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ABSTRACT
We present an algorithm for simplifying a large class of el-
ementary functions in the presence of branch cuts. This
algorithm works by:

(a) verifying that the proposed simpli�cation is correct as
a simpli�cation of multi-valued functions;

(b) decomposing C (or Cn in the case of multivariate sim-
pli�cations) according to the branch cuts of the rele-
vant functions;

(c) checking that the proposed identity is valid on each com-
ponent of that decomposition.

This process can be interfaced to an assume facility, and,
if required, can verify that simpli�cations are valid \almost
everywhere".

1. INTRODUCTION
Simpli�cation of elementary functions is a vexed question
in computer algebra. One reason for this is that simpli�-
cation itself is vexed | what do we mean by \simpler"?

Is 1 + x + x2 + � � � + x1000 \simpler" than
x1001 � 1

x� 1
? A

related question is the following: does simpli�cation mean
expression in terms of the most compact formula, or expres-
sion in terms of the fewest primitives | is arctan(z) simpler
or less simple than 1

2i
(log(1 + iz)� log(1� iz))? However,

even if one is not concerned by this, there is always the
fact that many of the elementary functions are, in principle,
multi-valued, and how does one know that the simpli�er is
respecting the standard choice of branch cuts [1, 8]? Much
of the work on simplifying (denesting) radicals (e.g. [4]) con-
centrates on radicals of numbers because of the diÆculty of
deciding branch cuts for radicals of functions.

�Useful discussions with R.M. Corless, D.J.Je�rey and S.M.
Watt are gratefully acknowledged.

In Maple1 one has the choice between the simplify com-
mand, which is, in principle, completely correct, but often
does not simplify when it should,2 and the simplify(...,

symbolic) command, which often simpli�es to things that
are not equal. Indeed, it has been commented that the com-
mand should be called \oversimplify". More information
about the various approaches to the treatment of inverse
elementary functions can be found in [5, 7].

In this paper we propose an approach that:

� is always correct;

� should do signi�cantly better than the current approaches
to the problem;

� will inter-operate with the assume facility | see step
3 in section 4;

� is capable of producing \simpli�cation with health warn-
ings" | see the last paragraph of section 5.2.

Notation: Terms like log, arctan (as well as
q

) denote

single-valued functions from C to C, with the branch cuts
as in [1, 8]. Capitalised variants, such as Log, Arctan and
Sqrt denote multi-valued functions, regarded as mapping C
into sets of values, and de�ned via their inverses, so that
Log(z) = fw : exp(w) = zg = flog z + 2n�i j n 2 Zg and
Sqrt(z) = fw : w2 = zg = f�pzg. The same notation
is used for arbitrary expressions denoting elementary func-
tions, so that G is the multi-valued version of g.

The arithmetic operations are assumed to act on these sets
element-wise, so that A+ B = fa+ b j a 2 A; b 2 Bg. The
same is true for unary functions, so that tan(Arctan(x)) =
ftanw j w 2 Arctan(x)g.

Elem denotes the set of elementary formulae (referred to
as functions in [14]), whereas ElemC!C denotes the set of
single-valued elementary functions from C to C, i.e. Elem
regarded as single-valued functions and with the branch cuts
interpreted in the sense of [1, 8]. These functions may not

1This is not a particular criticism of Maple, whose simpli�-
cation features are probably the equal of any other systems,
and, with the assume facility [15], probably better.
2For example, it will not simplify

p
1� z

p
1 + z �

p
1� z2

to 0, even though this simpli�cation is valid | see section
5.1.



be total (e.g. log(0) is not de�ned), but are de�ned almost
everywhere. When we write f(z) = g(z) this is assumed to
be true if both are unde�ned at z.

2. OVERALL APPROACH
The overall approach of this algorithm is in three steps. We
will describe it for the case of univariable expressions, and
treat the generalisation in section 6.

1. Find a possible simpli�cation g of the candidate f , e.g.
by using simplify(...,symbolic).

2. Check algebraically that the simpli�cation is correct
in the multi-valued sense, i.e. that 8z : f(z) 2 G(z).

3. Check semi-numerically that the simpli�cation is cor-
rect in the single-valued, branch-cut respecting, sense,
i.e. that f = g rather than f = ĝ for any other ĝ 2 G.
At this stage, we can take into account any assump-
tions on the values of variables.

Step 1 will not be discussed further in this paper, except to
note that it would be possible to combine steps 1 and 2 in
practice.

Other approaches are possible, such as making a single sim-
pli�cation, and then checking that this is correct in the
single-valued, branch-cut respecting sense. The problem
with this is that a chain of simpli�cations, some of which
are not valid in that sense, may still be valid as a simpli�-
cation since the branch cuts may e�ectively cancel out.

One challenge is what to do if the ultimate simpli�cation
as proposed in step 1 is not deemed to be correct by the
later stages. One possible solution is for step 1 to maintain
a list of intermediates, and to work backwards through this
list. Probably only experimentation can suggest the correct
strategy here.

3. CHECKING MULTIVALUED CORRECT-
NESS

This can be done roughly as in a standard simpli�er such
as simplify(...,symbolic). Most standard simpli�cation
\rules", which are in fact not true in the single-valued case,
are true in the multi-valued sense. A partial list of such
rules in given in Table 1, generally with a counter-example
for the single-valued case. At this stage of the research, we
do not have a complete list of these rules, which seems to
be an under-researched area of mathematics.

This area is not trivial: for example, while Arctan(x) =
farctan(x) + n� j n 2 Zg, Arcsin(x) = farcsin(x) + 2n� j
n 2 Zg [ f� � arcsin(x) + 2n� j n 2 Zg. This problem
combines with another one, that of the lack of a cancellation
law, so that, if A = Arcsin(x),

A�A = f2n� j n 2 Zg [ f2 arcsin(x)� � + 2n� j n 2 Zg
[f� � 2 arcsin(x) + 2n� j n 2 Zg

= f2n� j n 2 Zg+
f0; 2 arcsin(x)� �; � � 2 arcsin(x)g:

Table 1: Correct multi-valued simpli�cation rules
Rule Single-valued

counter-example
Log(x) + Log(y) = Log(xy) x = y = �1
Log(x)� Log(y) = Log(x

y
) x = 1, y = �1

�Log(x) = Log( 1
x
) x = �1

Log(x) = Log(x) x = �1
Sqrt(x) Sqrt(y) = Sqrt(xy) x = y = �1

Sqrt(x)2 = fxg no counter-example

Sqrt(x2) = f�xg not single-valued
Arctan(x) + Arctan(y) = x = y = 1

Arctan
�

x+y

1�xy

�
tan(Arctan(x)) = fxg no counter-example

Arctan(tan(x)) = fx+ n� j n 2 Zg x = �
sin(Arcsin(x)) = fxg no counter-example
Arcsin(sin(x)) = x = �

fx+ 2n� j n 2 Zg[
f�x+ (2n+ 1)� j n 2 Zg

Note that A � A still depends on x, unlike the case of
Arctan(x)�Arctan(x) = fn� j n 2 Zg.

The process of simplifying under the scenario of trying to
�nd a g 2 Elem such that f 2 G goes as follows: use the
standard (but only the correct) single-valued simpli�cation
rules as long as possible, then, when it is necessary to do
so, replace the single-valued function by the corresponding
multi-valued function, and then use the multi-valued simpli-
�cation rules as in Table 1.

4. CHECKING SINGLE-VALUED CORRECT-
NESS

This is the nub of the problem. To state the problem for-
mally for functions C! C:

Simplification Problem 1. Given f; g 2 ElemC!C and

the fact that f 2 G, is f = g? That is, 8z 2 C : f(z) = g(z).

In its full generality, of course, this problem is undecidable
| see [13]. We could also ask the questions that computer
algebra systems never ask (deliberately!):

Simplification Problem 2. Given f; g 2 ElemC!C and

the fact that f 2 G, is f = g almost everywhere? That is,

9M � C : �(M) = 0 ^ 8z 2 C nM : f(z) = g(z).

In the special case of f and g both analytic (no branch cuts
at all) it suÆces that they agree on any in�nite set of points
in a bounded domain for them to be equal everywhere.

There are analogues to these problems from R ! C and
even for R! R| see section 6. We do not have a complete
answer to any of these problems, but we do have answers in
the case3 when the only nesting of elementary functions in

3The reasons for these restrictions are explored in section
7.1, and they are enough to make the problem decidable.



the formula for f and g is of square roots inside other func-
tions, and where inverse functions only occur in the numer-
ators. In this case, for most4 values of x, we can distinguish
g from the other values of G.

In this case, we can proceed as follows.

1. Determine all the branch cut loci of f and g. In view
of the restriction on the nesting of f , these will all be
de�ned by algebraic (more accurately semi-algebraic)
equations in <(z) and =(z).

2. Determine a decomposition of C (viewed as R2) de-
termined by these branch cuts. This could be done
by cylindrical algebraic decomposition [6], though, as
we will see in the examples, the current technology for
this is often overkill. On each component, f is equal
to some �xed ĝ 2 G.

3. For each component C of the decomposition, choose
an x 2 C such that g(x) is de�ned and distinguishable
from ĝ(x) for all other ĝ 2 G, and check numerically
that f(x) = g(x) to within this distinguishing accu-

racy, which can be taken to be
jg(x)�ĝ(x)j

4
. Note that

our restrictions rule out functions like 1=Arctan(x),
where the branches have accumulation points.

In the presence of an \assume" facility, we can replace step

3 by the following, where bC is that portion of C that is
allowed by the assumptions.

3' For each component C of the decomposition with C \bC 6= ;, choose5 an x 2 C such that g(x) is de�ned and
distinguishable from ĝ(x) for all other ĝ 2 G, and check
numerically that f(x) = g(x) to within this distin-

guishing accuracy, which can be taken to be jg(x)�ĝ(x)j
4

.

5. EXAMPLES
5.1 Square roots:

p
1� z

p
1 + z

?
=
p
1� z2

It is clearly true, from the �fth rule in Table 1, that Sqrt(1�
z) Sqrt(1 + z) = Sqrt(1 � z2), so that

p
1� z

p
1 + z 2

Sqrt(1 � z2). Hence all that remains to do is check the
single-valued correctness. Following the algorithm above,
this goes as follows.

1. The branch cut for
p
z is the negative real axis, i.e.

fz j <(z) < 0 ^ =(z) = 0g. Hence the branch cut forp
1 � z is along

fz j <(z) > 1 ^ =(z) = 0g: (1)

Similarly, the branch cut for
p
1 + z is along

fz j <(z) < �1 ^ =(z) = 0g: (2)

4A typical example of why this is only true for \most" values
is xArctan(x) where all the di�erent values of Arctan(x) give
the same value of xArctan(x) at x = 0.
5Note that it is not necessary to choose an x 2 C \ bC, since
generic truth/falsity is invariant on components.

3.1 3.1

3.2
3.3

3.2

Figure 1: Decompositions for
p
1� z

p
1 + z and log z

Also the branch cut for
p
1� z2 is along

fz2 j <(z) > 1 ^ =(z) = 0g; (3)

which is just the union of the sets in (1) and (2).

2. Hence we have to determine a decomposition of C by
the equations in (1) and (2). By hand it is obvious
that there are three connected components: (1), (2)
and their complement (which is connected). See Fig-
ure 1, where the components are labelled by their step
number in this algorithm.

3. We now need to make a check for each component. In
the notation of the algorithm in section 4, g =

p
1� z2

and G = f�
p
1� z2g = fg;�gg.

3.1 component (1). If we take6 z = 2, then g(z) =p�3 = 0 +
p
3i while �g(z) = �p�3 = 0 �

p
3i, so

the two are distinguishable. f(2) =
p�1

p
3 =

p
3i =

g(z), so on this component f = g.

3.2 component (2). If we take z = �2, then g(z) =p�3 = 0 +
p
3i while �g(z) = �p�3 = 0 �

p
3i,

so the two are distinguishable. f(�2) =
p
3
p�1 =p

3i = g(z), so on this component f = g.

3.3 the complement If we take z = 0, then g(z) =
p
1 =

1 while �g(z) = �
p
1 = �1, so the two are distinguish-

able. f(0) =
p
1
p
1 = 1 = g(z), so on this component

f = g.

� Hence, throughout C,
p
1� z

p
1 + z =

p
1� z2, as

required.

We should note, though, that the sets de�ned in equations
(1) and (2) are not directly acceptable to cylindrical alge-
braic decomposition algorithms. Instead (1) has to become
the pair of equations <(z) = 1; =(z) = 0 and (2) becomes
the pair of equations <(z) = �1; =(z) = 0. These decom-
pose C = R2 into six two-dimensional regions, seven one-
dimensional regions and two zero-dimensional regions (�1).
The same analysis can be carried out, but we will not bore
the reader with 15 cases similar to those above. A clustering
algorithm [2, 3] would not help directly, but one that knew
about the original formulation might. This is an important
area for future research.

6There is no algorithmic requirement to take a point like this
where there is good simpli�cation. As long as we choose a
value of z such that g(z) 6= �g(z), and can evaluate f(z)

and g(z) with error bounded by 1

4
jg(z) � (�g(z))j, we can

determine whether f(z) = g(z) or f(z) = �g(z).



5.2 Logarithms: log
�
1

z

� ?
=� log x

The multivalued form of this is already the third rule of
Table 1, so we know that log

�
1

z

� 2 �Log(z) = f� log(z) +
2n�i j n 2 Zg, and all that remains is to check the single-
valued correctness. We proceed as follows.

1. The branch cut of � log z is the same as that of log z,
viz.

fz j <(z) < 0 ^ =(z) = 0g: (4)

The branch cut of log
�
1

z

�
is fz j < � 1

z

�
< 0 ^ = � 1

z

�
=

0g, which in fact is the same set as given in equation
(4).

2. Hence we have to determine a decomposition of C de-
termined by equation (4). This leads to two sets: (4)
and its complement. See Figure 1.

3. We now have to examine the issue of single-valued cor-
rectness on each component.

3.1 component (4). A suitable point would be z =
�1. �Log(�1) = f(2n + 1)�i j n 2 Zg, of which
� log(�1) = ��i. But log

�
1

�1

�
= log(�1) = �i, so

on this component log
�
1

z

�
6= � log(z).

3.2 complement of (4). A suitable point would be z = 1.
�Log(1) = f2n�i j n 2 Zg, of which � log(1) = 0.
log

�
1

1

�
= log(1) = 0, so on this component log

�
1

z

�
=

� log(z).

The conclusion is that the simpli�cation proposed is false
(Simpli�cation Problem 1), but is true except on a set of
measure zero (Simpli�cation Problem 2). If there had been
an assumption of the form <(z) � 0, then the component
(4) would not have been legal, step 3.1 would not have run,
and the simpli�cation would have been declared to be valid
throughout the region of assumption.

It would also be possible, in the absence of any assumptions,
for a system to return that the simpli�cation was valid,
either because it had been told to ignore sets of measure
zero (e.g. simplify(...,measurezero)) or by printing out
a warning to the user and continuing.

6. MULTIVARIATE SIMPLIFICATION
The case of multivariate simpli�cations is in principle the
same: we merely have to decompose Cn (viewed as R2n)
rather than C, where n is the number of variables. If a
variable is assumed to be real, then we can replace C by
R for that variable, and thus reduce the dimensionality of
the real space we have to decompose | important since the
complexity is doubly exponential in the dimension [10]. We
will consider one example, �rst over R2 then over C2 = R4.

Table 1 states

Arctan(x) + Arctan(y) = Arctan

�
x+ y

1� xy

�
: (5)

To what extent is this valid as a single-valued equation, i.e.

arctan(x) + arctan(y)
?
=arctan

�
x+ y

1� xy

�
: (6)

3

2
1

Figure 2: Decomposition for arctan(x) + arctan(y)

6.1 R! R

We are assuming in this subsection that x and y are known
to be real. It is not obvious why there is a problem here,
since arctan is a continuous, bijective, di�erentiable function
(�1;1)! (��=2; �=2). Indeed, we can de�ne arctan(�1)
= ��=2, arctan(1) = �=2 to get a bijection [�1;1] !
[��=2; �=2].

Unfortunately, [�1;1] is not the right domain for this sort
of analysis. One way of seeing this is to observe that, al-
though (�1;1) = R � C, the analytic completion of C is
the one-point completionC[f1g, and [�1;1] 6� C[f1g.

In fact, arctan has a branch cut7 at in�nity. When x = 1
(or y =1), this might seem to cause a problem, since x+y

1�xy

tends to �1

y
. However, the problem this causes is masked

by the another, more serious, problem.

It is possible for x+y

1�xy
to pass through 1 even when both

x and y are �nite, namely when xy = 1. If x+y

1�xy
goes from

\large and positive" to \large and negative", then � is sub-
tracted from the value of its arctan, and vice versa. We
need to add a correction term, which can be done in various
ways, e.g.8

arctan(x) + arctan(y) = arctan
�

x+y

1�xy

�

+

8><
>:
� x > 0; xy > 1

0 x � 0; xy � 1

�� x < 0; xy � 1

(7)

See Figure 2.

This can be restated more compactly in terms of the \un-
winding number" [7, 9] as

arctan(x) + arctan(y) = arctan
�

x+y

1�xy

�
+

�K (2i(arctan(x) + arctan(y)) :

(8)

which is coupled more clearly to the problem of \over
ow"
across regions in adding the two arctan terms, and the bound-
ary cases are dealt with consistently.

Equation (7) divides the (x; y)-plane into three regions (the

7Some people refer to this a jump discontinuity, which of
course it is, but it is better to think of it as a branch
cut, since it could be moved elsewhere by another choice
of branch cut: indeed, as pointed out in [8], there is no
agreement on where the branch cut for the closely related
function arccot should go.
8For the cases when xy = 1, we are assuming a single 1,
with arctan(1) = �

2
.



two entries with zero correction term de�ne one region, open
on the lower-left boundary and closed on the top-right bound-
ary. If we proceed algorithmically, by cylindrical algebraic
decomposition [6], we in fact decompose the place into seven
regions, as given in Table 2. The technique of clustering [3]

Table 2: Cylindrical Decomposition of (x; y)-plane
for equation (6)

x xy dimension correction
> 0 > 1 2 �
> 0 = 1 1 0
> 0 < 1 2 0
= 0 | 1 0
< 0 > 1 2 ��
< 0 = 1 1 ��
< 0 < 1 2 0

would reduce this, ideally to three regions as in equation (7),
but certainly to �ve regions, which are described in Table 3.

Table 3: 5 Regions of the (x; y)-plane for equation
(6)

R1 R2 R3 R4 R5

xy < 1 = 1 = 1 > 1 > 1
x | > 0 < 0 > 0 < 0

Fig. 2 region 2 2 3 1 3

Evaluation at x = y = 0 shows that equation (5) is true
there, and therefore throughout R1. Similarly, evaluation at
x = y = 1 shows that it is true there, and so throughout
R2. Evaluation at x = y = �1 shows that equation (5)
is false, and needs a correction factor of �� at that point,
and therefore throughout R3. By hand or in 
oating-point,
evaluation at x = y = 2 shows that equation (5) is false, and
needs a correction factor of � at that point, and therefore
throughout R4. However, it seems impossible to persuade
Maple (release V.5) to simplify9 2 arctan 2+arctan 4

3
to � (to

be fair, though, Maple V7 does manage to do this). Mutatis

mutandis, the same remarks apply to x = y = �2 and R5.
Hence the proposed simpli�cation is not valid. Note that
the assumption10 xy < 1 would mean that only R1 would
be considered, and the simpli�cation would then be declared
valid.

Of course, we have chosen values of x and y at which the arc-
tan function has a simple expression, but the algorithm does
not need to do that, since it knows that the indeterminacy

in Arctan
�

x+y

1�xy

�
is a multiple of �. Any point at which

it can evaluate arctan(x) + arctan(y) and arctan
�

x+y

1�xy

�
to

9Of course, direct simpli�cation of this would use equation
(5), which would spoil the point, but it ought to be doable
via complex logarithms.
10Unfortunately, this assumption cannot be declared in
Maple. One could declare y > 0 ^ x < 1

y
, but this would

only cover part of the desired region.

an accuracy better than �=4, and therefore test whether the
two are equal to an accuracy better than �=2, will do.

If we were considering the very similar proposed simpli�-

cation x arctan(x) + x arctan(y)
?
=x arctan

�
x+y

1�xy

�
, and we

knew that

x arctan(x) + x arctan(y) 2 xArctan

�
x+ y

1� xy

�
(9)

from the rules in Table 1, the procedure above for R1 would
not quite have worked. The indeterminacy in the right-hand
side of equation (9) is fxn� j n 2 Zg, which is zero at the
sample point x = y = 0. Hence we would need to take a
di�erent sample point, say x = y = 1

2
and evaluate to an

accuracy better than �=8. Indeed 2 arctan
�
1

2

�
= arctan

�
4

3

�
,

either symbolically, if we can persuade a system to do it, or
numerically, if we trust the guarantees of accuracy, so the
simpli�cation is valid in R1.

6.2 C! C

The de�nition of arctanx is [1, 8]

1

2i
(log(1 + ix)� log(1� ix)) :

Hence its branch cuts in the complex plane are along 1+ix 2
(�1; 0], i.e. x 2 [i; i1), and along 1 � ix 2 (�1; 0], i.e.
x 2 (�i1;�i]. These do not disconnect the complex plane,
so the only special cases are along them. The same is true of

arctan y and arctan
�

x+y

1�xy

�
. There is still the critical locus

xy = 1, as in the real case.

We now have to determine how these interact. Write x =
xR+ixI etc. Then we have to consider various intersections.

� The intersection of the two branch cuts for arctanx
and arctan y, This is clearly possible, since the two
constraints are independent.

� The intersection of the branch cuts for arctan
�

x+y

1�xy

�
with the branch cuts for arctanx. If one solves for the
two (real) equations resulting from <

�
x+y

1�xy

�
= 0 and

xR = 0, one is left with, inter alia, the resultant

�3yRy2I � y6IyR � 3y2Iy
5
R � 3y4Iy

3
R � y7R + yR + y3R+

2y3Ry
2
I � y5R + 3y4IyR:

(10)

The only solutions of this have jyRj � 1 and jyI j � 1,
and therefore are not on the branch cut for arctan y,
except that when yR = 0, yI is unconstrained. Hence it
is in fact possible to be on all the branch cuts of arctan
simultaneously, say with x = y = 2i, and x+y

1�xy
= 4

5
i.

� The intersection of the branch cuts for x+y

1�xy
with the

branch cuts for arctanx. This is identical to the pre-
vious case.

� The intersection of the branch cut for arctan x with
the critical locus xy � 1. It then follows that yR has
to be zero (since xIyR = 0), so the point is also on the
branch cut of arctan y, and possibly on the branch cut

for arctan
�

x+y

1�xy

�
.



� The intersection of the branch cut for arctan
�

x+y

1�xy

�
with the critical locus xy � 1 cannot happen.

In sum, the situation here is very complicated, but can be re-
duced to a �nite number of regions which need to be tested.
It turns out that the move to the complex plane does not,
in fact, add any further complication.

7. CONCLUSIONS
We have presented an outline of an algorithm for simplifying
elementary functions correctly, possibly in the presence of
an assume facility, and possibly, but only when required to
ignore exceptional cases of measure zero. The algorithm
works for cases where the only nesting allowed is that of
square roots inside other elementary functions, and inverse
(potentially multivalued) functions may only occur in the
numerator.

7.1 Why this restriction?
One reason for the restriction on nesting is that the branch
cuts are then given by algebraic equations, so that cylindri-
cal algebraic decomposition [6] is then feasible. Extensions
of this technique do exist [11], though implementations are
rarer.

Another reason for the restriction on nesting is that, without
it, the branch cut structure might no longer be �nite. For
example, log sinx has in�nitely many branch cuts, of the
form ((2n� 1)�; 2n�) for all n 2 Z.

The main reason for this restriction, however, is that it is
otherwise hard, possibly impossible, to determine the dis-
tance between branches. In some cases this can be done,
though we are currently unable to make this algorithmic.
We give a few examples of functions that violate our restric-
tion.

� Arctan
�
xArctan

�
1
x

��
. Let us suppose that we wish

to evaluate this at x = 2. Assuming the outer Arctan
always takes the principal branch, the value for various
branches of the inner Arctan is given in Table 4.

Table 4: Values of Arctan(2Arctan(1=2))
branch Value

arctan�� -1.38621133788
arctan 0.74769230366
arctan+� 1.43298836482
arctan+2� 1.49682270728
arctan+3� 1.52027518705
arctan+4� 1.53244221290
arctan+5� 1.53288779388

As we can see (or by consideration of the formula) the
values tend to �=2, and the separation tends to zero.
However, the values are monotone, and hence we can
assert that, provided we can evaluate to a precision of

1:43298836482 � 0:74769230366

4
= 0:17133976529;

we can tell whether or not we are on the principal
branch.

� We are not so fortunate when we apply many{one func-
tions to multi-valued functions. Consider

sin
�
Arctan(x)

2
�

at x = 1. Values of this for various branches of the
Arctan expression are given in Table 5. From this we

Table 5: Values of sin
�
Arctan(1)2

�
branch Value

arctan�3� 0.53223226469052394255108411324973
arctan�3� -0.68844319556276953646396461406407
arctan�2� -0.92846670306661207702727154343231
arctan�� -0.66801107797394745302320860026876
arctan 0.57846878935455793874901827368615
arctan+� -0.21379811148627617791348823769380
arctan+2� -0.29610307588996806435608381265315
arctan+3� -0.54395136438824375909319106070388
arctan+4� 0.71808846220316247330302549263127
arctan+5� 0.96016428952194522990132251781603

can see that the values most certainly are not mono-
tone, and indeed the branch closest (in the table) to
the principal one is the arctan�3� branch. It seems
very likely that the values for the di�erent branches
are scattered throughout (�1; 1), and in fact it can be
shown11 that

lim inf
jnj!1

��sin �arctan(1)2�� sin
�
(arctan(1) + n�)

2
��� = 0:

� We can see the reason for restricting inverse functions
to the numerator: consider the function Arctan(x)=
Arctan(2x) evaluated at x = 1. Depending on the
choices of branch in the numerator and denominator,
we can (by the theory of continued fractions) approxi-
mate the principal value arctan(1)= arctan(2) arbitrar-
ily closely, as shown in Table 6.

Table 6: Values of Arctan(1)=Arctan(2)

numerator denominator Value
branch branch

arctan arctan 0.70938813438026133678959
arctan+2� arctan+3� 0.67115767953116559118826
arctan+7� arctan+10� 0.70031959034809923217896

Of course, provided we are not worried about sets of
measure zero, we can always clear denominators before
checking whether f = g.

7.2 Future Algorithmic Development
The algorithm we have presented uses the following sub-
algorithms, all of which could bene�t from improvement.

11We can make the absolute value as small as we like by
choosing n such that n� is suÆciently close to an integer
multiple of 4.



� Simpli�cation of multi-valued elementary functions, us-
ing rules as in Table 1. This table could do with be-
ing completed, and it has to be recognised that these
multi-valued functions do not form a ring | see the
example of Arcsin(x)�Arcsin(x) after Table 1 | and
hence standard computer algebra systems may need
substantial modi�cation to handle this multi-valued
simpli�cation.

� Cylindrical algebraic decomposition [6]. Here the dif-
�culty is that the semi-algebraic sets we are using to
partition the complex plane, as in equation (1), can-
not be given directly to cylindrical algebraic decompo-
sition, and the transformation of them may lead to far
larger decompositions than are desirable. A clustering
algorithm [2, 3] would help (e.g. reducing the seven
regions in Table 6.1 to the �ve in Table 6.1), but in
general it would need to be aware of the original set
of semi-algebraic sets, rather than the transformed set
of constraints | see the last paragraph of section 5.1.

� Recognition of the nearest elements to g(z) in G(x).
The diÆculties with extending this are brought out in
the previous subsection.

� Numerical evaluation of elementary functions with guar-
anteed error bounds. Much work has been done on this
[12], but such algorithms are not normally available in
computer algebra systems.

It is clear that we have only scratched the surface of what
could be done by following this approach to simpli�cation.
There is also work to be done on lifting some of the restric-
tions on the forms allowed in f and g.
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