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1 Smart

Claims that RSA is not secure, but El-Gamal is. In real life, we don’t care
about secret keys per se, but rather about the message. For example, if the
messages are “buy” or “sell”, we can determine which is which by observation
if the encryption algorithm was deterministic. Note that the “RSA problem”
is not known to be as hard as factoring. What is the problem that underlies
El-Gamal?

The “bad guy” A gets the public key g, y = gx, and two messages c1 = gk

and c2 = myk. It has to output m. If this is feasible, it turns out we can solve
the Diffie-Hellman problem, so we assume this means El-Gamal is secure.

Shannon’s theory by itself is not appropriate, since an “infinitely powerful”
adversary can break all public key systems. Hence we get “semantic security”
by replacing “infinitely powerful” by “polynomially bounded”. Related ot this is
“Indistinguishability” (previously known as “polynomial security”). A is given
the key, and outputs two messages m0 and m1. The challenger then chooses
b ∈ {0, 1}, and challenges with E = Ck(mb), and the adversary guesses b′. If
b′ = b doesn’t have probability 0.5, then we don’t have indistinguishability. See
Goldwasser’s thesis (c.1983).

Hence the “Decision Diffie–Hellman” problem: given ga, gb and gc, is c = ab?
If we can solve El-Gamal, we can solve DDH. In some groups, DDH is definitely
easier than DH, whereas in others they are believed to be equivalent.

But how do we represent messages as points on our elliptic curve, and how
do we deal with very long messages? We need a Key Encapsulation Mechanism,
so we use a block cipher (e.g. AES) keyed by an El-Gamal-like signature based
on a hash H of the message. But what about hash functions? Use the Random
Oracle Model, in which A can only call H. If we attack this by monitoring the
calls to H, we see thatA has to call H on the right value. Hence we output one of
the calls to H, and its probability of being right is better than random (assuming
that A works). What we really wants is IND-CCA-ROM1: indistinguishability
under chosen-ciphertext attacks in the random oracle model.

1There are attacks on SSL treating the SSL server as an encryption algorithm.
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This leads to the formulation of the “Gap Diffie–Hellman problem” [not
fully explained], which is the abstract problem to which IND-CCA-ROM can
be reduced.

Consider E(Fp), with a bilinear pairing t over E. Then asking whether
t(aP, bP ) = t(cP, P ) can break DDH.

Question: what is Koblitz’ objection?

1. The refereeing process (CS is conference-based, not journal-based). Granted
it is fast, but in fact success rates are much lower at conferences.

2. Terminology — the theorems state, not “GDH hard ⇒ XXX hard”, but
rather “GDH hard ⇒ XXX hard in model ZZZ”. Hence ‘provably secure’
is not a valid term. NPS’s riposte would be that at least we now have a
test for validity of a system.

“It gets rather personal on Oded Goldreich’s website!”

2 Clifford Cocks — Recent Developments in Iden-
tity Based Public Key

Public Key: Alice sends EPKB(M), having extracted PKB from some PKI,
which in practice causes problems.

Shamir 1984: if Bob’s public key were his identity, then Alice has no problem,
but now Bob has to get his private key from some trusted authority. Equally, we
could include items such as date in the public key. Good idea, but no practical
implementations for about 15 years.

Pairings Need E/Fp, and a bilinear e : E × E → Fpr . Need |E| to divide
pr−1. Boneh & Franklin 2001. The trusted source’s secret is some x, and
A’s secret key is x · IDA. The key of the message is e(x · IDA, IDB) =
e(IDA, x · IDB).

Reciprocity For quadratic recirpocity we need the Legendgre and Jacobi sym-
bols: Jacobi symbols can be computed without being able to factorise.
Here (Cocks, 2001) the secret of the Trusted Authority is p, q, and N = pq
is published. To send a bit x = ±1, we choose t such that (t|N) = x, and
sends s = t+b/t to B. Now s+2b = t(1+b/t)2, so ((s+2b)|N) = (t|N) = x.
The problem is that this only sends one bit.

Boneh, Gentry and Hamburg (2007). Given a, b,N we can solve Ax2 +By2 ≡ 1
(mod N) without factoring N . This is due to Cremona & Rusin 2003. Uses LLL
to find suitable small solutions to Px2 +Qy2 = z2. Bob and Alice both register
and get back the square roots a, b of their public idenities A, B. Each solves
Ax2 +By2 = 1 (need a methodology to ensure they get the same solution!).

((ax+ by + 1)2 ≡ 2(ax+ 1)(by + 1) (mod N)

Then ((ax+ 1)|N) = ((by + 1)|N) is a shared bit with no communication.
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Since this is only a shared bit, we need to have multiple such identities A1 . . .,
each with their square roots a1 . . .. This requires more communication, but only
with the Trusted Authority at initialisation.

So IDPKC is practicable. Now how do we use it? This is the challenge.

3 Heath-Brown — Counting Solutions of Dio-
phantive Equations

Given F (x1, . . . , xn) ∈ Z[x1, . . . , xn]. Counts solutions with |xi| ≤ B: call this
NF (B). Can build a projective variant. How does N(B) grow as N →∞. This
is linked ot the geometry of V (F ) over Q.

1. If we can show that N(B) → ∞, then we have proved that there are
infintely many solutons!

2. An upper bound forNF (B) can help solve problems, e.g. Hardy–Littlewood2

K∗. Choose F = xd1 + · · ·xdd − xdd+1 − · · ·xd2d, and hope NF (B) = O(Bθ

for any θ > d.

3. Algorithmically, how do we compute NF (B), or enumerate the solutions.

4. If we want to prove F = 0 has no solutions, we can try to prove NF (B) is
small.

If F is homogeneous of degree d, we would näıvely expect NF (B) ≈ Bn−d,
unless there’s a reason why not . There are many such.

1. n < d gives nonsense.

2. n = d = 3 an elliptic curve, so Neron heights gives us c(logB)r/2.

3. n = 4, d = 2, with F = x2
1 + x2

2 − x2
3 − x2

4 gives cB2 logB.

4. n = 4, d = 2, with F = x2
1 + x2

2 + x2
3 − 7x2

4 gives NF (B) = 0.

5. n = 4, d = 3, with F = x3
1 + x3

2 − x3
3 − x3

4 gives far too many trivial
solutions: Ω(B2) whereas we expect O(B1).

6. n = 3 F = x1x
d−1
2 − xd3 gives ≈ B2/d.

7. . . .

Theorem (Birch 1962) If F is nonsingular with n > (d − 1)2d, then NF (B) =
cBn−d + o(Bn−d). Unfortunately c = 0 is sometimes possible, but can often be
ruled out.

Inhomogeneous is much harder: Barager has shown that F = x2
1 +x2

2 +x2
3 +

x2
4 − 4x1x2x3x4 has NF (B) = (logB)α+o(1) with α ∈ [2.3, 2.44]. So restrict to

homogeneous.
2Never stated by Hardy–Littlewood: due to Hooley!
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Define ‘trivial’ to be solutions on a straight line in the surface. Let N1 be N
excluding such solutions. Then Manin’s conjecture isN1(B) = cB(logB)p−1{1+
o(1)}, where p is the rank of Pic(V ). This has been proved for some special cases:
x1x2x3 = x3

4 for example, but it is not yet known for any non-singular surface.
For n = 4, d ≥ 3, then N1(B) = O(Bθ) with θ < 2. This means that trivial

solutions dominate non-trivial ones.
More generally, for n = 4, there are finitely many curves of degree ≤ d− 2,

and these may contribute “trivial” solutons, so define N2 to exclude these as
well. Example: F = (x1x

2
2 − x3

3)G + x4H is trivial for all (a3, b3, ab2, 0). Then
(Heath-Brown, Salberger) N2(B) << Bθ for θ > 3/

√
d. Compare Bombieri–

Lang conjecture.
Consider F = f(x1, x2)−f(x3, x4), so we are looking at numbers represented

by f in more than one way. Then for d ≥ 3, N1 ∼ cB2/d whereas N2 = o(B2/d).
Consider Σri=1aix

d
i . Let S(d) = Σ−B≤x≤B exp(2πiαxd). Then

N(B) =
∫ 1

o

S(a1α . . . S(arα)dα.

Have a usual “major/minor arcs” issue. [I got lost here.] Claims that this shows
that analytic methods can do things that geometry cannot.

De la Bretèche et al. studied x1x
2
2 + x2x

2
3 + x3

4 = 0. Geometry can map this
to the“ universal torsor”, and we then use analytic methods.

4 Hugh Montgomery

[Not a formal talk, but I bumped into him at the reception. It turns out he’s over
at Heilbronn for a year, and he’s giving a talk at this year’s BMC: “Cambridge
forty years ago”.]

He described the following theorem of Conway, which I hope I have captured
correctly. Let π : N → N be a permutation. Then it is claimed that the
following two properties are equivalent.

1. For all sequences si, Σ∞i=0si converges implies Σ∞i=0sπ(i) converges.

2. ∃B ∀N π−1[0 . . . N ] consists of at most B blocks.

[I hope I’ve got the theorem down right: it’s hard to do when the theorem was
described to one an hour previously over canapés.]

Note that the second property can be true of π but not π−1. From memory
(his, and then mine) Conway’s example was as follows: π(0) = 0; π(1) = 1;
π(2, 3, 4) = (3, 2, 4); π(5, 6, 7, 8, 9) = (7, 6, 8, 5, 9) and so on for each (n2, (n+1)2].

Does anyone have a reference to this theorem?
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