
Lattice attacks on RSA-encrypted IP and TCP

P.A. Crouch & J.H. Davenport?

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, England

Paul@p-crouch.com J.H.Davenport@bath.ac.uk

Abstract. We introduce a hypothetical situation in which low-exponent

RSA is used to encrypt IP packets, TCP segments, or TCP segments

carried in IP packets. In this scenario, we explore how the Copper-

smith/Howgrave-Graham method can be used, in conjunction with the

TCP and IP protocols, to decrypt speci�c packets when they get re-

transmitted (due to a denial-of-service attack on the receiver's side).

We draw conclusions on the applicability of the Coppersmith/Howgrave-

Graham method, its interaction with \guessing", and the diÆculties of

building a secure system by combining well-known building blocks.

1 Introduction

We consider a scenario in which there are many, internally secure, TCP/IP net-

works. These communicate across an insecure internet. To enable secure com-

munication, the �rewalls for each secure network take the IPsec packet from the

secure network, encrypt it with RSA [2] and treat the encrypted packet as data

for an IPinsec packet directed at the �rewall of the destination network. This then

decrypts the packet and injects it into its secure network, as shown in �gure 1.

From the point of view of the IPsec layers, the �rewalls and the IPinsec com-

munication all form a (complex) link layer over which the IPsec packet travels.

The attacker is assumed to listen to the IPinsec packets transmitted across

the insecure internet from the sender (A) to the receiver (B). By ooding B, or a

switch near B, with other traÆc, the attacker can (at least with high probability)

cause B to miss a transmission from A. IP is inherently an unreliable protocol,

so the higher levels above IP (e.g. TCP) will have mechanisms to re-transmit

the lost message. What information can the attacker gain in this scenario?

The Coppersmith/Howgrave-Graham method [4, 7, 8, 11] is encapsulated in

the following theorem.

Theorem 1. Let P be a monic polynomial of degree Æ in one variable modulo

an integer N (of unknown factorisation). Then one can �nd, in time polynomial

in (logN; Æ), all integers x0 such that P (x0) � 0 (mod N) and jx0j � N1=Æ.

The method forms an hÆ�hÆ lattice, where h is the control parameter. To reach

N1=Æ, one needs h to be arbitrarily large, and the actual bound on x0 achieved

varies with h, as shown in table 1 for the case of Æ = 3.

?
The authors are grateful to Dr. D. Coppersmith, Dr. N.A. Howgrave-Graham and

Mr. A.J. Holt for their contributions to this work.

Fig. 1. Protocol layers in the scenario

Table 1. x0 as a function of h; Æ = 3

h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 : : : h = 67

N0:2 N0:25 N0:27 N0:286 N0:294 N0:3 : : : N0:33

In this paper, we are concerned with recovering bit-�elds from IP packets,

generally 16-bit �elds. Table 1 shows how many bits we can expect to recover

for various values of h in various scenarios for the size of the RSA modulus (512,

1024 or 2048 bits), choices of the RSA exponent, and the presence or absence of

checksum wrapping (as explained later).

Table 2. Values for � for recovering x0 � 2
�

e = 3 e = 5

No CS Wrap CS Wrap No CS Wrap CS Wrap

512 1024 2048 512 1024 2048 512 1024 2048 512 1024 2048

h = 2 34.13 68.27 136.53 30.12 60.24 120.47 11.38 22.76 45.51 10.44 20.89 41.8

h = 3 42.66 85.33 170.67 39.38 78.77 157.54 14.63 29.26 58.51 13.84 27.68 55.35

h = 4 46.54 93.09 186.18 43.89 87.78 175.54 16.17 32.34 64.67 15.52 31.03 62.06

h = 5 48.76 97.52 195.04 46.55 93.09 186.18 17.07 34.14 68.26 16.52 33.03 66.06

h = 6 50.19 100.39 200.78 48.3 96.60 193.20 17.66 35.31 70.62 17.18 34.36 68.72

The complexity of the lattice reduction, which is the dominant step in the

Coppersmith/Howgrave-Graham method, is

O
�
h9Æ6(logN)3

�
; (1)

assuming classical arithmetic. From this and table 1, we see the importance of

minimising both h and Æ.

Most of the computation for this paper was done in Maple but Victor Shoup's

NTL[12] library for C++ was used for the time-critical lattice reduction part.

2 IP packets

Figure 2 shows a diagram of an IP packet. To understand the attacks on IP

datagrams, we need to understand the IP datagram header. A good general

reference on TCP and IP is [13].

Fig. 2. IP datagram, showing the �elds in the IP header

In the denial-of-service scenario mentioned in the introduction, the higher

protocols above IP would cause a re-transmission. The IP layer is unaware that

this is a re-transmission, and sends this as a new packet. What �elds change

between this re-transmission and the original transmission? The only two �elds

that we expect to change are the following.

{ The 16-bit identi�cation �eld. This normally increases by 1 every time the

IP layer sends a packet.

{ The one's complement sum of the header, stored in the 16-bit checksum

�eld. Every time the 16-bit identi�cation �eld is incremented, the checksum

is decremented. Care must be taken if the checksum exceeds 65535, as it will

then wrap around and restart from 1.

3 Attacks on IP packets

First we need to take the denial of service attack and look at it in more detail.

In the denial of service attack letting

c1 = me

c2 = (m+ x)e

gives us a basic idea of how an attack could be implemented. However we are

more speci�cally interested in what two IP packets would look like when rep-

resented as c1 and c2, and the IPsec identi�cation �elds di�er by �. Using the

knowledge about IP packets it is possible to construct a similar general formula,

which is shown and explained below.

c1 = me

c2 = (m+ (

1z }| {
248�� ��65535| {z }

2

)�

3z }| {
264+d)e

1. This is because the id �eld is 48 bits from the checksum �eld and increases by

1 each time a packet is sent. The �� is because when the id �eld increments

by 1, the checksum decrements by 1.

2. The �65535 only applies if the IPsec checksum wraps around, something

which cannot be determined from the encrypted packets. If the checksum

does not wrap around between the two packets then this value is 0.

3. This 264+d is derived from the checksum being 64-bits (32 bit source address

and 32 bit destination address) from the end of the packet +d which is the

number of bits of data which are appended to the end of the packet.

Next two RSA encrypted versions of the same (apart from identi�cation and

checksum) IPsec packets are required. De�ne these IPinsec data �elds to be eip1
and eip2. These would correspond to the IPsec packets ip1 and ip2, and would

have been encrypted by taking eipj = ipej mod N .

Letting c1 and c2 be the symbolic forms of the two encrypted packets eip1 and

eip2, it is possible to calculate resultants. This is done by taking the resultants

of c1 � eip1 and c2 � eip2, i.e. of m
e
� eip1 and (m+ x)e � eip2, with respect to

m.

Taking resultants will give a polynomial in � of degree e2 (though it may be

possible to reduce this to e). This is the polynomial satis�ed by the unknown, but

comparatively small, �. We use the Coppersmith/Howgrave-Grahammethod [4,

7, 8] to �nd �, by solving the appropriate lattice.

Once � is known, we take the greatest common divisor with respect to z of

gcd(ze � eip1; (z + �� (248 � 1)� 264+d)e � eip2) mod N) = z + ip1 + �N

where z is an indeterminate, and � represents the fact that we are interested in

ip1 (mod N) (in practice � = 1). This gives

z � (gcd(ze � eip1; (z + (248�� �)� 264+d)e � eip2) mod N)� �N = ip1

Therefore we have recovered ip1 and broken the RSA encryption on these

particular IP packets.

Symbolically, in the absence of checksum wrapping, and ignoring for simplic-

ity the large numerical factors, the equation for � is of the following form.

�9 + 3(c1 � c2)�
6 + 3(c21 + 7c1c2 + c22)�

3 + (c1 � c2)
3
� 0 (mod N)

While this is of degree 9 in �, which would imply reducing an 18 � 18 lattice

with h = 2, it is in fact a polynomial of degree 3 in �3, and solving it as such

only requires reducing a 6 � 6 lattice, giving a 36 = 729 theoretical saving1.

Unfortunately, if the checksum does wrap, this simpli�cation is not possible.

Shown below is a summary of the timings in seconds to perform the lattice

reduction phase of this attack for various sizes of the public-key modulus..

Table 3. Times for IP reduction

NTL Timings in seconds to lattice reduce

RedHat Linux 6.2 on 1Ghz Pentium III with 500Mb RAM

Public exponent e=3 e=5

RSA-type 512 1024 2048 512 1024 2048

h (control parameter) 2 2 2 4 2 2

IP No checksum wrapping 2 9 27 8068* 177 1386

With checksum wrapping 653 3413 3976 y 793465 x

y Not implemented due to software restrictions. This would in fact have required

h = 5.
x Not implemented in this report, due to the running time & resource con-

straints.
� Taking � � 211 allowed h = 2, with e = 5 this formed a 10x10 matrix which

reduced in 19 seconds. Therefore guessing all possibilities for the top �ve bits

of a 16-bit identi�cation �eld and using the Coppersmith/Howgrave-Graham

method to �nd the bottom 11 bits would take 25 � 19 = 608 seconds: over a

factor of 10 faster than direct solving.

1
The same happens for e = 5, and in fact we also save on h, being able to take h = 4

rather than h = 5, as can be seen from table 1.

Without checksum wrapping, and with h = 2, the e = 3 examples required a

6�6 lattice, and e = 5 required 10�10. With checksum wrapping and h = 2, the

e = 3 examples required a 18�18 lattice, and e = 5 required 50�50. In general,

we note that doubling the length of the modulus multiplies the running time by

about 8, which is what one would expect from the theoretical performance (as

given in equation (1)) of the LLL algorithm [9].

4 TCP/IP sessions

TCP (Transmission Control Protocol) is a common protocol to use above IP. It

provides a reliable connection-oriented service on top of the unreliable service

provided by IP. In the scenario in Figure 1, if an opening (i.e. carrying the

Fig. 3. TCP segment, showing the �elds in the TCP header

SYN ag) TCP packet is lost, the TCP packet will simply be re-transmitted

unchanged. In this case, the attack in the previous session is the only one possible.

However, it is possible to deny service for the entire TCP opening sequence, in

which case protocols above TCP may well start a new TCP session, which will

have its own sequence number.

In a denial of service attack we are interested in what would change in a

TCP packet header, shown in �gure 3. This is slightly more complex because

the TCP checksum is calculated (as in the case of the IP checksum) as a one's

complement sum of 16-bit words. In the case of TCP, the �eld that changes is

the sequence number. Unfortunately this is a 32-bit �eld. Therefore although we

know that the sequence number in many implementations (incorrectly: see [1, 3,

10]) simply increments by 64000 every half second, the e�ect on the checksum

is rather di�erent.

If the 32-bit sequence number increments by 64000�, the high 16-bits in the

32-sequence number normally2 increase by � and the low 16-bits decrease by

1536� so the overall change in the checksum (as it is the one's complement sum)

is +1535�. This is valid only if � � 216 (otherwise the 32-bit nature of the �eld

manifests itself). We assume that � 6> 216.

5 Attacks on TCP/IP sessions

We consider two kinds of attacks: those where we assume the TCP packet alone

is encrypted (i.e. the encryption takes place between TCP and IP, rather than

below IPsec as in �gure 1) and those where the complete IPsec packet is encrypted,

in accordance with �gure 1. These are referred to as TCP and TCP/IP in table

5. The TCP attack is similar to the IP attack: we are solving for one variable,

�, and the equation to be solved is of degree e2, which can be reduced to degree

e in the event of no checksum wrapping.

Table 4. Times for TCP reduction

NTL Timings in seconds to lattice reduce

RedHat Linux 6.2 on 1Ghz Pentium III with 500Mb RAM

Public exponent e=3 e=5

RSA-type 512 1024 2048 512 1024 2048

h (control parameter) 2 2 2 4 2 2

TCP No checksum wrapping 1 9 27 9456 167 1384

With checksum wrapping 702 4631 5129 y x x

TCP/IP No checksum wrapping 	 x x x x x

y Not implemented due to software restrictions. This would in fact have required

h = 5.

	 Computation aborted after one month.

x Not implemented due to the running time & resource constraints.

The TCP/IP attack is more complicated, as we are solving for two variables,

� (the change in IP identi�cation �eld) and �. From a polynomial point of view,

this forms a bivariate modular equation. As pointed out by Coppersmith [4]

and Howgrave-Graham [7, 8], there is a heuristic extension of their method to

bivariates. Let us assume that the IPsec packets are tcpip1 and tcpip2, with one

byte of TCP data. Taking etcpip1 and etcpip2 to be tcpip1 and tcpip2 encrypted

2
That is to say, when the low-order part of the sequence number is greater than

1536�, which one might expect to occur 1 �
1536�

65536
of the time.

with RSA, resultants were taken using them and c1 and c2 shown below, which

formed a bivariate modular polynomial.

c1 = m3

c2 = (m+ ((248 � 1)�

�z}|{
2232)| {z }

IP packet

+((280 � (64000�) + (1535�))� 224)| {z }
TCP packet| {z }

TCP/IP packet

)3

� - The IP checksum �eld is now 232 bits from the end of the packet as it

is 64 bits from the end of the IP header, 160 bits (20 bytes) of TCP header and

8 bits of data. 64+160+8=232

As this is an e = 3 case we have already attacked IP and TCP with e = 3 so

it is safe to conclude that h = 2. Therefore the polynomial is never raised to a

greater degree than 1.

We obtained a polynomial in � and � where the maximum degree of � is 9.

This polynomial was made monic with respect to �9. Then using the formula

to calculate the dimensions of the matrix where j = 9, showed that a 190x190

matrix was required.

dim = 2j2 + 3j + 1 = 2� 92 + 3� 9 + 1 = 162 + 27 + 1 = 190

It is possible to calculate the number of rows which must contain N and the

number of rows which must contain the coeÆcients of p(x),

190�
j2 + 3j + 2

2
= 190�

110

2
= 135

So 135 rows of the matrix contain N 's (scaled by the bounds for � and �) on the

diagonal (and zeros elsewhere) and the remaining 55 rows contain the coeÆcients

of the polynomial multiplied by the di�erent combinations of the two variables

� and � and scaled by the bounds for � and �, so that the leading term is on

the diagonal.

The lattice reduction is extremely costly in time and resources, and at the

time of �nishing [5], the 190x190 lattice reduction process had been running for

in excess of 750 hours.

In theory though, if the LLL reduction had been successful on this large

matrix, we would have taken the �rst two short vectors of the LLL reduced

matrix, divided them both by the numeric vector (of upper bounds), and formed

two simultaneous equations. These two simultaneous equations would be solved

to return � and �.

Next with � and � in hand, and etcpip1 and etcpip2 corresponding to the

two encrypted messages, we would calculate the linear polynomial

gcd(z3�ep1; (z+(248�1)�2232+(280�64000+1535)��224)3�ep2) mod N)

to recover tcpip1.

6 TCP/IP attacks revisited

A better way to attack TCP/IP packets is by \`guessing" �. � represents the

change in the IP identi�cation �eld, as this increments by 1 every time a packet

is sent from the original sender (including packets internal to the sender's IPsec

network, which cannot be detected outside), guessing this would be essentially

impossible due to the number of packets sent. However � increments by 1 every

half second. Remembering that we are performing a denial of service attack, if

we, for example, sni�ed two packets in the space of 4 seconds, there would be

only eight �'s to guess.

After experimentation with e = 3 and substituting � = f1; 2; 3; 4; 5; 6; 7; 8g

it was clear to see from the resultant polynomial that this was a univariate

polynomial in � with maximum degree 9. Unfortunately this could not be solved

as a degree 3 polynomial in �3, but running eight 18x18 lattice reductions takes

signi�cantly less time (8� 680 = 5440 seconds) than attempting to LLL reduce

the 190x190 matrix.

Taking

c2 := (m+ ((248�� �)� 2232) + ((280 � (64000�) + (1535�))� 224))3

But then for example guessing � = 1 gives:

c2 := (m+ ((248�� �)� 2232) + 1329207713375312221233383113029058560)3

We observe empirically that lattice reducing a matrix with an unsuc-

cessful guess of � takes no longer than to reduce a successful guess of

�.

A polynomial is constructed and solved using LLL reduction as in the IP

case with checksum wraparound to resolve �, and now with � calculated and �

guessed,

gcd(z3 � etcpip1;

(z + (248 � 1)�2232 + (280 � 64000+ 1535)� � 224)3 � etcpip2) mod N)

is calculated, which is equal to z� tcpip1��N , hence RSA encryption on these

TCP/IP packets is broken.

7 Conclusions

Table 1 shows that the Coppersmith/Howgrave-Graham method is eminently

applicable for the decoding of low-exponent RSA-encrypted IP packets. For e = 5

we also have the paradoxical result that increasing the key length from 512

bits to 1024 actually reduces the time by a factor of 45, since a smaller lattice

(10�10 rather than 20�20, with entries modulo N rather than N3) is involved.

Extrapolating from table 3 shows that the key size would have to rise to 4096

bits before security is improved.

Yet again, we note that the common, but awed, implementation of TCP

initial sequence numbers is a security loophole [1, 3, 10]. In our case, the fact

that 64000 � 216 is an added weakness.

We also note the power of combining guessing some bits with the Copper-

smith/Howgrave-Graham method for �nding others: see note (*) in IP attacks

and section 6.

More generally, we have shown that a cryptosystem built according to stan-

dard principles of protocol layering with \standard" components displays unex-

pected, and in some cases computationally trivial, vulnerabilities.

References

1. Bellovin, S., Defending Against Sequence Number Attacks. Internet RFC 1948,

May 1996.

2. Boneh, D., Twenty Years of Attacks on the RSA Cryptosystem. Notices of the

AMS 46 (1998) pp. 203{213.

http://crypto.stanford.edu/~dabo/papers/RSA.ps

3. Braden, R. (Ed.), Requirements for Internet Hosts | Communication Layers. In-

ternet RFC 1122, October 1989.

4. Coppersmith, D., Small solutions to polynomial equations, and low exponent RSA

vulnerabilities. J. Cryptology 10 (1997) pp. 233{260.

5. Crouch, P.A., A small public exponent RSA attack on TCP/IP packets.

Project, University of Bath Department of Mathematical Sciences, May 2001.

http://www.p-crouch.com/rsa-tcpip.

6. Davenport, J.H., Lecture notes at LMS Durham Symposium.

http://www.bath.ac.uk/~masjhd/Durham.{dvi,ps,pdf}

7. Howgrave-Graham, N.A., Finding Small Roots of Univariate Modular Equations

Revisited. Cryptography and Coding (Ed. M. Darnell), Springer Lecture Notes in

Computer Science 1355, 1997, pp. 131{142.

8. Howgrave-Graham, N.A., Computational Mathematics inspired by RSA. Ph.D.

Thesis, University of Bath, 1998.

9. Lenstra, A. Lenstra, H. Lov�asz. Factoring Polynomials with Rational CoeÆcients.

Mathematische Annalen 261 (1982) pp. 515{534. Zbl. 488.12001. MR 84a:12002.

10. Morris, R.T., A Weakness in the 4.2BSD Unix TCP/IP Software. Computing Sci-

ence Technical Report 117, AT&T Bell Laboratories, Murray Hill, New Jersey,

1985.

11. Nguyen, S. and Stern, J., Lattice Reduction in Cryptography: An update.

Proc. ANTS-IV (ed. W. Bosma), Springer Lecture Notes in Computer Science

1838, Springer-Verlag, 2000, pp. 85{112. Updated at http://www.di.ens.fr/

~pnguyen/pub.

12. Shoup, V. NTL (Number Theory Library) for C++. http://www.shoup.net.

13. Stevens, W.R., TCP/IP Illustrated, Volume 1 . Addison Wesley, 1994.

