = f(δg) + (δf)g + (δf)(δg);

3. δ(1) = 0.

A difference ring which is also a field (Defintion 15) is referred to as a difference
field.

One thinks of δ(f) as being f(n+1)−f(n). It is worth remarking the differences
with Definition 104: clause 3 is necessary, whereas previously it could be inferred
from the others, and clause 2 is different, essentially because (x2)′ = 2x but
δ(n2) = (n+ 1)2 − n2 = 2n+ 1.

The process of formal (indefinite) summation
∑

is then that of inverting δ,
as
∫

is the prcess of inverting ′. Just as the rôle of dx in integration theory
is explained by the fact that x′ = 1, i.e.

∫
1 = x, so the traditional rôle of n

in summation theory is explained by the fact that δn = 1, equivalently that∑
1 = n. Note that the two procedures of integration and summation are more

similar than normal notation would suggest: we are happy with
∫
x = 1

2x
2, but

less so with
∑
n = 1

2n(n+ 1), yet the two are essentially equivalent.
To further the analogy, we know that

∫
1
x cannot be expressed as a rational

function of x, but is a new expression, known conventionally as log x. Similarly,∑
1
n cannot be expressed as a rational function of n [Kar81, Example 16], but

is a new expression, known conventionally as Hn, the n-th harmonic number.
Again,

∫
log x = x log x− x, and

∑
Hn = nHn − n.

7.12.2 Definite Symbolic Summation

Definite summation might be thought to be related to indefinite summation
in the way that definite integration (Section 7.11) is to indefinite. There is
certainly the same problem of evaluating expressions from difference algebra at
numerical points. However, in practice we are more concerned with a subtly
different class of problems, where the limits of summation also figure in the
summand.

Example 42 ([GKP94, Exercise 6.69], [Sch00b])

n∑
k=1

k2Hn+k =
1

3
n

(
n+

1

2

)
(n+ 1)(2H2n −Hn)− 1

36
n(10n2 + 9n− 1). (7.82)

What are the key references here? [Sch04]?

15In this text: notations differ.

304 CHAPTER 7. CALCULUS

Chapter 8

Algebra versus Analysis

We have seen in the previous chapter how we can construct an algebraic theory
of mathematical objects such as ‘exp’ and ‘log’, and possibly others. From an
algebraic point of view, they seem to behave like the mathematical objects we are
familiar with from analysis. Are they the same? If not, what are the differences?
This is perhaps one of the less-discussed topics1 in computer algebra, and indeed
possibly in mathematics more generally.

Notation 40 Throughout this chapter, we use the notation
?
= to denote an

equation that might or might not be true, or partially true, depending on the
interpretations, from algebra or from analysis, that one places on the symbols

either side of
?
=.

8.1 Functions and Formulae

This question turns out to be related to the difference between functions and
formulae (which we have also called expressions). Consider the two-dimensional

formula x2−1
x−1 , or (x^2-1)/(x-1) if we prefer one-dimensional expressions. It

has potentially many rôles.

formula There are several options here: strings of characters, or a parse tree.
Whichever we choose, (x^2-1)/(x-1) is a different formula from x+1.

∈ Q(x) (see section 2.2.) This is therefore mathematically equivalent to x+ 1,
and an algebra system may or may not transform one into the other:
a system that aims for candidness in this context (section 2.2.2) should
transform (x^2-1)/(x-1) into x+1.

∈ K(x) Of course, it is only convention that chooses Q for the ground field.
It could be any extension of Q, or, more challengingly, a finite field of
positive characteristic.

1But see [Dav10].

305

306 CHAPTER 8. ALGEBRA VERSUS ANALYSIS

rule This is what a computer scientist would think of as λx.x
2−1
x−1 : that rule

which, given an x, computes the corresponding value of the formula

None of these are, as such, a function in the sense of Notation 3, though the

last is the nearest. However, trying to express x2−1
x−1 in this notation exposes our

problems. ({(
x,
x2 − 1

x− 1

)
| x ∈ Q

}
,Q,Q

)
B

(8.1)

is illegal, because of the case x = 1. Ruling this out gives us({(
x,
x2 − 1

x− 1

)
| x ∈ Q \ {1}

}
,Q \ {1},Q

)
B
. (8.2)

If we regard 0
0 as ⊥, then we can have({(

x,
x2 − 1

x− 1

)
| x ∈ Q

}
,Q,Q ∪ {⊥}

)
B
. (8.3)

Making the ⊥ explicit gives us({(
x,
x2 − 1

x− 1

)
| x ∈ Q \ {1}

}
∪ {(1,⊥)},Q,Q ∪ {⊥}

)
B
. (8.4)

If we’re going to single out a special case, we might as well (since 2 = limx→1
x2−1
x−1 ,

i.e. this is a removable singularity , in the sense that we can give our function a
value at the apparently singular point whch makes it continuous) write({(

x,
x2 − 1

x− 1

)
| x ∈ Q \ {1}

}
∪ {(1, 2)},Q,Q

)
B
, (8.5)

dropping the ⊥, and this is equal to

({(x, x+ 1) | x ∈ Q} ,Q,Q)B . (8.6)

The case of polynomials is simpler (we restrict consideration to one variable,
but this isn’t necessary). Over a ring R of characteristic zero2, equality of
abstract polynomials is the same as equality of the corresponding functions:

p = q in R[x]⇔ ({(x, p(x)) | x ∈ R} , R,R)B = ({(x, q(x)) | x ∈ R} , R,R)B
(8.7)

This is a consequence of the fact that a non-zero polynomial p − q has only a
finite number of zeros.

If we attach a meaning to elements of R(x) by analogy with (8.2), omitting
dubious points in the domain, then equality in the sense of Definition 16 is
related to the equality of Bourbakist functions in the following way

f = g in R(x)⇔ ({(x, f(x)) | x ∈ S} , S,R)B = ({(x, g(x)) | x ∈ S} , S,R)B ,
(8.8)

where S is the intersection of the domains of f and g.

2See example 5 on page 28 to explain this limitation.

8.2. BRANCH CUTS 307

8.2 Branch Cuts

In the previous section, we observed that there was a difference between “expres-
sions”, whether concrete formulae or abstract expressions in K(x), and functions
R→ R or C→ C. If we go beyond K(x), the problems get more serious.

Example 43 Consider the formula sqrt(z), or
√
z, which we can formalise

as θ ∈ K(z, θ|θ2 = z). What happens if we try to interpret θ as a function
θ(z) : C → C? Presumably we choose θ(1) = 1, and, by continuity, θ(1 + ϵ) =
1 + 1

2ϵ −
1
8ϵ

2 + · · · ≈ 1 + 1
2ϵ. Similarly, θ(1 + ϵi) ≈ 1 + 1

2ϵi, and so on. If we
continue to track θ(z) around the unit circle {z = x+ iy : x2 + y2 = 1}, we see
that θ(i) = 1+i√

2
, and θ(−1) = i. Continuing, θ(−i) = −1+i√

2
and θ(1) = −1.

It would be tempting to dismiss this as “the usual square root ambiguity”, but
in fact the problem is not so easily dismissed.

Example 44 Similarly, consider log(z), which we can formalise as θ ∈ K(z,
θ| exp(θ(z)) = z}. What happens if we try to interpret θ as a function θ(z) :
C → C? We chose θ(1) = 0, and, since exp(ϵi) ≈ ϵi, θ(ϵi) ≈ ϵi. As we track
θ(z) around the unit circle {z = x + iy : x2y2 = 1}, we see that θ(i) = iπ/2,
θ(−1) = iπ, and ultimately θ(1) = 2πi.

8.2.1 Some Unpleasant Facts

The blunt facts3 are the following (and many analogues).

Proposition 77 (No square root function) There is no continuous func-
tion f : C→ C (or C \ {0} → C \ {0}) with the property that ∀z : f(z)2 = z.

Proposition 78 (No logarithm function) There is no continuous function
f : C \ {0} → C \ {0} with the property that ∀z : exp(f(z)) = z (note that
f(exp(z)) = z is clearly impossible as exp is many:one).

Observation 20 This statement, about actual functions C→ C, might seem to
be in contradiction with the statement labelled “(1)+(2)” on page 269. In fact,
it is not so much a contradiction as a statement that the world of functions
C→ C is not as neat as the algebraic world of the previous chapter.

In particular, the common statements

log z1 + log z2
?
= log z1z2. (8.9)

log 1/z
?
=− log z. (8.10)

are false4 for (any interpretation of) the function log : C \ {0} → C \ {0}, even
though they are true for the usual log : R+ → R. On page 269 we proved a

3“No continuous argument”, from which the others follow, is proved in [Pri03, §9.2].
4Consider z1 = z2 = −1 and z = −1 for counter-examples.

308 CHAPTER 8. ALGEBRA VERSUS ANALYSIS

result which we said was “normally expressed as” (8.9). What we in fact proved
was that ϕ := log η1 + log η2 − log(η1η2) was a constant, in the sense that it
differentiated to 0: in fact it is

ϕ =

 2πi arg η1 + arg η2 > π
0 −π < arg η1 + arg η2 ≤ π
−2πi arg η1 + arg η2 ≤ −π

. (8.11)

Similarly the discrepancy in (8.10), i.e. ψ := log(1/z) + log z, is a differential
constant whose value is

ψ =

{
2πi z = x+ iy : x < 0 ∧ y = 0
0 otherwise

. (8.12)

8.2.2 The Problem with Square Roots

These difficulties arise even with the square root function, and without needing
to consider differential algebra.

Example 45 ([BCD+02]) Consider two apparently similar statements:

√
1− z

√
1 + z

?
=

√
1− z2 (8.13)

√
z − 1

√
z + 1

?
=

√
z2 − 1. (8.14)

Näıvely, we might consider both to be true: square both sides and they reduce to
(1−z)(1+z) = 1−z2 and (z−1)(z+1) = z2−1, both of which are true. But in
fact, while (8.13) is true [BCD+02, Lemma 2], (8.14) is false, as evaluation at

z = −2 gives
√
−3
√
−1

?
=
√

3,and in fact the left-hand side is −
√

3, rather than√
3.

8.2.3 Possible Solutions

These facts have, of course, been known since the beginnings of complex analysis,
and there are various approaches to the problem, discussed in [Dav10].

Multivalued Functions (taking values not on C, but in the set of subsets of
C, i.e. P(C)). Here we think of the logarithm of 1 as being, not 0, but
any of {. . . ,−4πi,−2πi, 0, 2πi, 4πi, . . .}. Our exemplar problem (8.9) is
then treated as follows.

The equation merely states that the sum of one of the (infinitely
many) logarithms of z1 and one of the (infinitely many) loga-
rithms of z2 can be found among the (infinitely many) loga-
rithms of z1z2, and conversely every logarithm of z1z2 can be
represented as a sum of this kind (with a suitable choice of log z1
and log z2).

[Car58, pp. 259–260] (our notation)

8.2. BRANCH CUTS 309

Since log is to be the inverse of exp, we essentially transpose the graph and
have

(
graph(exp)T ,C,P(C)

)
B as the Bourbaki formulation of logarithm.

Notation 41 We will use function names beginning with capitals, e.g.
Log or Sqrt (so Sqrt(4) = {−2, 2}) for such multivalued functions.

(8.13) and (8.14), then both become true, when rewritten as

Sqrt(1− z) Sqrt(1 + z)
?
= Sqrt(1− z2) (8.13′)

Sqrt(z − 1) Sqrt(z + 1)
?
= Sqrt(z2 − 1). (8.14′)

! Note, however, that what appears to be a special case of (8.9), viz.

2 log z
?
= log z2, (8.15)

is not true in this setting, since when z = 1, Log z2 = Log 1 = {2kπi},
while 2 Log z = 2 Log 1 = {4kπi}. The problem is, in fact, that Log z +
Log z ̸= 2 Log z.

Riemann Surfaces Instead of saying that log 1 has multiple values, we say
that there are multiple versions of ‘1’, each of which has a well-defined
logarithm. In terms of Example 43, the ‘1’ that we reach after going
round the circle once is different from the ‘1’ we started from. In terms of
Notation 3, we have

(
graph(exp)T ,Rlog z,C

)
B, where Rlog z signifies the

Riemann surface corresponding to the function log z, shown in Figure 8.1.
The Riemann surface view is discussed in [BCD+02, Section 2.4], which
concludes

Riemann surfaces are a beautiful conceptual scheme, but at the
moment they are not computational schemes.

Note that the standard counterexample to (8.10), viz . z = −1, so that
log(1/− 1) = πi ̸= − log(−1) is now solved by the fact that 1/− 1 is a −1
on a different branch, and in (8.9) z1 + z2 is on the appropriate branch to
make (8.9) valid.

* Both the previous solutions have preserved continuity, and the identities, at
the cost of not having a function C→ C.

Branches Of course, we could also consider subsets of C which do not contain
the whole of the troublesome circle of Example 43. If we do that, then we
can have a continuous version of, say, log z as in

log z has a branch in any simply connected5 open set which does
not contain 0.

[Car73, p. 61]

5Any two points can be connected bya path in the set, and any two such paths can be
continuous transformed into each other without leaving the set.

310 CHAPTER 8. ALGEBRA VERSUS ANALYSIS

Figure 8.1: A Riemann surface example: log

So any given branch would be (G,D, I)B, where D is a simply connected
open set which does not contain 0, G is a graph obtained from one element
of the graph (i.e. a pair (z, log(z)) for some z ∈ D) by analytic contin-
uation, and I is the relevant image set. While this approach preserves
continuity, it has three drawbacks.

1. We now have as many definitions of log, say logD, as we have choices
of D, and these do not necessarily agree, even if we insist that 1 ∈ D
and logD 1 = 0. For example, if D1 = C \ {iy : y ∈ [0,∞)} and D2 =
C\{−iy : y ∈ [0,∞)}, then logD1

(−1) = −iπ (since log(1−ϵi) ≈ −ϵi
and we get from 1 to −1 within D1 by going clockwise round the unit
circle from 1 via −i, whose logarithm is −iπ/2) but logD2

(−1) = iπ,
since now we go anticlockwise round the unit circle, from 1 to −1 via
i.

2. logD is not defined outside D.

3. Identities such as (8.9) are not valid, even if z1, z2 and z1z2 are all
in D: consider D1 as above, with z1 = z2 = −1. This is inevitable:
no assignment of a nonzero value to log(−1) can satisfy (8.10), for
example.

This solution preserves continuity within D, at the cost of losing identities,
and the uncertainty caused by the multiple options for D.

8.2. BRANCH CUTS 311

Branch Cuts Here we associate with each potentially multi-valued operator f
the following.

• An “initial value” (z0, f(z0)).

• The “branch cut”, which is a curve, or set of curves, B in C joining
the singularities of f , such that C \ B is simply-connected. f(z) for
any z /∈ B is then obtained by analytic continuation from (z0, f(z0))
by analytic continuation along any path not meeting B.

• A rule for computing f(z) on B, which is generally arranged to make
f(z) continuous with one side or the other of B.

A typical example would be log, where it is usual these days to have:

• Initial value (1, 0);

• Branch cut {x+ 0i : x ∈ (−∞, 0]};
• Rule for log x : x < 0: log(x+0i) = limϵ→0+ log(x+ϵi) (= iπ+log |x|).

We should note that there are many possible choices: the author was in
fact initially taught

• Initial value (1, 0);

• Branch cut {x+ 0i : x ∈ [0,∞)};
• Rule for log x : x > 0: log(x+ 0i) = limϵ→0+ log(x+ ϵi).

Despite the apparent arbitrariness, the world has tended to converge on
the branch cuts as defined6 in [AS64, Nat10].

8.2.4 Removable Branch Cuts

This term is introduced in [DF94, §4.2], presumably by analogy with “removable
singularity”. The example they give is illustrative.

Example 46 ([DF94, §4.2], our phrasing) Consider f(z) = g(z) − h(z),
where g(z) = log(z + 1) and h(z) = log(z − 1). Then g has a branch cut along
(−∞,−1] and h has one along (−∞, 1], and hence we would expect a branch
cut for f along (−∞, 1]. In fact, the contributions from g and h exactly cancel
along (−∞,−1), and the actual branch cut is only [−1, 1]. We should note that
this is only true of g − h, and (1 + ϵ)g − h genuinely has a branch cut along
(−∞, 1] for all ϵ ̸= 0.

This is, in fact, analogous to the “removable singularity” behaviour we saw at

(8.1): x2−1−ϵ
x−1 has a genuine singularity at x = 1 for all ϵ ̸= 0, but when ϵ = 0

the singularity is in fact removable.

6The careful reader should note that one should use printing 9 or later of [AS64]: the
branch cut for arccot moved!

312 CHAPTER 8. ALGEBRA VERSUS ANALYSIS

8.3 Fundamental Theorem of Calculus Revisited

In the previous chapter we reduced the Fundamental Theorem of Calculus to
the status of Notation 34, saying that integration is the inverse of differentiation.
From the algebraic point of view, that is correct. From the analytic point of
view, where the following definitions hold, there is indeed something to prove.

Definition 113 (Analysis) Given a function f : R → R, we define, where
the right-hand sides exist,

f ′(x) = limh→0
f(x+h)−f(x)

h
F (x) =

∫ x

a
f(x)dx = lim|∆|→0 S

∆(f) = lim|∆|→0 S∆(f)
provided both limits exist and are equal

(8.16)

where ∆ = [x0 = a < x1 < · · · < xn = x] is a dissection of [a, x], |∆| =
maxi(xi−xi−1),and S∆(f) =

∑n
i=1(xi−xi−1) maxy∈[xi−1,xi] f(y) and S∆(f) =∑n

i=1(xi − xi−1) miny∈[xi−1,xi] f(y) are the upper and lower approximations of
“the area under the curve” of f .

Theorem 55 (Fundamental Theorem of Calculus [Apo67, §5.3]) Let f
and F be functions defined on a closed interval [a, b] such that F ′ = f . If f is
Riemann-integrable on [a, b], then∫ b

a

f(x)dx = F (b)− F (a).

Though this is the classical statement, we must emphasise that F ′ = f must hold
throughout [a, b], and therefore F is differentiable, hence continuous, thoughout
this interval.

8.4 Constants Revisited

In the previous chapter we defined (Definition 105) a constant as being an
element whose derivative was zero. How well does this compare with our usual
intuition, which is of a constant function, i.e. one whose value is independent
of the argument?

It is a truism of calculus that a constant function has to have derivative
zero, and a theorem of analysis that a function whose derivative is defined and
zero everywhere is indeed constant, but that italicised phrase is important. The
classic example is the Heaviside function:

H(x) =

{
0 x ≤ 0
1 x > 0

which is clearly not constant, but whose derivative is zero except at x = 0, where
it is undefined.

8.5. INTEGRATING ‘REAL’ FUNCTIONS 313

8.4.1 Constants can be useful

We can make constructive use of the concept of a differential constant, however.
Mathematica, for example, writes [Lic11]

√
x2 in the form x sign(x), and then

treats sign(x) as a differential constant internally, replacing it by 1
x

√
x2 at the

end.

8.4.2 Constants are often troubling

One sometimes sees7 (but stated as an equality, rather than with our
?
=)

arctan(x) + arctan(y)
?
= arctan

(
x+ y

1− xy

)
. (8.17)

If we let

C = arctan(x) + arctan(y)− arctan

(
x+ y

1− xy

)
, (8.18)

then

∂C

∂x
=

1

1 + x2
−

(1−xy)+y(x+y)
(1−xy)2

1 +
(

x+y
1−xy

)2 =
1

1 + x2
− (1− xy) + y(x+ y)

(1− xy)2 + (x+ y)2
= 0, (8.19)

and similarly ∂C
∂y = 0, so C would seem to be a constant. Differentially, it is,

but in fact

C(x, y) =

 −π xy > 1;x < 0
0 < 1
π xy > 1;x > 0

: (8.20)

see Figure 8.2.

8.5 Integrating ‘real’ Functions

In the previous chapter we saw∫
1

x2 + 1
dx =

i

2
(ln (1− ix)− ln (1 + ix)) , 7.28bis

and said that the reader might complain “I asked to integrate a real function,
but the answer is coming back in terms of complex numbers”.

A calculus text would normally write∫
1

x2 + 1
dx = arctan(x), 7.28ter

7For an example, see http://www.mathamazement.com/Lessons/Pre-Calculus/05_

Analytic-Trigonometry/sum-and-difference-formulas.html.

http://www.mathamazement.com/Lessons/Pre-Calculus/05_Analytic-Trigonometry/sum-and-difference-formulas.html
http://www.mathamazement.com/Lessons/Pre-Calculus/05_Analytic-Trigonometry/sum-and-difference-formulas.html

314 CHAPTER 8. ALGEBRA VERSUS ANALYSIS

Figure 8.2: plot3d(C, x =-4..4, y=-4..4): C from (8.20)

where arctan is the inverse8 of the tan function, defined by

tan(x) =
sin(x)

cos(x)
=

1

i

eix − e−ix

eix + e−ix
=

1

i

θ − θ−1

θ + θ−1
=

1

i

θ2 − 1

θ2 + 1
, (8.21)

where θ′ = iθ is an exponential in the sense of Definition 106.

If we write ϕ = 1
i
θ2−1
θ2+1 , we can deduce that ϕ′ = ϕ2 + 1, and treat this as a

definition of “arctangents” in the same way that Definition 106 is a definition
of “exponentials”, by adding a clause

(d) θ (assumed to be nonzero) is a tangent over K, i.e. there is an η in K such
that θ′ = η′(θ2 + 1): θ is a tan of η.

Similarly, we could add

(e) θ is an inverse tangent over K, i.e. there is an η in K such that θ′ =
η′/(η2 + 1): θ is an arctan of η.

We could then deduce an equivalent of statement “(1)+(2)” on page 269, that
tan are (differential) inverses of each other.

Lemma 18 ((8.17) restated) If θ is an arctan of α, ϕ is an arctan of β and
ψ is an arctan of α+β

1−αβ , then θ+ ϕ−ψ is a constant, in the sense of Definition
105.

8It is common to write tan−1(x) rather than arctan(x), but the author finds this open to
confusion with the other abuse of notation that writes tan2(x) for (tan(x))2. What would
tan−2(x) mean?

8.6. LOGARITHMS REVISITED 315

The proof is equivalent to (8.19):

(θ + ϕ− ψ)′ =
α′

1 + α2
+

β′

1 + β2
−

(
α+β
1−αβ

)′
1 +

(
α+β
1−αβ

)2
= 0.

However, the fact that this “constant” is given by (8.20) can trip us up: consider∫
1

x2 + 1
+

2

x2 + 4
dx

?
= arctan

(
3x

2− x2

)
. (8.22)

This is differentially valid, but apparently violates numerical evaluation∫ 2

1

1

x2 + 1
+

2

x2 + 4
dx

?
=

[
arctan

(
3x

2− x2

)]2
x=1

= −2 arctan(3) ≈ −2.498,

(8.23)
and we have an integral of a positive function apparently being negative. In
fact the correct answer is π − 2 arctan(3) ≈ 0.644.

One way of explaining this problem to some-one not familiar with the area is

to point out that an integral should always be continuous, whereas arctan
(

3x
2−x2

)
is not continuous in the interval [1, 2], since there’s a discontinuity at x =

√
2

(see Figure 8.3:

lim
x→

√
2
−

arctan

(
3x

2− x2

)
= arctan(+∞) =

π

2
but

lim
x→

√
2
+

arctan

(
3x

2− x2

)
= arctan(−∞) = −π

2
,

and it is this discontinuity of π that needs to be accounted for.

8.6 Logarithms revisited

TO BE COMPLETED

8.7 Other decision questions

We saw the theory of polynomial quantifier elimination in section 3.5.3. There,
given a formula

Q1x1, . . . , Qkxkϕ(x1, . . . , xn)

(where each Qi is either ∃ or ∀, and ϕ is a Boolean combination of equal-
ities and inequalities between polynomials), this produces an equivalent for-
mula ψ(xk+1, . . . , xn). In particular, if k = n, we get either ‘true’ or ‘false’.
Expressions like

√
x2 − 1 can be handled by writing them as y and adding

316 CHAPTER 8. ALGEBRA VERSUS ANALYSIS

Figure 8.3: Graph of apparent integral in (8.22)

plot(arctan(3/(2-x^2)), x = 1 .. 2)

8.7. OTHER DECISION QUESTIONS 317

∃y : y2 = x2 − 1∧ in the appropriate place, for example. How can we add
transcendental functions? This, of course, assumes that we know about the
numerical values of the functions as well as their differential properties. It is
usual to assume Schanuel’s conjectures [Ax71], which roughly speaking state
that there are no unexpected identities in exponentials and logarithms of com-
plex numbers.

Conjecture 2 (Schanuel [Ax71]9) Given any n complex numbers z1, . . . , zn
which are linearly independent over the rational numbers Q, the extension field
Q(z1, . . . , zn, exp(z1), . . . , exp(zn)) has transcendence degree of at least n over
Q.

See also [Wal14].
[AW00] take a different approach.

Definition 114 A real or complex valued function f defined in some open do-
main of R or C, respectively, is called strongly transcendental (with exceptional
point ξ) if for all numbers x in the domain of f excluding ξ not both x and f(x)
are algebraic.

It follows from Lindemann’s Theorem that exp is transcendental with excep-
tional point 0, and log is transcendental with exceptional point 1. Similarly
sin, cos and tan and their inverses, with exceptional points 0 except for arccos,
which has 1.

[MW12] first consider problems of the form

Q1x1Φ(x1, trans(x1)),

where trans is a strongly transcendental function with

trans′(x) =
a(x) + b(x) trans(x)

d(x)
: a, b, d ∈ Z[x].

log, exp and arctan all satisfy these requirements. Here they produce an un-
conditional algorithm for reducing this to ‘true’ or ‘false’, where ‘unconditional’
means not relying on Conjecture 2 or equivalent hard problems in number the-
ory, and it is this unconditionality that is the most surprising part of the work.
This will, for example, decide

∀x1(exp(x1)(1− x1) ≤ 1 ∨ x1 ≥ 1,

and in fact does so in less than 1 second [Ach06, AMW08].
They then take problems of the form

Q1x1Q2x2 . . . , Qnxnϕ(x1, trans(x1), x2, . . . , xn),

apply the Collins-style quantifier elimination toQ2x2 . . . , Qnxnϕ(x1, y, x2, . . . , xn)
to get Φ(x1, y), and apply their previous method to Q1x1Φ(x, trans(x1)). Again,
the process is unconditional. They also show how various other problems, e.g.

∀x1x1 > 7⇒ cosh(x1) > x31 − 4x1,

318 CHAPTER 8. ALGEBRA VERSUS ANALYSIS

can be transformed into this form, and decided (17 seconds).
While this is a significant step forward, we should note that we are limited

to one occurrence of trans, and this has to correspond to the first quantifier.
Also, this is purely a decision procedure, and will not do more general quantifier
elimination.

8.8 Limits

While we can, and have, algebraicised differentiation and integration, the pro-
cess of computing limits is more fundamentally analytic. The first serious ex-
ploration of limits was in Macsyma [Wan71b, Wan71a]. This process essentially
added four “constants” to Macsyma’s language:

infinity which is the infinity of the (one-point compactification of the) com-
plex plane;

inf which is the positive one of the two-point compactification of the reals
(“plus infinity”);

minf which is the negative one of the two-point compactification of the reals
(“minus infinity”)

ind which is “indeterminate”.

Computer algebra systems are in general schizophrenic about whether they are
computing over the reals or the complexes, but we should note the confusing
fact that the reals are a subset of the complexes, but the usual (two-point, +∞
and −∞) compactification of the reals is not a subset of the compactification
of the complexes.

8.8.1 A Definite Integral

With the conventional choice of branch cuts, we can write the fractional part of
x as

fra(x) = x− ⌊x⌋ =
1

2
+

i

2π
log(− exp(−2πix)). (8.24)

If we ask Maple to simplify the above, nothing happens, but with the symbolic
option (i.e. ignoring the branch cuts of log)10, we just get x. We note that
fra′(x) = 1 since fra(x) and x “differ by a constant”, that (differential) constant
being ⌊x⌋.

If we ask for∫ 1

1/2

fra(1/x),dx =

∫ 1

1/2

(
1

x
− 1

)
dx = ln 2− 1

2
≈ 0.193, (8.25)

10Sage’s full simplify apparently does the same.

8.9. FURTHER DEVELOPMENTS 319

many systems11 will get this right. The fun comes when we try, say,
∫ 1

1/3
fra(1/x),dx.

Maple returns ln 3− 1
3 ≈ 0.765, which is absurd for integrating a function whose

value is between 0 and 1 on an interval of length 2/3. It gets∫ 1/2

1/3

fra(1/x),dx =

∫ 1/2

1/3

(
1

x
− 2

)
dx = ln 3− ln 2− 2

6
≈ 0.072 (8.26)

correct, but has failed to spot the singularity in the middle of the integrand in∫ 1

1/3

fra(1/x),dx =

∫ 1

1/3

(
1

x
−
{

2 x < 1/2
1 x ≥ 1/2

)
dx = ln 3−1

2
−2

6
≈ 0.265. (8.27)

If we split the integral by hand, as in
∫ 1/2

1/3
fra(1/x),dx+

∫ 1

1/2
fra(1/x),dx, we get

the right answer, as we do when we use Maple’s preferred notation, frac(1/x)
rather than (8.24).

8.9 Further Developments

Beyond integration, and ordinary differential equations, there is the wide world
of partial differential equations. A good introduction to the algebra⇔analysis
correspondence here is in [PPR21]. There is also some very recent work coming
from the theorem-proving community in [XLZ21].

8.10 What if I wanted to work with R

TO BE COMPLETEDApproximate g.c.d. etc.

11Sage apparently returns log 2 — https://groups.google.com/forum/#!topic/

sage-support/oUkERaidET0.

https://groups.google.com/forum/#!topic/sage-support/oUkERaidET0
https://groups.google.com/forum/#!topic/sage-support/oUkERaidET0

320 CHAPTER 8. ALGEBRA VERSUS ANALYSIS

Appendix A

Algebraic Background

We are quite often concerned with estimating the sizes of things, either to com-
pute the running time or to be sure that we have exhausted all possibilities of
failure. The following notations are used.

Notation 42 Let

f(x) =

n∑
i=0

aix
i = an

n∏
i=1

(x− αi)

be a polynomial of degree n (i.e. an ̸= 0). Define the following measures of the
size of the polynomial f :

H(f) (often written ||f ||∞), the height or 1-norm, is maxn
i=0 |ai|;

||f || (often written ||f ||2), the 2-norm, is
√∑n

i=0 |ai|2;

L(f) (often written ||f ||1), the length or 1-norm, is
∑n

i=0 |ai|;

M(f) , the Mahler measure of f , is |an|
∏

|αi|>1

|αi|.

A.1 The resultant and friends

A.1.1 Resultant

It quite often happens that we have to consider whether two polynomials, which
are usually relatively prime, can have a common factor in certain special cases.
The basic algebraic tool for solving this problem is called the resultant. In this
section we shall define this object and we shall give some properties of it. We
take the case of two polynomials f and g in one variable x and with coefficients
in a ring R.

We write f =
∑n

i=0 aix
i and g =

∑m
i=0 bix

i.

321

322 APPENDIX A. ALGEBRAIC BACKGROUND

Definition 115 The Sylvester matrix of f and g is the matrix

Syl(f, g) =

an an−1 . . . a1 a0 0 0 . . . 0
0 an an−1 . . . a1 a0 0 . . . 0
...

. . .
. . .

.
. . .

. . .
. . .

...
0 . . . 0 an an−1 a1 a0
bm bm−1 . . . b1 b0 0 0 . . . 0
0 bm bm−1 . . . b1 b0 0 . . . 0
...

. . .
. . .

.
. . .

. . .
. . .

...
0 . . . 0 bm bm−1 . . . b1 b0 0
0 . . . 0 0 bm bm−1 . . . b1 b0

where there are m lines constructed with the ai, n lines constructed with the bi.

Definition 116 The resultant of f and g, written Res(f, g), or Resx(f, g) if
there is doubt about the variable, is the determinant of this matrix. The j-th
principal subresultant coefficient, pscj(f, g) is the determinant of the matrix ob-
tained by deleting the last j rows of f coefficients, the last j rows of g coefficients
and the last 2j columns, i.e. the resultant of the quotients of dividing f and g
by xj.

Well-known properties of determinants imply that the resultant belongs to R,
and that Res(f, g) and Res(g, f) are equal, to within a sign. We must note that,
although the resultant is defined by a determinant, this is not the best way
of calculating it. Because of the special structure of the Sylvester matrix, we
can consider Euclid’s algorithm as Gaussian elimination in this matrix (hence
the connection betwen the resultant and the g.c.d.). One can also consider the
sub-resultant method as an application of the Sylvester identity (theorem 15)
to this elimination. It is not very difficult to adapt advanced methods (such
as the method of sub-resultants described in section 2.3.2, or the modular1

and p-adic methods described in chapters 4 and 5) to the calculation of the
resultant. Collins [1971] and Loos [1982] discuss this problem. We now give a
version of Euclid’s algorithm for calculating the resultant. We denote by lc(p)
the leading coefficient of the polynomial p(x),by degree(p) its degree, and by
remainder(p, q) the remainder from the division of p(x) by q(x). We give the
algorithm in a recursive form.

Algorithm 46 (resultant)
Input: f, g;
Output: r = Res(f, g).

n := degree(f);
m := degree(g);
if n > m then r := (−1)nmresultant(g, f)

else an := lc(f);

1The modular method is described in section 4.5.1.

A.1. THE RESULTANT AND FRIENDS 323

if n = 0 then r := amn
else h := remainder(g, f);

if h = 0 then r := 0
else p := degree(h);

r := am−p
n resultant(f, h);

return r;

It is worth noting that this returns a partially factored form of the resultant,
if the underlying arithmetic supports this (e.g. the factored representation of
section 2.1.3).

We write h =
∑p

i=0 cix
i and ci = 0 for i > p. This algorithm does indeed

give the resultant of f and g for, when n ≤ m and n ̸= 0, the polynomials
xig − xih (for 0 ≤ i < n) are linear combinations of the xjf (for 0 ≤ j < m),
and therefore we are not changing the determinant of the Sylvester matrix of f
and g by replacing bi by ci for 0 ≤ i < m. Now this new matrix has the form(
A ∗
0 B

)
where A is a triangular matrix with determinant am−p

n and B is the

Sylvester matrix of f and h. From this algorithm we immediately get

Proposition 79 Res(f, g) = 0 if and only if f and g have a factor in common.

It is now easy to prove the following propositions:

Proposition 80 If the αi are the roots of f , then

Res(f, g) = amn

n∏
i=1

g(αi).

Proposition 81 If the βi are the roots of g, then

Res(f, g) = (−1)mnbnm

m∏
i=1

f(βi).

Proposition 82 Res(f, g) = amn b
n
m

∏n
i=1

∏m
j=1 (αi − βj).

Proof [Duv87]. We write the right hand sides of the three propositions as

R2(f, g) = amn

n∏
i=1

g(αi),

R3(f, g) = (−1)mnbnm

m∏
i=1

f(βi),

R4(f, g) = amn b
n
m

n∏
i=1

m∏
j=1

(αi − βj).

It is clear that R2(f, g) and R3(f, g) are equal to R4(f, g). The three proposi-
tions are proved simultaneously, by induction on the integer min(n,m). If f and

324 APPENDIX A. ALGEBRAIC BACKGROUND

g are swapped, their resultant is multiplied by (−1)nm, and gives R4(f, g) =
(−1)nmR4(g, f), while R2(f, g) = (−1)nmR3(g, f). We can therefore suppose
that n ≤ m. Moreover R2(f, g) is equal to amn when n = 0, as is the resultant
of f and g, and R4(f, g) is zero when n > 0 and h = 0, as is the resultant.
It only remains to consider the case when m ≥ n > 0 and h ̸= 0. But then
R2(f, g) = am−p

n R2(f, h) for g(αi) = h(αi) for each root αi of f , and the al-
gorithm shows that Res(f, g) = am−p

n Res(f, h), from which we get the desired
result.

Corollary 22 Res(fg, h) = Res(f, h) Res(g, h).

Lemma 19 If f and g are polynomials in y and other variables, of total degrees
df and dg, then Resy(f, g) is a polynomial of total degree at most dfdg.

A.1.2 Discriminants

Definition 117 The discriminant of f , Disc(f) or Discx(f), is

a2n−2
n

n∏
i=1

n∏
j=1
j ̸=i

(αi − αj).

Proposition 83 Disc(f) = 0 if, and only if, f has a repeated root, i.e. is not
square-free.

Proposition 84 Res(f, f ′) = (−1)n(n−1)/2an Disc(f). Moreover Disc(f) ∈ R.

Corollary 23 Disc(fg) = Disc(f) Disc(g) Res(f, g)2.

Whichever way they are calculated, the resultants are often quite large. For
example, if the ai and bi are integers, bounded by A and B respectively, the

resultant is less than (n+ 1)
m/2

(m+ 1)
n/2

AmBn, but it is very often of this
order of magnitude (see section A.2). Similarly, if the ai and bi are polynomials
of degree α and β respectively, the degree of the resultant is bounded bymα+nβ.
A case in which this swell often matters is the use of resultants to calculate
primitive elements, which uses the following result.

Proposition 85 If α is a root of p(x) = 0, and β is a root of q(x, α) = 0, then
β is a root of Resy(y − p(x), q(x, y)).

A.1.3 Iterated Operations

Suppose we wish to eliminate y and z from the three polynomials fi(x, y, z),
each with total degree d. We could compute

R123 := Resy(Resz(f1, f2),Resz(f1, f3)). (A.1)

By Lemma 19, each inner resultant has degree at most d2, so R123 has total
degree at most d4.

TO BE COMPLETED[BM09]

A.2. USEFUL ESTIMATES 325

A.2 Useful Estimates

Estimates of the sizes of various things crop up throughout computer algebra.
They can be essentially of three kinds.

• Upper bounds: X ≤ B.

• Lower bounds: X ≥ B.

• Average sizes: X “is typically” B. This may be a definitive average
result (but even here we have to be careful what we are averaging over:
the average number of factors of a polynomial is one, for example, but this
does not mean we can ignore factorisation), or some heuristic “typically
we find”.

Estimates are used throughout complexity theory, of course. “Worst case” com-
plexity is driven by upper bound results, while “average case” complexity is
driven by average results. They are also used in algorithms: most algorithms of
the ‘Chinese Remainder’ variety (section 4) rely on upper bounds to tell when
they have used enough primes/evaluation points. In this case, a better upper
bound generally translates into a faster algorithm in practice.

A.2.1 Matrices

How big is the determinant |M | of an n× n matrix M?

Notation 43 If v is a vector, then ||v||2 (sometimes also written |v|) denotes
the Euclidean norm of v,

√∑
|v2i |. If f is a polynomial, ||f ||2 denotes the

Euclidean norm of its vector of ceofficients.

Proposition 86 If M is an n× n matrix with entries ≤ B, |M | ≤ n!Bn.

This is true because the determinant is the sum of n! summands, each the
product of n elements, therefore bounded by Bn.

This bound is frequently used in algorithm analysis, but we can do better.

Proposition 87 [Hadamard bound Hr] If M is an n × n matrix whose rows
are the vectors vi, then |M | ≤ Hr =

∏
||vi||2, which in turn is ≤ nn/2Bn.

Corollary 24 If f and g are polynomials of degrees n and m respectively, then
Res(f, g) ≤ (m+ n)(m+n)/2||f ||m2 ||g||n2 .

Corollary 25 If f is a polynomial of degree n, then Disc(f) ≤ nn−1||f ||2n−1
2 .

In practice, especially if f is not monic, it is worth taking rather more care over
this estimation.

Proposition 88 (Hadamard bound (columns)) If M is an n × n matrix
whose columns are the vectors vi, then |M | ≤ Hc =

∏
||vi||2 ≤ nn/2Bn.

326 APPENDIX A. ALGEBRAIC BACKGROUND

In practice, for general matrices one computes min(Hr, Hc). While there are
clearly bad cases (e.g. matrices of determinant 0), the Hadamard bounds are
“not too bad”. As pointed out in [AM01], log(min(Hr, Hc)/|M |) is a measure
of the “wasted effort” in a modular algorithm for computing the determinant,
and “on average” this is O(n), with a variance of O(log n). It is worth noting
that this is independent of the size of the entries.

Proposition 88 has a useful consequence.

Corollary 26 If x is the solution to M.x = a, where M and a have integer
entries bounded by B and A respectively, then the denominators of x are bounded
by min(Hr, Hc) and the numerators of x are bounded by nn/2ABn−1.

Proof. This follows from the linear algebra result that x = 1
|M |adj(M).a, where

adj(M), the adjoint of M , is the matrix whose (i, j)th entry is the determinant
of the matrix obtained by striking row i and column j from M . The ith entry
of adj(M).a is then the determinant of the matrix obtained by replacing the ith
column of M by a, and we can apply Proposition 88 to this matrix.

A.2.2 Coefficients of a polynomial

Here we are working implicitly with polynomials with complex coefficients,
though the bounds will be most useful in the case of integer coefficients.

Proposition 89 In terms of Notation 42,

H(f) ≤ ||f || ≤ L(f) ≤ (n+ 1)H(f),

where the first inequality is strict unless f is a monomial, the second is strict
unless all the ai are equal or zero, and the third is strict unless all the ai are
equal.

Observation 21 The last inequality could be replaced by ≤ cH(f), where c is
the number of nonzero monomials in f , but this seems not to be much exploited.

Proposition 90 (Landau’s Inequality [Lan05], [Mig89, §4.3]) .

M(f) ≤ ||f ||

and the inequality is strict unless f is a monomial.

Corollary 27 |an−i| ≤
(
n
i

)
M(f) ≤

(
n
i

)
||f ||.

The first part of this follows from the fact that an−i is ±an times a sum of
(
n
i

)
products of roots, and products of roots are bounded by Proposition 90. For
some applications, e.g. Theorem 39, we often bound

(
n
i

)
by 2n, but for others,

such as Proposition 58, the more precise value is needed. 2n might seem like
overkill, but in fact, both in general and in the application to factoring [Mig81],
2 cannot be replaced by any smaller number.

A.2. USEFUL ESTIMATES 327

It should be noted that the Landau–Mignotte bound is not the only way
to bound the coefficients of a polynomial: [Abb13b] gives four methods that
depend on knowing the degree of the factor being searched for, and two others
that will bound the least height of a factor. Depressingly, he gives a family
of examples that shows that no bound is superior to any other, and indeed
[Abb13b, 3.6.6] it may be necessary to “mix-and-match” using different bounds
for different coefficients.

These results can be generalised to polynomials in several variables [Mig89,
Chapter 4.4]. The definition of M(f) is more complicated.

Definition 118 The Mahler measure of f ∈ C[x1, . . . , xn] is defined induc-
tively on n, using Notation 42 for n = 1 and more generally

logM(f) =

∫ 1

0

log
(
M(f(e2πit, x2, . . . , xn))

)
dt.

Proposition 91 ([Mig89, Proposition 4.8]) Let

f(x1, . . . , xn) =

d1∑
i1=0

d2∑
i2=0

· · ·
dn∑

in=0

ai1,...,inx
i1
1 x

i2
2 . . . x

in
n .

Then

|ai1,...,in | ≤
(
d1
i1

)(
d2
i2

)
· · ·
(
dn
in

)
M(f).

Proposition 90 is still valid.

Corollary 28 Hence

|ai1,...,in | ≤
(
d1
i1

)(
d2
i2

)
· · ·
(
dn
in

)
||f ||.

A.2.3 Roots of a polynomial

Several questions can be asked about the roots of a univariate polynomial. The
most obvious ones are how large/small can they be, but one is often interested in
how close they can be. These questions are often asked of the real roots (section
3.5.5), but we actually need to study all roots, real and complex. The distinction
between real and complex roots is pretty fine, as shown in the following example.

Example 47 (Wilkinson Polynomial [Wil59]) Let W20 have roots at −1 ,
−2 , . . . , −20, so that W20 = (x+1)(x+2) . . . (x+20) = x20+210x19+· · ·+20!.
Consider now the polynomial W20(x) + 2−23x19. One might expect this to have
twenty real roots close to the original ones, but in fact it has ten real roots, at
approximately −1, −2, . . .−7, −8.007, −8.917 and −20.847, and five pairs of
complex conjugate roots, −10.095±0.6435i, −11.794±1.652i, −13.992±2.519i,
−16.731± 2.813i and −19.502± 1.940i.

328 APPENDIX A. ALGEBRAIC BACKGROUND

The discriminant of W20 is 2.74×10275, which would seem well away from zero.
However, the largest coefficient of W20 is 1.38×1019, and of W ′

20 is −3.86×1019.
The norms of W20 and W ′

20 are 2.27×1019 and 6.11×1019, so corollary 25 gives
a bound of 4.43 × 10779 for Disc(W20), and a direct application of corollary
24 gives 3.31 × 10763. Hence the discriminant of W20 is “much smaller than
it ought to be”, and W20 is “nearly not square-free”. Put another way, the
Sylvester matrix for the discriminant is very illconditioned (this was in fact
Wilkinson’s original motivation for constructing W20): the discrepancy between
the actual determinant and corollary 24 is 489 decimal digits, whereas [AM01]
would lead us to expect about 17.

Notation 44 Let f ∈ C[x] =
∑n

i=0 aix
i, and let the roots of f be α1, . . . , αn,

and define
rb(f) = max

1≤i≤n
|αi|,

sep(f) = min
1≤i<j≤n

|αi − αj |.

sep(f) is zero if, and only if, f has a repeated factor.

Proposition 92 “Cauchy bound” [Cau29, p. 122] rb(f) ≤ 1 + max(|ai|)/
|an|.

Corollary 29 If the polynomial f does not take the value 0 at x = 0, then every
root of f has absolute value at least |a0|/(|a0|+ max(|ai|).

Proposition 93 [Cau29, p. 123]

rb(f) ≤ max

n|an−1|
an

,

√
n|an−2|
an

, . . . , n−1

√
n|a1|
an

, n

√
n|a0|
an

 .

Proposition 94 [Knu98, 4.6.2 exercise 20]

rb(f) ≤ B = 2 max

 |an−1|
an

,

√
|an−2|
an

, . . . , n−1

√
|a1|
an

, n

√
|a0|
an

 .

Furthermore, there is at least one root of absolute value ≥ B/(2n).

Applied to W20, these propositions give respectively 1.38×1019, 4200 and 420. If
we centre the roots, to be −9.5, . . . , 9.5, the three propositions give respectively
2.17×1012, 400 and 40 (and hence the roots of W20 are bounded by 2.17×1012,
409.5 and 49.5). While the advantages of centrality are most prominent in
the case of proposition 92, they are present for all of them. There are in fact
improved bounds available in this (an−1 = 0) case [Mig00].

If instead we re-balance W20 so that the leading and trailing coefficients are
both 1, by replacing x by 20

√
20!x, then the bounds for this new polynomial are

6961419, 505.76 and 50.58 (and hence the roots of W20 are bounded by 838284.7,
4200 and 420).

A.2. USEFUL ESTIMATES 329

Proposition 95 ([Gra37]) If p(x) = pe(x
2) + xpo(x2), i.e. pe(x

2) is the even
terms of p(x), then the roots of q(x) = p2e(x) − xp2o(x) are the squares of the
roots of p.2

Applying this process to W20, then computing the three bounds, and square-
rooting the results, gives us bounds of 3.07× 1018, 239.58 and 75.76. Repeating
the process gives 2.48 × 1018, 61.66 and 34.67. On the centred polynomial, we
get 2.73 × 1012, 117.05 and 37.01, and a second application gives 1.83 × 1018,
30.57 and 17.19 (and hence root bounds for W20 as 1.83×1018, 40.07 and 26.69).
This last figure is reasonably close to the true value of 20 [DM90].

A.2.4 Root separation

The key result is the following.

Proposition 96 ([Mah64]) sep(f) >
√

3|Disc(f)|n−(n+2)/2|f |1−n.

We note that the bound is zero if, and only if, the discriminant is zero, as it
should be, and this bound is unchanged if we multiply the polynomial by a
constant. The bound for W20 is 7.27 × 10−245, but for the centred variant it
becomes 1.38×10−113. Should we ever need a root separation bound in practice,
centring the polynomial first is almost always a good idea. Similarly re-balancing
changes the separation bound to 5.42× 10−112, which means 6.52× 10−113 for
the original polynomial.

These bounds seem very far away from reality (i.e. 1 for Wn), but in fact
are almost optimal in O-terms.

Proposition 97 ([ESY06, Theorem 3.6]) Let a ≥ 3 be an L-bit integer, and
n ≥ 4 be an even integer. Then Q(x) =

(
xn − 2(ax− 1)2

) (
xn − (ax− 1)2

)
has

degree 2n and coefficients of size O(L), but any sub-division method requires
Ω(nl) subdivisions to isolate the roots, of which there are three in (a−1−h, a−1+
h) with h = a−n/2−1.

[Col01] conjectured that the 1−n in Proposition 96 could be replaced by −n/2,
but [Sch06] disproved this. The best bound we know is (1 − 2n)/3) [BD14,
Theorem 1].

A.2.5 Developments

The monic polynomials of degree 7 with maximum root separation and all roots
in the unit circle are:

six complex x7 − 1, with discriminant −823543, norm
√

2 and root bounds

[2.0, 1.383087554, 2.0]

and root separation bound (proposition 96)
√
3

56 ≈ 3.09× 10−2 (true value
0.868);

2For the history of the attribution to Graeffe, see [Hou59].

330 APPENDIX A. ALGEBRAIC BACKGROUND

four complex x7−x, with discriminant 66 = 46656, norm
√

2 and root bounds

[2.0, 1.383087554, 2.0]

and root separation bound (proposition 96) 27
√
21

18607 ≈ 7.361786385 × 10−3

(true value 1);

two complex x7 − 1
4 x

5 − x3 + 1
4 x, with discriminant −50625

4096 ≈ −12.36, norm
1
4

√
34 ≈ 1.457737974 and root bounds

[2, 1.626576562, 2.0]

and root separation bound (proposition 96) 1880
√
21

82572791 ≈ 9.99 × 10−5 (true
value 1/2);

all real x7 − 14
9 x

5 + 49
81 x

3 − 4
81 x, with discriminant3

10485760000

1853020188851841
≈ 5.66× 10−6, (A.2)

norm 17
81

√
86 ≈ 1.946314993 and root bounds

[
23

9
, 3.299831645, 2.494438258]

and root separation bound (proposition 96) 83980800
32254409474403781

√
3
√

7 ≈ 1.19×
10−8 (true value 1/3).

If there are n + 1 equally-spaced real roots (call the spacing 1 for the time
being), then the first root contributes n! to

∏
i

∏
j ̸=i(αi − αj), the second root

1!(n− 1)! and so on, so we have a total product of

n∏
i=0

i!(n− i)! =

n∏
i=0

i!2 =

(
n∏

i=0

i!

)2

. (A.3)

This is sequence A055209 [Slo07], which is the square of A000178.
If we now assume that the roots are equally-spaced in [−1, 1], then the

spacing is 2/n, we need to correct equation (A.3) by dividing by (n/2)n(n−1):
call the result Cn. C is initially greater than one, with C3 = 65536

59049 ≈ 1.11, but
C4 = 81

1024 , C5 = 51298814505517056
37252902984619140625 ≈ 0.001377042066, and C6 as in (A.2).

While assuming equal spacing might seem natural, it does not, in fact, lead
to the largest values of the discriminant. Consider polynomials with all real
roots ∈ [−1, 1], so that we may assume the extreme roots are at ±1.

degree 4 Equally spaced roots, at ± 1
3 , give a discriminant of 65536

59049 ≈ 1.11,
whereas ± 1√

5
gives 4096

3125 ≈ 1.31, the optimum. The norms are respectively
√
182
9 ≈ 1.4999 and

√
62
5 ≈ 1.575.

3We note how the constraint that all the roots be real forces the discriminant to be small.

A.2. USEFUL ESTIMATES 331

degree 5 Equally spaced roots, at ± 1
2 and 0, give a discriminant of 81

1024 ≈
0.079, whereas ±

√
3
7 and 0 gives 12288

16807 ≈ 0.73, the optimum. The norms

are respectively
√
42
4 ≈ 1.62 and

√
158
7 ≈ 1.796.

degree 6 Equally spaced roots, at± 3
5 and± 1

5 , give a discriminant of 51298814505517056
37252902984619140625 ≈

0.00138. Unconstrained solving for the maximum of the discriminant, us-
ing Maple’s Groebner,Solve, starts becoming expensive, but if we assume

symmetry, we are led to choose roots at ±
√

147±42
√
7

21 , with a discriminant

of 67108864
16209796869 ≈ 0.0041. The norms are respectively 2

√
305853
625 ≈ 1.77 and

2
√
473
21 ≈ 2.07.

degree 7 Equally spaced roots, at± 2
3 , ± 1

3 and 0, give a discriminant of 209715200000
5615789612636313 ≈

5.66 · 10−6. Again assuming symmetry, we are led to choose roots at
±
√

495±66
√
15

33 and 0, which gives 209715200000
5615789612636313 ≈ 3.73 ·10−5. The norms

are respectively 17
√
86

81 ≈ 1.95 and 2
√
1577
33 ≈ 2.41,

degree 8 Equally spaced roots, at ± 5
7 , ± 3

7 and ± 1
7 , give a discriminant of

≈ 5.37 · 10−9. Assuming symmetry, we get roots at ± ≈ 0.87, ± ≈ 0.59
and ± ≈ 0.21, with a discriminant of ≈ 9.65 · 10−8. The norms are

respectively ≈ 2.15 and
√
2
√
727171
429 ≈ 2.81.

degree 9 Equally spaced roots, at ± 3
4 , ± 1

2 , ± 1
4 and 0, give a discriminant of

1.15·10−12. Assuming symmetry, we get roots at ±0.8998, ±0.677, ±0.363
and zero, with a discriminant of ≈ 7.03·10−11. The norms are respectively√

5969546
1024 ≈ 2.39 and ≈ 3.296.

If we now consider the case with two complex root, which may as well be at
x = ±i, we have the following behaviour.

degree 4 The maximal polynomial is x4−1, with discriminant −256 and norm√
2. The bound is

√
6

216 ≈ 0.153.

degree 5 The maximal polynomial is x5−x, with discriminant −256 and norm√
2. The bound is 4

√
15

625 ≈ 0.0248.

degree 6 Equally spaced roots, at ±1
3 , gives a discriminant of −108.26 and

a norm of 2
√
41
9 . The bound is 400

√
132

1860867 ≈ 2.38 · 10−3. The maximal
discriminant is attained with roots at ±1√

3
, with discriminant −4194304

19683 ≈
−213.09 and norm 2

√
5

3 . The bound is 4
√
5

3375 ≈ 2.65 · 10−3.

degree 7 Equally spaced roots, at ±1
2 and 0, gives a discriminant of ≈ −12.36

and norm of
√
34
4 ≈ 1.46. The bound is 1800

√
21

82572791 ≈ 9.99 · 10−5. The

maximal discriminant is attained with roots at 4

√
3
11 , with discriminant

≈ 40.8 and norm of 2
√
77

11 ≈ 1.596. The bound is ≈ 1.06 · 10−4.

332 APPENDIX A. ALGEBRAIC BACKGROUND

A.3 Chinese Remainder Theorem

In this section we review the result of the title, which is key to the methods in
section 4.2.4, and hence to much of computer algebra.

Theorem 56 (Chinese Remainder Theorem (coprime form)) Two con-
gruences

X ≡ a (mod M) (A.4)

and
X ≡ b (mod N), (A.5)

where M and N are relatively prime, are precisely equivalent to one congruence

X ≡ c (mod MN). (A.6)

By this we mean that, given any a, b, M and N , we can find such a c that
satisfaction of (A.4) and (A.5) is precisely equivalent to satisfying (A.6). The
converse direction, finding (A.4) and (A.5) given (A.6), is trivial: one takes a
to be c (mod M) and b to be d (mod N).

Algorithm 47 (Chinese Remainder)
Input: a, b, M and N (with gcd(M,N) = 1).
Output: c satisfying Theorem 56.

Compute λ, µ such that λM + µN = 1;
#The process is analogous to Lemma 1 (page 67)

c:=a+ λM(b− a);

Clearly c ≡ a (mod M), so satisfying (A.6) means that (A.4) is satisfied. What
about (A.5)?

c = a+ λM(b− a)

= a+ (1− µN)(b− a)

≡ a+ (b− a) (mod N)

so, despite the apparent asymmetry of the construction, c ≡ b (mod N) as
well.

In fact, we need not restrict ourselves to X being an integer: X, a and b
may as well be polynomials (but M and N are still integers).

Algorithm 48 (Chinese Remainder (Polynomial form))
Input: Polynomials a =

∑n
i=0 aix

i, b =
∑n

i=0 bix
i, and integers M and N

(with gcd(M,N) = 1).
Output: A polynomial =

∑n
i=0 cix

i satisfying Theorem 56.

Compute λ, µ such that λM + µN = 1;
#The process is analogous to Lemma 1 (page 67)

for i := 0 to n do
ci:=ai + λM(bi − ai);

A.4. CHINESE REMAINDER THEOREM FOR POLYNOMIALS 333

In some applications, e.g. Section 4.1, we will want to apply Algorithm 47 re-
peatedly to many primes pi known in advance, to deduce a value c modulo
N :=

∏
pi from many values ai (mod pi). While the obvious way to do this is

“one prime at a time”, applying Algorithm 47 to p1 and p2, then to p1p2 and p3,
and so on, the correct way to do this is “balanced combination”, first combining
the pi in pairs, then the pairs to form quadruples and so on.

Proposition 98 In this case, the dominant cost is that of the last step, and
with classical arithmetic this is O((logN)2).

A.4 Chinese Remainder Theorem for Polynomi-
als

The theory of the previous section has an obvious generalisation if we replace
Z by K[y] for a field K, and an equivalent application to sections 4.3–4.4.

Theorem 57 (Chinese Remainder Theorem for polynomials) Two con-
gruences

X ≡ a (mod M) (A.7)

and

X ≡ b (mod N), (A.8)

whereM and N are relatively prime polynomials in K[y], are precisely equivalent
to one congruence

X ≡ c (mod MN). (A.9)

By this we mean that, given any a, b, M and N , we can find such a c that
satisfaction of (A.7) and (A.8) is precisely equivalent to satisfying (A.9). The
converse direction, finding (A.7) and (A.8) given (A.9), is trivial: one takes a
to be c (mod M) and b to be d (mod N).

Algorithm 49 (Chinese Remainder for Polynomials)
Input: a, b, M and N ∈ K[y] (with gcd(M,N) = 1).
Output: c satisfying Theorem 57.

Compute λ, µ such that λM + µN = 1;
#As in Lemma 1 (page 67). Note µ isn’t needed in practice.

c:=a+ λM(b− a);

Clearly c ≡ a (mod M), so satisfying (A.9) means that (A.7) is satisfied. What
about (A.8)?

c = a+ λM(b− a)

= a+ (1− µN)(b− a)

≡ a+ (b− a) (mod N)

334 APPENDIX A. ALGEBRAIC BACKGROUND

so, despite the apparent asymmetry of the construction, c ≡ b (mod N) as
well.

As in proposition 98, the correct way to to combine values modulo many (say
d) evaluations is “balanced combination”, first combining the x − vi in pairs,
then the pairs to form quadruples and so on.

Proposition 99 In this case, the dominant cost is that of the last step, and
with classical arithmetic this is O(d2).

As in Algorithm 48, X, a and b may as well be polynomials in x whose
coefficients are polynomials in y (but M and N are still in y only).

Algorithm 50 (Chinese Remainder (Multivariate))
Input: Polynomials a =

∑n
i=0 aix

i, b =
∑n

i=0 bix
i ∈ K[y][x], and M and

N ∈ K[y] (with gcd(M,N) = 1).
Output: A polynomial =

∑n
i=0 cix

i satisfying Theorem 57.

Compute λ, µ such that λM + µN = 1;
#As in Lemma 1 (page 67). Note µ isn’t needed in practice.

for i := 0 to n do
ci:=ai + λM(bi − ai);

It is even possible for x (and i) to represent numerous indeterminates, as we are
basically just doing coefficient-by-coefficient reconstruction.

Observation 22 We have explicitly considered K[y] (e.g. Q[y]), but in practice
we will often wish to consider Z[y]. Even if all the initial values are in Z[x],
λ and µ may not be, as in M = (y − 1) and N = (y + 1), when λ = −1

2 and
µ = 1

2 . This may not be an obstacle to such reconstruction from values (often
called interpolation, by analogy with interpolation over R). Interpolation over
Z[y] may still be possible: consider reconstructing X with X ≡ 1 (mod M)
and X ≡ −1 (mod N), which is 1 + −1

2 M(−1−1) = y. But interpolation over
Z[y] is not always possible: consider reconstructing X with X ≡ 1 (mod M)
and X ≡ 0 (mod N), which gives 1

2 (y − 1).

A.5 Vandermonde Systems

Definition 119 The Vandermonde matrix4 generated by k1, . . . , kn is

V (k1, . . . , kn) =

1 k1 k21 . . . kn−1

1

1 k2 k22 . . . kn−1
2

...
...

...
...

1 kn k2n . . . kn−1
n

 .

4This section is based on [Zip93, §13.1]. Our algorithm 51 is his SolveVanderMonde, and
our algorithm 52 is the one at the top of his p. 214.

A.5. VANDERMONDE SYSTEMS 335

Notation 45 In the context of V (k1, . . . , kn), let P (z) =

n∏
i=1

(z−ki) and Pj(z) =

n∏
i=1
i̸=j

(z − ki).

Proposition 100 The inverse of a Vandermonde matrix has a particularly sim-
ple form: V (k1, . . . , kn)−1 = (mi,j) with

mi,j =
coeff(Pj(z), zi)∏

k ̸=j(kj − kk)
=

coeff(Pj(z), zi)

Pj(kj)
. (A.10)

For example

V (k1, . . . , k3)−1 =

k2k3

(−k2+k1)(−k3+k1)
− k1k3

(−k2+k1)(k2−k3)
k1k2

(k2−k3)(−k3+k1)

− k2+k3

(−k2+k1)(−k3+k1)
k1+k3

(−k2+k1)(k2−k3)
− k1+k2

(k2−k3)(−k3+k1)

1
(−k2+k1)(−k3+k1)

− 1
(−k2+k1)(k2−k3)

1
(k2−k3)(−k3+k1)

Corollary 30 If all the ki are distinct, then V (k1, . . . , kn) is invertible.

Equation (A.10) and the fact that the Pj can be rapidly computed from p suggest
a rapid way of computing the elements of the inverse of an n× n Vandermonde
matrix in O(n2) time. In fact, we can solve a system of Vandermonde linear
equations in O(n2) time and O(n) space.

Algorithm 51 (Vandermonde solver)
Input: Vandermonde matrix V (k1, . . . , kn), right-hand side w.
Output: Solution x to V (k1, . . . , kn)x = w

x := 0
P :=

∏n
i=1(z − ki) #O(n2)

for i := 1 to n
Q := P/(z − ki) #nO(n)
D := P (ki) #nO(n) by Horner’s rule
for j := 1 to n

xj := xj + wi
coeff(Q,zj−1)

D

In section 4.4.2 we will want to solve a slightly different system. Algorithm 51
solves a system of the form

x1 + k1x2 + k21x3 + · · · + kn−1
1 xn = w1

x1 + k2x2 + k22x3 + · · · + kn−1
2 xn = w1

...
x1 + knx2 + k2nx3 + · · · + kn−1

n xn = w1

(A.11)

336 APPENDIX A. ALGEBRAIC BACKGROUND

whereas we need to solve a system of the form

k1x1 + k2x2 + · · · + knxn = w1

k21x1 + k22x2 + · · · + k2nxn = w2

...
kn1 x1 + kn2 x2 + · · · + knnxn = wn .

(A.12)

By comparison with (A.11), we have transposed the matrix (which is not a
problem, since the inverse of the transpose is the traspose of the inverse), and
multiplied column i by an extra factor of ki. From Corollary 30, we can deduce
the criteria for this system to be soluble.

Corollary 31 If all the ki are distinct and non-zero, then the system (A.12) is
soluble.

The following variant of Algorithm 51 will solve the system.

Algorithm 52 (Vandermonde variant solver)
Input: Vandermonde style data (k1, . . . , kn), right-hand side w.
Output: Solution x to (A.12)

x := 0
P :=

∏n
i=1(z − ki) #O(n2)

for i := 1 to n
Q := P/(z − ki) #nO(n)
D := kiP (ki) #nO(n) by Horner’s rule
for j := 1 to n

xi := xi + wj
coeff(Q,zj−1)

D

A.6 More matrix theory

See, for the time being, then entry Minor_(linear_algebra) in Wikipedia until
JHD has written this. TO BE COMPLETED

A.7. ALGEBRAIC STRUCTURES 337

A.7 Algebraic Structures

In this section we gather together many of the definitions we have seen through-
out the book in one table. The definitive references, as far as computer algebra
(rather than abstract algebra) is concerned are [DT90, DGT91], which explain
why we say “g.c.d. domain” rather than “unique factorisation domain”: the
argument is summarised in note 30 (page 66).

Table A.1: Algebraic Structures
Name Reference Example(s)

(↓What’s added↓)
Ring (+,−, 0, ∗) Definition 8 2× 2 matrices
↓commutative *↓
Commutative ring {0, 2, 4, 6, 8, 10} (mod 12)

↓multiplicative identity↓
(Comm.) ring with 1 {0, 1, 2, . . . , 11} (mod 12) = Z12

↓No zero divisors↓
Integral Domain Definition 11 {a+ b

√
−5} (Example 4)

↓gcd operation↓
g.c.d. domain Definition 32 Z[x, y]

↓All ideals principal↓
principal ideal domain Definition 14 Z; Q[x]

↓division↓
field Definition 15 Q; Zp

↓Roots of polynomials↓ (see Proposition 54)
Algebraically closed field Definition 18 C

Note that any integral domain can be extended into its field of fractions (Def-
inition 16), and any field can be extended into its algebraic closure (Definition
19).

338 APPENDIX A. ALGEBRAIC BACKGROUND

Appendix B

Excursus

This appendix includes various topics on computer algebra that do not seem to
be well-treated in the literature.

B.1 The Budan–Fourier Theorem

Definition 120 Given a sequence A of non-zero numbers a0, . . . , an, the num-
ber of sign variations of A, witten V (A), is the number of times two consecutive
elements have different signs, i.e. aiai+1 < 0. If A does contain zeros, we
erase them before doing this computation, or equivalent we count the number of
(i, j) with aiaj < 0 and all intermediate ai+1, . . . , aj−1 = 0. If f is the polyno-
mial anx

n + · · · a0, we write V (f) rather than V (A) where A is the sequence of
coefficients of f .

Proposition 101 V (f) = V (f(0), f ′(0), . . . , f (n)(0) for a polynomial f of de-
gree n.

The reader should note that the definition of variation is numerically unsta-
ble. V (1) = 0, and therefore (by the erasure rule) V (1, 0) = 0. For positive
ϵ, V (1, ϵ) = 0, but V (1,−ϵ) = 1. This is related to the fact that x + ϵ has no
positive real roots, but x− ϵ has one, as seen in the following result.

Theorem 58 (Descartes’ rule of signs [CA76]) (the number of roots of f
in (0,∞) is less than or equal to, by an even number, V (f).

Corollary 32 The number of roots of f in (a,∞) is less than or equal to, by
an even number, V (f(x− a)).

Corollary 33 The number of roots of f in (a,∞) is less than or equal to, by
an even number, V ((f(a), f ′(a), . . . , f (n)(a)).

For dense f , there is not a great deal to choose between these two formulations,
but, since the derivatives of a sparse polynomial are sparse but its translate is
not, corollary 33 is greatly to be preferred to corollary 32 in the sparse case.

339

340 APPENDIX B. EXCURSUS

We can also deduce some results about the number of roots of sparse poly-
nomials. If f has n non-zero terms, V (f) ≤ n − 1. We note that V (axk) = 0,
and this polynomial indeed has no roots in (0,∞).

Corollary 34 A polynomial in x with n terms, not divisible by x, has at most
2(n− 1) roots in R. If it is divisible by x, then the answer is at most 2n− 1.

The example of x3−x, which has three real roots (±1, 0) shows that the special
case is necessary.

For the sake of simplicity, we will consider only square-free polynomials in
the rest of this section: the results generalise fairly easily to non square-free
ones.

Let us fix f , and consider V (y) := V (f(x−y)) and N(y) := |{x > y : f(x) =
0}| as functions of y. For large enough y, both are zero. As y decreases, N(y)
increases monotonically, by 1 at each root of f . In fact, the same monotonic
behaviour is true of V (y), increasing by 1 at roots of f and by 2 at certain other
points. This allows us to compute the number of roots in an interval, a result
known as the Budan–Fourier Theorem1.

Corollary 35 (Budin–Fourier Theorem) The number of roots of f in (a, b)
is less than or equal to, by an even number, V (f(x− a))− V (f(x− b)).

Corollary 36 (Budin–Fourier Theorem [Hur12]) The number of roots of
f in (a, b) is less than or equal to, by an even number, V ((f(a), f ′(a), . . . , f (n)(a))−
V ((f(b), f ′(b), . . . , f (n)(b)).

For the same reasons as above, corollary 36 is to be preferred in the case of
sparse polynomials.

An almost complete generalisation of Corollary 34, in the sense that the
bounds depend on the number of monomials rather than the degrees, to sparse
polynomials in n variables is given in [BHNS15, §2].

B.2 Equality of factored polynomials

This section treats the following problem.

Problem 8 Given two polynomials in factored form (section 2.1.3), are they
equal? More precisely, if

f =

n∏
i=1

fai
i g =

m∏
j=1

g
bj
j ,

with the fi and gj square-free and relatively prime, i.e.:w gcd(fi, fi′) = 1,

gcd(gj , gj′) = 1), is f
?
=g.

1See [BdB22, Fou31]. The question of precedence was hotly disputed at the
time: see [Akr82] and http://www-history.mcs.st-andrews.ac.uk/Biographies/Budan_de_

Boislaurent.html.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Budan_de_Boislaurent.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Budan_de_Boislaurent.html

B.2. EQUALITY OF FACTORED POLYNOMIALS 341

The obvious solution is to expand f and g, and check that the expanded forms
(which are canonical) are equal. Can we do better?

One important preliminary remark is that the square-free representation of
a polynomial is unique. This leads to the following result.

Proposition 102 If f = g, then every ai has to be a bj, and vice versa. For
each such occurring value k, we must verify

fk =

n∏
i=1
ai=k

fi
?
=gk =

m∏
j=1
bj=k

gj . (B.1)

In particular, fk and gk must have the same degree, i.e.
n∑

i=1
ai=k

deg(fi) =
m∑
j=1
bj=k

deg(gj). (B.2)

Again, we could check fk
?
=gk by expansion, but there is a better way.

Example 48 Let f = x2
l−1 and g = (x−1)(x+1)(x2+1) · · · (x2l−1

+1), where
both are square-free, so proposition 102 does not help. f is already expanded,

but expansion of g can give rise to x2
l−1 + x2

l−2 + · · ·+ x+ 1, which has length
O(2l), whereas g has length O(l).

From now on we will assume that we are working over a domain that includes
the integers.

Lemma 20 If f and g have degree at most N , and agree at N + 1 different
values, then f = g.

Proof. f − g is a polynomial of degree at most N , but has N + 1 zeros, which
contradicts proposition 5 if it is non-zero.

Hence it suffices to evaluate f and g at N + 1 points xi and check that the
values agree. It is not necessary to construct any polynomial, and the integers
involved are bounded (if we choose |xi| < N) by BNN , where B is a function
of the coefficients of the fi, gj . Furthermore, we can evaluate at all these points
in parallel. However, it does seem that we need to evaluate at N + 1 points, or
very nearly so, even if f and g are very small.

Open Problem 35 (Crossings of factored polynomials) Produce some non-
trivial bounds on the maximum number of zeros of f − g, where f and g have
small factored representations. See [RR90].

The best we can say is as follows. Suppose, in the notation of (B.1), each fi
has ki non-zero terms, and gj has lj non-zero terms, and no fi or gj is x (if
either was, then trivially f ̸= g, since a common factor of x would have been
detected). Then, by Corollary 34, f − g, if it is not identically zero, has at most

2

(∑n
i=1
ai=k

ki +
∑m

j=1
bj=k

lj − 1

)
roots in R, and hence, if it is zero when evaluated

at more than this number of integers, is identically zero. The factor of 2 can be
dropped if we use only positive evaluation points, and rely on Theorem 58.

342 APPENDIX B. EXCURSUS

B.3 Karatsuba’s method

This method was originally introduced in [KO63] for multiplying large integers:
however, it is easier to explain in the (dense) polynomial context, where issues
of carrying do not arise. Consider the product of two linear polynomials

(aX + b)(cX + d) = acX2 + (ad+ bc)X + bd. (B.3)

This method so patently requires four multiplications of the coefficients that
the question of its optimality was never posed. However, [KO63] rewrote it as
follows:

(aX + b)(cX + d) = acX2 + [(a+ b)(c+ d)− ac− bd]X + bd, (B.4)

which only requires three distinct multiplications, ac and bd each being used
twice. However, it requires four coefficients additions rather than one, so one
might question the practical utility of it. For future reference, we will also
express2 equation (B.4) as

(aX + b)(cX + d) = ac(X2 −X) + (a+ b)(c+ d)X + bd(1−X), (B.5)

which makes the three coefficient multiplications explicit.

However, it can be cascaded. Consider a product of two polynomials of
degree three (four terms):

(a3Y
3 + a2Y

2 + a1Y + a0)(b3Y
3 + b2Y

2 + b1Y + b0). (B.6)

If we write X = Y 2, a = a3Y +a2 etc., this product looks like the left-hand side
of equation (B.4), and so can be computed with three multiplications of linear
polynomials, each of which can be done in three multiplications of coefficients,
thus making nine such multiplications in all, rather than the classic method’s
16.

If the multiplicands have 2k terms, then this method requires 3k =
(
2k
)log2 3

multiplications rather than the classic
(
2k
)2

. For arbitrary numbers n of terms,
not necessarily a power of two, the cost of “rounding up” to a power of two is
subsumed in the O notation, and we see a cost of O(nlog2 3) rather than the
classic O(n2) coefficient multiplications. We note that log2 3 ≈ 1.585, and the
number of extra coefficient additions required is also O(nlog2 3), being three extra
additions at each step. While the “rounding up” is not important in O-theory,
it matters in practice, and [Mon05] shows various other formulae, e.g.

(aX2 + bX + c)(dX2 + eX + f) =

cf(1−X) + be(−X + 2X2 −X3) + ad(−X3 +X4) + (b+ c)(e+ f)(X −X2)

+(a+ b)(d+ e)(X3 −X2) + (a+ b+ c)(d+ e+ f)X2,

2This formulation is due to [Mon05].

B.3. KARATSUBA’S METHOD 343

requiring six coefficient multiplications rather than the obvious nine, or eight if
we write it as (

aX2 + (bX + c)
) (
dX2 + (eX + f)

)
=

adX4 + aX2(eX + f) + dX2(bX + c) + (bX + c)(eX + f)

and use (B.4) on the last summand (asymptotics would predict 3log2 3 ≈ 5.7, so
we are much nearer the asymptoic behaviour). Cascading this formula rather
than (B.4) gives O(nlog3 6), which as log3 6 ≈ 1.63 is not as favorable asymp-
totically. His most impressive formula describes the product of two six-term
polynomials in 17 coefficient multiplications, and log6 17 ≈ 1.581, a slight im-
provement. We refer the reader to the table in [Mon05], which shows that his
armoury of formulae can get us very close to the asymptotic costs.

Many of these formulae can be explained as instances of the general formula
[Sco15, (1)] (

n−1∑
i=0

xib
i

)(
n−1∑
i=0

yib
i

)
=n−1∑

i=i

i−1∑
j=0

(xi − xj)(yj − yi)bi+j

+

(
n−1∑
i=0

bi

)n−1∑
j=0

xjyjb
j

 .

Theorem 59 We can multiply two (dense) polynomials with m and n terms
respectively in O

(
max(m,n) min(m,n)(log2 3)−1

)
coefficient operations.

Let the polynomials be f = am−1Y
m−1 + · · · and f = bn−1Y

n−1 + · · · Without
loss of generality, we may assume m ≥ n (so we have to prove O(mnlog2 3−1),
and write k = ⌈mn ⌉. We can then divide f into blocks with n terms (possibly

fewer for the most significant one) each: f =
∑k−1

i=1 fiY
in. Then

fg =

k−1∑
i=1

(fig)Y in.

Each fig can be computed in time O(nlog2 3), and the addition merely takes
time O(m − n) (since there is one addition to be performed for each power of
Y where overlap occurs). Hence the total time is O(knlog2 3), and the constant
factor implied by the O-notation allows us to replace k = ⌈mn ⌉ by m

n , which
gives the desired result.

B.3.1 Karatsuba’s method in practice

When it comes to multiplying numbers of n digits (in whatever base we are
actually using, generally a power of 2), the received wisdom is to use O(n2)
methods for small n (say n < 16), Karatsuba-style methods for intermediate

344 APPENDIX B. EXCURSUS

n (say 16 ≤ n < 512: the GMP library documentation3 and Fast Fourier
Transform methods (section B.3.4 or [SS71]) for larger n. This received wisdom
has been challenged by [BHK+22], who claim the cut-over point can be 2048
bts, i.e. n = 64 (32-bit machines) or n = 32 (64-bit machines). However, it is
possible for the Fast Fourier Transform to require too much memory, and [Tak10]
was forced to use these methods on numbers one quarter of the required size,
and then nested Karatsuba to combine the results. The most recent theoretical
progress is in [HvdH22].

B.3.2 Karatsuba’s method and sparse polynomials

The use of the Karatsuba formula and its variants for sparse polynomials is
less obvious. One preliminary remark is in order: in the dense case we split
the multiplicands in equation (B.6) or its equivalent in two (the same point for
each), and we were multiplying components of half the size. This is no longer
the case for sparse polynomials, e.g. every splitting point of

(a7x
7 + a6x

6 + a5x
5 + a0)(b7 + b2x

2 + b1x+ b0) (B.7)

gives a 3–1 split of one or the other: indeed possibly both, as when we use x4

as the splitting point.
Worse, in equation (B.5), the component multiplications were on ‘smaller’

polynomials, whereas, measured in number of terms, this is no longer the case.
If we split equation (B.7) at x4, the sub-problem corresponding to (a+b)∗(c+d)
in equation (B.5) is

(a7x
3 + a6x

2 + a5x
1 + a0)(b3 + b2x

2 + b1x+ b0)

which has as many terms as the original (B.7). This difficulty led [Fat03] to
conclude that Karatsuba-based methods did not apply to sparse polynomials.
It is clear that they cannot always apply, since the product of a polynomial
with m terms by one with n terms may have mn terms, but it is probaby the
difficulty of deciding when they apply that has led system designers to shun
them.

B.3.3 Karatsuba’s method and multivariate polynomials

TO BE COMPLETED

B.3.4 Faster still

It is possible to do still better than 3k =
(
2k
)log2 3

for multiplying dense poly-
nomials f and g with n = 2k coefficients. Let α0, . . . , α2n−1 be distinct values.
If h = fg is the desired product, then h(αi) = f(αi)g(αi). Hence if we write

f̃ for the vector f(α0), f(α1), . . . , f(α2n−1), then h̃ = f̃ ∗ g̃, where ∗ denoted

3https://gmplib.org/manual/FFT-Multiplication determines this threshold experimen-
tally, generally between 300 and 1000

https://gmplib.org/manual/FFT-Multiplication

B.3. KARATSUBA’S METHOD 345

element-by-element multiplication of vectors, an O(n) operation on vectors of
length 2n. This gives rise to three questions.

1. What should the αi be?

2. How do we efficiently compute f̃ from f (and g̃ from g)?

3. How do we efficiently compute h from h̃?

The answer to the first question is that the αj should be the 2n-th roots of unity
in order, i.e. over C we would have αi = e2πij/2n. In practice, though, we work
over a finite field in which these roots of unity exist. If we do this, then the
answers to the next two questions are given by the Fast Fourier Transform (FFT)

[SS71], and we can compute f̃ from f (or h from h̃) in time O(k2k) = O(n log n)
(note that we are still assuming n is a power of 2). Putting these together gives

O(n log n)︸ ︷︷ ︸
f̃ from f

+O(n log n)︸ ︷︷ ︸
g̃ from g

+ O(n)︸ ︷︷ ︸
h̃ from f̃ , g̃

+O(n log n)︸ ︷︷ ︸
h from h̃

= O(n log n). (B.8)

While this method works fine for multiplying polynomials over a finite field K
with an appropriate root of unity, or over C, it requires substantial attention to
detail to make it work over the integers. Nevertheless it is practicable, and the
point at which this FFT-based method is faster than ones based on Theorem
59 depends greatly on the coefficient domain.

Notation 46 We will denote MZ(n) the asymptotic O(MZ(n)) time taken to
multiply two integers of length n, and MK[x](n) the number of operations in K
or its associated structures needed to multiply two polynomials with n terms (or
of degree n, since in O-speak the two are the same). Most authors omit the
subscripts, and speak of M(n), when the context is clear.

For integers, the point at which this FFT-based method is faster than ones
based on Theorem 59 is typically when the integers are of length a few thousand
words. There are also complications due to carries, and näıvely this makes the
complexity O(n log n log log n). Much theoretical effort has gone into improving
this: see [HvdH19] for the latest efforts.

For polynomials of degree d over finite fields (in his case Zp with p = 5×255+
1), [Mon20] gives the following timings for the the Cantor–Zassenhaus method
(Section 5.3.2), which is essentially multiplication-bound. This is clearly crying
out for a poly-algorithm, but shows the advantage of fast algorithms.

B.3.5 Faster division

TO BE COMPLETED

346 APPENDIX B. EXCURSUS

Table B.1: Multiplication-bound timings, from [Mon20]
d Maple Magma

O(d2) O(d log d log log d)
100 0.15s 1.16s
103 1.95s 2.31s
104 51.86s 18.36s
105 2927.4s 298.68s

B.3.6 Faster g.c.d. computation

In order to use this method to compute g.c.d.s faster, we need to solve a slightly
more general problem: the extended Euclidean one4. If we look at Algorithm

5, the key updating operation is (2.16), which updates the matrix

(
a b
c d

)
based only on qi, which depends only on the leading entries of ai and ai−1.
Call this matrix, immediately after qi has been computed and used, Ri,0. Then
(2.14) defines R0,0 and (2.16) becomes

Ri,0 =

(
0 1
1 −qi

)
Ri−1,0. (B.9)

TO BE COMPLETED

B.4 Strassen’s method

Just as Karatsuba’s method (Excursus B.3) lets us multiply dense polynomials
of degree n − 1 (n terms) in O(nlog2 3 ≈ n1.585) operations rather than O(n2),
so Strassen’s method, introduced in [Str69], allows us to multiply dense n × n
matrices in O(nlog2 7 ≈ n2.807) operations rather than O(n3) operations. Again
like Karatsuba’s method, it is based on “divide and conquer” and an ingenious
base case for n = 2, analogous to (B.4).(

c1,1 c1,2
c2,1 c2,2

)
=

(
a1,1 a1,2
a2,1 a2,2

)(
b1,1 b1,2
b2,1 b2,2

)
(B.10)

is usually computed as(
c1,1 c1,2
c2,1 c2,2

)
=

(
a1,1b1,1 + a1,2b2,1 a1,1b1,2 + a1,2b2,2
a2,1b1,1 + a2,2b2,1 a2,1b1,2 + a2,2b2,2

)
(B.11)

This method so patently requires eight multiplications of the coefficients that
the question of its optimality was never posed. However, [Str69] rewrote it as

4This section is base don [Moe73], generalising [Sch71].

B.4. STRASSEN’S METHOD 347

follows:
M1 := (a1,1 + a2,2)(b1,1 + b2,2)
M2 := (a2,1 + a2,2)b1,1
M3 := a1,1(b1,2 − b2,2)
M4 := a2,2(b2,1 − b1,1)
M5 := (a1,1 + a1,2)b2,2
M6 := (a2,1 − a1,1(b1,1 + b1,2)
M7 := (a1,2 − a2,2)(b2,1 + b2,2)
c1,1 = M1 +M4 −M5 +M7

c1,2 = M3 +M5

c2,1 = M2 +M4

c2,2 = M1 −M2 +M3 +M6

(B.12)

requiring seven multiplications (rather than eight), though eighteen additions
rather than four, so one might question the practical utility of it. [Win71] has a
variant requiring fifteen rather than eighteen additions, which we will consider
in practice. [Win71] showed that this method was optimal, in that there is no
method requiring six multiplications, and [de 78] showed that it was essentially
unique.

However, it can be cascaded. We first note that we do not require the
multiplication operation to be commutative5. Hence if we have two 4×4 matrices
to multiply, say

a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

b,1,1 b,1,2 b,1,3 b,1,4
b,2,1 b,2,2 b,2,3 b,2,4
b,3,1 b,3,2 b,3,3 b,3,4
b,4,1 b,4,2 b,4,3 b,4,4

 (B.13)

we can write this as (
A1,1 A1,2

A2,1 A2,2

)(
B1,1 B1,2

B2,1 B2,2

)
, (B.14)

where A1,1 =

(
a1,1 a1,2
a2,1 a2,2

)
etc., and apply (B.12) both to the multiplications

in (B.14), needing seven multiplications (and 15 additions) of 2 × 2 matrices,
and to those multiplications themselves, thus needing 49 = 7×7 multiplications
of entries, at the price of 165 = 7× 15︸ ︷︷ ︸

recursion

+ 15× 4︸ ︷︷ ︸
2× 2 adds

additions, rather than 64

multiplications and 48 additions.

Similarly, multiplying 8× 8 matrices can be regarded as (B.14), where now

5A point often glossed over. For example, we can multiply 3 × 3 matrices in 22 multipli-
cations [Mak86], but this assumes commutativity and hence cannot be cascaded. The best
non-commutative results are 23 multiplications [Lad76, CBH11], of which there are thousands
[HKS19b]. Asymptotically, both are in any case worse than Strassen, since log2 7 ≈ 2.807,
but log3 23 ≈ 2.854 and log3 22 ≈ 2.813.

348 APPENDIX B. EXCURSUS

A1,1 =

a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

 etc., needing seven multiplications (and 18

additions) of 4×4 matrices, hence 343 = 7×49 multiplications of entries, at the
price of 1674 = 7× 198︸ ︷︷ ︸

recursion

+ 18× 16︸ ︷︷ ︸
4× 4 adds

additions, rather than 512 multiplications

and 448 additions.
If the matrices have 2k rows/columns, then this method requires 7k =(

2k
)log2 7

multiplications rather than the classic
(
2k
)3

. For arbitrary sizes n,
not necessarily a power of two, the cost of “rounding up” to a power of two is
subsumed in the O notation6, and we see a cost of O(nlog2 7) rather than the
classic O(n3) coefficient multiplications.

We note that log2 7 ≈ 2.8074, and the number of extra coefficient additions
required is also O(nlog2 7), being 18(n/2)2 additions at each step.

Theorem 60 (Strassen) We can multiply two (dense) n× n matrices in

O(nlog2 7) ≈ n2.8074

multiplications, and the same order of additions, of matrix entries.

B.4.1 Strassen’s method in practice

Strassen’s method, with floating-point numbers, has break-even points between
400 and 2000 rows (160,000 to 4 million elements) [DN07]. This is achieved
with one or two (occasionally three) levels of (B.12), followed by classical O(n3)
multiplication from then on. The pragmatist also notes that modern chips have
instructions for manipulating four-vectors or even eight-vectors of floating-point
numbers in a single instruction, so there is no certainly advantage in applying
(B.12) all the way.

B.4.2 Further developments

Seven is in fact minimal for 2× 2 matrices [Lan06]. 3× 3 matrices can be mul-
tiplied in 23 multiplications [Lad76] rather than the obvious 27 (but log3 23 ≈
2.854 > log2 7), and this can be done in many inequivalent ways [HKS19a].
There is an approximation algorithm with 21 multiplications [Sch71], giving a
O(nlog3 21≈2.77) general method, but for 3 × 3 matrices the best known lower
bound is 15 [Lic84, LO11]. In general the best known lower bound is 2n2 −
log2 n− 1 [LM18], which also gives 15 for 3× 3.

The state of play for small matrices is as given in Table B.2.
In theory one can do better than Theorem 60, O(n2.376), [CW90]7, but

these methods require unfeasably large n to be cost-effective. The complexity

6In principle: substantial ingenuity is required to get good performance in practice.
7Recently improved to O(n2.373) [VW12]. This reference actually claimed 2.2327, but this

has been corrected to 2.2329 in [Wil14]. The most recent seems to be 2.3728639[LG14, §6.3].

B.4. STRASSEN’S METHOD 349

Table B.2: Various Matrix Multiplication Algorithms
Size Classical Best Known Exponent Reference
2× 2 8 7 log2 7 ≈ 2.8074 [Str69, Win71]
3× 3 27 23 log3 23 ≈ 2.8540 [Lad76, CBH11]
4× 4 64 49 log2 7 ≈ 2.8074 [Str69, Win71]
5× 5 125 99 log5 99 ≈ 2.8551 [Sed17a]
6× 6 216 160 log6 160 ≈ 2.8323 See below
7× 7 343 250 log7 250 ≈ 2.8375 [Sed17b]
8× 8 512 343 log2 7 ≈ 2.8074 [Str69, Win71]
9× 9 729 520 log9 520 ≈ 2.8462 [Sed17b]

Composing 2× 2 and 3× 3 methods would give a method for 6× 6 matrices in
7 × 23 = 161 multiplications. The figure 160 comes from a method of [Smi13]
for multiplying 3× 3 by 3× 6 matrices in 40 multiplications.
The figure 520 for 9×9 is better than the 529 one would get by nesting the 3×3
methods of [Lad76, CBH11]. [Sed17b] cites a method with 514 multiplications
(exponent ≈ 2.8410), but the details are not clear.

of matrix multiplication has to be at least O(n2) since there are that many
entries.

Notation 47 It is customary to assume that the cost of n× n matrix multipli-
cation is O(nω), where 2 ≤ ω ≤ 3.

B.4.3 Matrix Inversion

Lemma 21 (Frobenius) Let A be a square matrix divided into blocks

(
P Q
R S

)
,

with P square and nonsingular. Assume that U = S − R(P−1Q) is also non-
singular. Then

A−1 =

(
P−1 + (P−1Q)(U−1RP−1) −(P−1Q)U−1

−(U−1RP−1) U−1

)
. (B.15)

The proof is by direct verification. Note that the computation of the right-
hand side of (B.15) requires two matrix inverses (P and U) and six matrix
multiplications (viz. P−1Q, R(P−1Q), RP−1, U(RP−1), (P−1Q)(U−1RP−1)
and (P−1Q)U−1). If the conditions of Lemma 21 were always satisfied, and we
took P to be precisely one quarter the size of A (half as many rows and half as
many columns), this would show that the complexity of matrix inverse is also
O(nω) if ω > 2 (if ω = 2 we get an extra factor of log n).

Lemma 22 If B is nonsingular then A := BTB is symmetric and positive
definite (for any non-zero x, xAxT > 0).

Lemma 23 If A is symmetric and positive definite then, in the notation of
Lemma 21, so are P and U .

350 APPENDIX B. EXCURSUS

Theorem 61 If B is an invertible square matrix, B−1 can be computed in time
O(nω) if ω > 2 (if ω = 2 we get an extra factor of log n).

Proof. We compute A := BTB in time O(nω), its inverse by the process after
Lemma 21, and then B−1 := A−1AT (another O(nω)).

B.5 Exact Division

This section is largely based on [SV94, §2]. Consider first dividing a dense
polynomial f =

∑
aix

i in K[x] of degree 2m− 1 (2m terms) by a g =
∑
bix

i of
degree m− 1 (m terms), to give h with remainder 0. For simplicity we assume
that the trailing coefficients are non-zero as well as the leading coefficients.
Traditional “long division” would involve m+1 operations of subtracting scaled
and shifted copies of g from f , with 2m operations in K each time, giving
2m2 + 2m.

Suppose we just wanted the first term of h: this is just a2m

bm
. The next

dividend is f − a2m

bm
xm+1g =

∑
cix

i. The second term of h is just c2m−1

bm
, and

there is no need to calculate the rest of the dividend. Since a2m

bm
is already

known, c2m−1 takes two operations to compute, and then there is the division.
TO BE COMPLETED

B.6 Faster g.c.d. computations

The “Half-GCD” idea is due to Moenck [Moe73], though the basic idea goes
back earlier [Leh38].

B.6.1 General Idea

Suppose we have two polynomials f0 and g0 of degree 4d.

1. Write them as f0 = f1x
2d + f2 and g0 = g1x

2d + g2.

2. Run the Extended Euclidean Algorithm on (f1, g1) but stop it half-way,
so that we have two intermediate polynomials (r1, r2) of degree8 d, d − 1
with r1 = αf1 + βg1; r2 = γf1 + δg1. Then α, β, γ, δ will have degree
(roughly) d.

3. Compute f3 = αf0 + βg0 = r1x
2d + αf2 + βg2 and f4 = γf0 + δg0 =

r2x
2d + γf2 + δg2. It follows from the second expressions that these have

degree (at most) 3d. Since f3, g3 are independent linear combinations of
f0, g0, gcd(f0, g0) = gcd(f3, g3).

4. Write them as f3 = f4x
d +f5 and g3 = g4x

d +g5, so f4 and g4 have degree
2d, and f5, g5 have degree d.

8Normally: this is just the general idea.

B.7. CYCLOTOMIC POLYNOMIALS 351

5. Run the Extended Euclidean Algorithm on (f4, g4) but stop it half-way,
so that we have two intermediate polynomials (s1, s2) of degree8 d, d − 1
with s1 = α′f4 +β′g4; s2 = γ′f4 + δ′g4. Then α′, β′, γ′, δ′ will have degree
(roughly) d.

6. Compute f6 = α′f3 + β′g3 = s1x
d + α′f5 + β′g5 and f4 = γ′f3 + δ′g3 =

r2x
d + γ′f5 + δ′g5. It follows from the second expressions that these have

degree (at most) 2d. Since f6, g6 are independent linear combinations of
f3, g3, gcd(f3, g3) = gcd(f6, g6).

Hence we have reduced the computation of the gcd of two polynomials of degree
4d to two half-computations with degree 2d and a complete computation with
degree 2d, as well as some multiplies. General complexity theory [BHS80] then
says that, if the complexity of multiplying polynomials of degree d is M(d),
then the complexity of gcd computations is O(M(d) log d). TO BE COM-
PLETED

B.7 Cyclotomic Polynomials

Definition 121 A polynomial is said to be cyclotomic if it divides xn − 1 for
sme n.

These innocent-looking polynomials are in fact a great nuisance in computer
algebra, as they defy most useful beliefs. We first saw them in equation 2.1,
where

xn − 1

x− 1
= xn−1 + · · ·+ x+ 1

showed that the quotient of two two-term polynomials could have an arbitrary
number of terms.

In the complex plane, the roots of xn − 1 are the nth roots of unity, i.e.
e2πik/n for 0 ≤ k < n. k = 0 gives us the factor x − 1. If k and n have a
common factor l, then e2πik/n = e2πi(k/l)/(n/l) and is a root of xn/l − 1.

Definition 122 The nth cyclotomic polynomial, Φn, has as roots all the roots
of xn − 1 that divide no earlier xn

′ − 1, i.e.

Φn(x) =

n−1∏
k=1

gcd(k,n)=1

(
x− e2πik/n

)
.

It is a consequence of Galois theory that this polynomial is in Q[x], and in fact
it is in Z[x]. In particular, if p is prime, Φp = xp−1 + · · ·+ x+ 1.

Proposition 103

xn − 1 =
∏
d|n

Φd(x), (B.16)

352 APPENDIX B. EXCURSUS

and therefore, by a trick well-known to number-theorists,

Φn(x) =
∏
d|n

(xd − 1)µ(n/d), (B.17)

where µ is the Möbius function:

µ(n) =

 +1 n squarefree with an even number of prime factors
0 n not squarefree
−1 n squarefree with an odd number of prime factors

.

The first few factorisations of xn − 1 are pretty innocuous:

x2 − 1 = (x− 1)(x+ 1)
x3 − 1 = (x− 1)(x2 + x+ 1)
x4 − 1 = (x− 1)(x+ 1) (x2 + 1)︸ ︷︷ ︸

Φ4

x5 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1)
x6 − 1 = (x− 1)(x+ 1)(x2 + x+ 1) (x2 − x+ 1)︸ ︷︷ ︸

Φ6

x7 − 1 = (x− 1)(x6 + x5 + x4 + x3 + x2 + x+ 1)
x8 − 1 = (x− 1)(x+ 1)(x2 + 1) (x4 + 1)︸ ︷︷ ︸

Φ8

x9 − 1 = (x− 1)(x2 + x+ 1) (x6 + x3 + 1)︸ ︷︷ ︸
Φ9(x)=Φ3(x3)

It follows from (B.16) that

x105 − 1 = (x− 1)Φ3Φ5Φ7Φ15Φ21Φ35Φ105,

but what is not so obvious is that

Φ105 = x48 + x47 + x46 − x43 − x42 − 2x41 − x40 − x39 + x36 + x35 + x34

+x33 + x32 + x31 − x28 − x26 − x24 − x22 − x20 + x17 + x16 + x15

+x14 + x13 + x12 − x9 − x8 − 2x7 − x6 − x5 + x2 + x+ 1,

where the coefficients of x41 and x7 are −2. The pattern continues: Φ385 has
coefficients of ±3, Φ1385 has coefficients of ±4, and the growth continues, albeit
apparently modestly. This is deceptive: Φ1181895 has coefficients9 of ±14102773,
Φ(43730115) has coefficients10 of ±862550638890874931, and the current record
[Arn11, p. 89] is n = 99660932085 with Φ(n) having coefficients almost as
large as n8. If we let A∗(n) be the largest (in absolute value) coefficient of
Φ(m) : m ≤ n, then we now know [Bat49, Erd49] that there are coefficients
c1, c2 such that

ec2/ log logn < A∗(n) < ec1/ log logn. (B.18)

91181895 is the least n with Φ(n) having coefficents larger than n [Arn11, p. 89].
1043730115 is the least n with Φ(n) having coefficents larger than n2 [Arn11, p. 89].

B.7. CYCLOTOMIC POLYNOMIALS 353

This slightly obscure growth formula, which can be written (but see Notation
10) as A∗(n) = nΘ(1/ log logn), means that A∗(n) grows faster than any power of
n, but not quite as fast as en.

Other places that cyclotomic polynomials occur as special cases include Open
Problem 29. [BD89] considers the question of testing whether a polynomial is
cyclotomic, and [BPSW20] considers the complexity-theoretic questions around
testing whether a multivariate polynomial vanishes at a given cyclotomic num-
ber: more precisely the following.

Problem 9 (Cyclotomic Testing [BPSW20]) Given f(x1, . . . , xk) and in-
tegers n, e1, . . . , ek, is f(ζe1n , . . . , ζ

ek
n) zero? Since n is common to all the xi,

this is in fact equivalent to testing whether F (ζn) = 0 for some univariate poly-
nomial F . The complexity theory is only interesting when f is given in some
compressed format, such as a Directed Acyclic Graph (see p. 56).

[DC09] show that cyclotomic polynomials provide many of the “worst-case”
examples for manipulation of sparse polynomials.

354 APPENDIX B. EXCURSUS

Appendix C

Systems

This appendix discusses various computer algebra systems, especially from the
point of view of their internal data structures and algorithms, and how this
relates to the ideas expressed in the body of this book. We do not discuss the
user interfaces as such, nor is this intended to replace any manuals, or specialist
books.

Moses [Mos71] described systems as falling into various categories, depending
on the extent of automatic transformation. While most systems today are what
Moses would call ‘new left’, the extent of automatic transformation still varies
dramatically.

C.1 Axiom

C.1.1 Overview

See Figure C.1.
We note that the polynomials have been expanded and the greatest common

divisor cancelled (in the terminology of Definition 4 we have canonical forms for
this data type). We are told the data type of the result, Fraction Polynomial

Integer, i.e. the field of fractions of Z[variables]. In fact, this answer happens
to have denominator 1, so lies in Polynomial Integer, but the system does
not automatically check for such retractions.

C.1.2 History

This system [JS92], with which the author has been heavily involved, can be
seen as the first of the ‘Bourbakist’1 systems — since followed, in particular,
by Magma [BCM94] and SAGE. It was developed at IBM Yorktown Heights,

1Nicolas Bourbaki was the pseudonym of a group of mathematicians, largely French,
who wrote very influential abstract mathematical texts from the 1930s on. See http:

//www-history.mcs.st-andrews.ac.uk/HistTopics/Bourbaki_1.html.

355

http://www-history.mcs.st-andrews.ac.uk/HistTopics/Bourbaki_1.html
http://www-history.mcs.st-andrews.ac.uk/HistTopics/Bourbaki_1.html

356 APPENDIX C. SYSTEMS

Figure C.1: Axiom output

(1) -> (x^2-1)^10/(x-1)^10

(1)

10 9 8 7 6 5 4 3 2

x + 10x + 45x + 120x + 210x + 252x + 210x + 120x + 45x + 10x + 1

Type: Fraction Polynomial Integer

(2) -> %^2

(2)

20 19 18 17 16 15 14 13

x + 20x + 190x + 1140x + 4845x + 15504x + 38760x + 77520x

+

12 11 10 9 8 7 6

125970x + 167960x + 184756x + 167960x + 125970x + 77520x + 38760x

+

5 4 3 2

15504x + 4845x + 1140x + 190x + 20x + 1

Type: Fraction Polynomial Integer

originally under name of Scratchpad II, with its implementation language known
as Modlisp [Jen79, DJ80].

It was commercialised under the name Axiom by NAG Ltd in the 1990s,
but never achieved the necessary commercial success, and is now open-source
— www.axiom-developer.org.

C.1.3 Structure

All Axiom objects are typed, as seen in Figures C.1 and C.2. In the second
one, we see that a and b are objects of appropriate, but different, types. The
system ‘knows’ (for details, see [Doy99]) that an appropriate common type is
Polynomial Integer, which is what c becomes.

C.2 Macsyma

C.2.1 Overview

See Figure C.3. We note that the g.c.d. is only cancelled on demand (radcan
stands for ‘radical canonicalizer’). The equation at line 3 is treated as such, but
if we force the system (line 4) to regard it as a Boolean, the result is false,
despite the fact that the comparands are mathematically equal.

www.axiom-developer.org

C.2. MACSYMA 357

Figure C.2: Axiom type system

(1) -> a:=1

(1) 1

Type: PositiveInteger

(2) -> b:=x

(2) x

Type: Variable x

(3) -> c:=a+b

(3) x + 1

Type: Polynomial Integer

Figure C.3: Macsyma output

(%i1) (x^2-1)^10/(x+1)^10;

2 10

(x - 1)

(%o1) ----------

10

(x + 1)

(%i2) radcan(%);

10 9 8 7 6 5 4 3 2

(%o2) x - 10 x + 45 x - 120 x + 210 x - 252 x + 210 x - 120 x + 45 x

- 10 x + 1

(%i3) %= (x^2-1)^10/(x+1)^10;

10 9 8 7 6 5 4 3 2

(%o4) x - 10 x + 45 x - 120 x + 210 x - 252 x + 210 x - 120 x + 45 x

2 10

(x - 1)

- 10 x + 1 = ----------

10

(x + 1)

(%i5) if % then 1 else 2;

(%05) 2

358 APPENDIX C. SYSTEMS

C.2.2 History

C.3 Maple

C.3.1 Overview

See Figure C.4. Note that cancelling the g.c.d., and expansion, did not take place
until asked for. Also, while the exponents in the expanded form of (x + 1)10

were in order, the same was not true of its square.

C.3.2 History

This system started in the early 1980s, a period when computer power, and
particularly memory, were much less than they are today. It was designed to
support multiple users, particularly classes of students, on what were, by the
standards of the time, relatively modest university resources. Two important
early references are [CGGG83, CFG+84]. These circumstances led to three
design principles.

1. The system had to be small — early hosts systems had limitations of, for
example, 110K words of memory. In particular, users must not pay, in
terms of memory occupancy, for features they were not using, which led
to a ‘kernel plus loadable modules’ design, where the kernel knew basic
algebraic features, and the rest of the system was in loadable modules
written in the Maple langauge itself, and therefore interpreted rather than
compiled. The precise definition of ‘basic’ has changed over time — see
section C.3.4.

2. The system had to be portable — early versions ran on both 32-bit VAX
computers and 36-bit Honeywell computers. Its kernel, originally some
5500 lines of code, was macro-processed into ‘languages of the BCPL fam-
ily’, of which the most successful, and the one used today, is C.

3. Memory was scarce, and hence re-use had to be a priority.

C.3.3 Data structures

These considerations led to an “expression DAG” design (see page 56). The
internal form of an expression is a node of a certain type followed by an arbi-
trary number (hence we talk about an n-ary tree) of operands. If A is a Maple
expression, the construct op(0,A) gives the type of the node, and op(i,A) gives
the i-th operand. This is demonstrated by the session in table C.1, which builds
the DAG shown in figure C.5. It might be assumed from table C.1 that Maple
had some ‘preferred’ order which A matched but B did not. However, if we look
at table Maple:code2 (run in a fresh session of Maple), we see that B is now the
preferred instance. The point is that, since Maple’s internalising process2 con-

C.3. MAPLE 359

Figure C.4: Maple output

> (x^2-1)^10/(x+1)^10;

2 10

(x - 1)

10

(x + 1)

> simplify(%);

10

(x - 1)

> expand(%);

10 9 8 7 6 5 4 3

x - 10 x + 45 x - 120 x + 210 x - 252 x + 210 x - 120 x

2

+ 45 x - 10 x + 1

> %^2;

10 9 8 7 6 5 4 3

(x - 10 x + 45 x - 120 x + 210 x - 252 x + 210 x - 120 x

2 2

+ 45 x - 10 x + 1)

> expand(%);

2 3 5 6 7

1 + 190 x - 20 x - 1140 x - 15504 x + 38760 x - 77520 x

8 9 10 20 19

+ 125970 x - 167960 x + 184756 x + x - 20 x

18 17 16 15 14

+ 190 x - 1140 x + 4845 x - 15504 x + 38760 x

13 12 11 4

- 77520 x + 125970 x - 167960 x + 4845 x

360 APPENDIX C. SYSTEMS

Table C.1: A small Maple session

> A:=x+y+a*b;

A := x + y + a b

> op(0,A);

+

> op(3,A);

a b

> op(0,op(3,A));

*

> B:=y+b*a+x;

B := x + y + a b

Figure C.5: Tree for A, B corresponding to table C.1

+
↙ ↓ ↘

x y ∗
↓ ↘
a b

structs these trees, in which + nodes cannot be children of + nodes, or + nodes
of * nodes (hence implicitly enforcing associativity of these operators), and the
children are unordered (hence implicitly enforcing commutativity3), once the
subtree corresponding to a*b has been built, as in the first line of table C.1, an
equivalent tree, such as that corresponding to b*a, is stored as the same tree.
If it is fundamentall unordered, which way does it print? The answer is given
in [CFG+84, p. 7]

if the expression is found, the one in the table is used, and the [new]
one is discarded.

Hence in table C.1, the presence of a*b means that b*a automatically becomes
a*b. The converse behaviour occurs in table C.2.

In terms of the 10 algebraic rules on pp. 45–46, this structure automatically
follows all except (8), which is implemented only in the weaker form (8’).

The Maple command expand implements (8) fully, therefore producing, for

2Referred to as the ‘simplifier’ in [CGGG83, CFG+84], but we do not use that word to
avoid confusion with Maple’s simplify command.

3We have found an example where this is not the case, but this is explicitly described as a
bug by Maple’s Senior Architect.

Two simpl’d PROD DAGs containing the same entries but in a different order
is a kernel bug by definition. [Vor10]

C.3. MAPLE 361

Table C.2: Another small Maple session

> B:=y+b*a+x;

B := y + b a + x

> op(0,B);

+

> op(2,B);

b a

> op(0,op(2,B));

*

> A:=x+y+a*b;

A := y + b a + x

Figure C.6: Tree for A, B corresponding to table C.2

+
↙ ↓ ↘

y ∗ x
↓ ↘
b a

polynomials, what we referred to (page 54) as a distributed representation4.
This is therefore canonical (definition 4), but in a limited sense: it is canonical
within a given Maple session, but may vary between sessions. This means
that operations such as op(i,A) (i ̸= 0) are not necessarily consistent between
sessions.

C.3.4 Heuristic GCD

[CGG84, CGG89].

C.3.5 Conclusion

There are many books written on Maple, particularly in the educational context.
A comprehensive list would be out-of-date before it was printed, but we should
mention [Cor02].

4But we should note that there are no guaranteed mathematical properties of the ordering.
Good properties are provided by the MonomialOrders of the Groebner package.

362 APPENDIX C. SYSTEMS

Figure C.7: MuPAD output

>> (x^2+1)^10/(x-1)^10

ans =

(x^2 + 1)^10/(x - 1)^10

>> (x^2-1)^10/(x+1)^10

ans =

(x^2 - 1)^10/(x + 1)^10

>> simplify(ans)

ans =

(x - 1)^10

>> expand(ans)

ans =

x^10 - 10*x^9 + 45*x^8 - 120*x^7 + 210*x^6 - 252*x^5 + 210*x^4 - 120*x^3 + 45*x^2 - 10*x + 1

>> ans == (x^2 + 1)^10/(x - 1)^10

ans =

0

C.4 MuPAD

C.4.1 Overview

See Figure C.7. We note that the g.c.d. is only cancelled on demand, and that
the result of the equality test is 0, i.e. false.

C.4.2 History

This system [FGK+94] could easily have been written off as “yet another com-
puter algebra system”, until MathWorks Inc. bought the company, and made
MuPAD into the “symbolic toolbox” of MatLab (replacing Maple). The session

C.5. REDUCE 363

Figure C.8: Reduce output

1: (x^2-1)^10/(x+1)^10;

x10 − 10x9 + 45x8 − 120x7 + 210x6 − 252x5 + 210x4 − 120x3 + 45x2 − 10x+ 1

2: off exp;

3: (x^2-1)^10/(x+1)^10;

(x− 1)
10

4: off gcd;

5: (x^2-1)^10/(x+1)^10;

(x− 1)
10

6: (x^2-1)^10/(x^2+2*x+1)^10;(
x2 − 1

)10
(x2 + 2x+ 1)

10

7: on gcd;

8: ws;

(x− 1)
10

(x+ 1)
10

above is taken from MatLab.

C.5 Reduce

C.5.1 Overview

Note that Reduce produces output that cuts/pastes as TEX, as in Figure C.8.
By default, the output is canonical (Definition 4), but this can be changed

via the exp (short for expand) and gcd (compute them) switches. Note that
exact division tests are done even when gcd is off, as in line 5, and we need a
more challenging example, as in line 6.

C.5.2 History

364 APPENDIX C. SYSTEMS

Appendix D

Index of Notation

Notation Meaning Reference Page
(S) The ideal generated by S Notation 5 33
(F,A,B)B A Bourbakist function definition Notation 3 27
(F,A,B)B |C (F,A,B)B restricted to C Notation 3 27
?
= An equation whose validity depends Notation 40 305

on interpretations
=CA Equality of a computer algebra system Notation 4 31
=O Equality of mathematical objects Notation 4 31
=R Equality of representations Notation 4 31
||f ||k The k-norm of f(x) Notation 42 321
p ∧ q The logical and of p and q Definition 80 147
p ∨ q The logical (inclusive) or of p and q Definition 80 147
¬p The logical negation of p Definition 80 147
A The algebraic numbers Notation 32 251
C The complex numbers
C Any field of constants Definition 105 260
con(F) The cone of F Theorem 38 164
Rconst The constants of R Definition 105 260
degGM(f) The Gallo–Mishra degree Definition 58 124
den(f) The denominator of f Proposition 12 63
ϵ The relaxation of ϵ Notation 21 93
H(f) The height of f(x), ||f ||∞ Notation 42 321
L(f) The length of f(x), ||f ||1 Notation 42 321
L(f) The bit-length of f(x) Notation 31 245
lc The leading coefficient Definition 46 105

(regarded as a polynomial in several variables)
lcx(f) leading coefficient of f Notation 13 47

(regarded as a polynomial in x)

365

366 APPENDIX D. INDEX OF NOTATION

Notation Meaning Reference Page
li The logarithmic integral Notation 38 280
lm The leading monomial Definition 46 105
Ln The multivalued logarithm Notation 41 309
lt The leading term Definition 46 105
(m, d) McCallum’s size measure Definition 88 158
M(f) The Mahler measure of f(x) Notation 42 321
M(f) The Mahler measure of f(x1, . . . , xn) Definition 118 327
M(n) The time needed to multiply

two objects of length n Notation 46 345
a (mod b) modular remainder 16
mon(H) The (multiplicative) monoid of H Theorem 38 164
µ(n) The Möbius function Proposition 103 351
N The nonnegative integers (natural numbers)
Newton(p) The Newton series Notation 17 59
num(f) The numerator of f Proposition 12 63
ProjC(A) The Collins projection Notation 26 157
ProjM (A) The McCallum projection Notation 27 158
Q The rational numbers
R The real numbers
red(f) reductum of f (f − lc(f)) Notation 13 47
S(f, g) The S-polynomial of f and g Definition 49 106
Sf The “sugar’ of the polynomial f Definition 56 117
S(f,g) The “sugar’ of the polynomial pair (f, g) Definition 56 117
Sk(f) The skeleton of the polynomial f Definition 91 201
Sqrt The multivalued square root Notation 41 309
W (z) The Lambert W function 270
Z The integers
ZN The integers modulo N
ω The exponent of matrix multiplication Notation 47 349
ω(z) The Wright ω function 270

Bibliography

[Abb88] J.A. Abbott. Factorisation of Polynomials over Algebraic Number
Fields. PhD thesis, University of Bath, 1988.

[Abb02] J.A. Abbott. Sparse Squares of Polynomials. Math. Comp., 71:407–
413, 2002.

[Abb04] J.A. Abbott. CoCoA: a laboratory for computations in commuta-
tive algebra. ACM SIGSAM Bulletin 1, 38:18–19, 2004.

[Abb13a] J.A. Abbott. Bounds on Factors in Z[x]. J. Symbolic Comp.,
50:532–563, 2013.

[Abb13b] J.A. Abbott. Fault-Tolerant Modular Reconstruction of Rational
Numbers. http://arxiv.org/pdf/1303.2965.pdf, 2013.

[Abb15] J.A. Abbott. Geobuckets in CoCoA. Personal Communication,
2015.

[Abb20] John Abbott. Certifying Irreducibility in Z[x]. In Bigatti et al.
[BCD+20], pages 462–472. URL: https://arxiv.org/pdf/2005.
04633.

[ABD85] J.A. Abbott, R.J. Bradford, and J.H. Davenport. A Remark on
Factorisation. SIGSAM Bulletin 2, 19:31–33, 1985.

[ABD88] J.A. Abbott, R.J. Bradford, and J.H. Davenport. Factorisation of
Polynomials: Old Ideas and Recent Results. In R. Janssen, editor,
Proceedings “Trends in Computer Algebra”, pages 81–91, 1988.

[ABM99] J.A. Abbott, M. Bronstein, and T. Mulders. Fast Deterministic
Computations of Determinants of Dense Matrices. In S. Dooley,
editor, Proceedings ISSAC ’99, pages 197–204, 1999.

[Ach06] M. Achatz. Deciding polynomial-exponential problems. Master’s
thesis, (Diploma) Diplomarbeit Universität Passau, 2006.

[Ada43] Ada Augusta Countess of Lovelace. Sketch of the Analytical Engine
invented by Charles Babbage, by L.F. Menabrea of Turin, with
notes on the memoir by the translator. Taylor’s Scientific Memoirs
(Article XXIX), 3:666–731, 1843.

367

http://arxiv.org/pdf/1303.2965.pdf
https://arxiv.org/pdf/2005.04633
https://arxiv.org/pdf/2005.04633

368 BIBLIOGRAPHY

[AGK97] B. Amrhein, O. Gloor, and W. Küchlin. On the Walk. Theor.
Comp. Sci., 187:179–202, 1997.

[AGR14a] A. Arnold, M. Giesbrecht, and D.S Roche. Faster Sparse Multi-
variate Polynomial Interpolation of Straight-Line Programs. http:
//arxiv.org/abs/1412.4088, 2014.

[AGR14b] A. Arnold, M. Giesbrecht, and D.S Roche. Sparse interpolation
over finite fields via low-order roots of unity. In K. Nabeshima,
editor, Proceedings ISSAC 2014, pages 27–34, 2014.

[AHU74] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Anal-
ysis of Computer Algorithms. Addison-Wesley, 1974.

[AHU83] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. Data Structures and
Algorithms. Addison-Wesley, 1983.

[AIKS14] M. Arora, G. Ivanyos, M. Karpinski, and N. Saxena. Deterministic
Polynomial Factoring and Association Schemes. LMS Journal of
Computation and Mathematics, 17:123–140, 2014.

[AIR14] A. Abdesselam, C. Ikenmeyer, and G. Royle. 16,051 formulas for
Ottaviani’s invariant of cubic threefolds. http://arxiv.org/abs/
1402.2669, 2014.

[Akr82] A.G. Akritas. Reflections on a Pair of Theorems by Budan and
Fourier. Mathematics Magazine, 55:292–298, 1982.

[AKS04] M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Ann. Math.
(2), 160:781–793, 2004.

[AL94] W.W. Adams and P. Loustaunau. An introduction to Gröbner
bases. Amer. Math. Soc., 1994.

[ALM99] P. Aubry, D. Lazard, and M. Moreno Maza. On the Theories of
Triangular Sets. J. Symbolic Comp., 28:105–124, 1999.

[ALSU07] A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman. Compilers: Prin-
ciples, Techniques and Tools. Pearson Addison-Wesley, 2007.

[AM99] P. Aubry and M. Moreno Maza. Triangular Sets for Solving Polyno-
mial Systems: A Comparison of Four Methods. J. Symbolic Comp.,
28:125–154, 1999.

[AM01] J.A. Abbott and T. Mulders. How Tight is Hadamard’s Bound?
Experimental Math., 10:331–336, 2001.

[AMW08] M. Achatz, S. McCallum, and V. Weispfenning. Deciding
Polynomial-Exponential Problems. In D.J.Jeffrey, editor, Proceed-
ings ISSAC 2008, pages 215–222, 2008.

http://arxiv.org/abs/1412.4088
http://arxiv.org/abs/1412.4088
http://arxiv.org/abs/1402.2669
http://arxiv.org/abs/1402.2669

BIBLIOGRAPHY 369

[AnKS07] M. Avendaño, T. Krick, and M. Sombra. Factoring bivariate sparse
(lacunary) polynomials. J. Complexity, 23:193–216, 2007.

[Ano07] Anonymous. MACSYMA http://web.archive.org/

web/20140103015032/http://www.symbolicnet.org/systems/

macsyma.html, 2007.

[AP10] B. Akbarpour and L.C. Paulson. MetiTarski: An Automatic Theo-
rem Prover for Real-Valued Special Functions. J. Automated Rea-
soning, 44:175–205, 2010.

[Apo67] T.M. Apostol. Calculus, Volume I, 2nd edition. Blaisdell, 1967.

[AR15] A. Arnold and D.S Roche. Output-Sensitive Algorithms for Sum-
set and Sparse Polynomial Multiplication. In D. Robertz, editor,
Proceedings ISSAC 2015, pages 29–36, 2015.

[Arn03] E.A. Arnold. Modular algorithms for computing Gröbner bases. J.
Symbolic Comp., 35:403–419, 2003.

[Arn11] A.D. Arnold. Algorithms for computing cyclotomic polynomials.
Master’s thesis, Department of Mathematics Simon Fraser Univer-
sity, 2011.

[ARS+13] C. Andradas, T. Recio, J.R. Sendra, L. Tabera, and C. Villarino.
Reparametrizing Rational Revolution Surfaces over the Reals. Sub-
mitted, 2013.

[Arw18] A. Arwin. Über die Kongruenzen von dem fünften und höheren
Graden nach einem Primzahlmodulus. Arkiv før matematik, 14:1–
48, 1918.

[AS64] M. Abramowitz and I. Stegun. Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables, 9th print-
ing. US Government Printing Office, 1964.

[ASZ00] J.A. Abbott, V. Shoup, and P. Zimmermann. Factorization in Z[x]:
The Searching Phase. In C. Traverso, editor, Proceedings ISSAC
2000, pages 1–7, 2000.

[AW00] H. Anai and V. Weispfenning. Deciding Linear-Trigonometric Prob-
lems. In C. Traverso, editor, Proceedings ISSAC 2000, pages 14–22,
2000.

[Ax71] J. Ax. On Schanuel’s Conjectures. Ann. Math., 93:252–268, 1971.

[Bac94] P. Bachmann. Die analytische Zahlentheorie. Teubner, 1894.

[Bad06] J. Baddoura. Integration in finite terms with elementary functions
and dilogarithms. J. Symbolic Comp., 41:909–942, 2006.

http://web.archive.org/web/20140103015032/http://www.symbolicnet.org/systems/macsyma.html
http://web.archive.org/web/20140103015032/http://www.symbolicnet.org/systems/macsyma.html
http://web.archive.org/web/20140103015032/http://www.symbolicnet.org/systems/macsyma.html

370 BIBLIOGRAPHY

[Bak75] A. Baker. Transcendental Number Theory. Cambridge University
Press, 1975.

[Bar68] E.H. Bareiss. Sylvester’s Identity and Multistep Integer-preserving
Gaussian Elimination. Math. Comp., 22:565–578, 1968.

[Bas99] S. Basu. New results on quantifier elimination over real closed
fields and applications to constraint databases. J. ACM, 46:537–
555, 1999.

[Bat49] P.T. Bateman. Note on the coefficients of the cyclotomic polyno-
mial. Bull. AMS, 55:1180–1181, 1949.

[BBDP07] J.C. Beaumont, R.J. Bradford, J.H. Davenport, and N. Phisan-
but. Testing Elementary Function Identities Using CAD. AAECC,
18:513–543, 2007.

[BBS06] B. Bertrand, F. Bihan, and F. Sottile. Polynomial Systems with
Few Real Zeroes. Mathematisches Zeitschrift, 253:361–385, 2006.

[BC90] G. Butler and J. Cannon. The Design of Cayley — A Language for
Modern Algebra. In Proceedings DISCO ’90, 1990.

[BCD+02] R.J. Bradford, R.M. Corless, J.H. Davenport, D.J. Jeffrey, and S.M.
Watt. Reasoning about the Elementary Functions of Complex Anal-
ysis. Annals of Mathematics and Artificial Intelligence, 36:303–318,
2002.

[BCD+20] A.M. Bigatti, J. Carette, J.H. Davenport, M. Joswig, and
T. de Wolff, editors. Mathematical Software — ICMS 2020, volume
12097 of Springer Lecture Notes in Computer Science. Springer,
2020.

[BCDJ08] M. Bronstein, R. Corless, J.H. Davenport, and D.J. Jeffrey. Alge-
braic properties of the Lambert W function from a result of Rosen-
stein and Liouville. J. Integral Transforms and Special Functions,
18:709–712, 2008.

[BCM94] W. Bosma, J. Cannon, and G. Matthews. Programming with al-
gebraic structures: design of the Magma language. In Proceedings
ISSAC 1994, pages 52–57, 1994.

[BCR98] J. Bochnak, M. Coste, and M.-F. Roy. Real algebraic geome-
try. Springer, 1998. URL: https://www.springer.com/us/book/
9783540646631.

[BCR11] A. Bigatti, M. Caboara, and L. Robbiano. Computing inhomoge-
neous Gröbner bases. J. Symbolic Comp., 46:498–510, 2011.

https://www.springer.com/us/book/9783540646631
https://www.springer.com/us/book/9783540646631

BIBLIOGRAPHY 371

[BCTC19] P. Bürgisser, F. Cucker, and J. Tonelli-Cueto. On the Number
of Real Zeros of Random Fewnomials. SIAM Journal on Applied
Algebra and Geometry, 3:721–732, 2019.

[BD89] R.J. Bradford and J.H. Davenport. Effective Tests for Cyclotomic
Polynomials. In P. Gianni, editor, Proceedings ISSAC 1988, pages
244–251, 1989.

[BD02] R.J. Bradford and J.H. Davenport. Towards Better Simplification
of Elementary Functions. In T. Mora, editor, Proceedings ISSAC
2002, pages 15–22, 2002.

[BD07] C.W. Brown and J.H. Davenport. The Complexity of Quantifier
Elimination and Cylindrical Algebraic Decomposition. In C.W.
Brown, editor, Proceedings ISSAC 2007, pages 54–60, 2007.

[BD14] Y. Bugeaud and A. Dujella. Root separation for reducible integer
polynomials. Acta Arithmetica, 162:393–403, 2014.

[BdB22] F.F.D. Budan de BoisLaurent. Nouvelle méthode pour la résolution
des équations numériques d’un degré quelconque. Dondey-Dupré,
1822.

[BDE+13] R.J. Bradford, J.H. Davenport, M. England, S. McCallum, and
D.J. Wilson. Cylindrical Algebraic Decompositions for Boolean
Combinations. In Proceedings ISSAC 2013, pages 125–132, 2013.

[BDE+14] R.J. Bradford, J.H. Davenport, M. England, S. McCallum, and
D.J. Wilson. Truth Table Invariant Cylindrical Algebraic Decom-
position. To appear in J. Symbolic Computation, 2014.

[BDS09] R.J. Bradford, J.H. Davenport, and C.J. Sangwin. A Comparison
of Equality in Computer Algebra and Correctness in Mathemati-
cal Pedagogy. In J. Carette et al., editor, Proceedings Intelligent
Computer Mathematics, pages 75–89, 2009.

[BDS10] R.J. Bradford, J.H. Davenport, and C.J. Sangwin. A Comparison
of Equality in Computer Algebra and Correctness in Mathematical
Pedagogy (II). International Journal of Technology in Mathemati-
cal Education 2, 17:93–98, 2010.

[Ber67] E.R. Berlekamp. Factoring Polynomials over Finite Fields. Bell
System Tech. J., 46:1853–1859, 1967.

[Ber70] E.R. Berlekamp. Factoring Polynomials over Large Finite Fields.
Math. Comp., 24:713–735, 1970.

[Ber98] L. Bernardin. On Bivariate Hensel Lifting and Its Parallelization.
In O. Gloor, editor, Proceedings ISSAC ’98, pages 96–100, 1998.

372 BIBLIOGRAPHY

[Béz79] E. Bézout. Théorie générale des équations algébriques. Ph.-D. Pier-
res, 1779.

[BF91] J. Backelin and R. Fröberg. How we proved that there are exactly
924 cyclic 7-roots. In S.M. Watt, editor, Proceedings ISSAC 1991,
pages 103–111, 1991.

[BF93] M. Bartolozzi and R. Franci. La regola dei segni dall’ enunciato
di R. Descartes (1637) alla dimostrazione di C.F. Gauss (1828).
Archive for History of Exact Sciences 335-374, 45, 1993.

[BFSS06] A. Bostan, P. Flajolet, B. Salvy, and É. Schost. Fast computation
of special resultants. J. Symbolic Comp., 41:1–29, 2006.

[BHK+22] H. Becker, V. Hwang, M.J. Kannwischer, L. Panny, and B.-Y.
Yang. Efficient Multiplication of Somewhat Small Integers using
Number-Theoretic Transforms. https://eprint.iacr.org/2022/
439, 2022.

[BHNS15] D.J. Bates, J.D. Hauenstein, M.E. Niemerg, and F. Sottile. Soft-
ware for the Gale transform of fewnomial systems and a Descartes
rule for fewnomials. http://arxiv.org/abs/1505.05241, 2015.

[BHPR11] O. Bastani, C.J. Hillar, P. Popov, and J.M. Rojas. Randomization,
Sums of Squares, and Faster Real Root Counting for Tetranomials
and Beyond. http://arxiv.org/abs/1101.2642, 2011.

[BHS80] J.L. Bentley, D. Haken, and J.B. Saxe. A general method for solving
divide-and-conquer recurrences. SIGACT News, 12(3):36–44, 1980.

[Big15] A. Bigatti. An example of Hilbert-badness. Personal Communica-
tion, 2015.

[BK12] M. Burr and F. Krahmer. SqFreeEVAL: An (almost) optimal real-
root isolation algorithm. J. Symbolic Comp., 47:153–166, 2012.

[BL98] T. Breuer and S.A. Linton. The GAP4 Type System Organising
Algebraic Algorithms. In O. Gloor, editor, Proceedings ISSAC ’98,
pages 38–45, 1998.

[BM09] L. Busé and B. Mourrain. Explicit factors of some iterated resul-
tants and discriminants. Math. Comp., 78:345–386, 2009.

[BM20] C.W. Brown and S. McCallum. Enhancements to Lazard’s Method
for Cylindrical Algebraic Decomposition. In F. Boulier, M. Eng-
land, T.M. Sadykov, and E.V. Vorozhtsov, editors, Computer Alge-
bra in Scientific Computing CASC 2020, volume 12291 of Springer
Lecture Notes in Computer Science, pages 129–149, 2020. doi:

https://doi.org/10.1007/978-3-030-60026-6_8.

https://eprint.iacr.org/2022/439
https://eprint.iacr.org/2022/439
http://arxiv.org/abs/1505.05241
http://arxiv.org/abs/1101.2642
https://doi.org/https://doi.org/10.1007/978-3-030-60026-6_8
https://doi.org/https://doi.org/10.1007/978-3-030-60026-6_8

BIBLIOGRAPHY 373

[BMMT94] E. Becker, M.G. Marinari, T. Mora, and C. Traverso. The shape
of the shape lemma. In Proceedings ISSAC 1994, pages 129–133,
1994.

[BND22] Jérémy Berthomieu, Vincent Neiger, and Mohab Safey El Din.
Faster Change of Order Algorithm for Gröbner Bases under Shape
and Stability Assumptions. In Hashemi [Has22], pages 409–418.

[BOT88] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse
multivariate polynomial interpolation. In Proceedings 20th. Symp.
Theory of Computing, pages 301–309, 1988.

[Bou61] N. Bourbaki. Algèbre Commutative, chapter 2. Hermann, 1961.

[Bou70] N. Bourbaki. Théorie des Ensembles. Diffusion C.C.L.S., 1970.

[BPR06] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic
Geometry, 2nd ed. Springer, 2006.

[BPSW20] N. Balaji, S. Perifel, M. Shirmohammadi, and J. Worrell. Cy-
clotomic Identity Testing and Applications. https://arxiv.org/

abs/2007.13179, 2020.

[Bri86] Bring,E. (writing as S.G. Sommelius). Meletemata quædam
Mathematica circa Transformationem Æquationum Algebraicarum
(“Some Selected Mathematics on the Transformation of Algebraic
Equations”). Lund, 1786.

[Bro69] W.S. Brown. Rational Exponential Expressions, and a conjecture
concerning π and e. Amer. Math. Monthly, 76:28–34, 1969.

[Bro71a] W.S. Brown. On Euclid’s Algorithm and the Computation of Poly-
nomial Greatest Common Divisors. In Proceedings SYMSAC 1971,
pages 195–211, 1971.

[Bro71b] W.S. Brown. On Euclid’s Algorithm and the Computation of Poly-
nomial Greatest Common Divisors. J. ACM, 18:478–504, 1971.

[Bro90] M. Bronstein. Integration of elementary function. J. Symbolic
Comp., 9:117–173, 1990.

[Bro91] M. Bronstein. The Algebraic Risch Differential Equation. In Pro-
ceedings ISSAC 91, pages 241–246, 1991.

[Bro00] C.W. Brown. Improved Projection for CAD’s of R3. In C. Traverso,
editor, Proceedings ISSAC 2000, pages 48–53, 2000.

[Bro01] C.W. Brown. Improved Projection for Cylindrical Algebraic De-
composition. J. Symbolic Comp., 32:447–465, 2001.

https://arxiv.org/abs/2007.13179
https://arxiv.org/abs/2007.13179

374 BIBLIOGRAPHY

[Bro03] C.W. Brown. QEPCAD B: a program for computing with semi-
algebraic sets using CADs. ACM SIGSAM Bulletin 4, 37:97–108,
2003.

[Bro07] M. Bronstein. Structure theorems for parallel integration (Paper
completed by Manuel Kauers). J. Symbolic Comp., 42:757–769,
2007.

[BS86] D. Bayer and M. Stillman. The Design of Macaulay: A System for
Computing in Algebraic Geometry and Commutative Algebra. In
Proceedings SYMSAC 86, pages 157–162, 1986.

[BS93] E. Bach and J. Sorenson. Sieve Algorithms for Perfect Power Test-
ing. Algorithmica, 9:313–328, 1993.

[BS07] F. Bihan and F. Sottile. New fewnomial upper bounds from Gale
dual polynomial systems. Mosc. Math. J., 7:387–407, 2007.

[Buc70] B. Buchberger. Ein algorithmisches Kriterium für die Lösbarkeit
eines algebraischen Gleichungssystem (English translation in
[Buc98]). Aequationes Mathematicae, 4:374–383, 1970.

[Buc79] B. Buchberger. A Criterion for Detecting Unnecessary Reductions
in the Construction of Groebner Bases. In Proceedings EUROSAM
79, pages 3–21, 1979.

[Buc84] B. Buchberger. A critical pair/completion algorithm for finitely
generated ideals in rings. Logic and Machines: Decision Problems
and Complexity, pages 137–155, 1984.

[Buc98] B. Buchberger. An Algorithmic Criterion for the Solvability of a
System of Algebraic Equations. In Gröbner Bases and Applications,
pages 535–545, 1998.

[Bur13] M.A. Burr. Applications of Continuous Amortization to Bisection-
based Root Isolation. http://arxiv.org/abs/1309.5991, 2013.

[BW93] T. Becker and V. Weispfenning (with H. Kredel). Groebner Bases.
A Computational Approach to Commutative Algebra. Springer Ver-
lag, 1993.

[CA76] G.E. Collins and A.V. Akritas. Polynomial Real Root Isolation
Using Descartes’ Rule of Signs. In R.D. Jenks, editor, Proceedings
SYMSAC 76, pages 272–275, 1976.

[Car58] C. Carathéodory. Theory of functions of a complex variable. Chelsea
Publ., 1958.

[Car73] H. Cartan. Elementary Theory of Analytic Functions of One or
Several Complex Variables. Addison-Wesley, 1973.

http://arxiv.org/abs/1309.5991

BIBLIOGRAPHY 375

[Car04] J. Carette. Understanding Expression Simplification. In J. Gutier-
rez, editor, Proceedings ISSAC 2004, pages 72–79, 2004.

[Cau29] A.-L. Cauchy. Exercices de Mathématiques Quatrième Année. De
Bure Frères, Paris, 1829.

[CBH11] N.T. Courtois, G.V. Bard, and D. Hulme. A New General-Purpose
Method to Multiply 3× 3 Matrices Using Only 23 Multiplications.
http://arxiv.org/abs/1108.2830, 2011.

[CD85] D. Coppersmith and J.H. Davenport. An Application of Factoring.
J. Symbolic Comp., 1:241–243, 1985.

[CD91] D. Coppersmith and J.H. Davenport. Polynomials whose Powers
are Sparse. Acta Arithmetica, 58:79–87, 1991.

[CDJW00] R.M. Corless, J.H. Davenport, D.J. Jeffrey, and S.M. Watt. Ac-
cording to Abramowitz and Stegun, or arccoth needn’t be uncouth.
SIGSAM Bulletin 2, 34:58–65, 2000.

[CE95] G.E. Collins and M.J. Encarnación. Efficient rational number re-
construction. J. Symbolic Comp., 20:287–297, 1995.

[CFG+84] B.W. Char, G.J. Fee, K.O. Geddes, G.H. Gonnet, M.B. Monagan,
and S.M. Watt. On the Design and Performance of the Maple
System. Technical Report CS-84-13 University of Waterloo, 1984.

[CG21] A. Caminata and E. Gorla. Solving degree, last fall degree, and
related invariants. https://eprint.iacr.org/2021/1611, 2021.

[CGG84] B.W. Char, K.O. Geddes, and G.H. Gonnet. GCDHEU: Heuristic
Polynomial GCD Algorithm Based on Integer GCD Computation.
In J.P. Fitch, editor, Proceedings EUROSAM 84, pages 285–296,
1984.

[CGG89] B.W. Char, K.O. Geddes, and G.H. Gonnet. GCDHEU: Heuristic
Polynomial GCD Algorithm Based on Integer GCD Computations.
J. Symbolic Comp., 7:31–48, 1989.

[CGGG83] B.W. Char, K.O. Geddes, M.W. Gentleman, and G.H. Gonnet. The
Design of MAPLE: A Compact, Portable and Powerful Computer
Algebra System. In Proceedings EUROCAL 83, pages 101–115,
1983.

[CGH88] L. Caniglia, A. Galligo, and J. Heintz. Some New Effectivity Bounds
in Computational Geometry. In Proceedings AAECC-6, pages 131–
152, 1988.

[CGH+96] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E.
Knuth. On the Lambert W Function. Advances in Computational
Mathematics, 5:329–359, 1996.

http://arxiv.org/abs/1108.2830
https://eprint.iacr.org/2021/1611

376 BIBLIOGRAPHY

[CGH+03] D. Castro, M. Giusti, J. Heintz, G. Matera, and L.M. Pardo. The
Hardness of Polynomial Equation Solving. Foundations of Compu-
tational Mathematics, 3:347–420, 2003.

[CH91] G.E. Collins and H. Hong. Partial Cylindrical Algebraic Decompo-
sition for Quantifier Elimination. J. Symbolic Comp., 12:299–328,
1991.

[Che85] G.W. Cherry. Integration in Finite Terms with Special Functions:
the Error Function. J. Symbolic Comp., 1:283–302, 1985.

[Che86] G.W. Cherry. Integration in Finite Terms with Special Functions:
the Logarithmic Integral. SIAM J. Computing, 15:1–21, 1986.

[Che89] G.W. Cherry. An Analysis of the Rational Exponential Integral.
SIAM J. Computing, 18:893–905, 1989.

[Chi53] F. Chiò. Mémoire sur les Fonctions Connues sous le nom des
Résultants ou des Déterminants. A Pons & Cie, 1853.

[CJ02] R.M. Corless and D.J. Jeffrey. The Wright ω Function. Artificial
Intelligence, pages 76–89, 2002.

[CKM97] S. Collart, M. Kalkbrener, and D. Mall. Converting Bases with the
Gröbner Walk. J. Symbolic Comp., 24:465–469, 1997.

[CLO06] D.A. Cox, J.B. Little, and D.B. O’Shea. Ideals, Varieties and Al-
gorithms. Springer–Verlag, 2006.

[CMR18] M. Ceria, T. Mora, and M. Roggero. A general framework for
Noetherian well ordered polynomial reductions. http://arxiv.

org/abs/1511.03234v2, 2018.

[CMXY09] C. Chen, M. Moreno Maza, B. Xia, and L. Yang. Computing Cylin-
drical Algebraic Decomposition via Triangular Decomposition. In
J. May, editor, Proceedings ISSAC 2009, pages 95–102, 2009.

[Coh03] P.M. Cohn. Further Algebra and Applications. Springer, 2003.

[Col71] G.E. Collins. The SAC-1 System: An Introduction and Survey. In
Proceedings SYMSAC 1971, 1971.

[Col75] G.E. Collins. Quantifier Elimination for Real Closed Fields by
Cylindrical Algebraic Decomposition. In Proceedings 2nd. GI Con-
ference Automata Theory & Formal Languages, pages 134–183,
1975.

[Col79] G.E. Collins. Factoring univariate integral polynomials in polyno-
mial average time. In Proceedings EUROSAM 79, pages 317–329,
1979.

http://arxiv.org/abs/1511.03234v2
http://arxiv.org/abs/1511.03234v2

BIBLIOGRAPHY 377

[Col85] G.E. Collins. The SAC-2 Computer Algebra System. In Proceedings
EUROCAL 85, pages 34–35, 1985.

[Col98] G.E. Collins. Quantifier elimination by cylindrical algebraic de-
composition — twenty years of progess. In B.F. Caviness and J.R.
Johnson, editors, Quantifier Elimination and Cylindrical Algebraic
Decomposition, pages 8–23. Springer Verlag, Wien, 1998.

[Col01] G.E. Collins. Polynomial Minimum Root Separation. J. Symbolic
Comp., 32:467–473, 2001.

[Cor02] R.M. Corless. Essential Maple 7 : an introduction for scientific
programmers. Springer-Verlag, 2002.

[Cox07] D.A. Cox. Gröbner Bases Tutorial Part II: A Sampler of Re-
cent Developments (slides). https://dacox.people.amherst.

edu/lectures/gb2.handout.pdf, 2007.

[CR88] M. Coste and M.-F. Roy. Thom’s Lemma, the Coding of Real
Algebraic Numbers and the Computation of the Topology of Semi-
Algebraic Sets. J. Symbolic Comp., 5:121–129, 1988.

[CW90] D. Coppersmith and S. Winograd. Matrix Multiplication via Arith-
metic Progressions. J. Symbolic Comp., 9:251–280, 1990.

[CZ81] D.G. Cantor and H. Zassenhaus. A New Algorithm for Factoring
Polynomials over Finite Fields. Math. Comp., 36:587–592, 1981.

[Cza89] S.R. Czapor. Solving Algebraic Equations: Combining Buch-
berger’s Algorithm with Multivariate Factorization. J. Symbolic
Comp., 7:49–53, 1989.

[Dah09] X. Dahan. Size of coefficients of lexicographical Gröbner bases:
the zero-dimensional, radical and bivariate case. In J. May, editor,
Proceedings ISSAC 2009, pages 119–126, 2009.

[Dav81] J.H. Davenport. On the Integration of Algebraic Functions, vol-
ume 102 of Springer Lecture Notes in Computer Science. Springer
Berlin–Heidelberg–New York (Russian ed. MIR Moscow 1985),
1981.

[Dav82a] J.H. Davenport. On the Parallel Risch Algorithm (I). In Proceedings
EUROCAM ’82 [Springer Lecture Notes in Computer Science 144,
pages 144–157, 1982.

[Dav82b] J.H. Davenport. On the Parallel Risch Algorithm (III): Use of
Tangents. SIGSAM Bulletin 3, 16:3–6, 1982.

[Dav84] J.H. Davenport. Intégration Algorithmique des fonctions
élémentairement transcendantes sur une courbe algébrique. An-
nales de l’Institut Fourier, 34:271–276, 1984.

https://dacox.people.amherst.edu/lectures/gb2.handout.pdf
https://dacox.people.amherst.edu/lectures/gb2.handout.pdf

378 BIBLIOGRAPHY

[Dav85] J.H. Davenport. Computer Algebra for Cylindrical Algebraic De-
composition. Technical Report TRITA-NA-8511 NADA KTH
Stockholm (Reissued as Bath Computer Science Technical Report
88-10), 1985. URL: http://staff.bath.ac.uk/masjhd/TRITA.

pdf.

[Dav86] J.H. Davenport. On the Risch Differential Equation Problem.
SIAM J. Comp., 15:903–918, 1986.

[Dav87] J.H. Davenport. Looking at a set of equations (Technical Report 87-
06, University of Bath Computer Science). http://staff.bath.

ac.uk/masjhd/TR87-06.pdf, 1987.

[Dav02] J.H. Davenport. Equality in computer algebra and beyond. J.
Symbolic Comp., 34:259–270, 2002.

[Dav10] J.H. Davenport. The Challenges of Multivalued “Functions”. In S.
Autexier et al., editor, Proceedings AISC/Calculemus/MKM 2010,
pages 1–12, 2010.

[DC09] J.H. Davenport and J. Carette. The Sparsity Challenges. In S.
Watt et al., editor, Proceedings SYNASC 2009, pages 3–7, 2009.

[DDDD85] J. Della Dora, C. DiCrescenzo, and D. Duval. About a new Method
for Computing in Algebraic Number Fields. In Proceedings EURO-
CAL 85, pages 289–290, 1985.

[DdO14] Z. Dvir and R.M. de Oliveira. Factors of Sparse Polynomials are
Sparse. http://arxiv.org/abs/1404.4834, 2014.

[de 78] H.F. de Groote. On varieties of optimal algorithms for the com-
putation of bilinear mappings i. the isotropy group of a bilinear
mapping. Theoretical Computer Science, 7:1–24, 1978.

[DF94] A. Dingle and R.J. Fateman. Branch cuts in computer algebra. In
Proceedings ISSAC 1994, pages 250–257, 1994.

[DFGS91] A. Dickenstein, N. Fitchas, M. Giusti, and C. Sessa. The Member-
ship Problem for Unmixed Polynomial Ideals is Solvable in Single
Exponential Time. Discrete Appl. Math., 33:73–94, 1991.

[DGT91] J.H. Davenport, P. Gianni, and B.M. Trager. Scratchpad’s View
of Algebra II: A Categorical View of Factorization. In S.M. Watt,
editor, Proceedings ISSAC 1991, pages 32–38, 1991.

[DH88] J.H. Davenport and J. Heintz. Real Quantifier Elimination is Dou-
bly Exponential. J. Symbolic Comp., 5:29–35, 1988.

[Dic13] L.E. Dickson. Finiteness of the odd perfect and primitive abundant
numbers with n prime factors. Amer. J. Math., 35:413–422, 1913.

http://staff.bath.ac.uk/masjhd/TRITA.pdf
http://staff.bath.ac.uk/masjhd/TRITA.pdf
http://staff.bath.ac.uk/masjhd/TR87-06.pdf
http://staff.bath.ac.uk/masjhd/TR87-06.pdf
http://arxiv.org/abs/1404.4834

BIBLIOGRAPHY 379

[Dix82] J.D. Dixon. Exact Solutions of Linear Equations Using p-adic
Methods. Numer. Math., 40:137–141, 1982.

[DJ80] J.H. Davenport and R.D. Jenks. MODLISP — an Introduction. In
Proceedings LISP80, 1980.

[DL08] J.H. Davenport and P. Libbrecht. The Freedom to Extend Open-
Math and its Utility. Mathematics in Computer Science 2(2008/9),
pages 379–398, 2008.

[DM90] J.H. Davenport and M. Mignotte. On Finding the Largest Root of
a Polynomial. Modélisation Mathématique et Analyse Numérique,
24:693–696, 1990.

[DN07] P. D’Alberto and A. Nicolau. Adaptive Strassen’s matrix multipli-
cation. In Proceedings Supercomputing 2007, pages 284–292, 2007.

[Dod66] C.L. Dodgson. Condensation of determinants, being a new and
brief method for computing their algebraic value. Proc. Roy. Soc.
Ser. A, 15:150–155, 1866.

[Doy99] N.J. Doye. Automated Coercion for Axiom. In S. Dooley, editor,
Proceedings ISSAC ’99, pages 229–235, 1999.

[DS97] A. Dolzmann and Th. Sturm. Redlog: Computer Algebra Meets
Computer Logic. ACM SIGSAM Bull. 2, 31:2–9, 1997.

[DS00] J.H. Davenport and G.C. Smith. Fast recognition of alternating
and symmetric groups. J. Pure Appl. Algebra, 153:17–25, 2000.

[DST86] J.H. Davenport, Y. Siret, and E. Tournier. Calcul Formel. Masson,
1986.

[DT81] J.H. Davenport and B.M. Trager. Factorization over finitely gener-
ated fields. In Proceedings SYMSAC 81, pages 200–205, 1981.

[DT85] J.H. Davenport and B.M. Trager. On the Parallel Risch Algorithm
(II). ACM TOMS, 11:356–362, 1985.

[DT90] J.H. Davenport and B.M. Trager. Scratchpad’s View of Algebra I:
Basic Commutative Algebra. In Proceedings DISCO ’90, 1990.

[Dub90] T.W. Dubé. The structure of polynomial ideals and Gröbner Bases.
SIAM J. Comp., 19:750–753, 1990.

[Duv87] D. Duval. Diverses Questions relatives au Calcul Formel avec les
Nombres Algébriques. Thèse d’Etat, 1987.

[EBD15] M. England, R. Bradford, and J.H. Davenport. Improving the Use
of Equational Constraints in Cylindrical Algebraic Decomposition.
In D. Robertz, editor, Proceedings ISSAC 2015, pages 165–172,
2015.

380 BIBLIOGRAPHY

[Ebe83] G.L. Ebert. Some comments on the modular approach to Grobner-
bases. ACM SIGSAM Bull., 17:28–32, 1983.

[EFG15] S. Eberhard, K. Ford, and B. Green. Invariable Generation of
the Symmetric Group. http://arxiv.org/pdf/1508.01870.pdf,
2015.

[EK95] A. Edelman and E. Kostlan. How Many Zeros of a Random Poly-
nomial are Real? Bull. (NS) A.M.S., 32:1–37, 1995.

[Erd49] P. Erdős. On the coefficients of the cyclotomic polynomial. Portu-
galiae Mathematica, 8:63–71, 1949.

[Est20] A. Esterov. Galois theory for general systems of polynomial equa-
tions. https://arxiv.org/abs/1801.08260v3, 2020.

[ESY06] A. Eigenwillig, V. Sharma, and C.K. Yap. Almost tight recursion
tree bounds for the Descartes method. In Proceedings ISSAC 2006,
pages 71–78, 2006.

[Evd94] S. Evdokimov. Factorization of polynomials over finite fields in
subexponential time under GRH (invited talk). In Proceedings 1st
Algorithmic Number Theory Symposium, pages 209–219, 1994.

[Fat03] R.J. Fateman. Comparing the speed of programs for sparse poly-
nomial multiplication. SIGSAM Bulletin 1, 37:4–15, 2003.

[Fau02] J.-C. Faugère. A New Efficient Algorithm for Computing Gröbner
Bases Without Reduction to Zero (F5). In T. Mora, editor, Pro-
ceedings ISSAC 2002, pages 75–83, 2002.

[FGHR13] J.-C. Faugère, P. Gaudry, L. Huot, and G. Renault. Polynomial
Systems Solving by Fast Linear Algebra. http://arxiv.org/abs/
1304.6039, 2013.

[FGK+94] B. Fuchssteiner, K. Gottheil, A. Kemper, O. Kluge, K. Morisse,
H. Naundorf, G. Oevel, T. Schulze, and W. Wiwianka. Mu-
PAD Multi Processing Algebra Data Tool Tutorial (version 1.2).
Birkhäuser Verlag, 1994.

[FGLM93] J.-C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient Compu-
tation of Zero-Dimensional Gröbner Bases by Change of Ordering.
J. Symbolic Comp., 16:329–344, 1993.

[FGT01] E. Fortuna, P. Gianni, and B. Trager. Degree reduction under
specialization. J. Pure Appl. Algebra, 164:153–163, 2001.

[fHN76] J.P. ffitch, P. Herbert, and A.C. Norman. Design Features of
COBALG. In R.D. Jenks, editor, Proceedings SYMSAC 76, pages
185–188, 1976.

http://arxiv.org/pdf/1508.01870.pdf
https://arxiv.org/abs/1801.08260v3
http://arxiv.org/abs/1304.6039
http://arxiv.org/abs/1304.6039

BIBLIOGRAPHY 381

[FIS15] R. Fukasaku, H. Iwane, and Y. Sato. Real Quantifier Elimination by
Computation of Comprehensive Gröbner Systems. In D. Robertz,
editor, Proceedings ISSAC 2015, pages 173–180, 2015.

[FIS16] R. Fukasaku, H. Iwane, and Y. Sato. Improving a CGS-QE Al-
gorithm. Mathematical Aspects of Computer and Information Sci-
ences, pages 231–235, 2016.

[FJLT07] K. Fukuda, A.N. Jensen, N. Lauritzen, and R. Thomas. The
generic Gröbner walk. Journal of Symbolic Computation, 42(3):298
– 312, 2007. URL: http://www.sciencedirect.com/science/

article/pii/S0747717106001003, doi:http://dx.doi.org/10.
1016/j.jsc.2006.09.004.

[FM89] D.J. Ford and J. McKay. Computation of Galois Groups from Poly-
nomials over the Rationals. Computer Algebra (Lecture Notes in
Pure and Applied Mathematics 113, 1989.

[FM17] J.-C. Faugère and C. Mou. Sparse FGLM algorithms. J. Symbolic
Comp., 80:538–569, 2017.

[Fou31] J. Fourier. Analyse des équations déterminées. Didot, 1831.

[FS56] A. Fröhlich and J.C. Shepherdson. Effective Procedures in Field
Theory. Phil. Trans. Roy. Soc. Ser. A 248(1955-6), pages 407–432,
1956.

[FSEDT14] J.-C. Faugère, M. Safey El Din, and V. Thibaut. On the complexity
of computing Gröbner bases for weighted homogeneous systems.
http://arxiv.org/abs/1412.7547, 2014.

[Ful69] W. Fulton. Algebraic Curves, An Introduction to Algebraic Geom-
etry. W.A. Benjamin Inc, 1969.

[FW18] B. Farb and J. Wolfson. Resolvent degree, Hilbert’s 13th Problem
and geometry. https://arxiv.org/abs/1803.04063, 2018.

[Gal79] É. Galois. Œuvres mathématiques. Gauthier-Villars (sous l’auspices
de la SMF), 1879.

[Gia89] P. Gianni. Properties of Gröbner bases under specializations. In
Proceedings EUROCAL 87, pages 293–297, 1989.

[GJ76] W.M. Gentleman and S.C. Johnson. Analysis of Algorithms, A
Case Study: Determinants of Matrices. ACM TOMS, 2:232–241,
1976.

[GJY75] J.H. Griesmer, R.D. Jenks, and D.Y.Y. Yun. SCRATCHPAD
User’s Manual. IBM Research Publication RA70, 1975.

http://www.sciencedirect.com/science/article/pii/S0747717106001003
http://www.sciencedirect.com/science/article/pii/S0747717106001003
https://doi.org/http://dx.doi.org/10.1016/j.jsc.2006.09.004
https://doi.org/http://dx.doi.org/10.1016/j.jsc.2006.09.004
http://arxiv.org/abs/1412.7547
https://arxiv.org/abs/1803.04063

382 BIBLIOGRAPHY

[GKP94] R.L. Graham, D.E. Knuth, and O. Patashnik. Concrete Mathe-
matics (2nd edition). Addison-Wesley, 1994.

[GKS15] A. Grabowski, A. Korni lowicz, and C. Schwarzweller. Equality in
Computer Proof-Assistants. In Proceedings 2015 Federated Confer-
ence on Computer Science and Information Systems, pages 45–54,
2015.

[GLL09] M. Giesbrecht, G. Labahn, and W. Lee. Symbolic-numeric sparse
interpolation of multivariate polynomials. J. Symbolic Comp.,
44:943–959, 2009.

[GM91] G. Gallo and B. Mishra. Efficient Algorithms and Bounds for Wu-
Ritt Characteristic Sets. In T. Mora and C. Traverso, editors, Pro-
ceedings MEGA 1990, pages 119–142, 1991.

[GMN+91] A. Giovini, T. Mora, G. Niesi, L. Robbiano, and C. Traverso. One
sugar cube, please, or selection strategies in the Buchberger algo-
rithm. In S.M. Watt, editor, Proceedings ISSAC 1991, pages 49–54,
1991.

[GN90] A. Giovini and G. Niesi. CoCoA: A User-Friendly System for Com-
mutative Algebra. In Proceedings DISCO ’90, 1990.

[Gol91] D. Goldberg. What Every Computer Scientist Should Know About
Floating-Point Arithmetic. ACM Comp. Surveys, 23:5–48, 1991.

[Gon84] G.H. Gonnet. Determining Equivalence of Expressions in Random
Polynomial Time. In Proceedings 16th ACM Symp. Theory of Com-
puting, pages 334–341, 1984.

[Gos78] R.W. Gosper Jr. A Decision Procedure for Indefinite Hypergeo-
metric Summation. Proc. Nat. Acad. Sci., 75:40–42, 1978.

[Gra37] C.H. Graeffe. Die Auflösulg der höheren numerischen Gleichungen.
F. Schulthess, 1837.

[Gre15] B. Grenet. Lacunaryx: Computing bounded-degree factors of lacu-
nary polynomials. http://arxiv.org/abs/1506.03726, 2015.

[HA10] A. Hashemi and G. Ars. Extended F5 criteria. J. Symbolic Comp.,
45:1330–1340, 2010.

[Ham07] S. Hammarling. Life as a developer of numerical software. Talk at
NAG Ltd AGM, 2007.

[Har16] G.H. Hardy. The Integration of Functions of a Single Variable (2nd.
ed.). Cambridge Tract 2, C.U.P., 1916. Jbuch. 46, 1916.

[Har11] M.C. Harrison. Explicit Solution By Radicals of Algebraic Curves
of Genus 5 or 6. http://arxiv.org/abs/1103.4946, 2011.

http://arxiv.org/abs/1506.03726
http://arxiv.org/abs/1103.4946

BIBLIOGRAPHY 383

[Has53] C.B. Haselgrove. Implementations of the Todd-Coxeter Algorithm
on EDSAC-1. Unpublished but see [Lee63], 1953.

[Has22] Amir Hashemi, editor. ISSAC ’22: Proceedings of the 2022 Inter-
national Symposium on Symbolic and Algebraic Computation, New
York, NY, USA, 2022. Association for Computing Machinery.

[HB78] D.R. Heath-Brown. Almost-primes in arithmetic progressions and
short intervals. Math. Proc. Camb. Phil. Soc., 83:357–375, 1978.

[HD03] A.J. Holt and J.H. Davenport. Resolving Large Prime(s) Variants
for Discrete Logarithm Computation. In P.G. Farrell, editor, Pro-
ceedings 9th IMA Conf. Coding and Cryptography, pages 207–222,
2003.

[HDB17] A. Hashemi, M. Dehghani Darmian, and M. Barkhordar. Gröbner
Systems Conversion. Math. Comput. Sci., 11:61–77, 2017.

[Hea71] A.C. Hearn. REDUCE 2: A system and language for algebraic
manipulation. In Proceedings of the second ACM symposium on
Symbolic and algebraic manipulation, pages 128–133, 1971.

[Hea05] A.C. Hearn. REDUCE: The First Forty Years. In T. Sturm A. Dolz-
mann, A. Seidl, editor, Proceedings A3L, pages 19–24. Books on De-
mand GmbH, 2005. URL: reduce-algebra.com/reduce40.pdf.

[Her72] E. Hermite. Sur l’intégration des fractions rationelles. Nouvelles
Annales de Mathématiques, 11:145–148, 1872.

[Hie92] J. Hietarinta. Solving the constant quantum Yang-Baxter equa-
tion in 2 dimensions with massive use of factorizing Gröbner basis
computations. In Proceedings ISSAC 1992, pages 350–357, 1992.

[Hie93] J. Hietarinta. Solving the two-dimensional constant quantum Yang-
Baxter equation J. Math. Phys. 34(1993) pp. 1725-1756. DOI
10.1063/1.530185, 1993.

[Hig02] N.J. Higham. Accuracy and Stability of Numerical Algorithms, 2nd
ed. SIAM, 2002.

[HKL16] C.J. Hillar, R. Krone, and A. Leykin. Equivariant Gröbner bases.
https://arxiv.org/abs/1610.02075, 2016.

[HKS19a] M.J. Heule, M. Kauers, and M. Seidl. A family of schemes for
multiplying 3×3 matrices with 23 coefficient multiplications. ACM
Communications in Computer Algebra, 53:118–121, 2019.

[HKS19b] M.J. Heule, M. Kauers, and M. Seidl. Local Search for Fast Matrix
Multiplication. https://arxiv.org/abs/1903.11391, 2019.

reduce-algebra.com/reduce40.pdf
https://arxiv.org/abs/1610.02075
https://arxiv.org/abs/1903.11391

384 BIBLIOGRAPHY

[HM16] J. Hu and M. Monagan. A fast polynomials sparse GCD algorithm.
In Proceedings of ISSAC 2016, pages 271–278, 2016.

[HNRS20] S.G. Hyun, V. Neiger, H. Rahkooy, and É. Schost. Block-Krylov
techniques in the context of sparse-FGLM algorithms. Journal of
Symbolic Computation, 98:163–191, 2020.

[Hon90] H. Hong. Improvements in CAD-Based Quantifier Elimination.
PhD thesis, OSU-CISRC-10/90-TR29 Ohio State University, 1990.

[Hor69] E. Horowitz. Algorithm for Symbolic Integration of Rational Func-
tions. PhD thesis, Univ. of Wisconsin, 1969.

[Hor71] E. Horowitz. Algorithms for Partial Fraction Decomposition and
Rational Function Integration. In Proceedings Second Symposium
on Symbolic and Algebraic Manipulation, pages 441–457, 1971.

[Hou59] A.S. Householder. Dandelin, Lobačevskĭıor Graeffe? Amer. Math.
Monthly, 66:464–466, 1959.

[HP07] H. Hong and J. Perry. Are Buchberger’s criteria necessary for the
chain condition? J. Symbolic Comp., 42:717–732, 2007.

[HTZ+09] M. Hemmer, E.P. Tsigaridas, Z. Zafeirakopoulos, I.Z. Emiris, M.I.
Karavelas, and B. Mourrain. Experimental evaluation and cross-
benchmarking of univariate real solvers. In Proceedings 3rd confer-
ence on Symbolic numeric computation, pages 45–54, 2009.

[Hua49] K. Hua, L. On the automorphisms of a sfield. Proc. Nat. Acad. Sci.
U. S. A., 35:386–389, 1949.

[Hur12] A. Hurwitz. Über den Satz von Budan-Fourier. Math. Annalen,
71:584–591, 1912.

[HvdH19] D. Harvey and J. van der Hoeven. Integer multiplication in time
O(n log n). https://hal.archives-ouvertes.fr/hal-02070778,
2019.

[HvdH22] D. Harvey and J. van der Hoeven. Polynomial Multiplication over
Finite Fields in Time O(n log n). J. ACM Issue 2, 69:1–40, 2022.

[HW79] G.H. Hardy and E.M. Wright. An Introduction to the Theory of
Numbers (5th. ed.). Clarendon Press, 1979.

[IEE85] IEEE. IEEE Standard 754 for Binary Floating-Point Arithmetic.
IEEE, 1985.

[IL80] O.H. Ibarra and B.S. Leininger. The Complexity of the Equivalence
Problem for Straight-line Programs. In Proceedings ACM STOC
1980, pages 273–280, 1980.

https://hal.archives-ouvertes.fr/hal-02070778

BIBLIOGRAPHY 385

[IPS11] I. Idrees, G. Pfister, and S. Steidel. Parallelization of Modular
Algorithms. J. Symbolic Comp., 46:672–684, 2011.

[Isa85] I.M. Isaacs. Solution of polynomials by real radicals. Amer. Math.
Monthly, 92:571–575, 1985.

[Jef10] D.J. Jeffrey. LU Factoring of Non-Invertible Matrices. Communi-
cations in Computer Algebra 1, 45:1–8, 2010.

[Jen79] Jenks.R.D. MODLISP. In Proceedings EUROSAM 79, pages 466–
480, 1979.

[JHM11] R. Jones, A. Hosking, and E. Moss. The garbage collection hand-
book: The Art of Automatic Memory Management (1st ed.). Chap-
man & Hall/CRC, 2011.

[Joh71] S.C. Johnson. On the Problem of Recognizing Zero. J. ACM,
18:559–565, 1971.

[Joh74] S.C. Johnson. Sparse Polynomial Arithmetic. In Proceedings EU-
ROSAM 74, pages 63–71, 1974.

[JR10] D.J. Jeffrey and A.D. Rich. Reducing Expression Size Using Rule-
Based Integration. In S. Autexier et al., editor, Proceedings CICM
2010, pages 234–246, 2010.

[JS92] R.D. Jenks and R.S. Sutor. AXIOM: The Scientific Computation
System. Springer-Verlag, 1992.

[Kac43] M. Kac. On the Average Number of Real Roots of a Random
Algebraic Equation. Bull. A.M.S., 49:314–320, 1943.

[Kah53] H.G. Kahrimanian. Analytic differentiation by a digital computer.
Master’s thesis, Temple U Philadelphia, 1953.

[Kal88] E. Kaltofen. Greatest Common Divisors of Polynomials given by
Straight-line Programs. J. ACM, 35:231–264, 1988.

[Kal89a] M. Kalkbrener. Solving systems of algebraic equations by using
Gröbner bases. In Proceedings EUROCAL 87, pages 282–292, 1989.

[Kal89b] E. Kaltofen. Factorization of Polynomials given by Straight-line
Programs. Randomness and Computation, pages 375–412, 1989.

[Kal95] E. Kaltofen. Effective Noether irreducibility forms and applications.
J. Computer System Sci., 50:274–295, 1995.

[Kal10] E. Kaltofen. Fifteen years after DSC and WLSS2 what parallel com-
putations I do today: invited lecture at PASCO 2010. In Proceed-
ings 4th International Workshop on Parallel and Symbolic Compu-
tation, pages 10–17, 2010.

386 BIBLIOGRAPHY

[Kar81] M. Karr. Summation in Finite Terms. J. ACM, 28:305–350, 1981.

[Kar84] N.K. Karmarkar. A New Polynomial-Time Algorithm for Linear
Programming. Combinatorica, 4:373–395, 1984.

[Kha79] L.G. Khachian. A polynomial algorithm in linear programming.
Doklay Akad. Nauk SSSR, 224:1093–1096, 1979.

[Kho91] A.G. Khovanskii. Fewnomials. Translations of Mathematical Mono-
graphs 88 (American Mathematical Society, 1991.

[KM17] J. Kluesner and M. Monagan. Computing GCDs of polynomials
modulo triangular sets. http://www.cecm.sfu.ca/CAG/papers/

john11.pdf, 2017.

[KM20] M. Kauers and J. Moosbauer. Good pivots for small sparse matri-
ces. Computer Algebra in Scientific Computing. CASC 2020, pages
358–367, 2020.

[KMS83] E. Kaltofen, D.R. Musser, and B.D. Saunders. A Generalized Class
of Polynomials That are Hard to Factor. SIAM J. Comp., 12:473–
483, 1983.

[KMS13] H. Khalil, B. Mourrain, and M. Schatzman. Superfast solution of
Toeplitz systems based on syzygy reduction. http://arxiv.org/

abs/1301.5798, 2013.

[Knu69] D.E. Knuth. The Art of Computer Programming, Vol. II, Seminu-
merical Algorithms. Addison-Wesley, 1969.

[Knu76] D.E. Knuth. Big Omicron and big Omega and big Theta. ACM
SIGACT News 2, 8:18–24, 1976.

[Knu81] D.E. Knuth. The Art of Computer Programming, Vol. II, Semi-
numerical Algorithms. Second Edition, 1981.

[Knu98] D.E. Knuth. The Art of Computer Programming, Vol. II, Semi-
numerical Algorithms (Third Edition). Addison-Wesley, 1998.

[KO63] A. Karatsuba and J. Ofman. Multiplication of multidigit numbers
on automata. Sov. Phys. Dokl., 7:595–596, 1963.

[Kol88] J. Kollár. Sharp effective nullstellensatz. J.A.M.S., 1:963–975, 1988.

[KPT12] P. Koiran, N. Portier, and S. Tavenas. A Wronskian approach to
the real τ -conjecture. http://arxiv.org/abs/1205.1015, 2012.

[KRW90] A. Kandri-Rody and V. Weispfenning. Non-commutative Gröbner
bases in algebras of solvable type. J. Symbolic Comp., 9:1–26, 1990.

[KS11] M. Kerber and M. Sagraloff. Root Refinement for Real Polynomials.
http://arxiv.org/abs/1104.1362, 2011.

http://www.cecm.sfu.ca/CAG/papers/john11.pdf
http://www.cecm.sfu.ca/CAG/papers/john11.pdf
http://arxiv.org/abs/1301.5798
http://arxiv.org/abs/1301.5798
http://arxiv.org/abs/1205.1015
http://arxiv.org/abs/1104.1362

BIBLIOGRAPHY 387

[KSD16] M. Košta, T. Sturm, and A. Dolzmann. Better answers to real
questions. J. Symbolic Comp., 74:255–275, 2016.

[KU08] K. Kedlaya and C. Umans. Fast modular composition in any char-
acteristic. In Proceedings of the 49th Annual IEEE Symposium on
Foundations of Computer Science, pages 146–155, 2008.

[KY20] D. Kapur and Y. Yang. An Algorithm for Computing a Minimal
Comprehensive Gröbner Basis of a Parametric Polynomial System.
https://arxiv.org/abs/2003.07957, 2020.

[Lad76] J.D. Laderman. A Non-Commutative Algorithm for Multiplying
3 × 3 Matrices Using 23 Multiplications. Bull. Amer. Math. Soc.,
82:126–128, 1976.

[Lan05] E. Landau. Sur Quelques Théorèmes de M. Petrovic Relatif aux
Zéros des Fonctions Analytiques. Bull. Soc. Math. France, 33:251–
261, 1905.

[Lan66] S. Lang. Introduction to Transcendental Numbers. Addison-
Wesley, 1966.

[Lan06] J.M. Landsberg. The border rank of the multiplication of 2 × 2
matrices is seven. J. Amer. Math. Soc., 19:447–459, 2006.

[Lap06] S. Laplagne. An algorithm for the computation of the radical of an
ideal. In Proceedings ISSAC 2006, pages 191–195, 2006.

[Lau82] M. Lauer. Computing by Homomorphic Images. Symbolic and Alge-
braic Computation (Computing Supplementum 4) Springer-Verlag,
pages 139–168, 1982.

[Laz83] D. Lazard. Gröbner Bases, Gaussian Elimination and Resolution
of Systems of Algebraic Equations. In Proceedings EUROCAL 83,
pages 146–157, 1983.

[Laz88] D. Lazard. Quantifier Elimination: Optimal Solution for Two Clas-
sical Problems. J. Symbolic Comp., 5:261–266, 1988.

[Laz91] D. Lazard. A New Method for Solving Algebraic Systems of Positive
Dimension. Discrete Appl. Math., 33:147–160, 1991.

[Laz92] D. Lazard. Solving Zero-dimensional Algebraic Systems. J. Sym-
bolic Comp., 13:117–131, 1992.

[Laz94] D. Lazard. An Improved Projection Operator for Cylindrical Al-
gebraic Decomposition. In C.L. Bajaj, editor, Proceedings Alge-
braic Geometry and its Applications: Collections of Papers from
Shreeram S. Abhyankar’s 60th Birthday Conference, pages 467–476,
1994.

https://arxiv.org/abs/2003.07957

388 BIBLIOGRAPHY

[Laz09] D. Lazard. Thirty years of Polynomial System Solving, and now?
J. Symbolic Comp., 44:222–231, 2009.

[Lec08] G. Lecerf. Fast separable factorization and applications. AAECC,
19:135–160, 2008.

[Lee63] J. Leech. Coset Enumeration on Digital Computers. Proc. Cam.
Phil. Soc., 59:257–267, 1963.

[Leh38] Derrick H Lehmer. Euclid’s algorithm for large numbers. The
American Mathematical Monthly, 45(4):227–233, 1938.

[Len87] A.K. Lenstra. Factoring Multivariate Polynomials over Algebraic
Number Fields. SIAM J. Comp., 16:591–598, 1987.

[Len99a] H.W. Lenstra Jr. Finding small degree factors of lacunary polyno-
mials. Number theory in progress, pages 267–276, 1999.

[Len99b] H.W. Lenstra Jr. On the factorization of lacunary polynomials.
Number theory in progress, pages 277–291, 1999.

[LG14] F. Le Gall. Algebraic Complexity Theory and Matrix Multipli-
cation. In K. Nabeshima, editor, Proceedings ISSAC 2014, pages
23–23, 2014.

[Lic84] T. Lickteig. A note on border rank. Inform. Process. Lett., 18:173–
178, 1984.

[Lic11] D. Lichtblau. Mathematica’s
√
x2. Private Communication, 2011.

[LL14] A. Lerario and E. Lundberg. Statistics on Hilbert’s Sixteenth Prob-
lem. International Mathematics Research Notices, 2015:4293–4321,
2014.

[LLL82] A.K. Lenstra, H.W. Lenstra Jun., and L. Lovász. Factoring Poly-
nomials with Rational Coefficients. Math. Ann., 261:515–534, 1982.

[LM18] J.M. Landsberg and M. Micha lek. A 2n2− log2(n)−1 lower bound
for the border rank of matrix multiplication. Int. Math. Res. Not.
IMRN, 15:4722–4733, 2018.

[LN97] R. Lidl and H. Niederreiter. Finite Fields: volume 20 of Encyclo-
pedia of Mathematics and its Applications. Cambridge University
Press, 1997.

[LO11] J. Landsberg and G. Ottaviani. New lower bounds for the border
rank of matrix multiplication. http://arxiv.org/abs/1112.6007,
2011.

[Loo82] R. Loos. Generalized Polynomial Remainder Sequences. Sym-
bolic and Algebraic Computation (Computing Supplementum 4)
Springer-Verlag, pages 115–137, 1982.

http://arxiv.org/abs/1112.6007

BIBLIOGRAPHY 389

[LPJ14] K. Liiva, G.O. Passmore, and P.B. Jackson. A note on real
quantifier elimination by virtual term substitution of unbounded
degree. https://homepages.inf.ed.ac.uk/pbj/papers/pas14.

pdf, 2014.

[LR76] M.J. Levine and R. Roskies. ASHMEDAI and a large algebraic
problem. In Proceedings of the third ACM symposium on Symbolic
and algebraic computation, pages 359–364, 1976.

[LR90] D. Lazard and R. Rioboo. Integration of Rational Functions —
Rational Computation of the Logarithmic Part. J. Symbolic Comp.,
9:113–115, 1990.

[LR01] T. Lickteig and M.-F. Roy. Sylvester-Habicht Sequences and Fast
Cauchy Index Computation. J. Symbolic Comp., 31:315–341, 2001.

[LRW03] T.-Y. Li, J.M. Rojas, and X. Wang. Counting Real Connected
Components of Trinomial Curves Intersections and m-nomial Hy-
persurfaces. Discrete and Computational Geometry, 30:379–414,
2003.

[LV40] U. Le Verrier. Sur les variations séculaires des éléments elliptiques
des sept planètes principales: Mercurce, Vénus, La Terre, Mars,
Jupiter, Saturne et Uranus. J. Math. Pure Appl., 4:220–254, 1840.

[Mah64] K. Mahler. An Inequality for the Discriminant of a Polynomial.
Michigan Math. J., 11:257–262, 1964.

[Mak86] O.M. Makarov. An algorithm for multiplication of 3 × 3 matri-
ces. USSR Computational Mathematics and Mathematical Physics,
26:179–180, 1986.

[Mar57] H.M. Markowitz. The elimination form of the inverse and its ap-
plication to linear programming. Management Science, 3:255–269,
1957.

[McC84] S. McCallum. An Improved Projection Operation for Cylindrical
Algebraic Decomposition. PhD thesis, University of Wisconsin-
Madison Computer Science, 1984.

[McC88] S. McCallum. An Improved Projection Operation for Cylindrical
Algebraic Decomposition of Three-dimensional Space. J. Symbolic
Comp., 5:141–161, 1988.

[McC99] S. McCallum. On Projection in CAD-Based Quantifier Elimina-
tion with Equational Constraints. In S. Dooley, editor, Proceedings
ISSAC ’99, pages 145–149, 1999.

[McC01] S. McCallum. On Propagation of Equational Constraints in CAD-
Based Quantifier Elimination. In B. Mourrain, editor, Proceedings
ISSAC 2001, pages 223–230, 2001.

https://homepages.inf.ed.ac.uk/pbj/papers/pas14.pdf
https://homepages.inf.ed.ac.uk/pbj/papers/pas14.pdf

390 BIBLIOGRAPHY

[MF71] W.A. Martin and R.J. Fateman. The MACSYMA System. In
Proceedings Second Symposium on Symbolic and Algebraic Manip-
ulation, pages 59–75, 1971.

[MGH+03] M.B. Monagan, K.O. Geddes, K.M. Heal, G. Labahn, S.M. Vorkoet-
ter, J. McCarron, and P. DeMarco. Maple 9 : introductory pro-
gramming guide. Maplesoft, 2003.

[Mig74] M. Mignotte. An Inequality about Factors of Polynomials. Math.
Comp., 28:1153–1157, 1974.

[Mig81] M. Mignotte. Some Inequalities About Univariate Polynomials. In
Proceedings SYMSAC 81, pages 195–199, 1981.

[Mig82] M. Mignotte. Some Useful Bounds. Symbolic and Algebraic Compu-
tation (Computing Supplementum 4) Springer-Verlag, pages 259–
263, 1982.

[Mig89] M. Mignotte. Mathématiques pour le Calcul Formel. PUF, 1989.

[Mig00] M. Mignotte. Bounds for the roots of lacunary polynomials. J.
Symbolic Comp., 30:325–327, 2000.

[MM82] E. Mayr and A. Meyer. The Complexity of the Word Problem for
Commutative Semi-groups and Polynomial Ideals. Adv. in Math.,
46:305–329, 1982.

[MM84] H.M. Möller and F. Mora. Upper and Lower Bounds for the Degree
of Groebner Bases. In J.P. Fitch, editor, Proceedings EUROSAM
84, pages 172–183, 1984.

[MMN89] H. Melenk, H.M. Möller, and W. Neun. Symbolic Solution of Large
Stationary Chemical Kinetics Problems. Impact of Computing in
Sci. and Eng., 1:138–167, 1989.

[Moe73] R. Moenck. Fast Computation of GCDs. In Proceedings Fifth An-
nual ACM Symposium of Theory of Computing, pages 142–151,
1973.

[Mon05] P.L. Montgomery. Five, Six, and Seven-Term Karatsuba-Like For-
mulae. IEEE Trans. Computers, 54:362–369, 2005.

[Mon09] D. Monniaux. Fatal Degeneracy in the Semidefinite Program-
ming Approach to the Decision of Polynomial Inequalities. http:

//arxiv.org/abs/0901.4907, 2009.

[Mon20] M.B. Monagan. Sparse polynomial interpolation and computing
roots of polynomials over finite fields (Slides). Presentation at
Maple Conference 2020, 2020.

http://arxiv.org/abs/0901.4907
http://arxiv.org/abs/0901.4907

BIBLIOGRAPHY 391

[Mor86] F. Mora. Groebner Bases for Non-commutative Polynomial Rings.
In Proceedings AAECC-3, pages 353–362, 1986.

[Mos71] J. Moses. Algebraic Simplification — A Guide for the Perplexed.
Comm. ACM, 14:527–537, 1971.

[MP08] M. Monagan and R. Pearce. Parallel sparse polynomial multiplica-
tion using heaps. In D.J.Jeffrey, editor, Proceedings ISSAC 2008,
pages 263–270, 2008.

[MP11] M. Monagan and R. Pearce. Sparse polynomial division using a
heap. J. Symbolic Comp., 46:807–822, 2011.

[MP12] M. Monagan and R. Pearce. POLY : A new polynomial data struc-
ture for Maple 17. Comm. Computer Algebra, 46:164–167, 2012.

[MP13] M. Monagan and R. Pearce. POLY : A new polynomial data struc-
ture for Maple 17. To appear in Proc. ASCM 2012, 2013.

[MP14] M. Monagan and R. Pearce. The design of Maple’s sum-of-products
and POLY data structures for representing mathematical objects.
ACM Comm. Computer Algebra, 48:166–186, 2014.

[MP22] Michael Monagan and Garrett Paluck. Linear Hensel Lifting for
Zp[x, y] for n Factors with Cubic Cost. In Hashemi [Has22], pages
159–166.

[MPP19] S. McCallum, A. Parusiński, and L. Paunescu. Validity proof of
Lazard’s method for CAD construction. J. Symbolic Comp., 92:52–
69, 2019.

[MR88] F. Mora and L. Robbiano. The Gröbner fan of an ideal. J. Symbolic
Comp., 6:183–208, 1988.

[MR10] E.W. Mayr and S. Ritscher. Degree Bounds for Gröbner Bases of
Low-Dimensional Polynomial Ideals. In S.M. Watt, editor, Proceed-
ings ISSAC 2010, pages 21–28, 2010.

[MR11] E.W. Mayr and S. Ritscher. Space efficient Gröbner basis compu-
tation without degree bounds. In Proceedings ISAAC 2011, pages
257–264, 2011.

[Mul97] T. Mulders. A note on subresultants and the
Lazard/Rioboo/Trager formula in rational function integration. J.
Symbolic Comp., 24:45–50, 1997.

[Mus78] D.R. Musser. On the efficiency of a polynomial irreducibility test.
J. ACM, 25:271–282, 1978.

[MW51] J.C.P. Miller and D.J. Wheeler. Large Prime Numbers. Nature,
168:838, 1951.

392 BIBLIOGRAPHY

[MW12] S. McCallum and V. Weispfenning. Deciding polynomial-
transcendental problems. J. Symbolic Comp., 47:16–31, 2012.

[Nak19] V. Nakos. Nearly Optimal Sparse Polynomial Multiplication.
https://arxiv.org/abs/1901.09355, 2019.

[Nat10] National Institute for Standards and Technology. The NIST Digital
Library of Mathematical Functions. http://dlmf.nist.gov, 2010.

[Neu95] J. Neubüser. Re: Origins of GAP. Message m0t5WVW-
00075GC.951018.121802@astoria.math.rwth-aachen.de to GAP-
Forum on 18.10.95, 1995.

[NM77] A.C. Norman and P.M.A. Moore. Implementing the New Risch
Integration Algorithm. In Proceedings 4th. Int. Colloquium on Ad-
vanced Computing Methods in Theoretical Physics, pages 99–110,
1977.

[NM92] W. Neun and H. Melenk. Very large Gröbner basis calculations.
Computer Algebra and Parallelism, pages 89–99, 1992.

[Nol53] J. Nolan. Analytic differentiation on a digital computer. Master’s
thesis, Math. Dept. M.I.T., 1953.

[NS20] V. Neiger and É. Schost. Computing syzygies in finite dimension
using fast linear algebra. Journal of Complexity Article 101502, 60,
2020.

[Ost45] M.W. Ostrogradski. De l’intégration des fractions rationelles. Bull.
Acad. Imp. Sci. St. Petersburg (Class Phys.-Math.), 4:145–167,
1845.

[Pan02] V.Y. Pan. Univariate Polynomials: Nearly Optimal Algorithms
for Numerical Factorization and Root-finding. J. Symbolic Comp.,
33:701–733, 2002.

[Pau07] F. Pauer. Gröbner bases with coefficients in rings. J. Symbolic
Computation, 42:1003–1011, 2007.

[Per09] J. Perry. An extension of Buchberger’s criteria for Groebner basis
decision. http://arxiv.org/abs/0906.4358, 2009.

[Pla77] D.A. Plaisted. Sparse Complex Polynomials and Irreducibility. J.
Comp. Syst. Sci., 14:210–221, 1977.

[PPR15] R. Pemantle, Y. Peres, and I. Rivin. Four random permutations
conjugated by an adversary generate Sn with high probability. Ran-
dom Structures & Algorithms, 49:409–428, 2015.

https://arxiv.org/abs/1901.09355
http://dlmf.nist.gov
http://arxiv.org/abs/0906.4358

BIBLIOGRAPHY 393

[PPR21] D. Pavlov, G. Pogudin, and Y. Razmyslov. From algebra to anal-
ysis: new proofs of theorems by Ritt and Seidenberg. https:

//arxiv.org/abs/2107.03012, 2021.

[PQR09] A. Platzer, J.-D. Quesel, and P. Rümmer. Real World Verification.
In R.A. Schmidt, editor, Proceedings CADE 2009, pages 485–501,
2009.

[PR20] D. Perrucci and M.-F. Roy. A new general formula for the Cauchy
index on an interval with subresultants. To appear in Journal of
Symbolic Computation, 2020.

[Pri03] H.A. Priestley. Introduction to Complex Analysis (second edition).
Oxford University Press, 2003.

[PRT22] P. Pébay, J.M. Rojas, and D.C. Thompson. Sturm’s Theorem with
Endpoints. https://arxiv.org/abs/2208.07904, 2022.

[PW85] R. Pavelle and P.S. Wang. MACSYMA from F to G. J. Symbolic
Comp., 1:69–100, 1985.

[Rab80] M.O. Rabin. Probabilistic Algorithm for Testing Primality. J.
Number Theory, 12:128–138, 1980.

[RESW14] S. Ruggieri, P. Eirinakis, K. Subramani, and P. Woj-
ciechowski. On the complexity of quantified linear sys-
tems. Theoretical Computer Science, 518:128–135, 2014.
URL: http://www.sciencedirect.com/science/article/pii/

S0304397513005781, doi:http://dx.doi.org/10.1016/j.tcs.

2013.08.001.

[Reu96] C. Reutenauer. Inversion height in free fields. Selecta Mathematica
New Series, 2:93–109, 1996.

[Ric68] D. Richardson. Some Unsolvable Problems Involving Elementary
Functions of a Real Variable. Journal of Symbolic Logic, 33:514–
520, 1968.

[Ric97] D.S. Richardson. How to Recognize Zero. J. Symbolic Comp.,
24:627–645, 1997.

[Ris69a] R.H. Risch. Further Results on Elementary Functions. Technical
Report RC 2402 IBM Yorktown Heights, 1969.

[Ris69b] R.H. Risch. The Problem of Integration in Finite Terms. Trans.
A.M.S., 139:167–189, 1969.

[Ris70] R.H. Risch. The Solution of the Problem of Integration in Finite
Terms. Bulletin A.M.S., 76:605–608, 1970.

https://arxiv.org/abs/2107.03012
https://arxiv.org/abs/2107.03012
https://arxiv.org/abs/2208.07904
http://www.sciencedirect.com/science/article/pii/S0304397513005781
http://www.sciencedirect.com/science/article/pii/S0304397513005781
https://doi.org/http://dx.doi.org/10.1016/j.tcs.2013.08.001
https://doi.org/http://dx.doi.org/10.1016/j.tcs.2013.08.001

394 BIBLIOGRAPHY

[Ris79] R.H. Risch. Algebraic Properties of the Elementary Functions of
Analysis. Amer. J. Math., 101:743–759, 1979.

[Ris85] J.-J. Risler. Additive Complexity of Real Polynomials. SIAM J.
Comp., 14:178–183, 1985.

[Ris88] J.-J. Risler. Some Aspects of Complexity in Real Algebraic Geom-
etry. J. Symbolic Comp., 5:109–119, 1988.

[Rit32] J.F. Ritt. Differential Equations from an Algebraic Standpoint. Vol-
ume 14. American Mathematical Society, 1932.

[Rit48] J.F. Ritt. Integration in Finite Terms: Liouville’s Theory of Ele-
mentary Methods. Columbia University Press, 1948.

[Rob85] L. Robbiano. Term orderings on the Polynomial Ring. In Proceed-
ings EUROCAL 85, pages 513–525, 1985.

[Roc14] D.S. Roche. Polynomial interpolation. Private Communication,
2014.

[Rot76] M. Rothstein. Aspects of Symbolic Integration and Simplification
of Exponential and Primitive Functions. PhD thesis, Univ. of Wis-
consin, 1976.

[RR90] J.-J. Risler and F. Ronga. Testing Polynomials. J. Symbolic Comp.,
10:1–5, 1990.

[RS79] A.D. Rich and D.R. Stoutemyer. Capabilities of the MUMATH-79
Computer Algebra System for the INTEL-8080 Microprocessor. In
Proceedings EUROSAM 79, pages 241–248, 1979.

[RS92] A.D. Rich and D.R. Stoutemyer. DERIVE Reference Manual. Soft-
Warehouse, 1992.

[RS13] A.D. Rich and D.R. Stoutemyer. Representation, simplification
and display of fractional powers of rational numbers in computer
algebra. http://arxiv.org/abs/1302.2169, 2013.

[RS22] Clemens G. Raab and Michael F. Singer, editors. Integration in
Finite Terms: Fundamental Sources. Springer, 2022. URL: https:
//doi.org/10.1007/978-3-030-98767-1.

[Rup86] W.M. Ruppert. Reduzibilität ebener Kurven. J. Reine Angew.
Math., 369:167–191, 1986.

[Sag14] M. Sagraloff. A Near-Optimal Algorithm for Computing Real Roots
of Sparse Polynomials. In K. Nabeshima, editor, Proceedings ISSAC
2014, pages 359–366, 2014.

http://arxiv.org/abs/1302.2169
https://doi.org/10.1007/978-3-030-98767-1
https://doi.org/10.1007/978-3-030-98767-1

BIBLIOGRAPHY 395

[Sch71] A. Schönhage. Partial and total matrix multiplication. SIAM J.
Comp., 10:434–455, 1971.

[Sch82] A. Schönhage. The Fundamental theorem of Algebra in Terms of
Computational Complexity. Tech. Rep. U. Tübingen, 1982.

[Sch00a] A. Schinzel. Polynomials with Special Regard to Irreducibility.
C.U.P., 2000.

[Sch00b] C. Schneider. An implementation of Karr’s summation algorithm
in Mathematica. Sém. Lothar. Combin., S43b:1–20, 2000.

[Sch03a] A. Schinzel. On the greatest common divisor of two univariate
polynomials, I. In A Panorama of number theory or the view from
Baker’s garden, pages 337–352. C.U.P., 2003.

[Sch03b] H. Schönemann. Singular in a Framework for Polynomial Compu-
tations. Algebra Geometry and Software Systems, pages 163–176,
2003.

[Sch04] C. Schneider. Symbolic Summation with Single-Sum Extensions.
In J. Gutierrez, editor, Proceedings ISSAC 2004, pages 282–289,
2004.

[Sch06] A. Schönhage. Polynomial root separation examples. J. Symbolic
Comp. 1080-1090, 41, 2006.

[Sch15] H. Schönemann. Geobuckets in SINGULAR. Personal Communi-
cation, 2015.

[Sco15] M. Scott. Missing a trick: Karatsuba variations. http://eprint.

iacr.org/2015/1247.pdf, 2015.

[SD69] H.P.F. Swinnerton-Dyer. Letter to E.R. Berlekamp. Mentioned in
[Ber70], 1969.

[Sed17a] A. Sedoglavic. A non-commutative algorithm for multiplying 5x5
matrices using 99 multiplications. https://arxiv.org/abs/1707.
06860, 2017.

[Sed17b] A. Sedoglavic. A non-commutative algorithm for multiplying (7 ×
7) matrices using 250 multiplications. https://arxiv.org/abs/

1712.07935, 2017.

[Sei54] A. Seidenberg. A new decision method for elementary algebra. Ann.
Math., 60:365–374, 1954.

[Sei74] A. Seidenberg. Constructions in Algebra. Trans. A.M.S., 197:273–
313, 1974.

http://eprint.iacr.org/2015/1247.pdf
http://eprint.iacr.org/2015/1247.pdf
https://arxiv.org/abs/1707.06860
https://arxiv.org/abs/1707.06860
https://arxiv.org/abs/1712.07935
https://arxiv.org/abs/1712.07935

396 BIBLIOGRAPHY

[Sen08] J.R. Sendra. Algebraic Curves Soluble by Radicals. http://arxiv.
org/abs/0805.3214, 2008.

[SGV94] A. Schönhage, A.F.W. Grotefeld, and E. Vetter. Fast Algo-
rithms: A Multitape Turing Machine Implementation. BI Wis-
senschaftsverlag, 1994.

[Sla61] J. Slagle. A Heuristic Program that Solves Symbolic Integration
Problems in Freshman Calculus. PhD thesis, M.I.T., 1961.

[Slo07] N.J.A. Sloane. The Online Encyclopedia of Integer Sequences.
http://www.research.att.com/~njas/sequences, 2007.

[Smi76] J. Smit. The Efficient Calculation of Symbolic Determinants. In
R.D. Jenks, editor, Proceedings SYMSAC 76, pages 105–113, 1976.

[Smi79] J. Smit. New Recursive Minor Expansion Algorithms, a Presen-
tation in a Comparative Context. In Proceedings EUROSAM 79,
pages 74–87, 1979.

[Smi13] A.V. Smirnov. The bilinear complexity and practical algorithms
for matrix multiplication. Computational Mathematics and Math-
ematical Physics, 53:1781–1795, 2013.

[SS71] A. Schönhage and V. Strassen. Schnelle Multiplikation großer
Zahlen. Computing, 7:282–292, 1971.

[SS06] A.P. Sexton and V. Sorge. Abstract matrices in symbolic compu-
tation. In Proceedings ISSAC 2006, pages 318–325, 2006.

[SS11] J. Schicho and D. Sevilla. Effective radical parametrization of trig-
onal curves. http://arxiv.org/abs/1104.2470, 2011.

[ST15] J.H. Silverman and J. Tate. Rational Points on Elliptic Curves (2nd
edition). Springer-Verlag, 2015.

[Ste74] G. Stengle. A Nullstellensatz and a Positivstellensatz in Semialge-
braic Geometry. Mathematische Annalen, 207:87–97, 1974.

[Sto77] D.R. Stoutemyer. sin(x)**2 + cos(x)**2 = 1. In Proceedings 1977
MACSYMA Users’ Conference, pages 425–433, 1977.

[Sto11a] D. Stoutemyer. Ten commandments for good default expression
simplification. J. Symbolic Comp., 46:859–887, 2011.

[Sto11b] D. Stoutemyer. Ways to implement computer algebra compactly.
Comm. Computer Algrebra, 178:199–224, 2011.

[Sto13] D.R. Stoutemyer. Can the Eureqa Symbolic Regression Program,
Computer Algebra, and Numerical Analysis Help Each Other? No-
tices A.M.S., 60:713–724, 2013.

http://arxiv.org/abs/0805.3214
http://arxiv.org/abs/0805.3214
http://www.research.att.com/~njas/sequences
http://arxiv.org/abs/1104.2470

BIBLIOGRAPHY 397

[Str69] V. Strassen. Gaussian Elimination is not Optimal. Numer. Math.,
13:354–356, 1969.

[Str74] H. Strubbe. Manual for SCHOONSCHIP. Computer Physics Com-
munications, 8:1–30, 1974.

[Str79] H. Strubbe. Development of the SCHOONSCHIP program. Com-
puter Physics Communications, 18:1–5, 1979.

[Stu96] T. Sturm. Real quadratic quantifier elimination in RISA/ASIR.
Technical Report Memorandum ISIS-RM-5E ISIS Fujitsu Labora-
tories Limited, 1996.

[SV94] A. Schönhage and E. Vetter. A new approach to resultant compu-
tations and other algorithms with exact division. European Sym-
posium on Algorithms, pages 448–459, 1994.

[Tak10] D. Takahashi. Parallel implementation of multiple-precision arith-
metic and 2,576,980,370,000 decimal digits of π calculation. Parallel
Computing, 36:439–448, 2010.

[Tar51] A. Tarski. A Decision Method for Elementary Algebra and Geome-
try. 2nd ed., Univ. Cal. Press. Reprinted in Quantifier Elimination
and Cylindrical Algebraic Decomposition (ed. B.F. Caviness & J.R.
Johnson), Springer-Verlag, Wein-New York, 1998, pp. 24–84., 1951.

[TE07] E.P. Tsigaridas and I.Z. Emiris. Univariate polynomial real root
isolation: Continued Fractions revisited. Proc. 14th European
Symp. Algorithms, Springer Lecture Notes in Computer Science,
4168:817–828, 2007.

[Tra76] B.M. Trager. Algebraic Factoring and Rational Function Integra-
tion. In R.D. Jenks, editor, Proceedings SYMSAC 76, pages 219–
226, 1976.

[Tra84] B.M. Trager. Integration of Algebraic Functions. PhD thesis, M.I.T.
Dept. of Electrical Engineering and Computer Science, 1984.

[Tra88] C. Traverso. Gröbner trace algorithms. In P. Gianni, editor, Pro-
ceedings ISSAC 1988, pages 125–138, 1988.

[Tra00] Q.-N. Tran. A Fast Algorithm for Gröbner Basis Conversion and
its Applications. J. Symbolic Comp., 30:451–467, 2000.

[Tri78] W. Trinks. Über B. Buchbergers Verfahren, Systeme algebraischer
Gleichungen zu lösen. J. Number Theory, 10:475–488, 1978.

[UDE22] A.K. Uncu, J.H. Davenport, and M. England. SMT-Solving Com-
binatorial Inequalities. To appear in Proc. SCSC 2022, 2022.

398 BIBLIOGRAPHY

[vdHM20] Joris van der Hoeven and Michael Monagan. Implementing the
Tangent Graeffe Root Finding Method. In Bigatti et al. [BCD+20],
pages 482–492.

[vdW34] B.L. van der Waerden. Die Seltenheit der Gleichungen mit Affekt.
Mathematische Annalen, 109:13–16, 1934.

[VEB18] F. Vale-Enriquez and C.W. Brown. Polynomial Constraints and
Unsat Cores in TARSKI. In J.H. Davenport, M. Kauers, G. Labahn,
and J. Urban, editors, Proceedings Mathematical Software — ICMS
2018, pages 466–474, 2018.

[vH02] M. van Hoeij. Factoring polynomials and the knapsack problem. J.
Number Theory, 95:167–189, 2002.

[vH15] M. van Hoeij. Groebner basis in Boolean rings is not polynomial-
space. http://arxiv.org/abs/1502.07220, 2015.

[vH23] M. von Hippel. A Crucial Particle Physics Computer Pro-
gram Risks Obsolescence. https://www.wired.com/story/

a-crucial-particle-physics-computer-program-risks-obsolescence/,
2023.

[vHM02] M. van Hoeij and M. Monagan. A Modular GCD Algorithm over
Number Fields Presented with Multiple Extensions. In T. Mora,
editor, Proceedings ISSAC 2002, pages 109–116, 2002.

[vHM04] M. van Hoeij and M. Monagan. Algorithms for Polynomial GCD
Computation over Algebraic Function Fields. In J Gutierrez, editor,
Proceedings ISSAC 2004, pages 297–304, 2004.

[vHM16] M. van Hoeij and M. Monagan. A Modular Algorithm for Comput-
ing Polynomial GCDs over Number Fields presented with Multiple
Extensions. http://arxiv.org/abs/1601.01038, 2016.

[Vor10] S. Vorkoetter. Maple kernel. E-mail
4BF15DC8.7030207@maplesoft.com, 2010.

[vT83] E.W. von Tschirnhaus. Methodus auferendi omnes terminos inter-
medios ex data aeqvatione. Acta Eruditorium, ?:204–207, 1683.

[VW12] V. Vassilevska Williams. ”multiplying matrices faster than
coppersmith-winograd”. In Proceedings of the 44th symposium on
Theory of Computing, STOC ’12, pages 887–898, New York, NY,
USA, 2012. ACM. URL: http://doi.acm.org/10.1145/2213977.
2214056, doi:10.1145/2213977.2214056.

[vzG85] J. von zur Gathen. Irreducibility of multivariate polynomials. J.
Computer Syst. Sci., 31:225–264, 1985.

http://arxiv.org/abs/1502.07220
https://www.wired.com/story/a-crucial-particle-physics-computer-program-risks-obsolescence/
https://www.wired.com/story/a-crucial-particle-physics-computer-program-risks-obsolescence/
http://arxiv.org/abs/1601.01038
http://doi.acm.org/10.1145/2213977.2214056
http://doi.acm.org/10.1145/2213977.2214056
https://doi.org/10.1145/2213977.2214056

BIBLIOGRAPHY 399

[vzGG99] J. von zur Gathen and J. Gerhard. Modern Computer Algebra.
C.U.P., 1999.

[vzGG13] J. von zur Gathen and J. Gerhard. Modern Computer Algebra (3rd
edition). Cambridge University Press New York, 2013.

[vzGP01] J. von zur Gathen and D. Panario. Factoring Polynomials Over
Finite Fields: A Survey. J. Symbolic Comp., 31:3–17, 2001.

[vzGS92] J. von zur Gathen and V. Shoup. Computing Frobenius maps and
Factoring Polynomials. Computing Complexity, 2:187–224, 1992.

[Wal14] M. Waldschmidt. Schanuel’s Conjecture: algebraic
independence of transcendental numbers. https://

webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/

ColloquiumDeGiorgiSchanuelConjecture2014.pdf, 2014.

[Wan71a] P.S. Wang. Automatic Computation of Limits. In Proceedings
Second Symposium on Symbolic and Algebraic Manipulation, pages
458–464, 1971.

[Wan71b] P.S. Wang. Evaluation of Definite Integrals by Symbolic Manipula-
tion. PhD thesis, M.I.T & Project MAC TR-92, 1971.

[Wan76] P.S. Wang. Factoring Multivariate Polynomials over Algebraic
Number Fields. Math. Comp., 30:324–336, 1976.

[Wan78] P.S. Wang. An Improved Multivariable Polynomial Factorising Al-
gorithm. Math. Comp., 32:1215–1231, 1978.

[Wan81] P.S. Wang. A p-adic Algorithm for Univariate Partial Fractions. In
Proceedings SYMSAC 81, pages 212–217, 1981.

[Wan16] D. Wang. On the Connection Between Ritt Characteristic Sets and
Buchberger–Gröbner Bases. Math. Comput. Sci., 10:479–492, 2016.

[Wei88] V. Weispfenning. The Complexity of Linear Problems in Fields. J.
Symbolic Comp., 5:3–27, 1988.

[Wei92] V. Weispfenning. Comprehensive Gröbner Bases. J. Symbolic
Comp., 14:1–29, 1992.

[Wei94] V. Weispfenning. Quantifier elimination for real algebra — the
cubic case. In Proceedings ISSAC 1994, pages 258–263, 1994.

[Wei98] V. Weispfenning. A New Approach to Quantifier Elimination for
Real Algebra. In B.F. Caviness and J.R. Johnson, editors, Quan-
tifier Elimination and Cylindrical Algebraic Decomposition, pages
376–392. Springer-Verlag, 1998.

https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/ColloquiumDeGiorgiSchanuelConjecture2014.pdf
https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/ColloquiumDeGiorgiSchanuelConjecture2014.pdf
https://webusers.imj-prg.fr/~michel.waldschmidt/articles/pdf/ColloquiumDeGiorgiSchanuelConjecture2014.pdf

400 BIBLIOGRAPHY

[Wei03] V. Weispfenning. Canonical Comprehensive Gröbner Bases. J.
Symbolic Comp., 36:669–683, 2003.

[WG93] T. Weibel and G.H. Gonnet. An Assume Facility for CAS with
a Sample Implementation for Maple. In Proceedings DISCO ’92,
pages 95–103, 1993.

[WGD82] P.S. Wang, M.J.T. Guy, and J.H. Davenport. p-adic Reconstruction
of Rational Numbers. SIGSAM Bulletin, 16(2):2–3, 1982.

[Wil59] J.H. Wilkinson. The Evaluation of the Zeros of Ill-conditioned Poly-
nomials. Num. Math., 1:150–166, 1959.

[Wil14] V.V. Williams. Multiplying matrices faster than Coppersmith-
Winograd. http://theory.stanford.edu/~virgi/

matrixmult-f.pdf, 2014.

[Win71] S. Winograd. On multiplication of 2 x 2 matrices. Linear algebra
and its applications, 4:381–388, 1971.

[Win88] F. Winkler. A p-adic Approach to the Computation of Gröbner
Bases. J. Symbolic Comp., 6:287–304, 1988.

[Wol21] S. Wolfram. Tini Veltman (1931–2021):
From Assembly Language to a Nobel Prize.
https://writings.stephenwolfram.com/2021/01/

tini-veltman-1931-2021-from-assembly-language-to-a-nobel-prize/,
2021.

[Wu86] W.-T. Wu. On zeros of algebraic equations — an application of
Ritt principle. Kexue Tongbao, 31:1–5, 1986.

[Xia11] R. Xiao. Generating Sets. Private Communication, 2011.

[XLZ21] Runqing Xu, Liming Li, and Bohua Zhan. Verified Interactive Com-
putation of Definite Integrals. In A. Platzer and G. Sutcliffe, edi-
tors, Automated Deduction — CADE 28, volume 12699 of Springer
Lecture Notes in Computer Science book series, pages 485–503.
Springer, 2021.

[Yan98] T. Yan. The geobucket data structure for polynomials. J. Symbolic
Comp., 25:285–294, 1998.

[Yap91] C.K. Yap. A new lower bound construction for commutative Thue
systems with applications. J. Symbolic Comp., 12:1–27, 1991.

[Yun76] D.Y.Y. Yun. On Square-free Decomposition Algorithms. In R.D.
Jenks, editor, Proceedings SYMSAC 76, pages 26–35, 1976.

http://theory.stanford.edu/~virgi/matrixmult-f.pdf
http://theory.stanford.edu/~virgi/matrixmult-f.pdf
https://writings.stephenwolfram.com/2021/01/tini-veltman-1931-2021-from-assembly-language-to-a-nobel-prize/
https://writings.stephenwolfram.com/2021/01/tini-veltman-1931-2021-from-assembly-language-to-a-nobel-prize/

BIBLIOGRAPHY 401

[Zar26] O. Zariski. Sull’impossibilità di risolvere parametricamente per rad-
icali un’equazione algebrica f(x, y) = 0 di genere p > 6 a moduli
generali. Atti Accad. Naz. Lincei Rend. Cl. Sc. Fis. Mat. Natur.
serie VI, 3:660–666, 1926.

[Zas69] H. Zassenhaus. On Hensel Factorization I. J. Number Theory,
1:291–311, 1969.

[Zec49] J. Zech. Tafeln des Additions- und Subtractions- Logarithmen. Wei-
dmann, 1849.

[Zim07] P. Zimmermann. We recommend students never to use simplify
inside programs. Personal communication, 2007.

[Zip79a] R.E. Zippel. Probabilistic Algorithms for Sparse Polynomials. In
Proceedings EUROSAM 79, pages 216–226, 1979.

[Zip79b] R.E. Zippel. Probabilistic Algorithms for Sparse Polynomials. PhD
thesis, M.I.T. Dept. of EE&CS, 1979.

[Zip93] R.E. Zippel. Effective Polynomial Computation. Kluwer Academic
Publishers, 1993.

Index

Abel’s theorem, 84
Active functions (Maple), 41
Additive complexity, 58
Admissible orderings, 54
Algebra

Free, 46
Algebraic

closure, 35
curve, 88
decomposition, 150

block-cylindrical, 156
cylindrical, 153
sampled, 152

function, 251
integer, 251
number, 251
proposition, 147
variable, 140

Algebraic Circuit, 56
Algorithm

Atlantic City, 39
Bareiss, 99
Buchberger, 107

Extended, 128
Cantor–Zassenhaus, 227
Chinese Remainder, 332

for Polynomials, 333
Multivariate, 334
Polynomial form, 332

Euclid’s, 67
Extended Euclid, 72
Extended Subresultant, 73
Faugère–Gianni–Lazard–Mora, 124
Hermite’s, 262
IntExp–Polynomial, 283

IntExp–Rational Expression, 284
IntLog–Polynomial, 278
IntLog–Rational Expression, 279
Las Vegas, 38
Monte Carlo, 38
Ostrogradski–Horowitz, 263
Parallel Risch, 299
Primitive p.r.s., 70
Sturm sequence evaluation, 91
Subresultant, 71
Trager–Rothstein, 265
Vandermonde solver, 335

variant, 336
Alternations

of quantifiers, 150
Arithmetic

Classical, 36
Ascending Chain Condition, 33
Associates, 34
Associativity, 32
Assumption

Zippel, 201
Axiom, 355

Bad
reduction, 182, 183, 193, 212

Banded Matrix, 95
Bareiss algorithm, 99
Basis

completely reduced, 107
Gröbner, 106, 138

completely reduced, 107
shape, 134

Bézout’s Identity, 73
Birational equivalence, 88

402

INDEX 403

bit length, 245
Block-cylindrical

decomposition, 156
Bound, 325

Cauchy, 328
Hadamard, 325
Knuth, 328
Mahler, 329

Branch Cut
Removable, 311

Buchberger
Algorithm, 107

Extended, 128
Criterion

First, 115
gcd, 115
lcm, 116
Third, 116

Theorem, 107
Budan–Fourier theorem, 91, 340

Calculus
Fundamental Theorem of, 260, 312

Candid representation, 24
Canonical representation, 23, 32

locally, 24
Cantor–Zassenhaus Algorithm, 227
Cauchy bound, 328
Cauchy index, 91
Cell, 150
Chain

Regular, 140
Chain Condition

Ascending, 33
Descending, 54

Characteristic, 35
set, 139

Chinese Remainder Theorem, 332
(Polynomial), 333

Circuit
Algebraic, 56

Circulant Matrix, 95
Classical

arithmetic, 36
Closure

Zariski, 142

Coefficient
leading, 47, 105
of a polynomial, 45

Commutativity, 32
Complexity

additive, 58
poly-dense, 55
poly-semisparse, 55
poly-sparse, 48, 55

Comprehensive Gröbner Base, 135
Comprehensive Gröbner System, 135,

165
Conjecture

Schanuel’s, 317
Constant

definition of, 260
implicit, 36

Constraint
equational, 165

Content (of polynomials), 67
more efficient, 194

Criterion
S, 106
First Buchberger, 115
gcd, 115
lcm, 116
Markowitz, 102
Third Buchberger, 116

Cyclotomic
polynomial, 351

Cylinder, 153
Cylindrical algebraic decomposition, 153

Partial, 164

Decomposition
algebraic, 150
block-cylindrical, 156
cylindrical, 153

partial, 164
equiprojectable, 141
Lemma (exponential), 282
Lemma (logarithmic), 276
Lemma (primitive), 295
Lemma (rational expressions), 261
order-invariant, 152
Partial Fraction, 74

404 INDEX

sign-invariant, 152
square-free, 82

Defining formula, 150
Degree

of polynomial, 47
Solving, 115
Total, 54

Delineable, 157
Denominator, 63

common, 63
Dense

matrix, 94
polynomial, 47

Density Theorem
Frobenius, 223, 229

Descartes rule of signs, 91, 339
Descending Chain Condition, 54
Difference

field, 303
ring, 303

Differential
field, 259
ring, 259

Dimension
ideal, 110
linear space, 103
mixed, 111
triangular set, 140

Directed Acyclic Graph, 56
Discriminant, 324
Distributed representation, 54
Distributivity, 33
Division, 46
Dodgson–Bareiss theorem, 98
Domain

g.c.d., 66
integral, 34

Elementary
expression, 269
generator, 268

Elimination
Gauss, 96

fraction-free, 99
ideal, 123
ordering, 112

Equality
algebraic, 64

Equational constraint, 165
Equiprojectable

decomposition, 141
variety, 140

Equivalent, 104
Euclid’s

Algorithm, 67
Algorithm (Extended), 72, 209
Theorem, 67

Excel, 19
Existential theory of the reals, 163
Exponentiation

polynomial, 46
Expression

DAG representation, 56
tree representation, 56

Factorization
shape, 221

Farey
fractions, 208
reconstruction, 209

Farey Reconstruction, 209
Faugère–Gianni–Lazard–Mora

algorithm, 124
Fermat

Little Theorem of, 224
Field, 34

difference, 303
differential, 259
of fractions, 34
real closed, 146

Fill-in (loss of sparsity), 95
Formula

defining, 150
Free Algebra, 46
Frobenius

Lemma, 349
Frobenius Density Theorem, 223, 229
Function

active (Maple), 41
Algebraic, 251
Hilbert, 135
inert (Maple), 41

INDEX 405

Möbius, 352
Fundamental

Theorem of Calculus, 260, 312

Galois
group, 222

Gauss
elimination, 96
Lemma, 68

Generalised
Polynomial, 282

Geobuckets, 51
Gianni–Kalkbrener

algorithm, 122
theorem, 122

Good
prime, 182
reduction, 182, 183, 193, 212

Graeffe method, 328
Greatest common divisor, 34, 65

domain, 66
Gröbner base, 106, 138

completely reduced, 107
Comprehensive, 135
Universal, 132

Gröbner fan, 127
Gröbner System

Comprehensive, 135, 165
Gröbner trace idea, 210
Gröbner walk, 127

Hadamard bound, 325
Height

Inversion, 80
Hensel

Algorithm
General, 219

Lemma, 219
Lifting

Hybrid, 236–238
Linear, 231–233, 242
Multivariate, 242–246
Quadratic, 233–236

Hermite
Algorithm, 262

Hilbert

function, 135
polynomial, 135

History of Computer Algebra, 19
Hua’s identity, 80

Ideal, 33
elimination, 123
polynomial, 104
principal, 34
saturated, 143

Identity
Bézout’s, 73
Hua’s, 80

Implicit
constants, 36

Index
Cauchy, 91

Inequality
Landau, 326
Landau–Mignotte, 180

gcd, 180
Inert functions (Maple), 41
Initial, 139
Integer

Algebraic, 251
Integral domain, 34
Integration

indefinite, 260
Intermediate Expression Swell, 20, 175

Example, 210
IntExp–Polynomial

Algorithm, 283
IntExp–Rational Expression

Algorithm, 284
IntLog–Polynomial

Algorithm, 278
IntLog–Rational Expression

Algorithm, 279
Inverse

matrix, 96
Inversion

Height, 80

Karatsuba Multiplication, 342
Knuth

bound, 328

406 INDEX

Landau Inequality, 326
Landau notation, 35
Landau–Mignotte Inequality, 180

gcd, 180
Laurent

Polynomial, 282
Leading

coefficient, 47, 105
monomial, 105
term, 105

Least common multiple, 66
Lemma

Frobenius, 349
Hensel’s, 219
Thom’s, 93

length
bit (of polynomials), 245

Liouville’s Principle, 271
Parallel Version, 299

Liouvillian
generator, 294

Locally canonical representation, 24
Logarithm

Zech, 255
Lucky

prime, 182

Macsyma, 356
Mahler

bound, 329
measure, 321, 327

Main variable, 139
Maple, 358
Markowitz Criterion, 102
Matrix

Banded, 95
Circulant, 95
inverse, 96
Sylvester, 322
Toeplitz, 95

measure
Mahler, 321, 327

Minimal Polynomial, 251
Möbius function, 352
Monic polynomial, 47
Monomial, 54

leading, 105
Multiplication

Karatsuba, 342
Multiplicity of a solution, 82
MuPAD, 362

Newton
series, 59

Noetherian ring, 33
Normal representation, 23
Normal Selection Strategy, 116
Number

Algebraic, 251
Numerator, 63

Ordering
admissible, 54
elimination, 112
matrix, 112
purely lexicographic, 111
total degree, then lexicographic, 111
total degree, then reverse lexico-

graphic, 111
weighted, 112

Ostrogradski–Horowitz
Algorithm, 263

p-adic numbers, 219
p.r.s., 70

primitive, 70
subresultant, 71

Parallel Risch Algorithm, 299
Parameter, 140
Partial

Cylindrical algebraic decomposition,
164

Fraction Decomposition, 74
Polynomial

definition, 45
factored representation, 52
generalised, 282
height of, 321
Hilbert, 135
Laurent, 282
length of, 321
minimal, 251

INDEX 407

remainder sequence, 70
signed, 70

time, 38
Wilkinson, 327

Positive
Formula, 166

Positivstellensatz, 164
Prenex normal form, 149
Prime

bad/unlucky, 182
good/lucky, 182

Primitive
(of polynomials), 68
p.r.s., 70
part, 68

Principal
ideal, 34

domain, 34
Principle

Liouville’s, 271
(Parallel Version), 299

Tarski–Seidenberg, 149
Problem

Elementary integration, 275
Elementary Risch differential equa-

tion, 275
Projection, 156
Proposition

algebraic, 147
semi-algebraic, 147

Pseudo-euclidean algorithm, 70
Pseudo-remainder, 70, 141

Quantifier
alternation, 150
elimination, 149

Quantifier-free, 148
Quasi-variety, 141
Quotient (polynomial), 66
Quotient rule, 260

Radical
(i.e. n-th root), 84
(of an ideal), 109
Real, 148

Real closed fields, 146

existential theory of, 163
Recursive representation, 54
Reduce, 363
Reduction

bad, 182, 183, 193, 212
good, 174, 182, 183, 193, 212

Reductum, 47
Regular

Chain, 140
Remainder (polynomial), 66
Removable

Branch Cut, 311
Singularity, 306

Representation
distributed (of polynomials), 54
expression DAG, 56
expression tree, 56
factored (of polynomials), 52
of objects, 23

candid, 24
canonical, 23, 32
locally canonical, 24
normal, 23

recursive (of polynomials), 54
Straight-Line Program, 56

Resultant, 321–324
modular calculation, 207

Ring, 32
difference, 303
differential, 259

Risch
differential equation problem, 275
induction hypothesis, 276
Integration Theorem, 275
Parallel Algorithm, 299

RootOf, 40, 85
Rule

quotient, 260

Saturated ideal, 143
Schanuel’s Conjecture, 317
Series

Newton, 59
Set

triangular, 139
Shape

408 INDEX

factorization, 221
Shape basis, 134
sign

variations, 339
Signed polynomial remainder sequence,

70
Singularity

Removable, 306
Solving Degree, 115
Sparse

bit size, 48
matrix, 95
polynomial, 47

Sparsity
of a polynomial, 50

S-polynomial, 106, 137
Square-free, 77

decomposition, 77
Stability

numerical, 30
Straight-Line Program Representation,

56
Strassen’s Theorem, 348
Strategy

Normal Selection, 116
Sugar, 117

Sturm
–Habicht sequence, 90
sequence, 90

Subresultant algorithm, 71, 73
Sugar, 117
Sugar Selection Strategy, 117
Support

of a polynomial, 50
Sylvester matrix, 322
System

quasi-algebraic, 141
Systems

Axiom, 355
Macsyma, 356
Maple, 358
MuPAD, 362
Reduce, 363

Tarski
language, 147

Tarski–Seidenberg principle, 149
Term, 54

leading, 105
Substitution, Virtual, 166

Theorem
Buchberger, 107
Chinese Remainder, 332
Chinese Remainder (Polynomial),

333
Risch Integration, 275

Thom’s Lemma, 93
Toeplitz Matrix, 95
Total degree, 54
Trager–Rothstein

Algorithm, 265
Transcendental, 20

Strongly, 317
Triangular set, 139
Tschirnhaus transformation, 82

Unique factorisation domain, 66
Unit, 34
Universal Gröbner Base, 132

Vandermonde systems, 334
Variable

algebraic, 140
main, 139

Variety
(of an ideal), 109

W-characteristic set, 145
Well-oriented, 159
Wilkinson Polynomial, 327

Zariski closure, 142
Zech logarithm, 255
Zero-divisors, 34
Zippel

Assumption, 201

	List of Figures
	List of Algorithms
	List of Open Problems

	Introduction
	History and Systems
	The `polynomial/calculus' side
	The `group theory' side
	A synthesis?

	Expansion and Simplification
	A Digression on ``Functions''
	Expansion
	Simplification
	An example of simplification
	Equality

	Algebraic Definitions
	Algebraic Closures

	Some Complexity Theory
	Complexity Hierarchy
	Probabilistic Algorithms

	Some Maple
	Maple polynomials
	Maple Polynomials
	Maple rational functions
	The RootOf construct
	Active and Inert Functions
	The simplify command
	Equality

	Polynomials
	What are polynomials?
	How do we manipulate polynomials?
	Polynomials in one variable
	A factored representation
	Polynomials in several variables
	Other representations
	The Newton Representation
	Representations in Practice
	Comparative Sizes

	Rational Functions
	Canonical Rational Functions
	Candidness of rational functions

	Greatest Common Divisors
	Polynomials in one variable
	Subresultant sequences
	The Extended Euclidean Algorithm
	Partial Fractions
	Polynomials in several variables
	Square-free decomposition
	Sparse Complexity

	Non-commutative polynomials
	Types of non-commutativity
	Noncommutativity and Division

	Polynomial Equations
	Equations in One Variable
	Quadratic Equations
	Cubic Equations
	Quartic Equations
	Higher Degree Equations
	Reducible defining polynomials
	Multiple Algebraic Numbers
	Solutions in Real Radicals
	Equations of curves
	How many Real Roots?
	Sturm–Habicht Example
	Thom's Lemma

	Linear Equations in Several Variables
	Linear Equations and Matrices
	Representations of Matrices
	Matrix Inverses: not a good idea!
	Bareiss–Dodgson Warning
	Complexity
	Sparse Systems
	Over/under-determined Systems

	Nonlinear Multivariate Equations: Distributed
	Gröbner Bases
	How many Solutions?
	Orderings
	Complexity of Gröbner Bases
	A Matrix Formulation
	Example
	The Gianni–Kalkbrener Theorem
	Gianni–Kalkbrener Theorem
	The Faugère–Gianni–Lazard–Mora Algorithm
	FGLM Example
	The Gröbner Walk
	Groebner Walk Example
	Factorization and Gröbner Bases
	The Shape Lemma
	The Hilbert function
	Comprehensive Gröbner Bases and Systems
	Coefficients other than fields
	Non-commutative Ideals

	Nonlinear Multivariate Equations: Recursive
	Triangular Sets and Regular Chains
	Zero Dimension
	Positive Dimension
	Conclusion
	Triangular Sets and Gröbner Bases
	Complexity Bounds
	Regular Decomposition

	Equations and Inequalities
	Applications
	Real Radical
	Quantifier Elimination
	Algebraic Decomposition
	Cylindrical Algebraic Decomposition
	Computing Algebraic Decompositions
	Describing Solutions
	Complexity
	Further Observations

	Virtual Term Substitution
	The Weak Case
	The Strict Case
	Nested Quantifiers
	Universal quantifiers
	Complexity of VTS
	Higher Degrees
	How many real roots

	Conclusions

	Modular Methods
	Matrices: a Simple Example
	Matrices with integer coefficients: Determinants
	Matrices with polynomial coefficients: Determinants
	Conclusion: Determinants
	Linear Equations with integer coefficients
	Linear Equations with polynomial coefficients
	Conclusion: Linear Equations
	Matrix Inverses

	Gcd in one variable
	Bounds on divisors
	The modular – integer relationship
	Computing the g.c.d.: one large prime
	Computing the g.c.d.: several small primes
	Computing the g.c.d.: early success
	An alternative correctness check
	Conclusion

	Polynomials in two variables
	Degree Growth in Coefficients
	The evaluation–interpolation relationship
	G.c.d. in Zp[x,y]
	G.c.d. in Z[x,y]

	Polynomials in several variables
	A worked example
	Converting this to an algorithm
	Worked example continued
	Conclusions

	Further Applications
	Resultants and Discriminants
	Linear Systems

	Gröbner Bases
	General Considerations
	The Hilbert Function and reduction
	The Modular Algorithm
	Conclusion

	Conclusions

	p-adic Methods
	Introduction to the factorization problem
	Modular methods
	The Musser test

	Factoring modulo a prime
	Berlekamp's small p method
	The Cantor–Zassenhaus method
	Berlekamp's large p method
	Other Methods
	Complexity Theory

	From Zp to Z?
	Hensel Lifting
	Linear Hensel Lifting
	Quadratic Hensel Lifting
	Quadratic Hensel Lifting Improved
	Hybrid Hensel Lifting

	The recombination problem
	Univariate Factoring Solved
	Multivariate Factoring
	Bivariate Complexity
	A ``Good Reduction'' Complexity Result
	Sparsity Results
	The Leading Coefficient Problem

	Other Applications
	Factoring Straight-Line Programs
	p-adic Greatest Common Divisors
	p-adic Gröbner Bases
	p-adic determinants

	Conclusions

	Algebraic Numbers and Functions
	Representations of Finite Fields
	Additive Representation
	Multiplicative representation

	Representations of Algebraic Numbers
	Factorisation with Algebraic Numbers
	The D5 approach to algebraic numbers
	Distinguishing roots

	Calculus
	Introduction
	Integration of Rational Expressions
	Integration of Proper Rational Expressions
	Hermite's Algorithm
	The Ostrogradski–Horowitz Algorithm
	The Trager–Rothstein Algorithm
	Simplest Form?

	Theory: Liouville's Theorem
	Liouville's Principle
	Finding L
	Risch Structure Theorem
	Overview of Integration

	Integration of Logarithmic Expressions
	The Polynomial Part
	The Rational Expression Part
	Conclusion of Logarithmic Integration

	Integration of Exponential Expressions
	The Polynomial Part
	The Rational Expression Part

	Integration of Algebraic Expressions
	The Risch Differential Equation Problem
	The Denominator
	The Numerator

	Worked Examples
	First example
	Second example

	Other Functions
	Other Elementary Functions
	Integrands beyond ``Elementary''
	Examples
	Beyond Liouville's Principle
	Non-Liouvillian Functions

	The Parallel Approach
	An example
	The Parallel Approach: Algebraic Expressions

	Definite Integration
	Other Calculus Problems
	Indefinite summation
	Definite Symbolic Summation

	Algebra versus Analysis
	Functions and Formulae
	Branch Cuts
	Some Unpleasant Facts
	The Problem with Square Roots
	Possible Solutions
	Removable Branch Cuts

	Fundamental Theorem of Calculus Revisited
	Constants Revisited
	Constants can be useful
	Constants are often troubling

	Integrating `real' Functions
	Logarithms revisited
	Other decision questions
	Limits
	A Definite Integral

	Further Developments
	What if I wanted to work with R

	Algebraic Background
	The resultant and friends
	Resultant
	Discriminants
	Iterated Operations

	Useful Estimates
	Matrices
	Coefficients of a polynomial
	Roots of a polynomial
	Root separation
	Developments

	Chinese Remainder Theorem
	Chinese Remainder Theorem for Polynomials
	Vandermonde Systems
	More matrix theory
	Algebraic Structures

	Excursus
	The Budan–Fourier Theorem
	Equality of factored polynomials
	Karatsuba's method
	Karatsuba's method in practice
	Karatsuba's method and sparse polynomials
	Karatsuba's method and multivariate polynomials
	Faster still
	Faster division
	Faster g.c.d. computation

	Strassen's method
	Strassen's method in practice
	Further developments
	Matrix Inversion

	Exact Division
	Faster g.c.d. computations
	General Idea

	Cyclotomic Polynomials

	Systems
	Axiom
	Overview
	History
	Structure

	Macsyma
	Overview
	History

	Maple
	Overview
	History
	Data structures
	Heuristic GCD
	Conclusion

	MuPAD
	Overview
	History

	Reduce
	Overview
	History

	Index of Notation
	Bibliography
	Index

