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Abstract—There is little doubt that, in the minds of most
symbolic computation researchers, the ideal paper consists of
a problem statement, a new algorithm, a complexity analysis
and preferably a few validating examples. There are many such
great papers. This paradigm has served computer algebra well for
many years, and indeed continues to do so where it is applicable.
However, it is much less applicable to sparse problems, where
there are many NP-hardness results, or to many problems coming
from algebraic geometry, where the worst-case complexity seems
to be rare.

We argue that, in these cases, the field should take a leaf
out of the practices of the SAT-solving community, and adopt
systematic benchmarking, and benchmarking contests, as a way
measuring (and stimulating) progress. This would involve a
change of culture.

I. INTRODUCTION

Symbolic computation was an early beneficiary [24] of
rigorous complexity theory. This led to the paradigm that the
ideal paper consists of a problem statement, a new algorithm, a
complexity analysis and preferably a few validating examples.
There are many such great papers [10], [14], [25].

This worked fairly well for the fundamental algorithms for
dense problems, but less well for sparse problems, which are
actually the core subject-matter for practical computer algebra
systems. When it comes to more advanced algorithms, we
often have (fairly frightening) upper bounds, examples that
show that these upper bounds are not as absurd as they might
seem on at least some cases, but very little understanding of
average-case complexity, or, what the practitioner really wants,
“typical case” complexity. For other classes of algorithms, such
as integration of algebaric or transcendental, there has been
very little complexity theory.

II. FUNDAMENTAL ALGORITHMS

A. Dense Polynomials

In the case of dense polynomials, complexity theory pro-
duces an excellent understanding of the complexity of polyno-
mial addition, multiplication, division, and a good understand-
ing of the complexity of polynomial greatest common divisor
(g.c.d.) computation: at least the complexity of straightforward
(computation over Z) algorithms, and the worst-case complex-
ity of modular algorithms.

The complexity setting (as opposed to the theory!) is
relatively straightforward, one has polynomials in n variables,

of degree ≤ D in each variable, and coefficients of length
l (size < 2l). Then the input has size n(D + 1)(l + 1) and
the output is similarly bounded. More importantly, the output
generally1 attains its bounds, at least for addition, subtraction,
multiplication, and exact division.

B. Sparse Polynomials

For simplicity we consider the sparse distributed rep-
resentation, as in [32] and as implemented in Maple [27],
so a polynomial with t terms is

∑t
i=1 ci

∏n
j=1 x

αi,j

j with
0 < |ci| < 2l and 0 ≤ αi,j ≤ D. Even for multiplication
we have the fact that the product of two t-term polynomials
(t > 1) can have anything between 4 and t2 terms, so we
may wish to consider output size as well as input size, rather
than just considering O(t2) as the obvious lower bound. Here
[32] states the following, which he describes as “nearly within
reach”.

Open Problem 1: Develop an algorithm to multiply two
sparse polynomials f, g ∈ R[x] using Õ (t logD) ring and bit
operations, where t is the number of terms in f , g and fg,
and D is an upper bound on their degree.

C. Division

For division we have the classical example of xn−1
x−1 =

xn−1 + · · ·+ 1 with n terms, so it is now essential to consider
output size as well as input size. [32] states the following
challenge, which however is not “nearly in reach” when g is
sparse — when g is dense we compute power of x modulo g.

Open Problem 2: Given two sparse polynomials f, g ∈
R[x], develop an algorithm to compute the quotient and
remainder q, r ∈ R[x] such that f = qg+ r, using Õ (t logD)
ring and bit operations, where t is the number of terms in f ,
g and q and r, and deg f < D.

[16, Challenge 3] shows that even the decision problem “does
g divide f exactly” is unknown.

Open Problem 3: Either

• find a class of problems for which the problem “does
g divide f?” is NP-complete; or

• find an algorithm for the divisibility of polynomials
which is polynomial-time.

1There are exceptions such as f−f , or multiplications where the coefficients
of the output are smaller than those of the inputs, but these are rare.



D. Greatest Common Divisors

Again it is necessary to consider output size, as the neat
example of [33] shows:

gcd(xpq−1, xp+q−xp−xq+1) = xp+q−1−xp+q−2±· · ·−1.

Most of the classic results in this are are due to Plaisted [29],
[30], [31], as in the following result.

Theorem 1 ([30]): It is NP-hard to determine whether two
sparse polynomials (in the standard encoding) have a non-
trivial common divisor.

The basic device of the proofs is to encode the NP-
complete problem of 3-satisfiability so that a formula
W in n Boolean variables goes to a sparse poly-
nomial pM (W ) which vanishes exactly at certain
M th roots of unity corresponding to the satisfiable
assignments to the formula W , where M is the
product of the first n primes. [MR 85j:68043]

We have previously [16, Challenge 2] posed the following.

Open Problem 4: Either

• find a class of problems for which the g.c.d. problem
is still NP-complete even when cyclotomic factors are
explicitly encoded (see Appendix A); or

• find an algorithm for the g.c.d. of polynomials with
no cyclotomic factors, which is polynomial-time in the
standard encoding.

As this is undecided, the state of the art seems to be that even
the decision problem (output size one bit) for greatest common
divisors can be NP-hard on some (probably rare) problems.

This paper proposed the position that the methodology of
computer algebra research has not really adapted to the fact
that NP-hardness (or worse) seems to be core to much of its
actual challenges.

III. MORE ADVANCED PROBLEMS

A. Polynomial Factorization

Practically all known polynomial factorization algorithms
begin by doing a square-free decomposition, and this is also
hard in theory.

Theorem 2 ([23]): Over Z and in the standard sparse
encoding, the two problems

1) deciding if a polynomial is square-free
2) deciding if two polynomials have a non-trivial g.c.d.

are equivalent under randomized polynomial-time reduction.

Hence, in the light of Theorem 1, determining square-freeness
is hard, at least when polynomials with cyclotomic factors are
involved.

Even in the dense case, very little is known about the
worst-case complexity of polynomial factorization, due to the
existence of Swinnerton-Dyer polynomials (those that factor

compatibly modulo every prime, but are irreducible). Since
almost all polynomials are irreducible in the sense that ∀d > 0

lim
H→∞

|{such polynomials that factor}|
|{polynomials of degree d, coefficients ≤ H}|

= 0,

(1)
typical-case complexity isn’t helpful.

Hence polynomial factorization papers nearly always rely
on a set of examples to demonstrate their superiority (e.g.
[35] drawing on [13]). Hardware progress (as well as some
algorithmic improvements) have made this particular set of
problems trivial, and there doesn’t seem to be an agreed corpus
of hard problems.

B. Gröbner bases

There is a strain of papers, culminating in [26], that
shows the computation of a Gröbner base to be worst-case
doubly-exponential (in n, the number of indeterminates), as
the polynomials must have that degree. The author used to
believe that this was caused by the multiple components in
the construction, but this belief was punctured by [12] who
constructs a prime ideal whose representation has polynomials
of doubly-exponential degree.

Nevertheless, most Gröbner base problems, while often
difficult, seem not be in this class. Hence there has been
interest in the field in benchmarking and sets of test problems,
which were collected by the POSSO project [5]. However,
this was very much a one-off effort, and the collection is not
particularly usable (we seem to have lost some of the sources
and are forced to re-engineer typeset documents2) and many of
the problems are now trivial, due to algorithmic improvements
(and some hardware progress). Hence the community could
really do with a modern equivalent.

C. Regular Chains

The method of triangular decompositions/regular chains
has been proposed as an alternative to Gröbner bases. Until
relatively recently, less was known about its complexity, but
[2] has filled some serious gaps in our knowledge. In particular
their complexities are singly exponential in n. It has to be said
that the distinction between d2

n

and d5n
3

only manifests itself
for n > 14: currently totally impracticable. It is also not clear
how rare the bad cases are for this algorithm either. They may
be related to bad cases for Gröbner bases, since both are based
on very large outputs being generated, but this is not fully
understood (at least by the author!).

D. Real Geometry

A major algorithm in this area is cylindrical algebraic
decomposition, whose cost is doubly-exponential in n, and
there are quantifier elimination examples whose output side
is actually doubly-exponential [9]. However, these require a
number of quantifier alternations that is O(n), and this is
known to be necessary for doubly-exponential complexity [20].
Of course if one writes down a fully quantified statement at
random, the average number of alternations is O(n), but that

2A community effort to reconstruct these would be useful!



doesn’t mean that this situation is “typical”, whatever that
might mean.

In the presence of very bad worst-case complexity, and
a belief that “typical” examples are much better, but exhibit
varied characteristics, some in this field have also resorted to
collecting examples, e.g. [36]. A more recent set of examples,
[28], is deposited in a formal data sharing repository3.

A recent paper in this field [8] does use some of the bench-
marking descriptive techniques borrowed from the SAT/SMT
field and described in Section IV.

E. Weak Complexity

An idea that originally appeared in [1] is that of weak
complexity, where the statement f(n) ∈ O(g(n)) holds outside
a set whose measure tends exponentially to 0 as n→∞. This
captures the idea of their being “only a few” bad examples,
but that they might be so bad that a straight average would
still be dominated by them. In [11] this was applied to the
computation of the homology groups of the closed semi-
algebraic set defined by a Boolean combination of =,≤,≥,
so falls in the ambit of Section III-D.

The requirement “tends exponentially to 0” is a strong
one, stronger than, for example “almost all polynomials are
irreducible” [6].

F. Integration etc.

In the areas of symbolic integration, summation and o.d.e.
solving, very little is usually written about the complexity:
essentially because the input language is too rich to provide
any useful statements. Instead it is usual to rely on collections
such as [22].

IV. BENCHMARKING METHODOLOGY IN SAT/SMT

The fields of Boolean Satisfiability (SAT) and its derivative
Satisfiability Modulo Theories (SMT) have been faced with
NP-completeness (or worse for SMT) since their inception.
Hence they have resorted to systematic benchmarking and
annual contests. Rather than the list of 10–15 polynomi-
als found in [13], [35], these contests include thousands of
problems. Many of these come from actual examples, others
are deliberately contrived to be difficult [34]. The winner is
then, at that time, the best single state-of-the-art solver. [37]
introduced the concept of the virtual best solver (VBS): a
hypothetical solver that uses the best existing solver for that
problem on each problem. If the VBS does much better than
any individual solver, one can then ask whether it is possible
to build a portfolio solver that attempts to mimic the VBS.
Some progress here is discussed in [18]. However, much larger
datasets are required for machine learning to build a portfolio
system than symbolic computation generally has [21], and the
difficulties in getting such datasets are described in [19].

However, if one has thousands of benchmark examples,
there is little point in publishing4 a table of respective perfor-
mances on each problem, as is traditionally done in symbolic

3https://doi.org/10.5281/zenodo.1226892, and with an encoding in a
widespread benchmark format SMT2 [4].

4The researchers may well wish to analyse such a table in private, of course.

Fig. 1: [7, Figure 12], with legend moved
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computation. Instead, various graphical techniques are used,
as described in [7]. An example is given in Figure 1, where it
can be seen that:

1) Z3 is ultimately the best solver.
2) But Colibri solves more problems in a short time (< 1

second) than any other solver.
3) VBS is significantly better than any individual solver,

both in terms of number of problems solved and time,
so there is substantial room for a portfolio approach.

V. DIRECTIONS?

Though the SAT community has been benchmarking for
far longer, their problems have little syntactic variety. The
author feels that Computer Algebra should rather look at the
SMT Community, where there are a range of domain-specific
contests under a common umbrella: see http://smtcomp.
sourceforge.net/2018/. However, it is quite possible that there
are other role models of which the author is unaware. The
following requirements seems unavoidable if computer algebra
is to run these corts of competitions.

1) A common input language [17].
2) A shared repository. This is now much easier with

tools like SourceForge than it was in the days of [5].
3) A (probably rotating) set of competition organisers.
4) A position in the subject’s calendar (for SMT it is

at the annual SMT workshop, for computer algebra
it could be at ISSAC, or another annual conferences:
the author made such a call at ACA 2018 [15]).

There are also challenges.

• Load time — SAT solvers minimise this, and computer
algebra historically hasn’t cared.



• Benchmarking in the presence of garbage collection.
Some SMT solvers also garbage collect, and running
in a fixed memory size seems to answer this.

• The cotest runs on fixed servers. Many people in
computer algebra seem to use laptops, but repeatable
timing here is challenging [3]
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APPENDIX

A. Cyclotomics

Many of the known hard examples, or reductions to NP-
hard problems, come from cyclotomic polynomials. Hence we
might consider explicitly representing them in one of the en-

codings Cn(x) = xn−1 or Φn(x) =

n∏
k=1

gcd(k,n)=1

(
x− e2πik/n

)
.

These are related by the following result.

Proposition 1: Cn(x) =
∏
d|n Φd(x) and Φn(x) =∏

d|n Cd(x)µ(n/d), where µ is the Möbius function.

This was suggested in [16] but little progress has been
made since. It is worth noting that we need to handle shifted
cyclotomics, as in 2nCn(x2 ) = xn − 2n. However, it is not
necessary to consider xn − 2, since polynomials of this form
do not seem to produce similar special cases. xmn−2m would
need to be viewed as 2mCm(x

n

2 ).


