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Notation exists to be abused1

the abuses of language without which any mathematical text threat-
ens to become pedantic and even unreadable. [3]

but some abuse is more harmful than others.

1 Intervals

We raise this old chestnut first because it illustrates some of the problems. How
do we represent {x : 0 < x ≤ 1}? Semantically, there is no problem.

<OMA>
<OMS name="interval_oc" cd="interval1’’/>
<OMI>0</OMI>
<OMI>1</OMI>

<\OMA>

Presentationally, there are two well-kown routes: the “anglo-saxon” way (0, 1]
and the “french” way ]0, 1]. The purpose of this paper is not to argue that one
is “better” than the other: merely that there are two competing ones, and the
use of the unfamiliar one may well baffle.

2 Plus or Minus

This is familiar to us all from the solution to the quadratic:

−b±
√
b2 − 4ac

2a
, (1)

1On 10.6.2007, a quick Google demonstrated 783 uses of “abus de notation”, roughly 10%
of which were in english-language papers.
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which can be seen as shorthand for{
−b−

√
b2 − 4ac

2a
,
−b+

√
b2 − 4ac

2a

}
. (2)

We are prepared to accept it in formulae such as [1, Equation 4.3.38]

tan z1 ± tan z2 =
sin(z1 ± z2)
cos z1 cos z2

, (3)

which we read as shorthand for two equations:

tan z1 − tan z2 =
sin(z1 − z2)
cos z1 cos z2

tan z1 + tan z2 =
sin(z1 + z2)
cos z1 cos z2

.

But what of [1, Equations 4.6.26,27]

Arcsinh z1 ±Arcsinh z2 = Arcsinh
(
z1

√
1− z2

2 ± z2
√

1− z2
1

)
Arccosh z1 ±Arccosh z2 = Arccosh

(
z1z2 ±

√
(z2

1 − 1)(z2
2 − 1)

)
?

3 Alphabetical Order?

The author recently heard a speaker [13] state that, in Arabic Mathematics,
the alphabetic order used in formulae is different from the usual one. “How
perverse”, the author thought, as probably does the reader. But is it that
perverse? Any text in ideal theory will normally call the variables x1 . . . , xn
for generic theorems and definitions. However, explicit examples will usually
make use of particular letters, e.g. x and y in two dimensions, or x, y and z
in three. In four, the variable w (or possibly t) is pressed into service, but the
lexicographic order is then normally taken to be x > y > z > w. Maybe it is
perverse, but it’s a common perversion.

There are other instances of non-obvious order: the theory of elliptic func-
tions (see section 6) tends to order the relevant letters as s, c, n, d, though this
doesn’t have any mathematical significance, merely the order in which one finds
things in tables.

4 Iterated Functions

5 To Capitalise or not to Capitalise

Half of the 26 standard transcendental elementary functions (log, the six inverse
trigonometric functions and the six inverse hyperbolic) are one–many functions,
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at least on the complex plane, since the functions whose inverses they are (exp,
trigonometric and hyperbolic) are many–one. However, it is normal to restrict
them, by means of “branch cuts” [4]2 to be one–one, at the price of being
discontinuous.

This means that, if f is a many–one function C → C, its inverse3, which
will be denoted g, has two possible definitions: the one–one discontinuous one,
and the one–many continuous one. It is usual in anglo-saxon cultures to denote
a4 one–one function with a lower-case initial letter, as g, and the one–many one
with an upper-case initial letter, as G. Regrettably, in France the convention
is apparently reversed5. Here the situation is worse than in section 1: here
the notations are not merely baffling but contradictory, and any attempt at
understanding them will need to know the (linguistic, in this case) context.

6 Pq

[1, equation 16.25.1] defines

Pq(u) =
∫ u

0

pq2(t)dt (4)

(where pq2(t) means pq(t)2: see section 4). This is, of course, in defiance of
the conventions of section 5, but we are dealing with elliptic functions, not
elementary ones. However, the joker here is that equation (4) applies whenever
p and q are any of the letters s,c,n,d (note the order, which is traditional, and
see section 3). Hence this equation is in fact shorthand for twelve equations of
the form

Sn(u) =
∫ u

0

sn2(t)dt, (5)

except that, when q is s, equation (4) should be read as

Pq(u) =
∫ u

0

(
pq2(t)− 1

t2

)
dt− 1

u
, (6)

where the changes are to remove the removable singularity at t = 0.
2Where the branch cuts are is largely irrelevant to this discussion, though there is no

standard notation for distinguishing between functions which differ only in their branch cuts.
3We use a different letter, to avoid the problem in section 4.
4It would be tempting, but wrong, to write “the one-one function”. Since it is ‘obvious’

that the correct inverse of x 7→ x2 as R→ R is the positive square root, we may be tempted
to think there is an obvious inverse in other circumstances. While it is normal these days
to define log to have imaginary part in (−π, π], the author was initially taught to have the
imaginary part in [0, 2π). [1] changed the branch cut of arctan between printings, and systems
have been known to be internally inconsistent [4].

5Various mathematical textbooks seem to indicate this. However [2, Arcsin] gives capitals
to Arcsin, Arccos and Arctan, but not to the others. There is clearly an inconsistency here,
as [2, Arctan] describes arctan as the inverse function, and makes no mention of Arctan. The
other inverse functions seem to have no entries in [2].
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A similar equation, but this time with explanation, can be seen as

pq(u) =
pr(u)
qr(u)

([1,Equation 16.3.4])

To quote [1, coda to section 16.27]

There is a bewildering variety of notations . . . so that in consulting
books caution should be used.

As an example of this, or showing that not all apparent misprints are such, we
can see [1, Equation 17.2.8–10]

E(u|m) =
∫ x

0

(1− t2)−1/2(1−mt2)1/tdt =
∫ u

0

dn2(w)dw. (7)

Does this tell us what Dn(u) is — indeed [1, Equation 16.26.3] has Dn(u) =
E(u). However, the ‘x’ in equation (7) is not a misprint, and in fact [1, Equation
17.2.2] x = snu. So in Maple-speak

EllipticE(JacobiSN(u,m),m)=int(JacobiDN(t)^2,t=0..u).

Quite how this is to be reconciled with [11, Equation 5.138(3)] —∫
dn2(u) = E(amu, k)

— is not clear (m = k2 here).

7 While we’re on the subject . . .

The ‘help’ for Maple 10 under JacobiSN helpfully states that

In A&S, these functions are expressed in terms of a parameter m,
representing the square of the modulus k entering the definition of
these functions in Maple or G&R. So, for example, the formula
JacobiDN(z,k)^2 = 1 - k^2 * JacobiSN(z,k)^2 appears in A&S as
dn(z,m)^2 = 1 - m * sn(z,m)^2.

However, the corresponding warning is missing from the help on EllipticE,
but can be deduced from the fact that the example

EllipticE(0.3);
1.534833465

in the help corresponds to the entry for E(0.09) [1, p. 609], noting, however,
that both this and Maple’s EllipticE are E(x), not E(u).
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8 O and friends

We have written elsewhere [7] as follows.

Every student is taught that O(f(n)) is really a set, and that
when we write “g(n) = O(f(n))”, we really mean “g(n) ∈ O(f(n))”.
Almost all6 textbooks then use ‘=’, having apparently placated the
gods of confusion. However, actual uses of O as a set are rare: the
author has never7 seen “O(f)∩O(g)”, and, while a textbook might8

write “O(n2) ⊂ O(n3)”, this would only be for pedagogy of the
O-notation.

That paper proposes an OpenMath symbol Landauin, whose semantics would
be that of set membership, but whose notation might be (OpenMath does not
prescribe notation) that of ‘=’.

Another notation that has come into use9 is the so-called “soft O”, generally
written Õ but also O∗, but which has two fundamentally differing definitions.

1. ‘where the “soft O” Õ indicates an implicit factor of (log n)O(1)’ [16],
attributed by [17] to [18].

1’ ‘where f = Õ(g) if and only if there exists a constant k ≥ 0 such that
f = O(g · (log g)k)’ [10].

2. ‘we write O(n3+ε) for O(n3+o(1)), which is also sometimes written Õ(n3)’
[8, footnote 1].

2’ ‘We write10 Õ(f), or O(f1+ε), for O(f1+o(1))’.

Of these, 1 and 1’ agree for Õ(nd), often the intended domain of application,
but disagree otherwise. In the sense of 1, Õ(log n) = Õ(1), whereas for 1’,
Õ(log n) = O(log n(log log n)k) for some k, so 1’ clearly makes more sense than
1.

The difference between 1’ and 2’ is more fundamental. 1’ means “g times
something polylogarithmic in g”, whereas 2’ means “g times someting slower
than any power of g”. Hence when g = en, 1’ means ∃kO(ennk), while 2’ means
∀εo(e(1+ε)n). So 2’ would include enL1/2(n) (where L1/2(n) = exp(O(

√
log n log log n))),

whereas 1’ would not. A second, more subtle, point is that it is not clear in sense
1’ whether k is explicitly calculable (just as it is not always clear in standard O
notation).

While the difference is moot in most current uses, we believe that 2’ should
be the correct usage of Õ.

6[14] is an honourable exception.
7Not even in the one context where it would be useful: Θ(f) = O(f) ∩ Ω(f).
8[5, p. 41] write Θ(n) ⊂ O(n).
9A quick Google on 14.6.2007 showed 846 uses, though not all were mathematical.

10Not actually seen anywhere, but related to 2 as 1’ is to 1.
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9 The sins of TEX

We have seen the following.

Then the functor T 7→ {generically smooth T -morphisms T ×S C′ →
T ×S C} from ((S-schemes)) to ((sets)) is

However, the input LATEX was11

Then the functor $T\mapsto\{$generically smooth $T$-morphisms
$T\times_S\Cal
C’\to T\times_S\Cal C\}$ from $((S$-schemes)) to ((sets)) is

10 The sins of Notation

We have seen the following.

2πφ =

{∫ 2π−δ

δ

+
∫ 0

−δ
+
∫ δ

0

}
a2 − r2

a2 − 2ar cosϑ+ r2
f(θ + ϑ)dϑ

[12, (8) p. 435]. Presumably dϑ is meant to close all three integrals. The mixture
of θ and ϑ might also be considered challenging.

11 Abuse of declarations

The author recently encountered the following abstract.

Let k,x,x’ be nonzero natural numbers. Let M be a tropical
matrix with tropical rank k. We show that Kapranov rank is
k too if x and x’ are not too big; namely if we are in one
of the following cases: a) k>=6 and x, x’ <=2 b) k=4,5, x<=2
and x’<=3 (or obviously the converse) c) k=3 and either x,x’<=3
or x<=2 and x’<=4 (or the converse).

This is nonsense as it stands. Further research found the following version (our
re-typesetting).

Let M be a tropical matrix (k + x) × (k + x′) for some k, x, x′

∈ N \ {0} with tropical rank k. We show that Kapranov rank is
k too if x and x′ are not too big; namely if we are in one of the
following cases:

a) k ≥ 6 and x, x′ ≤ 2;

b) k = 4, 5, x ≤ 2 and x′ ≤ 3 (or obviously the converse, that is
x ≤ 3 and x′ ≤ 2)

11We did \def\Cal{\cal} to make it LATEX. http://arXiv.org/abs/math/0701407
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c) k = 3 and either x, x′ ≤ 3 or x ≤ 2 and x′ ≤ 4 (or obviously
the converse).

Omitting the declaration of the dimensions of M has made x and x′ into free
variables, making nonsense12 of the whole statement.

12 Other notation we have seen

12.1 \overline
We have seen [?] the expression i = 0, n, and in other places we have seen
i = 0;n (semi-colon rather than comma). In context, it was relatively clear that
this meant i ∈ {0, 1, . . . , n}, but the usage was new to this author. The use of
= here is at least as egregious as its use in section 8, and is not hallowed by
time. This author sees no case for = over ∈, as in i ∈ 0, n.

12.2 “Suggestive Notation”

We have seen [15] the following (our typesetting, attempting to preserve the
original).

We use suggestive notation like R[X]2 := {p2 | p ∈ R[X]} for the set
of squares and

∑
R[X]2 for the set of sums of squares of polynomials

in R[X].

While it cannot be denied that these are indeed suggestive, they would probably
cause ‘presentation to content’ converters a great deal of difficulty. Consider the
following [15, (2)].

(2) T (g) =
∑

δ∈{0,1}m

∑
R[X]2gδ :=

 ∑
δ∈{0,1}m

σδg
δ | σδ ∈

∑
R[X]2

 ,

where
∑

R[X]2 has to be read as a compound symbol, and the usual precedence
rules for

∑
, viz. that it binds everything to its right, do not apply to it.

12.3 Abuse of weights/fonts

It is normal to say that juxtaposition indicates multiplication (MathML’s sym-
bol InvisibleTimes) or function application (MathML’s &ApplyFunction;)
[6], but in fact the general rules are more complex, and highly context-sensitive.
In general, we can state the observed properties of juxtaposition as being those
in table 1. Hence the font, or even the weight, of characters carries quite detailed
semantic information. However, this can be abused to make differences of font
or weight carry undue importance. This is shown in [9], where B denotes an

12The author, admittedly not an expert in this area of mathematics, had to retrieve the
second version before it made any sense to him.
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Table 1: Properties of juxtaposition
left right meaning example
weight weight
normal normal lexical sin
normal italic application sinx
italic italic multiplication xy
italic normal multiplication a sinx
digit digit lexical 42
digit italic multiplication 2x
digit normal multiplication 2 sinx

(arbitrary) category, as does A and other italic capitals, but B denotes a specific
object, the groupoid of finite sets and bijections. This leads to us considering
[9, p. 206] “(A,B)-species of structures either as functors BA → B̂”. The
review13 of this paper even refers to “the category of colimit-preserving, sym-
metric, strong monoidal functors from SetBB to SetBA”, which to the author’s
mind requires keen eyes to read correctly.
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