
Better Simplification of Elementary Functions Through
Power Series

James Beaumont, Russell Bradford & James H. Davenport
∗

Department of Computer Science
University of Bath

Bath BA2 7AY England

{J.Beaumont, R.J.Bradford,J.H.Davenport}@bath.ac.uk

ABSTRACT
In [5], we introduced an algorithm for deciding whether a
proposed simplification of elementary functions was correct
in the presence of branch cuts. This algorithm used multi-
valued function simplification followed by verification that
the branches were consistent.

In [14] an algorithm was presented for zero-testing functions
defined by ordinary differential equations, in terms of their
power series.

The purpose of the current paper is to investigate merging
the two techniques. In particular, we will show an explicit
reduction to the constant problem [16].

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms

General Terms
Algorithms, Theory

Keywords
Simplification Power Series

1. INTRODUCTION
In [5], we introduced an algorithm for deciding whether a
proposed simplification of elementary functions was correct
in the presence of branch cuts. This algorithm works by:

(a) verifying that the proposed simplification is correct as
a simplification of multi-valued functions;

∗We thank Dr. Smyth for drawing our attention to the iden-
tities shown in [18]
The authors gratefully acknowledge the support of EPSRC,
under grant number GR/R84139/01.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’03, August 3–6, 2003, Philadelphia, Pennsylvania, USA.
Copyright 2003 ACM 1-58113-641-2/03/0008 ...$5.00.

(b) decomposing C (or Cn in the case of multivariate sim-
plifications) according to the branch cuts of the rele-
vant functions;

(c) checking that the proposed identity is valid on each rele-
vant1 component of that decomposition, by evaluation
at a sample point. The fact that it is possible to use
a single representative of each connected region is a
consequence of the Monodromy theorem. (see [12] for
example)

The algorithm works for cases where the only nesting al-
lowed is that of square roots inside other elementary func-
tions, and inverse (potentially multivalued) functions may
only occur in the numerator. The rationale for these re-
strictions is given in [5, section 7.1]: the relevant one here is
that we need to be able to ensure that two different branches
of a multi-valued function are not accidentally equal at the
sample point in step (c) above, as in (x−2) ln x, where all the
multivalued forms of (x−2)Lnx are equal at x = 2. If there
are inverse (potentially multivalued) functions in the denom-
inator, then we cannot distinguish this case from the case
where arbitrarily close values are taken: consider the func-
tion Arctan(x)/ Arctan(2x) evaluated at x = 1. Depending
on the choices of branch in the numerator and denomina-
tor, we can (by the density of the rationals) approximate
the principal value arctan(1)/ arctan(2) arbitrarily closely,
as shown in Table 1 (taken from [5]).

Table 1: Values of Arctan(1)/ Arctan(2)

numerator denominator Value
branch branch

arctan arctan 0.70938813438026133678959
arctan +2π arctan +3π 0.67115767953116559118826
arctan +7π arctan +10π 0.70031959034809923217896

Here we present a different algorithm, which replaces explicit
manipulation of multivalued functions by the manipulation
of power series and their coefficients, as described in [14]. It
will turn out that this algorithm has different strengths and

1Assumptions [19] made by the user, or an explicit lack of
interest in lower-dimensional components, may mean that
not all components need to be analysed.

weaknesses — see the table in section 7. Furthermore, much
of the machinery, notably step (b) above and its potential
interfacing to an assume facility, is common to both, so that
a system could have “two strings to its bow”.

Notation 1. Lower case letters, as in arctan, or symbols

as in
�

, denote single-valued functions C → C, whereas

capitalised functions, as in Arctan or Sqrt, denote multival-
ued functions C → 2C.

Notation 2. The meaning, and choice of branch cuts,
for the single-valued functions is as defined in [7], which
tightens up the behaviour on branch cuts from [1].

2. A NEW ZERO–TEST FOR FORMAL
POWER SERIES

This is the title of [14], which

presents a new zero-test for expressions which are
constructed from formal power series solutions
to algebraic differential equations using the ring
operations and differentiation. . . . We will be
concerned with expressions that represent formal
power series (in fact this approach covers most
elementary calculus on special functions, using
analytic continuation if necessary).

Hence in fact the functions being considered in [14] are es-
sentially the same multivalued functions as in [5].

A convenient survey of other approaches is found in [14].
In outline, the algorithm presented in that paper runs as
follows.

Given a formula h(z) to test whether h = 0 (in the sense
of functions C →Riemann surface, defined by power
series and analytic continuation):

1. Compute a suitable differential equation Q satisfied by
h (i.e. Q(h) = 0), with coefficients in the power series
ring C[[z]]: in practice these coefficients will also be
formulae that we can expand in C[[z]].

2. From the shape of Q, compute an integer s such that, if
the coefficients of z0, z1, . . . , zs in the C[[z]] expansion
of h are all zero, then h is identically zero.

3. Verify that these coefficients are all zero.

Step 3 is non-trivial and calls for more explanation. In gen-
eral, the power series coefficients will be from C. As is
usual in this area, it was assumed in [14] that the coeffi-
cients belong to an effective field of constants and so that
there exists algorithms for zero equivalence. For many func-
tion fields however, the problem is known to be undecidable
[16]. In practice however, it is often the case that an numer-
ical evaluation, together with guaranteed precision bounds,
will reveal when a constant is not zero; see section c-2.5.

One has to be careful however of evaluating functions on
their branch cuts, where such precision bounds are useless,
as the smallest error can cause a jump in the value. More
sophisticated techniques exist, see [17] for example, but rely
on the truth of the Schanuel conjecture.

3. OUR ALGORITHM
We assume that we have a proposed simplification f(z) →
g(z), which we wish to check is valid

• everywhere; or

• everywhere except on sets of measure zero; or

• within the validity of some assume [19] conditions on
z.

Such a simplification might be generated by a tool such as
Maple’s simplify(...,symbolic).

Let h = f − g. Then we wish to check that h = 0 on the
region as described above. The algorithm proceeds roughly
as follows (we will see later on that there are some compli-
cations that need to be addressed):

(a) computing2 the differential equation Q(h) = 0 satisfied
by h;

(b) decomposing C into Regions Ri according to the branch
cuts of f and g;

(c) checking that the proposed identity is valid on each rel-
evant component of that decomposition, by evaluating
the appropriate number of initial conditions for Q re-
quired to describe the single-valued function f − g at
a sample point.

Step (a) is described in [14], and step (b) in [5, 4]. Therefore
we concentrate on step (c) here, following reasonably closely
the notation of [14].

Notation 3. Let δ be the differential operator z ∂
∂z

. F (r)

will denote δrF .3

Notation 4. Let R be an effective power series ring:
C[z] ⊆ R ⊂ C[[z]]. If f ∈ R, let fk denote the coefficient of
zk in the expansion of f .

Note that this restriction to power series rings rules out
Puiseux series or logarithmic transseries, where the monomi-
als are za0(log z)a1(log log z)a2 . . . (ai ∈ Q and may be neg-
ative, as in Laurent series, but not unboundedly negative).
The second restriction is not a problem for us4, since if such

2As we will see in the examples, f and g often satisfy the
same linear differential equation, in which case h satisfies
the corresponding homogeneous equation.
3One referee noted that Knuth uses θ instead
4In the setting of only one independent variable. If we did
generalise to more than one independent variable (see sec-
tion 7.2), this might need to be re-thought.

logarithmic terms are needed when expanding about a sam-
ple point z0, then there is an essential singularity in h at that
sample point (which therefore must be an isolated point5),
and we need merely check that f(z0) = “undefined” = g(z0).
The Puiseux series limitation is more serious, but again can
be circumvented — see step (c3) below. This restriction also
rules out Laurent series, a restriction not explicitly noted in
[14], but again this can be circumvented — see step (c4)
below.

Notation 5. Let Q be a non-zero differential polynomial
of order r defining h = f − g, with H the formal differential
indeterminate corresponding to h, so that Q ∈ R[H, H (1), . . . ,

H(r)] ⊂ R{H}. Let v be a minimal (over all i) valuation of
∂Q

∂H(i) , i.e. the exponent of the smallest power of z to have
a non-zero coefficient in the series expansion.

Lemma 1. [14] After a transformation of the form h →
h0 +h1z + · · ·hvzv + ĥzv+1, and division by a suitable power
of z, we may assume that

Q = LH + zM, (1)

where L ∈ C[δ] is non-trivial, and M ∈ R{H} is the differ-
ential polynomial extension of R by H and its derivatives.

Notation 6. Let Λ(k) ∈ C[k] be the polynomial obtained
from L in equation (1) by interpreting δ as the indeterminate
k.

Lemma 2. [14] Equation (1) gives the recurrence relation

hk = − 1

Λ(k)
(M(h))k−1, (2)

except when k is a root of Λ.

Let s be the largest root of Λ in N (or −1 if none such exist).
Then h is the unique solution of Q(h) = 0 with given initial
power series coefficients h0, . . . , hs.

Step (c) of the main algorithm can then be fleshed out as
follows.

(c) For each appropriate region Ri of the complex plane
viewed as R2, with corresponding sample point zi, do
the following.

(c1) Perform the substitution z := z − zi in Q to
bring zi to the origin (in practice one might not
do this, but rather rewrite the theory of [14] to
expand about arbitrary points).

(c2) If the solution to Q requires logarithmic terms,
then Ri is {zi}. Verify directly that f(zi) = g(zi)
(which will normally be “undefined” = “unde-
fined”).

(c3) If the solution to Q requires non-trivial Puiseux
series, there are two cases.

5Again, since we only have one independent variable.

(c3.1) Ri = {zi} is zero-dimensional. Verify di-
rectly that f(zi) = g(zi) (which may well be
“undefined” = “undefined”).

(c3.2) Ri is not zero-dimensional. Pick a differ-
ent sample point zi and restart at step (c1).

(c4) If the solution to Q requires non-trivial Laurent

series, then replace6 h by h̃/zk, where the Laurent
series begins c−kz−k + · · · .

(c5) Perform the appropriate translation to put Q in
the form of equation (1).

(c6) Let Λ be as in Notation 6, and let s be the largest
root of Λ in N (or −1 if none such exist).

(c7) Verify that all the coefficients h0, . . . , hs of the
power series solution h of Q are all zero, evaluat-
ing them as coefficients of f −g (as transformed),
and taking account of the genuine C → C mean-
ings of f and g.

4. EXAMPLES
Throughout this section, we are manipulating functions and
their values. The reader may think that these manipulations
ought themselves to be checked by the methods of this paper,
but in fact we only use:

• manipulation of values, where the side-conditions can
be explicitly checked;

• � √F � 2

→ F , which is universally valid.

4.1 Combining square roots
We consider the example

√
1 − z

√
1 + z

?
=
√

1 − z2 from [5].
Write p =

√
1 − z, q =

√
1 + z, r = pq and r̂ =

√
1 − z2, so

that we are testing r
?
=r̂, i.e. h = 0 where h = r − r̂.

(a) p′ = −1
2p

= −p

2(1−z)
, p′ + p

2(1−z)
= 0. Similarly, q′ −

q

2(1+z)
= 0. Therefore

r′ = p′q + pq′ =
−pq

2(1 − z)
+

pq

2(1 + z)
=

−zr

1 − z2
.

It is also the case that r̂′ = −zr̂

1−z2 .

The differential equation is then Q(h) = h′ + z

1−z2 h.
Though not part of the algorithm, we note that the
general solution is h = c√

1−z2
for constant c. When-

ever this is the case, c determines the correction factor
required to make the purported equation hold on the
different regions.

(b) This was analysed in [5], and the regions are

R1 := {z | <(z) > 1 ∧ =(z) = 0}, (3)

R2 := {z | <(z) < −1 ∧ =(z) = 0} (4)

and R3, the complement of these.

6This step is not explicit in [14], but seems to be necessary in
practice — see step c-3’.4 in section 4.1: there is no reason
why Q should not have a Laurent series for solution. See
also footnote ??.

(c-1) R1 with z1 = 2.

(c-1.1) Applying z := z − 2, the equation becomes

Q = (−3 + 4z − z2)H(1) + (z2 − 2z)H(0).

(c-1.5) ∂Q

∂H(1) = −3+4z−z2, so the valuation is zero.

We do not actually need to compute ∂Q

∂H(0) , but

this is z2 − 2z. Hence v = 0, and the necessary
substitution is h → h0 + ĥz. But h0 = h(0) =
r(2)− r̂(2) =

√
−1

√
3−

√
−3 = 0 (with the stan-

dard meaning of
�

). Hence we replace h by zĥ,

(and therefore h′ by zĥ′ + ĥ which is Ĥ(1) + Ĥ(0))

to get (−3+2z)Ĥ(0) +(−3+4z− z2)Ĥ(1). In the

format of equation (1), this is Q = (−3δ − 3)Ĥ +

zM where M = −zĤ(1) + (2Ĥ(0) + 4Ĥ(1)).

(c-1.6) Therefore Λ = −3k − 3, so s = −1.

(c-1.7) There is nothing to check.

Thus we find that h ≡ 0 on this region.

(c-2) R2 with z2 = −2. This is similar, so we will not repeat
the calculation here, but again we find that h ≡ 0 on
this region.

(c-3) R3 with z3 = 0.

(c-3.1) There is nothing to do: Q = (1 − z2)H(1) +

z2H(0).

(c-3.5) Q is already in the form of (1):

Q = H(1) + z(−zH(1) + zH(0)).

(c-3.6) Therefore Λ = k so s = 0.

(c-3.7) We only need verify that h0 = 0. Indeed,
h0 = h(0) = r(0) − r̂(0) = 0.

• Therefore the equation is globally valid.

We note that, at step c-1.1, the equation for Q is already
in the required form of (1), as it can be written as Q =

(−3δ)H + zM where M = (4− z)H(1) +(z − 2)H(0). Hence
Λ = −3k, so s = 0, and we would have to verify that h(0) =
0. However, we previously followed all of the
relevant algorithm steps for illustration purposes.

This was fairly straight-forward, however, we could have
chosen a more complicated scenario.

(c-3’) R3 with z3
′

= 1.

(c-3’.1) Applying z := z − 1, the equation becomes
Q(h) = (2z−z2)h′+(z−1)h. The solution to this

is h = c � z(z − 2), and therefore involves Puiseux
series. We then write it as
Q = (2 − z)H(1) + (z − 1)H(0) as usual.

(c-3’.3) Since R3 is not zero-dimensional, we would
normally choose a different point, e.g. as in (c-3)
above. However, to illustrate how this problem
can be solved, we will proceed anyway. We write
w2 = z, so that Q becomes
(2 − w2) ∂w

∂z
∂H
∂w

+ (w2 − 1)H, which is

(1
w2 − 1

2
)H(1) + (w2 − 1)H(0),

using the (r) notation to denote differentiation
with respect to w, and δ now being w ∂

∂w
.

(c-3’.4) The indicial equation w ∂
∂w

+ 1 implies that

h = O(w−1), i.e a non-trivial Laurent series. We
could now proceed with step (c4), but in the
interests of brevity, we stop here.

4.2 arcsin and arctan
Here we investigate the often-quoted identity

arcsin z
?
=arctan

z√
1 − z2

, (5)

which we write in the standard notation as f(z)
?
=g(z). The

definition of arcsin is7

arcsin z = −i ln � � 1 − z2 + iz � . (6)

Hence

f ′ = −i

−z√
1−z2

+ i
√

1 − z2 + iz
= −i

−z + i
√

1 − z2

(1 − z2) + iz
√

1 − z2

= −i

�
−z + i

√
1 − z2 � �

(1 − z2) − iz
√

1 − z2 ��
(1 − z2) + iz

√
1 − z2 � �

(1 − z2) − iz
√

1 − z2 �
= −i

i
√

1 − z2(1 − z2) + iz2
√

1 − z2

(1 − z2)2 + z2(1 − z2)

=

√
1 − z2

1 − z2
=

1√
1 − z2

.

Since we know the series definition for 1√
1−z2

, this is suffi-

cient.

Similarly,

arctan(z) =
1

2i
(ln(1 + iz) − ln(1 − iz)) , (7)

so

g′ =

√
1 − z2 + z2√

1−z2

2i(1 − z2)

��
i

1 + i z√
1−z2

− −i

1 − i z√
1−z2

��

=
(1 − z2) + z2

2i(1 − z2)
√

1 − z2

2i(1 − z2)

(
√

1 − z2 + iz)(
√

1 − z2 − iz)

=
1

(1 − z2)
√

1 − z2

(1 − z2)

(
√

1 − z2
2

+ z2)

=
1√

1 − z2
.

(a) Since f and g satisfy the same linear differential equa-
tion, h = f − g satisfies the corresponding homoge-
neous equation: Q = h′ = 0.

(b) The branch cuts for f are R2 = (−∞,−1) and R3 =
(1,∞), which are in fact also the branch cuts for g.
Given this form of Q, which implies that f − g is (lo-
cally) constant, we could in practice just check f = g
at non-trivial sample points as in [5].

(c) The regions are R2, R3 and their complement, R1.

(c-1) R1 with z1 = 0.

7[7] following [15], which agrees with [1], but is more specific
about the values taken on the branch cuts.

(c-1.5) ∂Q

∂H(1) = 1, so v = 0. Proceeding formally, arcsin(0)

= arctan(0
1
) = 0, so h0 = 0 and we write h = zĥ

whence Q = zĥ′ + ĥ. In the formalism of equation (1),

this is Ĥ(1) + Ĥ(0), or (δ + 1)Ĥ.

(c-1.6) Λ = k + 1, so s = −1.

(c-1.7) There is nothing to check.

(c-2) R2 with z2 = −2.

(c-2.7) We check h0 = arcsin(−2) − arctan(−2√
1−22

) = 0.

This works out as

−i ln
� √

1 − 22 − 2i � + i
2 � ln(1 + i −2√

−3
) − ln(1 + i 2√

−3
) �

= −i ln(i
� √

3 − 2 �) + i
2 � ln(1 − 2√

3
) − ln(1 + 2√

3
) �

= −i ln(i
� √

3 − 2 �) + i
2

�
ln(

√
3 − 2) − ln(

√
3 + 2) �

= −i ln(2 −
√

3) − π
2

+ i
2

�
iπ + ln(2 −

√
3) − ln(

√
3 + 2) �

= −i(ln(2 −
√

3) − π + i
2

�
ln(2 −

√
3) − ln(

√
3 + 2) �

= −π + i(−2 ln(2 −
√

3) + ln(2 −
√

3) − ln(
√

3 + 2))

6= 0.

Where we have adopted the strategy suggested in [4]
of converting the proposed identity into one just in-
volving complex logarithms; numerical evaluation of
those whose arguments lie on the branch cut cannot
be trusted in general, but where possible we can use
the fact that the arguments are real to transform the
logarithm away from the cut. We should then note
that a guaranteed-precision floating-point evaluation
would be sufficient to prove inequality.

(c-3) R3 with z3 = 2.

(c-3.5) Similar.

• So the equation is false on the branch cuts, but true else-
where.

4.3 log and exp
Here we consider the proposed identity

z(log(exp(z)) − 2πi) − z2 ?
=0. (8)

(a) Putting h(z) = z(log(exp(z)) − 2πi) − z2, h(z) satisfies
the equation Q(h) = h′z − h.

(b) To find the branch cuts of h, we must determine where
exp(z) maps onto the cut for log(z), the latter region
being

R := {z | <(z) < 0 ∧ =(z) = 0}. (9)

A simple calculation shows that the cuts are of the
form, {z | =(z) = (2n + 1)π, n ∈ Z}. We note that
these no longer comprise a finite set of algebraic equa-
tions, so cannot be handled by the original cylindrical
algebraic decomposition (CAD) method [6]. However
it is easy to choose sample points by hand in this case;
we return to these issues in a later paper. We consider
the regions,

R1 := {z | −π < =(z) < π}, (10)

R2 := {z | =(z) = −π}. (11)

(c-1) R1 with z = 0.

(c-1.1) Q = H(1) − H(0).

(c-1.5) This is already in the form of (1) with M ≡ 0,
L = δ − 1.

(c-1.6) Therefore Λ = k − 1, so s = 1.

(c-1.7) Hence we need to verify that h0 and h1 are zero.
Now h0 = h(0) = 0 whilst h1 = h′(0) = −2πi.

(c-2) R2 with z = −πi.

(c-2.1) Q = (z + πi)H(1) − zH(0).

(c-2.5) This is already in the form of (1) with

M = H(1) − H(0) and L = πiδ.

(c-2.6) Therefore Λ = πik, so s = 0.

(c-2.7) Hence we need only verify that h0 is zero. Now
h0 = h(−πi) which works out to be

−πi
�
log(e−πi − 2πi � − (−πi)2

= −πi(πi − 2πi) + π2

= −πi(−πi) + π2

= 0.

• Hence in R1 the identity is false, whilst in R2 it is true.

4.4 Remarks regarding complexity
Regarding step (b), one possibility is to use CAD, as was
suggested in [5]. However, it is well known this algorithm
has complexity that is doubly exponential in the number of
variables [10]. As for step (c), [14] states that it should be
possible to give complexity bounds for the algorithm given
there with some more work. For now, we remark that, unlike
the examples given so far, it is possible to produce simple
examples where we must check a large number of terms in
order to conclude that the function is zero. For suppose that
r ∈ N. Then h(z) = � (z2r)− zr satisfies Q = zh′ − rh = 0,
and the algorithm then yields for Λ the equation k − r = 0,
so that s = r. Hence we can make s arbitrarily large by our
choice of r.

5. RESTRICTIONS
Since our algorithm is based on [14], it is necessarily re-
stricted to analytic functions. This imposes two restrictions
with respect to [5].

5.1 Complex Conjugation
Complex conjugation is a powerful operator. It is useful in
various identities, as for example the relationship between
Derive’s definition of arctan and that of [7, 1]: arctan� ��� �

Derive

(z) =

arctan z [7]. Furthermore, it can be hard to reason with
manually, as in [1, 6.1.23 (part 2)], which states ln Γ(z) =

ln Γ(z), although this is false whenever z is real and in the
range (−(2n + 1),−2n) for n ∈ {0, 1, 2 . . .}, for then Γ(z) =
Γ(z) is real and negative, and on this branch cut log Z =
log Z − 2πi [9].

Unfortunately, complex conjugation is not an analytic oper-
ator, and hence cannot be brought within the framework of
[14]. It remains to be seen how much of a practical limitation
this is.

5.2 Absolute values
Although not explicitly stated in [5], that method can cope
with absolute values in the definition of functions, by using
arg and its multivalued equivalent. So, for example, the
following identity from [1]:

| tanh(z)| =

(

cosh(2x)−cos(2y)
cosh(2x)+cos(2y)

)1/2

would be rewritten as

tanh(z)e−i arg(tanh(z))
=

(

cosh(2x)−cos(2y)
cosh(2x)+cos(2y)

)1/2

.

Again, “absolute value” is not an analytic operator, and
hence cannot be brought within the framework of [14].

6. NON-ELEMENTARY FUNCTIONS
Many8 non-elementary special functions can be defined in
terms of ordinary algebraic-differential equations — one can
think of Bessel and error functions, for example. Does this
method extend to them? The abstract method of [14] does
indeed so generalise. However, there are two main stum-
bling blocks to generalising the method of this paper to
non-elementary special functions.

• Many non-elementary special functions have infinitely
many branch cuts (e.g. the Lambert W function[8]),
or the branch cuts may not be algebraic, and hence in
either case do not fall within the remit of cylindrical
algebraic decomposition to solve step (b). In some
cases the non-algebraic branch cuts may fall within
the sub-Pfaffian extension of cylindrical decomposition
[11].

• The “constant problem” is in practice less well studied
than it is for elementary functions.

Multivalued Functions [5] Power Series: section 3 and [14]
Can handle multivariate expressions Currently restricted to one variable

Does not allow inverses in denominator Permits inverses in denominator
Does not allow nesting of functions Allows nesting of functions

(except for square roots inside other functions) (provided branch cuts finite and algebraic)
Needs multivalued simplification rules [4] Only needs differential equation definitions

but needs power series and differential algebra technology
Restricted to elementary functions Not necessarily so restricted (see section 6)

Relies on numerical evaluation Relies on symbolic evaluation of constants
Therefore unstable on lower-dimensional cuts [4] Cannot always short-cut via numerics

(but can to prove inequality — see c-2.5 in section 4.2)
Allows complex conjugation Does not allow complex conjugation

8But not all: for example the Γ function cannot be so defined
[13].

However, we still have a partial “equal/unequal/cannot de-
cide” procedure in these cases. Note that, to get a gen-
uine “unequal/cannot decide” split, the “constant problem”
solver must implement an “unequal/cannot decide” split,
instead of, as is all too often the case, returning “unequal”
where what is meant is “unable to prove equal”.

7. CONCLUSION
7.1 Comparison of methods
A simplified comparison of the two methods of [5] and this
paper is given in the table below.

We should note that both methods require specification of
the branch cuts, since they are essentially human-imposed
conventions, rather than mathematically deducible (their
existence is deducible, but where they are is purely con-
ventional, and sometimes controversial — see the discussion
of the branch cut for arccot in [7]).

7.2 Future Research
A major goal clearly has to be to implement this algorithm,
and see how it compares with that of [5] in practice on ex-
amples open to both. It would also be nice to produce some
examples with non-elementary special functions which were
amenable to this method, though so far this has not proved
trivial — see section 5.2 for one stumbling block we encoun-
tered.

On the theoretical side, much of what we said about step
(b) in [5] remains valid.

Cylindrical algebraic decomposition [6]. Here the
difficulty is that the semi-algebraic sets we are
using to partition the complex plane, as in equa-
tion (3), cannot be given directly to cylindrical
algebraic decomposition, and the transformation
of them may lead to far larger decompositions
than are desirable. A clustering algorithm [2, 3]
would help but in general it would need to be
aware of the original set of semi-algebraic sets,
rather than the transformed set of constraints.

At the moment, the method of [14] is limited to one inde-
pendent variable, so cannot consider the example of

arctan(x) + arctan(y)
?
=arctan

�
x + y

1 − xy � (12)

from [5]. [14] does say

on the longer run, the algorithm might generalize
to the multivariate setting of partial differential
equations with initial conditions on a subspace
of dimension > 0.

This would definitely widen the applicability of this method.

8. REFERENCES
[1] Abramowitz, M., and Stegun, I. Handbook of

Mathematical Functions with Formulas, Graphs, and
Mathematical Tables. US Government Printing Office
(1964; 10th printing, 1972).

[2] Arnon, D. A Cluster-Based Cylindrical Algebraic
Decomposition Algorithm. J. Symbolic Comp. 5
(1988), 189–211. Also Algorithms in Real Algebraic
Geometry (ed. D.S. Arnon and B. Buchberger),
Academic Press, London, 1988.

[3] Arnon, D., Collins, G. and McCallum, S.

Cylindrical Algebraic Decomposition II: An Adjacency
Algorithm for the Plane. SIAM J. Comp. 13 (1984),
878–889.

[4] Beaumont, J., Bradford, R., and Davenport, J.

Towards Better Simplification of Elementary
Functions. Pre-print, University of Bath, England.
(2002).

[5] Bradford, R., and Davenport, J. Towards Better
Simplification of Elementary Functions. In Proceedings
ISSAC 2002 (2002), T. Mora, Ed., ACM, New York,
pp. 15–22.

[6] Collins, G. Quantifier Elimination for Real Closed
Fields by Cylindrical Algebraic Decomposition. In
Proceedings 2nd. GI Conference Automata Theory &
Formal Languages (1975), vol. 33 of Springer Lecture
Notes in Computer Science, Springer-Verlag,
pp. 134–183.

[7] Corless, R., Davenport, J., Jeffrey, D., and

Watt, S. According to Abramowitz and Stegun.
SIGSAM Bulletin 34, 2 (2000), 58–65.

[8] Corless, R., Gonnet, G., Jeffrey, D., Hare, D.,

and Knuth, D. On the Lambert W Function. In
Advances in Computational Mathematics 5 , (1996),
329–359.

[9] Davenport, J. Table Errata — Abramowitz &
Stegun. To appear in Math. Comp (2003).

[10] Davenport, J., and Heintz, J. Real Quantifier
Elimination is Doubly Exponential. J. Symbolic
Computation 5 , (1988), 29–35.

[11] Gabrielov, A., and Vorobjov, N. Complexity of
cylindrical decompositions of sub-Pfaffian sets. J. Pure
Appl. Algebra 164 (2001), 179–197.

[12] Henrici, P. Applied and Computational Complex
Analysis. Vol.1, Wiley and Sons, (1974).

[13] Hölder, O. Über die Eigenschaft der Gamma
Funktion keineralgebraischen Differentialgleichungen
zu genügen. Math. Ann. 28 (1887), 1–13.

[14] van der Hoeven, J. A new Zero-test for Formal
Power Series. In Proceedings ISSAC 2002 (2002),
T. Mora, Ed., ACM, New York, pp. 117–122.

[15] Kahan, W. Branch Cuts for Complex Elementary
Functions. The State of Art in Numerical Analysis
(1987), 165–211.

[16] Richardson, D. Some Unsolvable Problems Involving
Elementary Functions of a Real Variable. Journal of
Symbolic Logic 33 (1968), 514–520.

[17] Richardson, D. How to Recognize Zero. In Journal
of Symbolic Computation (1994), 24(6), 627–646.

[18] Smyth, C. An explicit formula for the Mahler
measure of a family of 3-variable polynomials. To
appear in J. Théor. Nombres Bordeaux (2002).

[19] Weibel, T., and Gonnet, G. An Assume Facility
for CAS with a Sample Implementation for Maple. In
Proceedings DISCO ’92 (1993), J. Fitch, Ed., vol. 721
of Springer Lecture Notes in Computer Science,
Springer-Verlag, pp. 95–103.

