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1 Introduction

What author of a programming language would not claim that the 3 ‘E’s were
the goals? Nevertheless, we claim that computer algebra does lead to particular
emphases, and constraints, in these areas.

We restrict “efficiency” to mean machine efficiency, since the other ‘E’s cover
programmer efficiency. For the sake of clarity, we describe as “expressiveness”,
what can be expressed in the language, and “elegance” as how it can be ex-
pressed.

2 Efficiency

Most programming languages claim efficiency, even when their authors are
dead1. Times have moved on, but there is still a requirement for efficiency
in terms of time and space in computer algebra.

Large data structures and the need for efficiency lead to techniques such as
only working modulo word-sized primes, or packing exponents several to a word.
These techniques may, and generally do, lead to high-performance, but require
specialised, software components, such as polynomials modulo a small prime2,
which do not generalise to cases beyond those envisaged by the designers [6].

Another illustration of the difficulties of genericity comes when we consider
Gaussian elimination in sparse matrices. Here we clearly want to use a variant
of Dodgson/Bareiss [2, 7] to avoid intermediate expression swell, but also some

1“Fortran was also extremely efficient, running as fast as programs painstakingly hand-
coded by the programming elite, who worked in arcane machine languages. This was a feat
considered impossible before Fortran.” [20]

2Before these were available in Maple, non-standard techniques [3] were required to get
performance.
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sparsity heuristics. But the coefficients can range from large expressions to
integers, most of them very small, where efficiency of storage and operation
dispatch are critical [13], to the point where we would like to store (most)
integers in a single byte, and avoid any dispatch overhead altogether.

Axiom [14] supported a concept of “special-case compilation”, where the
same code could be compiled generically and for special values of the (type) pa-
rameters, leading to in-lining etc. This or some equivalent technique is needed
to bridge the genericity/efficiency gap. Furthermore, it must be (essentially) au-
tomatic, otherwise one is liable to see the code bloat that apparently bedevilled
Reduce 4 [12].

However, we must admit that automated support can only go so far in
providing efficiency: at some point one has to “get one’s hands dirty”. For
example, the variety of exponent representations supported automatically by
Singular [17] can only be provided by a fairly intricate piece of C/machine code.
The trick then is, as Singular does, to hide this from the user. We should
note that Singular is ‘sound’, in the sense that the choice Singular makes is
in terms of the number of variables in the input, which fixes the number of
variables throughout the calculation. Similarly, it would be possible (though
the authors do not know of any instance) to imagine a Gröbner-oriented engine
which chose a representation based on the input total degree, and (globally)
changed representation if this increased, which can only happen at fixed points
in Buchberger’s algorithm.

3 Elegance

Compare the following.
−b +

√
b2 − 4ac

2a
(1)

\frac{-b+\sqrt{b^2-4ac}}{2a}

(-b+SQRT(b^2-4*a*c))/(2*a)

(/ (+ (- b) (SQRT (- (^ b 2) (* 4 a c)))) (* 2 a))

(divide (plus (minus b) (sqrt (minus (power b 2) (times 4 a c))))
(times 2 a))

Of course, equation (1) is what we would like to see. Given the developments in
mathematical editing [1, 8, 19, and many others], we could reasonably expect
the front end to mathematical languages of the future to present (and probably
edit) in the format of (1), so we would argue that the problem of elegance of
appearance has largely been moved elsewhere, while elegance of functionality is
effectively expressiveness.

If this is true of input expressiveness, it is certainly not true of output expres-
siveness, which is related to the looser meanings of “simplication” [15]. Despite
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numerous attempts [1, 11, for example], there are still large gaps between what
we see and what we would like to see.

Part of the problem is that input beauty is “in the eyes of the writer”, an
envisionable character, whereas output beauty is “in the eyes of the (unknown)
beholder” — some early examples of the challenges this poses are in [10]. It
could certainly be argued that this is an area where computer algebra ought to
re-discover its roots in artificial intelligence.

4 Expressiveness

However, equation (1) is not what we see in most textbooks: we see

−b±
√

b2 − 4ac

2a
. (2)

This in itself does not look too dangerous, we merely need to widen the addition
and division operators to be set-valued, as for example in SETL [18]. This looks
like a road paved with a good intention, but, at least näıvely, it can lead to hell
in this case (it is a useful facility in many other circumstances, such as dividing
a vector by its norm).

The generally-given solution to the cubic x3 + bc + c,

1
6

3
√
−108 c + 12

√
12 b3 + 81 c2 − 2b

3
√
−108 c + 12

√
12 b3 + 81 c2

, (3)

is not three-valued at all [16], and this is a manifestation of the general problem
of associating the “right” choices among multi-valued expressions. A computer
scientist might feel tempted to ‘solve’ the problem by writing equation 3 as(

λx.
1
6
x − 2b

x

)
3
√
−108 c + 12

√
12 b3 + 81 c2, (4)

but this still appears to be six-valued (as indeed any similar expression(
λx.

1
6
x − 2b

x

)
3
√

A +
√

B

would be).
A similar problem is seen with interval arithmetic, where to get the “correct”

results we need to know the dependencies between objects. A simple example
(see [5] for more) is that of x(1− y) when x, y ∈ [0, 1]. This is also in [0, 1] but
its specialisation x(1− x) ∈ [0, 0.25].

For these reasons and others, extensions to computer algebra systems to
support multi-valued objects have generally been of limited appeal. [4, 9]

A different problem, only partly within the scope of this workshop, concerns
mathematical expressiveness. If a variable x appears, most systems have an
in-built prejudice as to its range of values. This is rarely documented but seems
to be as in table 1. Of these, only Maple, with its assume facility [21], lets the
user change this prejudice.
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Table 1: Systems and their views of Domains
System Reduce Macsyma Maple Mathematica
Domain R≥0 R C C

5 Conclusions

Computer algebra has made significant advances in the 3 E’s since its early days
in the 1960s. We have moved from simple hope of getting an answer to wishing
to make it easy to use, and hence Elegance, useful in its results (Expressiveness)
and capable of solving the large problems which still requires Efficiency, some
of which can be obtained by a suitably expressive programming language, and
some of which still requires hard work.
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