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ABSTRACT
Given an elementary function with algebraic branch cuts,
we show how to decide which sheet of the associated Rie-
mann surface we are on at any given point. We do this by
establishing a correspondence between the Cylindrical Al-
gebraic Decomposition (CAD) of the complex plane defined
by the branch cuts and a finite subset of sheets of the Rie-
mann surface. The key advantage is that we no longer have
to deal with the difficult ‘constant problem’.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]:
Algorithms

General Terms
Algorithms, Theory
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1. INTRODUCTION
The elementary functions are the field of functions ob-

tained by applications of exp, log and the arithmetic opera-
tions to a set of variables x1, . . . , xn and constants,

�
. As in

previous papers by the authors[4, 8], we shall focus particu-
larly on those elementary functions which are in fact multi-
valued. We shall use the notation that terms such as log and
n� , and more generally, f, h, denote single-valued func-

tions from
�

to
�
, whilst Log, nSqrt and F,H denote multi-

valued functions, regarded as mapping
�

into sets of values,
so that Sqrt(z) = {w : w2 = z} = {±√

z} for example.
Numerous well-known identities for multi-valued functions
exist; examples include Log(z2) − Log(z) − Log(z) = {0},
and Sqrt(z2) = {±z}. The = is of course to be interpreted
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as set equality. As pointed out in [15] not all such formu-
lae are identities and instead require set inclusions: we have
that Log(z2) ⊃ 2 Log(z) for example. Many others may be
found in [1], which we will use to provide a set of realistic
test formulae— exercising occasional care, however, in their
interpretation[16]. Given H ⊆ 0, the problem is then to de-
cide on what regions of

� n does h = 0 hold? The paper [15]
provides a graphic illustration that one is indeed forced to
consider the geometry of

� n with respect to the branch cuts
of h in order to answer this question.

One important application of having a method to decide
such questions is to the area of simplification. To obtain
and define precisely what one means by a ‘simplification’, is
an old and difficult problem[23]. We shall not grapple with
this issue here but refer instead to recent progress in [9] for
a potential approach, and to [8] for some of the problems
involved with working with multi-valued transformations.

1.1 Previous Work
Progress towards constructing a verification system for

multi-valued formulae as described above has been reported
in [4] and its precursors. This is based on the Decomposition
Method first suggested in [19], which requires one to:

1. calculate the set of branch cuts of the proposed identity
F = 0;

2. find a sample point in each of the regions in
�

defined
by the cuts;

3. evaluate the identity numerically using that point,
thereby concluding whether the formula is true or not
on that entire region by the Monodromy theorem.

Further details of how each of the steps above should be
performed can be found in [4]. A key point to remember is
that, as first suggested in [8], we use Cylindrical Algebraic
Decomposition (CAD; see [10]) for step two; we shall assume
that the reader is familiar with the basic notions involved in
this algorithm. To do this, we restrict the class of formulae
under consideration to those where the branch cuts are
algebraic: it is sufficient to prohibit anything other than nth

roots from being nested inside other elementary functions.1

It is however worth pointing out that step one has now
been made computationally efficient by the recent proposal
to use resultants to eliminate nth roots in the input expres-
sion; see [5] for details. Also in that paper, the use of an
efficient method[18] to decide which is the best projection

1Note that this applies to constant functions; witness
log(x− exp(2)), which has a non-algebraic branch cut.
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order is demonstrated to be of great importance regarding
the efficiency of step two. Thus in this paper, we are still
strongly advocating a CAD based Decomposition Method;
what we are proposing here is a new and more efficient ap-
proach to performing the final step. This step is surprisingly
non-trivial as was seen in [3, 4] and so an improvement is
highly desirable. We first provide a convenient summary of
the most serious problems involved at this stage.

Suppose for simplicity of exposition that our formula H
is of one

�
variable. Then we can compute a description

of the branch cuts of h, as a semi-algebraic set in 2 real
variables. Firstly suppose that the region we are testing has
co-dimension > 0. In the terminology of CAD, this means
that we are investigating a region that comprises a partic-
ular section, s say, of a stack. Let the sample point of s
be p = (x, y), which must be interpreted as the complex
number x + iy. As argued in [8], numerical evaluation of
H(p) may give completely incorrect results except in the
rare cases where x, y have finite floating point representa-
tions. A symbolic approach would therefore seem necessary,
but in the worst case scenario, the point p will have some
coordinates that cannot be expressed in terms of radicals.
Any attempt to search for alternative sample points in sec-
tions where this is possible— those constructed over level 1
regions of full dimension— would result in an undesirable
coupling between steps 2 and 3 of the algorithm. Even in
the cases where p is expressible using radicals one runs into
the ‘constant problem’ and has to generally resort to algo-
rithms that are potentially costly and rely on the truth of
number-theoretic conjectures[26]. The constant problem is
in fact undecidable for sufficiently large function fields[25].
This is inhibiting as ultimately, one would like to handle
non-elementary multi-valued functions as well, such as the
W -Lambert function[14] for example. Secondly, in all re-
gions, it may happen that p is an ‘unlucky sample point’.
If H is a rational function of elementary functions Hi each
of which has the set of branches {hi}i then p is an unlucky
point if for one or more of the hi we have that hi(p) are
equal for several different branches. If we use such a p, then
we cannot guarantee that we can draw correct conclusions
about the truth of the identity H on the region it represents.
An example is afforded by p(z) Log(q(z)2)− 2p(z) Log(q(z))
where p, q ∈ �

[z] and the unlucky points are then the roots
of p, q. The method of [27], as was demonstrated in [3], is an
effective, although costly, solution to this problem. Finally
the work reported in [5] demonstrated that the number of
cells that are produced by problems of seemingly simple ap-
pearance can be extremely large. This of course exacerbates
the problems mentioned above. In such cases, numerical
evaluation can also be very time-consuming— assuming we
are on regions where it can be applied safely.

The rest of the paper is as follows. In sections 2 and 3 we
describe and exemplify a method for testing the proposed
formula on the branch cuts. In section 4 we propose a new
method based on Riemann surfaces to make testing the iden-
tity on all cells still more efficient. Finally we summarize our
contribution and consider future directions.

2. COMPUTING THE ADHERENCE
If we define 0

�
p(z) = p(z), then we may define

�
rt (z) re-

cursively to be the set of functions of the form φ( n
�
pi(z) )

where φ is a rational function with pi ∈ �
rt (z) and n ∈ � .

By a base (inverse) function we shall mean any of the 14

inverse elementary functions, such as F (z) = arcsin(z), log(z).
These are the only elementary functions with branch cuts,
so they will be the main focus here. It will be convenient
to work with functions of the form Hi = Fi(Gi(z)) where
Gi ∈

�
rt (z) and Fi is an nth root or logarithm as our ‘build-

ing blocks’; since all of the base functions can be defined in
terms of these, it follows that all our admissible formulae
(as in 1.1) can be expressed recursively in terms of the Hi.
The definitions we use for the base functions are those from
[12], although everything which follows applies regardless of
the initial choices made, as long as we are consistent.

With F as above, the Riemann surface associated with
F shall be denoted by RS(F ), and we recall that this is a
path-connected domain for F having either n or an infinite
number of sheets respectively, each of which is a domain for a
particular branch of the function in question. The branches
for F (z) in this case are of course either n

�
g(z) exp( 2kπi

n
)

for k = 0, . . . , n−1 or log(z)+2kπi for k ∈ � . For a fixed k,
we shall refer to a particular k-th branch of F , denoted by
f k which has domain which will refer to as comprising the
k-th sheet of RS(F ); we denote the principal branch of F
by f 0, or simply f . Further, RI(F )|

c
shall be the Riemann

index of F on a particular cell c of the CAD induced by the
branch cuts: that is, either exp( 2kπi

n
) or 2kπi for some fixed

k. The branch cuts serve of course, to act as boundaries
where distinct sheets are joined; we denote the set of branch
cuts of f by B(f). The important question we shall address
is, which sheet does a given branch cut belong to? We now
make a key definition, for the case of CADs in the plane.

Definition 1. (Adherence)
Suppose that we have a CAD for B(h), and c is a section
of a stack representing part of, or all of, a particular branch
cut. Let s be an adjacent sector cell to c. Then we say that
the branch cut c adheres to s if c belongs to the same sheet
of RS(H) as does s.

Recall that, two cells of a CAD are said to be adjacent if
their union is path-connected[11]. When H = F (G), c can
not adhere to both adjacent cells by monodromy.

A brief overview of the algorithm, for the single
�

variable
case, is presented below. Its purpose is to solve the problem
of testing an identity on a branch cut by using an adjacent
cell of full-dimension instead. In what follows, for any x ∈ �
we define sign(x) = 1 if x > 0 and sign(x) = −1 if x < 0.
Given an input formula φ, we recall that the TruthValue of
a cell c in the CAD with respect to φ is a boolean value,
depending on whether or not φ(p) is satisfied at any p ∈ c.

Algorithm 1.
Input: H = F (g) where F is Log or nSqrt ., g ∈ �

(z) 2

Output: A CAD of B(h); adherent cells determined.

1. Compute S = B(h) and D = CAD(S)

2. Compute adj(D) if need be

3. For each c ∈ D where TruthV alue(c) = True do
sign := sign(=(g(p))), p ∈ c1, with s1, c adjacent
if sign = 1 then RI(H)|c = RI (H)|s1

else RI(H)|c = RI(H)|s2
where s2 is adjacent to c and

not to s1.

We now comment further on this algorithm. The role of
steps 1 and 2 is obvious. The adherence of any branch cut

2The case of G ∈ �
rt (z) has extra difficulties which we

return to later in sections 2.1, 3.

38



of f(g) will depend only on what we what choose to be
the closure of the base function f(z). Examination of the
definitions of the complex logarithm and nth root functions
shows that this in turn is determined only by what definition
we take for the principal branch of arg: here we choose the
modern convention which requires that arg(z) ∈ (−π, π].
Thus for the branch cut of f(z), we have Counter Clockwise
(CC) Closure, or, in the terminology here, the branch cut c
of f(z) adheres to the cell T having cell index (1,3), which
lies in the same stack in which c does in the CAD constructed
with respect to this single branch cut. We now make step 3
more precise. We shall require that s1 is of full-dimension.
Thus in the x—y plane, there are two possibilities for c:
either (a) c is a vertical line x = a for a ∈ � or (b) it is
not. In the former case we choose a sector cell s1 which is
adjacent to c and lies in either of the two adjacent stacks
to the one in which c resides, (another reason for treating
these cuts specially is given in 2.1) and in the latter case, we
choose one of the two sector cells that are adjacent to c in the
same stack. Notice that for two-dimensional CADs such as
here, we can decide a priori whether intra-stack adjacency
alone, which does not require an algorithm, will be sufficient;
thus allowing us to bypass step two above. To do this we
examine the CAD data structure to see if there are any cells
which have truth value True, are of dimension one, and are
constructed over level one cells of zero dimension. The idea
behind step 3 is the following. Let γ : [0, 1] → �

be a path
with γ(0) = p and γ(1) = q, with q ∈ c, and let g(q) = s
where s ∈ � − . Then if g(γ(t)) → s + 0+i as t → 1 then c
adheres to s1; otherwise, it must adhere to another cell, s2
say. In case (a) this s2 will be an adjacent sector cell to c,
but in the different stack to which s1 resides; in case (b), it
will be the only other adjacent sector to c in that stack.

Applying an adjacency algorithm[11] to D produces out-
put which can be thought of as comprising lists of cell indices
where all indices in a list represent cells which form a sin-
gle connected component. Computing the adjacencies thus
gives us the cells s1 whose sample points are required for
the last step. Notice that there will be any finite number
of adjacent cells s1 to c in general. We only need to choose
one cell of course for each branch cut that comprises a sin-
gle connected component, and this can be achieved by using
the adjacency information, thus avoiding the potential re-
dundancy. In the case where g ∈ �

(z), the particular choice
of adjacent cell does not matter.

We point out that the representation used in step 1 will
produce a CAD containing other sections which are not
branch cuts, and so we do not wish to apply the algorithm to
them. For example, if we wish to represent a semi-circular
branch cut we would use {(x2 + y2 − r2 = 0)∧ (x > 0)}, but
this will make for a CAD containing both roots of the bivari-
ate polynomial. However these unwanted cells will always
have TruthValue False, so can be ignored.

2.1 Nested roots
Suppose that H = F (G) where G ∈ �

rt (z). In [4] we
pointed out (for the case of square roots) that the method
to calculate B(h) will produce a semi-algebraic set S say that
contains spurious branch cuts. Recall that in the simplest
case, when g = n

�
p(z), that these are sets {z | (g k(z) ∈

B(f))∧(k 6= 0)}— although in general g may contain several
nth roots. They arise as an artefact of the method to remove
nth roots from the input formula. The problem is that in

the CAD solution formula construction step, they comprise
cells which are assigned the truth value True, since they
satisfy the formula S. In some cases one can evaluate s =
g(p) for p on the sample point of each cell in S and check
whether or not s ∈ B(f). In general, we run into the same
problems as described above in (1.1). One might think that
we could detect the spurious cuts by examining the signs of
the imaginary parts of g(pi) for pi ∈ si with i = 1, 2, but
the fact that we cannot guarantee that s ∈ B(f) means that
the reasoning based on the continuity of g is not sufficient.

For the important case of square roots, we showed in [4]
how to remove the spurious branch cuts by adding poly-
nomial constraint equalities to the system. It is a minor
extension to handle nth roots which we defer to [6]. How-
ever this contributes exponentially to the number of poly-
nomials that are used in the CAD construction. A further
difficulty is that the faster methods for eliminating roots
such as Gröbner bases, or better, the method of [5] work as
black-boxes and do not automatically generate the appro-
priate sets of constraints at each stage. Except in simpler
cases, where it may prove to be efficient to remove the spu-
rious cuts, we propose to apply algorithm (1) exactly as we
did before; this can be done since for any p ∈ s1, =(g(p)) < 0
or =(g(p)) > 0. (In the case where =(g(p)) = 0, we know
the cut is spurious) Suppose that, as in step 3 that c is in
fact spurious, although we cannot yet decide if this is so. It
is easy to see that s1, s2 will then belong to the same sheet
of RS(H) as does c, and so correctness at the sample point
testing stage is guaranteed. The ‘adherence information’ we
obtain in this case is of course spurious but since c adheres to
both the si, we cannot obtain incorrect results. Whilst this
approach provides us with a generic algorithm, it is wasteful
in that we must compute g(p) for each spurious c neverthe-
less. One further issue to be exemplified later in section 3,
is that given f(g) it may happen that a (non-spurious) cut
c derives from both f and g. In that case, we must first
calculate the adherence of c with respect to g, before we can
compute the adherence with respect to f . This is because,
unlike for the case where g ∈ �

(z), the choice of s1 in step
3 does matter: we need to choose it so that c adheres to s1
with respect to g, and then g will be continuous onto the c,
as required.

2.2 Justification
In the interest of brevity a detailed proof of correctness

shall not given in this paper. However the essential ideas
can be sketched as follows. First, one must remember when
computing with g in the manner above that g is a complex
valued function, g :

� → �
, only the branch cuts are real

algebraic. However working with both real and complex
geometry in this way does not cause any problems provided
that one stays away from regions of non-analyticity. (This
is why we do not allow complex conjugation: if g(z) = z
for example, then one can easily check that this does not
satisfy the Cauchy-Riemann equations, and is therefore not
analytic.) We have that g(p) ∈ B(f) by necessity. Now g

is continuous on a path from at least one of the pi in the
adjacent sectors onto p since in following [4], at step 1, we
always include the branch cuts at infinity: that is where the
denominator of g vanishes; the only other potential problem
would be discontinuities arising in g due to the presence of
nth roots, (as in example 3, next section) but as with the
singularities they will be by virtue of the CAD, not inside
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the adjacent sectors we are looking at. The only case where
this does not occur is when, given f(g), the cuts for f and g
coincide, but this situation is not a problem if we deal with
it as described at the end of (2.1). In the case of vertical line
cuts, the end points may be singularities. However, since we
use sectors in adjacent stacks, as opposed to using the sector
above and below such cuts, we avoid losing the notion of a
continuous path onto the cut.

We remark that [11] is the most recent adjacency algo-
rithm at the time of writing; we should mention that this
may fail in higher than four dimensions, albeit with a very
low probability. In the case of failure, we cannot guarantee
to be able to represent the section in question correctly and
we may under-represent the branch cuts. Fortunately for
us, the CADs derived from formulae we are most interested
in have at most 4 dimensions.

2.3 Application
In general the input formula H = 0 contains several of our

Hi = Fi(Gi) building blocks. To deal with this, all that one
needs to add in an implementation is a piece of additional
information, namely, which Hi each branch cut cell derives
from, to the usual CAD cell data structure. (Such as that
found in the package we have used here[24].) that is, which
Hi each branch cut cell derives from. Then we should simply
apply the algorithm as shown, only using this data to ensure
that we apply the appropriate gi at stage 3. Of course,
some branch cut sectors may derive from several Hi. Now
the adherence information alone is insufficient to determine
the actual RI(Hi) on a cell. However the point is that we
now have a much simpler method (modulo the remark at the
end of this subsection) to determine the truth of the formula

h
?
=0 on the branch cuts by testing the appropriate adjacent

full dimensional cells instead. Apart from the possibility of
choosing unlucky sample points (this will be avoided using
the method of section 4), it is now an easy task to calculate
the correction factor for h = 0 on these cells by using the
method of [8] which uses floating point evaluation ofH at the
sample point together with bounds on the accuracy derived
in the manner shown there. Of course this does not tell
us what RI (Hi) is for individual Hi. A problem occurs
however, on branch cut cells which derive from several Hi,
for some of these functions may adhere to different cells. An
example of this is discussed in section 3.

It is often convenient for a user to specify a function by
arccosh say, as opposed to giving its definition in terms of
logs and square roots. We have therefore determined the
adherence for each of the base functions using the method
above so that one can now allow our input function F to be
any of these 14 functions. For future reference, this infor-
mation is presented in the appendix. If a particular cut of
F under consideration lies on the imaginary axes of the

�
plane, then one must make the necessary minor changes in
step 3: we calculate sign := sign(<(g(p))) instead for cuts
that lie on the imaginary axes of the

�
plane, and then if

the cut is from the side <(z) < 0, for example, (as given in
the table) the condition should be taken to be sign = −1.

3. EXAMPLES
The three simple examples which follow are chosen so that

they may be readily verified by the reader. In the first two
examples, x and y shall be real. The case of � 2 will be seen
to exhibit different behaviour from that of

�
, for we now

x > 0x < 0

arctan(x)

−

+0

+ π

−π

π/2

π/2

x

 0

Figure 1: � ∗ & corresponding branches for Arctan(x).

have branch cuts at infinity (example 1) and singularities
(example 2) which are not just zero dimensional regions.

1. H = Arctan
�

x+y

1−xy � − Arctan(x) − Arctan(y) = 0;

we now investigate the corresponding identity h
?
=0, where

h = h1−h2 −h3. For real inputs, arctan(x) only has branch
cuts at ±∞. Our representation is only for finite branch
cuts, so we see that the branch cuts for H derive from h1

only: that is, the set B(h) = {xy − 1 = 0}. This comprises
the two branch cuts shown in figure (2) which now require
investigation. By numeric or symbolic evaluation, the iden-
tity is readily verified to be true on region 2. On region 1
we have that H = −π and that H = π on region 3. We now
consider the formula on the cuts themselves. Notice that
the CAD data structure will tell us that we do not need to
compute the adjacency of the CAD with respect to B(h)
here. Clearly, a purely numeric approach here would fail, at
any point on the cuts, due to the blow-up. We shall show
that arctan(x) must be viewed as a function of the form,
(−∞,∞] → (−π

2
, π

2
]: that is the point (∞, π

2
) belongs to

the principal branch of arctan whilst the point (−∞,− π
2
)

belongs to the branch, arctan(x) − π. This requires us to
work on the extended real line � ∗ = � ∪{∞} which we recall
is constructed by identifying the end points ±∞ as in figure
(1).3 Thus on � ∗ one works with positive infinity only,and
if x → ∞+ then we see that one passes onto the point ∞
continuously (see the left-hand diagram of figure 1) whilst
if we let x → ∞− then we do not. In order to preserve the
continuous 1-1 correspondence between the finite domain of
arctan(x), that is � , and the extended domain that is � ∗ , we
see that −∞ does not belong to the principal branch domain
of arctan(x). As always, when passing through a branch cut
one passes onto the adjoining branch domain; we can see
that in this case that this will be the branch arctan(x) − π,
as in the right-hand diagram of figure (1).

Let c1 = {(xy − 1 = 0) ∧ (x > 0)} and c2 = {(xy − 1 =
0) ∧ (x < 0)}, and put g = x+y

1−xy
. Now we can use adher-

ence to determine which branch each ci is on by determining
whether g tends to +∞ or −∞: the ci will adhere to the
cell where g is positive. This requires that our adjacent
cells are sign-invariant for g so we must first add the line
y + x = 0 to the CAD. Consider c1, where our adjacent
regions are 1 and the part of 2 above the line, and then sup-
pose that our sample points for these are given by p1 = (1, 2)
and p2 = (1, 1

2
) respectively. We obtain g(p1) = −3 and

g(p2) = 3, which shows that c1 adheres to region 2, and we
conclude the identity is true on this branch cut. Similarly
we treat c2 = {(xy−1 = 0)∧(x < 0)} using regions 2 (below
the line) and 3 and p3 = (−1,−2) and p2 = (−1,− 1

2
). This

3Corresponding to a circle on the Riemann Sphere.
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3

2

h=

h=01 h=−

c2

c1

π

π

Figure 2: decomposition & adherence for Ex.2.

time g(p3) is positive and g(p2) is negative, so c2 adheres to
region 3. Thus we conclude that the identity is false on this
branch cut, and requires a correction factor of −π.

Observe that the example could have been written in
terms of complex logarithms. Then we could proceed by
using the fact that log(g) = log |g|+ i arg(g) where arg(g) =

arctan(=(g)
<(g)

). Since the argument component determines

which branch we are on, and the input to the arctan is
wholly real, the problem then reduces to the previous case.
We omit the details for brevity. This approach should allow
us to consider more general examples, although this is work
in progress.

2. H = Log(xy) − Log(x) − Log(y) = 0.
The branch cuts for the first logarithm are the top-left and
bottom right-hand quadrants of � 2 , together with the x and
y axes. The latter set comprises the singularities; notice
that they are one dimensional, and that they disconnect the
plane— this has implications for the algorithm in section
4. As is well known, at the point of ramification that is
z = 0 ∈ �

, all the sheets of R = RS(Log(z)) (and also
for the nth root) are joined, but this point does not actu-
ally belong to R, corresponding to the fact that exp(z) 6= 0
for all z. So unlike the previous example, it does not make
sense to ask which one of adjacent sheets of Log(z) does
this point adhere to. The branch cuts for the other two
logarithms are immediately clear, and it therefore turns out
that we only can test the identity on the branch cuts. Since
these are of full dimension, there is no problem: evaluating
log(xy)− log(x)− log(y) at (-2,3),(2,3) and (2,-3), for exam-
ple, shows that the H is always true on the branch cuts and
undefined everywhere else.

3. Arcsin(z) ⊂ Arctan � z

Sqrt(1−z2) � .
Notice we only have set inclusion, not equality. We now con-

sider the often quoted ‘identity’: arcsin(z)
?
= arctan � z√

1−z2 � .

Let z = x + iy. Writing arcsin(z) in terms of its def-

inition, −i log(
√

1 − z2 + iz), let us label this as h1
?
=h2

with hi = fi(gi) for i = 1, 2. Following the branch cut
finding algorithm we see that each gi(z) has branch cuts
given by c1 ∨ c2 where c1 = {(x < −1) ∧ (y = 0)} and
c2 = {(x > 1) ∧ (y = 0)}. For the branch cuts of h2 we
obtain the three-dimensional semi-algebraic set,
φ = [(y2−x2+1 ≤ 0)∧(y = 0)∧(y2t2−x2t2 +t2−y2+x2 =
0)] ∧ [(t+ 1 ≥ 0) ∨ (t+ 1 ≤ 0)].
As described in [5] we must now apply Quantifier Elimi-
nation (QE) to the formula (∃t)φ in order to eliminate t
and obtain a formula without this extraneous variable. This
yields the set comprising c1

′ ∨ c2′, which is in fact identical
to c1 ∨ c2. Now h1 does not have any branch cuts since (by

QE) g1 never maps any points onto the branch cuts of f1(z).
We now calculate the adherence of h2 for the branch cut ci

′.
Following (2.1), we must first calculate the adherence of the
ci (with respect to g2). This is easily verified by algorithm
1 to yield the adherence of c1 to the region s1 containing
the point (-2,1) for example, whilst the cut c2 adheres to
the region s2 containing the point (2,-1). We must therefore
choose these points with which to compute the adherence of
the ci

′. Comparing the results to those of h1 (from the ta-
ble) we see that the adherence of the cuts for h1 is different
to the adherence of the cuts for h2.

The problem arises if we try to apply this adherence knowl-
edge directly : one clearly cannot test the identity on either
of the cuts by using any single sector point! When are test-

ing h1
?
=h2 and the adherence differs in this way on a cut, we

should test the identity on the adjacent regions first. Then
if we find a adjacent sector where the identity holds, then
this is sufficient to conclude that the identity cannot hold on
the cut itself. In this example, the identity easily proven to
be true everywhere off the branch cuts, and so we conclude
that it is false on the ci. To see this, we argue as follows.
Suppose that we take a continuous path onto a point p ∈ c1
from s1. Now h = h1 − h2 is analytic and h = 0, until we
reach the end-point of our path, whereupon h2 only becomes
discontinuous, and so h(p) 6= 0. Hence by the Monodromy
theorem, h 6= 0 on c1. The argument for c2 runs entirely
analogous.

4. WINDING SEQUENCES
In [22] it is reiterated that consideration of Riemann sur-

faces might yield an effective algorithm and a request is
made to the community for further investigation into this
area. Some of the difficulties with making these objects
computational was pointed out in [13]. We do not propose
a new representation for computing with Riemann surfaces;
rather, we propose to compute with the well-known, theo-
retical ‘cut-plane’ representation of Riemann surfaces. To
make this computational, one needs to bear the structure of
the original surface in mind as it is projected down onto

�
.

The prevailing ethos behind this approach is to capture
the idea of a continuous choice of argument whilst retain-
ing the geometry and sense of where one is on the Riemann
surface; as such this method can be viewed as an effective
synthesis of the work reported in [13] and the Decomposi-
tion Method. A major problem with the cut-plane approach
is the multiplicity of representation: informally, each region
represents more than one (and in the case of logarithm, in-
finitely many) sheets of the Riemann surface. A step to-
wards fixing this problem lies in the following definition. Let
H = F (G(z)) be as in section 2, and Φ a formula, although
we shall not allow nested roots for the moment.

Definition 2. (Reachable Sheet)
The k-th reachable sheet of RS(H(z)) is the sheet with index
k such that there exists z ∈ �

such that Arg(g(z)) ∈ Mg,
where Mg = ((2k− 1)π, (2k+ 1)π]; we refer to the set of all

such sheets as reachable sheets, denoted by R̂S(H).

We define the reachable cells of a Ri ∈ R̂S(H) analogously.
We may compute Mg by factorising numerator and denom-

inator into the form �
j

αj �
i

(z − αi) for αi,j ∈ �
and us-

ing the multivalued rules for Arg. For example, given h =
log(z − z2) we obtain Arg(z − z2) = Arg(z) + Arg(−1) +
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Arg(z−1) and then (−π, π]+π+(−π, π] = (−π, 3π]. Whence
there are only 2 reachable sheets, having indices 0 and 1, al-
though RS(H) comprises infinitely many sheets. The num-

ber of reachable sheets of RS(H) is always finite, and Ẑ ⊂ �
shall be the set of reachable sheet indices.

With H = F (g) being one of the building blocks in a
formula, we shall demonstrate that, if we construct a CAD
with respect to a set S to be described below, then we can
obtain a surjective correspondence ψ from the set of regions
of D onto R̂S(H). That is, each cell in the CAD corre-

sponds to part of, or all of a unique element of R̂S(H). ψ
is not a bijection because one of the draw-backs of CAD is
that of over-representation; it generally produces far more
cells than the actual number of connected components of
the decomposition induced by the algebraic curves. With g
factored into linear factors pi as above we compute S(h) =
{B(f(pi)), L(f(pi)), B(h), L(h)} for each i where we define

L(h̃), the set of argument branches of h̃, to be the set of
points {z | g̃(z) ∈ [0,∞)}. We shall later require the prin-

cipal argument branch, denoted by L0(h̃): this is the set

such that Arg(p) = 2kπ for all p ∈ L0(h̃), where |k| is the

least element of Ẑ. We compute the semi-algebraic set rep-
resenting the argument branches by using exactly the same
algorithm as we did for the branch cuts.

We now make the key definition of this section. Given H
as above suppose that we have computed S(h) and that we
have constructed a CAD D with respect to this set.

Definition 3. (Winding Sequence)
A Winding Sequence (WS) for D shall be a finite set of
ordered lists called paths li, each of them finite, and where
each element of the list is a cell index ci for i ∈ 0, . . . , Nli

and the following conditions are satisfied:

1. ci, ci+1 represent adjacent regions on R̂S(H);

2. each cell in D has an index belonging to at least one
of the li;

3. c0 represents L0, or part of L0 in at least one of the li.

Before we give an overview of the proposed algorithm, we
need to make one more definition. The index aggregate of
Φ = φ(Hi) on a cell c, denoted by IA(Φ)|c shall be the
result of making a set of substitutions 4 into Φ of the form,
Fi → fi k1

, and for each subexpression Gj of Gi where

Gj = nSqrt(.) , Gj → gj k2
for some fixed k1, k2 ∈ Ẑ.

Algorithm 2.
Input: Φ = φ(Hi)
Output: A CAD D, IA(Φ)|ck

for all ck ∈ D
For each Hi do steps 1-3

1. compute Ẑ

2. Compute S(h), D = CAD(S) and adj(D).
3. choose li until every cell of D where Hi is defined and

has been included in at least one of the li

4. For each cell c compute and simplify IA(Φ)|c.
The above computes paths through the cells of the CAD
which correspond to paths on the Riemann surface of each
Hi in turn. It is important however to notice that ensuring
the adjacency of cells in a path is a necessary, but not suf-
ficient condition for this to be the case. We point out that
computing a separate path for each Hi effectively side-steps

4A similar notion used in a different context occurred in [19].

the problem raised in [13] of what to do when one has a
sum of Hi such as H1 +H2 where the Hi are two separate
Riemann surfaces.

First we must locate which sections derive from the L0(Hi)
and choose one to obtain the initial cell of our path, c0. Let
us compute M = Mg(gi). There may be several argument
branches for any number of the reachable sheets, but the
L0 branch(es) may be successfully singled out by computing
Arg(g(pi)) where pi for i = 1, 2 are the sample points of two
adjacent sectors to an Li. We do this by factorising g as
we did to find Mg above and the argument of each factor
is computed by floating point evaluation. We now try to
determine R = RI(c0). As we see in (4.1.1), we may have
that R 6= 0, since 0 6∈ Mg. In this case, c0 (nor any other
cell in L0) cannot be our first cell in the WS and we must
leave it until it is reached later in the path, or in another
path. In this case, only one of the adjacent sectors cl and ck
say, to c0 can be chosen as the next cell in the path. Again
we must examine Mg to decide which.

Suppose that we have now reached a sector cell cj−1 in
our current path, and determined RI (Hi)|cj−1

. It remains
to show how to choose a section cj so that we still have a WS.
Let us call the sections that derive from the set S(hi) un-
der consideration critical sections; the current RI(Hi) can
change only if cj is one of these. There are 2 cases; first
suppose that s = cj derives from B(hi). Then the ad-
jacency of the CAD of S, computed at step three, allows
us to apply algorithm (1): we outline the few possibilities.
If Hi = Log(g(z)) then if we approach s from the non-
adherent side then we subtract −2πi from RI(Hi)|cj−1

to ob-
tain RI (Hi)|s, and then RI(Hi)|cj+1

has the latter Riemann
index for our next valid cell in the path. If we approach
s from the adherent side then we add 2πi to RI (Hi)|cj+1

only. If H = n
�
g(z), we either reduce or increase k ∈ � k

by 1 in the Riemann index exp( 2kπi
n

) each time, noting that
if RI (Hi)|cj−1

= 1 and if cj−1 does not adhere to s then

RI(Hi)|s = exp( 2(n−1)iπ
n

). This is efficient as no evaluation
of Φ need be done on these sectors. However, if RI (Hi)|cj

corresponds to a non-reachable sheet (which can be checked

since we already know Ẑ) then we must in fact terminate
the path after or before including cj in the path, depending
on the adherence of s. The second case occurs if cj derives
from any of the other functions in S(hi). Then, we may
also have the same problem as just described, or more dif-
ficult to detect, it may happen that RI (Hi) changes on cj

even though it is a branch cut or argument line of one (or
more) of the f(pi). Thus we may obtain the wrong index
if we simply include cj as our next cell in the path. In this
case, there are two approaches. The first is to try to find
new paths avoiding cj starting from the last valid cell in the
former path. The second requires us to compute Arg(p) on
the sector cj+1 by the Mg method to give us the correct
RI(Hi)|cj+1

and then use adherence to determine the index
for the section cj .

The last step, where we simplify IA(Φ)|c, is required in
order to decide whether the correction factor for the single-
valued formula φ(hi) = 0 is zero or not on each cell. For
non-nested gi it is just a case of collecting the Riemann
indices from the logs together, treating π as a symbolic in-
determinate, and similarly for the roots. The nested case is
a little more involved and will not be described here but in
both cases the general constant problem does not arise.
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Figure 3: The reachable sheets of RS(Log(1 − z)).

4.1 Examples
1. H = Log(1 − z) − Log(−1) − Log(z − 1).

The sets of indices for the reachable sheets corresponding to
the three logarithms above are {0, 1}, {0} and {0}
respectively. Thus we only need to compute a WS for the
Log(1 − z), as this is the only one which will affect IA(H).
Clearly Mg = (0, 2π]. The branch cut and argument branch
for this first logarithm are given by [1,∞) and (−∞, 1) re-
spectively, and the adherence of these can be easily cal-
culated to obtain the set-up shown in the left-most dia-
gram of figure (3). The other two diagrams show R =

R̂S(Log(1 − z)), namely domains of the principal and 2πi
branches, and the shaded regions represent the reachable
cells of R together with their Riemann indices. (The simple
CAD comprises the 9 obvious cells but is not shown here
for clarity) We now show to derive those values so that they
may be used to anotate the cells in a way that matches the
left-hand figure as shown.

There is only one argument branch here so this must be
L0, and so we let this cell be c0. However, the Riemann
index of c0 cannot yet be determined, as 0 6∈ Mg. Its cell
index is (1,2) from which adjacency gives us a choice of (1,3)
or (1,1) or (2,2) for c2. Mg tells us that we must identify
the cell which has points such that Arg(g) is positive, and so
using p = −1+I for example, we see that sign(=(g(p))) < 0
showing that (1,1) is a reachable cell on the principal sheet,
with Riemann index 0, whilst (1,3) is not; (2,2) is a singu-
larity, and cannot belong to the WS either. Now we take
c3 = (2, 1) and c4 = (3, 1), for which the index remains
0. Next, c5 = (3, 2) is identified by the data-structure as a
branch cut, and algorithm (1) shows that the index should
be 0 on it and 2πi on the next cell c6 = (3, 3). Finally the
remaining steps of the WS are (2,3),(1,3), and (1,2) where
the index remains at 2πi, and we discover that c0 in fact
belongs to the sheet with index 1.

2. H = Log(−1 − z2) − Log(i− z) − Log(i+ z).
The sets of indices for the reachable sheets of each logarithm
are {0, 1}, {0, 1} and {0} respectively, so we need to com-
pute a WS for the first two logarithms shown. For brevity,
we just focus on the first logarithm with the others being
similar to (4.1.1). We compute the Mgi

, argument branches
ai and branch cuts bi for each logarithm. For the first one,
L1, we obtain (−2π, 3π] and the line segments a1 = (i, i∞)
and a2 = (−i,−i∞), (an easy computation shows that this
is L0) as well as b1 = (−i, i), and b2 being the x−axis. Fig-
ure (4) shows what RI (L1) is alone on each of the cells. Now
a possible set of paths are as follows. l1 = {(2, 1), (1, 1)},
l2 = {(2, 1), (3, i), (2, 7), (1, 7), (1, 6)} where i = 1, . . . 7 and
l3 = {(3, 3), (2, 3), (1, 3), (1, j)} where j = 2, . . . 5. Now l1, l2
were terminated on finding a cell where the RI(L1) cannot
be found without deducing, via adjacent cells, the value of
Arg(p) with p ∈ L1 at its sample point. The li are efficient

2π i

2π i

2π i2π i

0

0

00

i

− i

0

Figure 4: Riemann indices for Log(−1 − z2).

paths which complete most of the WS without performing
these computations. We point out that from Mg we may
determine RI(L1) on (1,1) and (3,1) for free as well as (3,2),
even though the latter cell is a critical section deriving from
F (pi) = Log(i + z), and would generally require an argu-
ment calculation. Note that after finding (1,3), (1,2) only
requires the adherence of the bi which is this cell. Finally,
the points (0,±i) but not (0,0), can be placed into the above
WS in the obvious way.

4.2 Remarks
A major motivation for presenting algorithm (1) as a spe-

cial case of algorithm (2) is due to the extra computational
cost involved in steps 1 and 2; particularly the latter as we
effectively double the number of polynomials in our semi-
algebraic set. Fortunately the cost of CAD is doubly expo-
nential only in the number of variables[17], and is polyno-
mial time in the number of polynomials in the input formula.

If we are to apply (4.1) to examples where the Gi(z) are to
admit nth roots, then we work recursively, and we use the
fact that Mg( n� p(z)) = 1

n
Mg(p(z)). However we require

that the inputs to the roots (recursively) are single ‘root
monomials’, as defined in [4], only. In this case, paths must
terminate on or before encountering branch cuts deriving
from an nth root, depending on their adherence. The general
case remains to be done.

An another advantage of WS is that they solve yet an-
other problem, not mentioned in (1.2) that occurs in the
sample point testing phase. Numerical evaluation will pro-
duce in most cases an arbitrary looking floating point num-
ber. What would be more useful would be to determine a
symbolic correction factor for the proposed formula H = 0
where required. As in [8] one can try to determine this by
calculating error bounds and choosing the branch with the
closest value at p although this is not always possible. It
also requires that we prohibit inverse elementary functions
appearing in denominators5 for we need to ensure separa-
tion of the set of values obtained by evaluating each branch
at the point p. Working symbolically will be better suited
to achieving this goal, although this will be more costly in
general, and it will not reveal what branch we are on for each
of the individual Hi in Φ. WS do provide this information,
and it may be of great interest to the user.

The cost of accessing the data-structure is the only price
we pay when determing the Riemann index on many of
the cells. Thus, the loss of efficiency caused by the over-
representation of D mentioned earlier should be somewhat
offset by the gains made here, without the need for cluster-
ing. This should be useful for cases where our CAD com-
prises several thousand cells6.

5See [8] for examples.
6This is not unusual, see [5] for examples.
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5. CONCLUSION & FUTURE WORK
We have seen that the adherence method in section 2 deals

with some of the more difficult issues associated with the De-
composition Method in an efficient way. The only drawback
in terms of complexity is that we may have to use an ad-
jacency algorithm. It would still be nice to implement the
method so that we may attempt larger examples and see
what sort of run times we obtain. The Winding Sequence
approach avoids the problems of unlucky sample points, the
constant problem and models well the underlying cause of
the problem of why multivalued formula can fail to hold; it
also has good long term potential for larger function fields,
provided we can still generate a decomposition with respect
to the cuts. Indeed, methods do exist for the larger class
of Pfaffian functions[21]. Formal justification for several

�
variables may be harder to achieve however, for both meth-
ods. Until such a time it would be interesting to choose
examples which can be verified by other means and see if
any counter-examples can be found. Although the complex-
ity (at the last step of the Decomposition Method) of pro-
ducing CADs with large numbers of cells has been reduced
by our method, it would clearly advantageous to produce
smaller CADs if possible. One approach to this is to obtain
a more accurate description of the branch cuts in the first
place; we shall describe this later in [6].
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APPENDIX
The adherence of the base inverse elementary functions,
based on the definitions in [12], is given below.

Function Branch cut Closure Branch cut Closure
arcsin(z) (−∞,−1) = > 0 (1,∞) = < 0
arccsc(z) (−1, 1) = > 0 — —
arcsinh(z) (−i∞,−i) < < 0 (i, i∞) < > 0
arccsch(z) (−i, 0) < > 0 [0, i) < < 0
arccos(z) (−∞,−1) = > 0 (1,∞) = < 0
arccosh(z) (−∞, 1) = > 0 — —
arcsec(z) (−1, 1) = > 0 — —
arcsech(z) (−∞, 0] = > 0 [1,∞) = > 0
arctan(z) (−i∞,−i] < < 0 [i, i∞) < > 0
arccot(z) [−i, i], = > 0 — —
arctanh(z) (−∞,−1] = > 0 [1,∞) = < 0
arccoth(z) [−1, 1] = < 0 — —
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